A RELAXATION OF STEINBERG'S CONJECTURE

OWEN HILL AND GEXIN YU

Abstract

A graph is $\left(c_{1}, c_{2}, \cdots, c_{k}\right)$-colorable if the vertex set can be partitioned into k sets $V_{1}, V_{2}, \ldots, V_{k}$, such that for every $i: 1 \leq i \leq k$ the subgraph $G\left[V_{i}\right]$ has maximum degree at most c_{i}. We show that every planar graph without 4 - and 5 -cycles is ($1,1,0$)-colorable and ($3,0,0$)-colorable. This is a relaxation of the Steinberg Conjecture that every planar graph without 4 - and 5 -cycles are properly 3 -colorable (i.e., ($0,0,0$)-colorable).

1. Introduction

It is well-known that the problem of deciding whether a planar graph is properly 3-colorable is NP-complete. Grötzsch in 1959 [5] showed the famous theorem that every triangle-free planar graph is 3 -colorable. A lot of research was devoted to find sufficient conditions for a planar graph to be 3 -colorable, by allowing a triangle together with some other conditions. One of such efforts is the following famous conjecture made by Steinberg in 1976.
Conjecture 1 (Steinberg, [7]). All planar graphs without 4-cycles and 5-cycles are 3-colorable.
Not much progress in this direction was made until Erdös proposed to find a constant C such that a planar graph without cycles of length from 4 to C is 3 -colorable. Borodin, Glebov, Raspaud, and Salavatipour [2] showed that $C \leq 7$. For more results, see the recent nice survey by Borodin [1].

Yet another direction of relaxation of the Conjecture is to allow some defects in the color classes. A graph is $\left(c_{1}, c_{2}, \cdots, c_{k}\right)$-colorable if the vertex set can be partitioned into k sets $V_{1}, V_{2}, \ldots, V_{k}$, such that for every $i: 1 \leq i \leq k$ the subgraph $G\left[V_{i}\right]$ has maximum degree at most c_{i}. Thus a ($0,0,0$)-colorable graph is properly 3 -colorable.

Eaton and Hull 4 and independently Škrekovski 6] showed that every planar graph is $(2,2,2)$-colorable (actually choosable). Xu [8 proved that all planar graphs with no adjacent triangles or 5 -cycles are ($1,1,1$)-colorable. Chang, Havet, Montassier, and Raspaud [3] proved that all planar graphs without 4-cycles or 5 -cycles are ($2,1,0$)-colorable and $(4,0,0)$-colorable. In this paper, we further prove the following relaxation of the Steinberg Conjecture.

Theorem 1. All planar graphs without 4-cycles and 5 -cycles are ($1,1,0$)-colorable.
Theorem 2. All planar graphs without 4-cycles and 5-cycles are (3, 0, 0)-colorable.
We will use a discharging argument in the proofs. We let the initial charge of vertex $u \in G$ be $\mu(u)=2 d(u)-6$, and the initial charge of face f be $\mu(f)=d(f)-6$. Then by Euler's formula, we have

$$
\begin{equation*}
\sum_{v \in V(G)} \mu(u)+\sum_{f \in F(G)} \mu(f)=-12 . \tag{1}
\end{equation*}
$$

Date: November 1, 2018.

Our goal is to show that we may re-distribute the charges among vertices and faces so the final charges of the vertices and faces are non-negative, which would be a contradiction. In the process of discharging, we will see that some configurations prevent us from showing some vertices or faces to have non-negative charges. Those configurations will be shown to be reducible configurations, that is, a valid coloring outside of the configurations can be extended to the whole graph. It is worth to note that in the proof of Theorem 1, we prove a somewhat global structure, a special chain of triangles, to be reducible.

The following are some simple observations about the minimal counterexamples to the above theorems.
Proposition 1. Among all planar graphs without 4-cycles and 5 -cycles that are not ($1,1,0$)colorable or $(3,0,0)$-colorable, let G be one with minimum number of vertices. Then
(a) G contains no 2^{-}vertices.
(b) a k-vertex in G can have $\alpha \leq\left\lfloor\frac{k}{2}\right\rfloor$ incident 3 -faces, and at most $k-2 \alpha$ pendant 3 -faces.

We will use the following notations in the proofs. A k-vertex (k^{+}-vertex, k^{-}-vertex) is a vertex of degree k (at least k, at most k resp.). The same notation will apply to faces. An $\left(\ell_{1}, \ell_{2}, \ldots, \ell_{k}\right)$-face is a k-face with incident vertices of degree $\ell_{1}, \ell_{2}, \ldots, \ell_{k}$. A bad 3 -vertex is a 3 -vertex on a 3 -face. A face f is a pendant 3 -face to vertex v if v is adjacent to some bad 3 -vertex on f. The pendant neighbor of a 3 -vertex v on a 3 -face is the neighbor of v not on the 3 -face. A vertex v is properly colored if all neighbors of v have different colors from v. A vertex v is nicely colored if it shares colors with at most $\max \left\{s_{i}-1,0\right\}$ neighbors, thus if a vertex v is nicely colored by a color c which allows deficiency $s_{i}>0$, then an uncolored neighbor of v can be colored by c.

In the next section, we will give a proof to Theorem 1; and in the last section, we will give a proof to Theorem 2 .

2. $(1,1,0)$-COLORING OF PLANAR GRAPHS

We will use a discharging argument in our proof. First we will prove some reducible configurations.

Let G be a minimum counterexample to Theorem 1, that is, G is a planar graph without 4 -cycles and 5 -cycles, and G is not ($1,1,0$)-colorable, but any proper subgraph of G is ($1,1,0$)-colorable.

The following is a very useful tool in the proofs.
Lemma 1. Let H be a proper subgraph of G so that there is a $(1,1,0)$-coloring of $G-H$. If vertex $v \in H$ satisfies either (i) 3 neighbors of v are colored, with at least two properly colored, or (ii) 4 neighbors of v are colored, all properly, then the coloring of $G-H$ can be extended to $G-(H-v)$.

Proof. (i) Let $v \in H$ be a vertex with 3 colored neighbors, two of which are properly colored, such that the coloring of $G-H$ can not be extended to v. Since v is not $(1,1,0)$-colorable, the three neighbors of v must have different colors, and furthermore, two of the colored neighbors cannot be properly colored, a contradiction to the assumption that two of the colored neighbors of v are properly colored.
(ii) Let $v \in H$ be a vertex of degree 4 with all neighbors properly colored such that the coloring of $G-H$ can not be extended to v. Then due to the coloring deficiencies, v must have at least 2 neighbors colored by 1, at least 2 neighbors colored by 2 , and at least 1 neighbor colored by 1 . Then v has at least five colored neighbors, a contradiction.

Lemma 2. There is no (3, 3, 4^{-})-face in G.
Proof. Let uvw be a $\left(3,3,4^{-}\right)$-face in G with $d(u)=d(v)=3$ and $d(w) \leq 4$. Then $G \backslash\{u, v, w\}$ is $(1,1,0)$-colorable. Color w and v properly, then u is colorable by Lemma 1 . thus G is $(1,1,0)$-colorable, a contradiction.

Lemma 3. There is no 5-vertex that is incident to two (3, $\left.4^{-}, 5\right)$-faces and adjacent to a 3-vertex in G.

Figure 1. Figure for Lemma 3

Proof. Let v be a 5 -vertex with neighbors u, w, x, y, z so that $w x, y z \in E(G)$ and $d(u)=$ $d(x)=d(z)=3$ and $d(w), d(y) \leq 4$ (See Figure 1). By the minimality of $G, G \backslash\{u, v, w, x, y, z\}$ is ($1,1,0$)-colorable. Properly color u, w, and y, then properly color x and z. For v to not be colorable, v must have two neighbors colored by 1 , two neighbors colored by 2 and one neighbor colored by 3 . Since the w, x and y, z vertex pairs must be colored differently, one of them must have the colors 1 and 2 . W.l.o.g. we can assume that w is colored by 1 and x by 2 . Then since w is properly colored, we can either recolor x by 1 or 3 , and color v by 2 obtaining a coloring of G, a contradiction.

Lemma 4. No 3-vertex in G can be adjacent to two other 3-vertices. In particular, the 3 -vertices on a $\left(3,3,5^{+}\right)$-face must have another neighbor with degree four or higher.

Proof. Let v be a 3 -vertex with x and y being two neighbors of degree 3 . By the minimality of $G, G \backslash\{v, x, y\}$ is ($1,1,0$)-colorable. Then we can first properly color x and y, and then by Lemma 1 color v to get a coloring of G, a contradiction.

Lemma 5. The pendant neighbor of the 3 -vertex on a (3, 4, 4)-face must have degree 4 or higher.

Figure 2. Figure for Lemma 5

Proof. Let $v x y$ be a $(3,4,4)$-face in G such that the pendant neighbor u of the 3 -vertex v has degree 3 (See Figure 2). By the minimality of $G, G \backslash\{u, v\}$ is ($1,1,0$)-colorable. We properly color u and then color v differently from both x and y. If u and v are not both colored by 3 , then we get a coloring for G, a contradiction, so we may assume both u and v are colored by 3 . This means that both u and v have two remaining neighbors colored by 1 and 2 . Let x and y be colored by 1 and 2 respectively. The neighbors of x must be colored by 1 and 3 or else we could recolor v by 1 and x by 3 if necessary to obtain a coloring of G. Likewise, the neighbors of y must be colored by 2 and 3 . In this case we switch the colors of x and y and color v by 1 to obtain a coloring of G, a contradiction again.

Let a $\left(T_{0}, T_{1}, \ldots, T_{n}\right)$-chain be a sequence of triangles, $T_{0}, T_{1}, \ldots, T_{n}$, such that (i) T_{0} is a (3, 4, 4)-face and T_{n} is a $\left(3^{+}, 4,4^{+}\right)$-face, and all other triangles are (4, 4, 4)-faces, and (ii) for $0 \leq i \leq n-1, T_{i}$ and T_{i+1} share a 4 -vertex t_{i}. In a $\left(T_{0}, T_{1}, \ldots, T_{n}\right)$-chain, let $x_{i} \in T_{i}$ for $0 \leq i \leq n$ be a non-connecting 4^{+}-vertex.

Let a special 4-vertex be a 4 -vertex that is incident to one 3 -face and has two pendant 3 -faces, and let a 3 -face be a special 3-face if it has at least one special 4 -vertex. Let a good 4 -vertex be a 4 -vertex with only one incident 3 -face and at most one pendant 3 -face.

We will prove in the following lemmas that a $(3,4,4)$-face T_{0} may get help in discharging from a $\left(3^{+}, 4^{+}, 5^{+}\right)$-face or special 3 -face T_{n} through a $\left(T_{0}, T_{1}, \ldots, T_{n}\right)$-chain.

Lemma 6. There are no special $(3,4,4)$-faces in G.
Proof. Let uvw be a special $(3,4,4)$-face in G such that $d(v)=d(w)=4$. W.l.o.g. we can assume that v is a special 4 -vertex with pendant neighbors v_{1} and v_{2}. By the minimality of $G, G \backslash\left\{u, v, v_{1}, v_{2}, w\right\}$ is ($1,1,0$)-colorable. We can properly color w and u in that order then properly color v_{1} and v_{2}. Then by Lemma 1, we can color u, obtaining a coloring of G, a contradiction.

The following is a very useful tool in extending a coloring to a chain.
Lemma 7. Consider a $\left(T_{0}, T_{1}, \cdots, T_{n}\right)$-chain with $n \geq 1$ and T_{n} being a $\left(4,4^{-}, k\right)$-face. If $G \backslash\left\{T_{0}, T_{1}, \cdots, T_{n-1}\right\}$ has a coloring such that the k-vertex of T_{n} is properly colored, or it shares the same color with the 4^{-}-vertex, then the coloring can be extended to G.

Proof. We assume that the $\left(4,4^{-}, k\right)$-face T_{n} has k-vertex x_{n} and 4^{-}-vertex t_{n}. Also let $G \backslash\left\{T_{0}, T_{1}, \cdots, T_{i-1}\right\}$ has a coloring such that x_{n} is properly colored or shares the same color with t_{n} and G does not have a ($1,1,0$)-coloring. Finally let u be the 3 -vertex of T_{0} and let w be the pendant neighbor of u.

We consider two cases. First let $n=1$. If x_{1} and t_{1} have the same color, then we can properly color x_{0} and t_{0} in that order, thus by Lemma 1 we can color u so G has a $(1,1,0)$ coloring, a contradiction. So we know that x_{1} and t_{1} must be colored differently, and further x_{1} is colored properly. We can properly color x_{0}. If x_{0} and w share the same color then we can color t_{0} by Lemma 1 and properly color u, a contradiction. So we may assume that x_{0} and w are colored differently. If any two of x_{0}, x_{1}, and t_{1} are colored the same then we could color t_{0} properly and color u by Lemma 1, a contradiction. Since x_{0}, x_{1}, and t_{1} are colored differently, if x_{0} is not colored by 3 then we could color t_{0} by the same color as x_{0} and properly color u, a contradiction. So x_{0} must be colored by 3 and w.l.o.g. we can assume that w is colored by 1 . Since x_{1} is properly colored, it must be colored by 2 , or we could color t_{0} by 1 and properly color u, a contradiction. It follows that t_{1} is colored by 1 . If t_{1} is colored properly, then we could color t_{0} by 1 and properly color u, a contradiction, so we may
assume that t_{1} is not colored properly. Further, neither z nor z^{\prime} (the two other neighbors of t_{1}) can be colored by 2 , or we could recolor t_{1} properly, then color t_{0} by 1 and u properly, a contradiction. So we color t_{1} by 2 and t_{0} by 1 , and properly color u, a contradiction.

Now we assume that $n \geq 2$. For all $j: 1 \leq j \leq n$, properly color x_{n-j} and color t_{n-j} by Lemma 1, or properly if possible. Then since x_{1} was properly colored, and t_{1} was colored after x_{1}, either x_{1} remains properly colored, or t_{1} has the same color as x_{1}. Also, we know that T_{1} must be a $(4,4,4)$-face, so by the previous case, we can extend the coloring to T_{0} and get a coloring of G, a contradiction.
Lemma 8. There is no $\left(T_{0}, \ldots, T_{n}\right)$-chain so that (i) $n \geq 1$ and T_{n} is a special $(4,4,4)$-face or (ii) $n \geq 2$ and T_{n} is a $(3,4, k)$-face or (iii) $n=1$ and T_{n} is a (3, 4, $\left.4^{-}\right)$-face.

Proof. Let $T_{0}=u x_{0} t_{0}$ be a $(3,4,4)$-face with $d(u)=3$.
(i) Let v be a special 4-vertex of T_{n} and let y and z be the neighbors of v other than t_{n} and x_{n}. Let $S=\left\{t_{i}, x_{i}: 0 \leq i \leq n-1\right\}$. By the minimality of $G, G \backslash\left(S \cup\left\{u, v, x_{n}, y, z\right\}\right)$ has a ($1,1,0$)-coloring. Properly color x_{n}, y and z, then by Lemma 1 color v. Then, either x_{n} remains properly colored or v shares the same color, so by Lemma 7 we can extend the coloring to $\left\{T_{0}, T_{1}, \cdots, T_{n-1}\right\}$ to obtain a coloring of G.
(ii) Let v be the 3-vertex of T_{n} and let $S=\left\{t_{i}, x_{i}: 0 \leq i \leq n-1\right\}$. By the minimality of $G, G \backslash(S \cup\{u, v\})$ has a $(1,1,0)$ coloring. Properly color v and x_{n-1}. Then by Lemma 1, we can color t_{n-1}. Either x_{n-1} remains properly colored or t_{n-1} shares the same color, so by Lemma 7 we can extend the coloring to $\left\{T_{0}, T_{1}, \cdots, T_{n-2}\right\}$ to obtain a coloring of G.
(iii) Assume that $n=1$ and T_{n} is a $(3,4,4)$-face with 3 -vertex v. By the minimality of $G, G \backslash\left\{t_{0}, u, v, x_{0}, x_{1}\right\}$ has a $(1,1,0)$-coloring. Properly color x_{0} and u in that order and properly color x_{1} and v in that order. Then t_{0} has four neighbors colored, all properly, so by Lemma 1 we can color t_{0} to get a coloring for G.

Remark: By above lemma, a $\left(T_{0}, T_{1}\right)$-chain with T_{1} being a ($3,4,5^{+}$)-face is not necessarily reducible. Let a bad $\left(3,4,5^{+}\right)$-face be a $\left(3,4,5^{+}\right)$-face that shares a 4 -vertex with a (3, 4, 4)-face.

Lemma 9. There is no $\left(T_{0}, \ldots, T_{n}\right)$-chain with $T_{i}=T_{n}$ for some $i \neq n$.

Figure 3. Figure for Lemma 9

Proof. Let $\left(T_{0}, \ldots, T_{n}\right)$-chain be a chain with $T_{i}=T_{n}$ for some $i<n$. Let u be the 3vertex of T_{0} and let $S=\left\{t_{j}, x_{j}: 0 \leq j \leq n-1\right\}$. Since $T_{i}=T_{n}$, the vertex that would have been labelled x_{i} is instead labelled t_{n-1} (See Figure 3). By the minimality of G, $G \backslash(S \cup\{u\})$ is $(1,1,0)$-colorable. Start by properly coloring x_{i+1}, x_{i+2}, and t_{i+1}. Then for all $j: i+2 \leq j \leq n-2$, properly color x_{j+1} and color t_{j} by Lemma 1. Next, properly color t_{n-1}, and we have two cases:

Case 1: $i=0$. We can properly color u, then color t_{i} by Lemma 1 to get a coloring of G, a contradiction.

Case 2: $i>0$. We can then color t_{i} by Lemma 1 and then either t_{n-1} is properly colored, or t_{i} shares the same color, so by Lemma 7 we can extend the coloring to $\left\{T_{0}, T_{1}, \cdots, T_{i-1}\right\}$ to obtain a coloring of G, a contradiction.

Lemma 10. For each (3, 4, 4)-face T_{0} without good4-vertices, there exist two chains, $\left(T_{0}, \ldots, T_{n}\right)$ chain and $\left(T_{0}, \ldots, T_{m}^{\prime}\right)$-chain, such that T_{n} and T_{m}^{\prime} are either bad $\left(3,4,5^{+}\right)$-faces, $\left(4,4^{+}, 5^{+}\right)$faces, or $(4,4,4)$-faces with a good 4-vertex. Furthermore, $T_{n} \neq T_{m}^{\prime}$.

Proof. As G is finite, any chain of triangles in G must be finite. By Lemma 8 and 9, no chain of triangles in G can end with a special 3 -face or a non-bad ($3,4,5^{+}$)-face, thus it must end with a bad $\left(3,4,5^{+}\right)$-face or a $\left(4,4^{+}, 4^{+}\right)$-face. Since a $(4,4,4)$-face in a chain can not be a special 3 -face, any chain of triangles in G must end with a bad $\left(3,4,5^{+}\right)$-face, a $\left(4,4^{+}, 5^{+}\right)$-face or a $(4,4,4)$-face with a good 4 -vertex.

Now we assume that $T_{n}=T_{m}$. Then by Lemma 7 , T_{n} must be a $\left(4,4,5^{+}\right)$-face, and since G has no 4 - and 5 -cycles, $n+m \geq 6$. Assume that $n \leq m$. Let $S=\left\{t_{i}, x_{i}: 1 \leq i \leq n-1\right\}$, where $S=\emptyset$ if $n=1$, and $S^{\prime}=\left\{t_{j}^{\prime}, x_{j}^{\prime}: 0 \leq j \leq m-1\right\}$ and let u be the 3 -vertex of T_{0}. By the minimality of $G, G \backslash S \cup S^{\prime} \cup\{u\}$ has a (1,1,0)-coloring. We have two cases:

If $n=1$, properly color x_{m-1}^{\prime} and t_{m-1}^{\prime}. Then, by Lemma 7 we can extend the coloring to $\left\{T_{0}, T_{1}^{\prime}, \cdots T_{m-2}^{\prime}\right\}$ to obtain a coloring of G, a contradiction.

If $n \geq 2$, then properly color x_{n-1}, t_{n-1} and x_{m-1}^{\prime} in that order, then by Lemma 1 we can color t_{m-1}^{\prime}. If $n \geq 3$, for all $i: 2 \leq i \leq n-1$, properly color x_{n-i} and by Lemma 1 we can color t_{n-1}. Then since either x_{m-1}^{\prime} is still properly colored or shares the same color as t_{m-1}^{\prime}, by Lemma 7 we can extend the coloring to $\left\{T_{0}, T_{1}^{\prime}, \cdots, T_{m-2}^{\prime}\right\}$ to obtain a coloring of G, a contradiction.

We will now prove some lemmas which will ensure that bad $\left(3,4,5^{+}\right)$-faces will have extra charge to help (3, 4, 4)-faces.

Lemma 11. A 5-vertex incident to a bad (3,4,5)-face cannot be incident to another bad $(3,4,5)$-face or a $(3,3,5)$-face.

Proof. We only show the case when a 5 -vertex v is incident to two bad (3,4,5)-faces, and it is very similar (and easier!) to show the case when it is incident to a bad (3,4,5)-face and a (3, 3, 5)-face.

Let v be a 5 -vertex that is incident two bad (3,4,5)-faces, f_{1} and f_{2}, and let u be a k-vertex adjacent v (see Figure 4). Let f_{3} be the (3,4,4)-face sharing a 4 -vertex with f_{1} and let f_{4} be the $(3,4,4)$-face sharing a 4 -vertex with f_{2}. Let f_{3} and f_{4} have outer 4 -vertices of x and x^{\prime} respectively and 3 -vertices of y and y^{\prime} respectively. Also, let f_{1} and f_{2} have 4 -vertices z and z^{\prime}. Then, by the minimality of $G, G \backslash\left\{f_{1}, f_{2}, f_{3}, f_{4}\right\}$ has a ($1,1,0$)-coloring.

Figure 4. Figure for Lemma 11
If u is colored by 1 or 2 , then we can color v by 3 and color the 3 -vertices of f_{1} and f_{2} properly. Since v is properly colored, by Lemma 7 we can extend the coloring to f_{1} and f_{3}. Then, since v is colored by 3 , it would remain properly colored, so again by Lemma 7 we can extend the coloring to f_{2} and f_{4} to get a coloring of G.

If u is colored by 3 , then we properly color x and x^{\prime} then properly color y and y^{\prime}. We then properly color z and z^{\prime}. If either z or z^{\prime} is colored by 3 , then we can properly color the 3 -vertices of f_{1} and f_{2} and color v by either 1 or 2 getting a coloring for G. So we can assume neither is colored by 3 , and w.l.o.g. we can assume that z is colored by 1 . Then since z and z^{\prime} are properly colored, we can color the 3 -vertices of f_{1} and f_{2} by either 1 or 3 . Then since v will have at most one neighbor colored by 2 , and that neighbor colored properly, we can color v by 2 to obtain a coloring for G.

Lemma 12. $A(3,5, k)$-face in G that is incident a 5 -vertex that is also incident to a bad $(3,4,5)$-face and a pendant $\left(3,4^{-}, 4^{-}\right)$-face will have a pendant neighbor that is a 4^{+}-vertex.

Figure 5. Figure for Lemma 12

Proof. Let f_{1} be a $(3,5, k)$-face in G with a 5 -vertex v, a 3 -vertex u, and a pendant neighbor u^{\prime} that is a 3 -vertex. Let the k-vertex of f_{1} be w. Let v be incident a bad $(3,4,5)$-face f_{2} with neighbor $(3,4,4)$-face f_{3}, and let v have a pendant $(3,4,4)$-face f_{4}. Let the 3 -vertex of f_{4} be x and the 4 -vertices of f_{4} be y and z (See Figure 5). By the minimality of G, $G \backslash\left\{f_{2}, f_{3}, u, u^{\prime}, x\right\}$ has a (1,1,0)-coloring. Properly color x. If w and x share the same color, then we can properly color u^{\prime} and u, then properly color v and the 3 -vertex of f_{2}. Then the coloring can be extended to f_{3} by Lemma 7, obtaining a coloring of G. So we can assume that w and x are colored differently. If x is colored by 1 or 2 (w.l.o.g. we may assume that
x is colored by 1), then we can color u^{\prime} properly and color u by 1 . Then we can properly color v and properly color the 3 -vertex of f_{2}. Finally we can apply Lemma 7 to extend the coloring to f_{3}, obtaining a coloring of G. So we can assume that x is colored by 3 .

Since x is colored by 3, we may assume that w is colored by 1 . Properly color u^{\prime} and color u by 2 . Since x is properly colored, y and z must be colored by 1 and 2. W.l.o.g. let y be colored by 1 . Then to avoid being able to re-color x by 1 , the two other neighbors of y must be colored 1 and 3 . For similar reasons the other two neighbors of z must be colored 2 and 3. Then switch the colors of y and z and color x by 1 or 2 and color v by 3 , we can color the 3 -vertex of f_{2} properly and by Lemma 7 , extend the coloring to f_{3}, obtaining a coloring of G.

Lemma 13. $A(3,5,5)$-face in G can not have both 5 -vertices also be incident to bad $(3,4,5)$ faces and have pendant (3, 4, 4)-faces.

Figure 6. Figure for Lemma 13

Proof. Let uvw be a $(3,5,5)$-face in G where $d(v)=d(w)=5$ and u has pendant neighbor u^{\prime}. Also let v and w both be incident bad (3,4,5)-faces, f_{1} and f_{2} with neighbor (3,4,4)-faces f_{3} and f_{4} respectively and let v and w have pendant $(3,4,4)$-faces. Let the pendant $(3,4,4)$ faces to v and w have 3-vertices x and x^{\prime} respectively (See Figure 6). By the minimality of $G, G \backslash\left\{f_{1}, f_{2}, f_{3}, f_{4}, u, x, x^{\prime}\right\}$ has a $(1,1,0)$-coloring.

Properly color x and x^{\prime}. If either x or x^{\prime} has a coloring different from u^{\prime}, w.l.o.g. we can assume x, then we color u the same as x. We can properly color w and v in that order, then properly color the 3 -vertices of f_{1} and f_{2}. Then by Lemma 7 we can extend the coloring to f_{3} and f_{4} to obtain a coloring of G. So we can assume that x, x^{\prime}, and u^{\prime} are colored the same. If x is colored by 3 , since x is properly colored, y and z must be colored by 1 and 2 . Then to avoid being able to re-color x by 1 , the other two neighbors of y must be colored 1 and 3. For similar reasons the other two neighbors of z must be colored 2 and 3 . Then we can switch the colors of y and z and color x differently from u^{\prime}. Then we follow the above procedure to obtain a coloring for G.

So we may assume that w.l.o.g. x, x^{\prime}, and u^{\prime} are all colored by 1 . Then we color u by 2 and w by 3 . Color the 3 -vertex of f_{2} properly and by Lemma 7, extend the coloring to f_{4}. We now have v adjacent to 3 differently and properly colored vertices. Properly color the outer 4 -vertex and the 3 -vertex of f_{3} in that order, then properly color the 4 -vertex of f_{1}. If it is colored by 3 , then properly color the 3 -vertex of f_{1} and color v by either 1 or 2 to obtain a coloring of G. If it is not colored by 3 , then w.l.o.g. we can assume that it is colored by 1 .

Then since it is properly colored, we can color the 3 -vertex of f_{1} by either 1 or 3 and color v by 2 , obtaining a coloring of G.

Lemma 14. A 5-vertex in G that is incident a bad $(3,4,5)$-face and has a pendant $(3,4,4)$ face cannot also be incident a $\left(4,4^{+}, 5\right)$-face T_{n} that is in a $\left(T_{0}, \ldots, T_{n}\right)$-chain.

Figure 7. Figure for Lemma 14

Proof. Let v be a 5 -vertex in G that is incident a bad $(3,4,5)$-face f_{1} with neighbor $(3,4,4)$ face f_{2}. Let v have a pendant $(3,4,4)$-face with 3 -vertex w and 4 -vertices y and z. Also let v be incident a $\left(4,4^{+}, 5\right)$-face T_{n} such that there exists a chain of triangles from T_{0} to T_{n}. Let the 4^{+}-vertex of T_{n} be w. Let $S=\left\{t_{i}, x_{i}: 0 \leq i \leq n-1\right\}$ and let u be the 3 -vertex of T_{0} (See Figure 7). By the minimality of $G, G \backslash\left(S \cup\left\{f_{1}, f_{2}, u, x\right\}\right)$ has a (1, 1, 0)-coloring.

Properly color x. If x and w are colored the same then we can properly color x_{n-1}, t_{n-1}, and v. If $n=1$, then by Lemma 11, we can color u. If $n \geq 2$, then by Lemma 7 we can extend the coloring to $\left\{T_{0}, T_{1}, \cdots, T_{n-1}\right\}$. Then we can properly color the 3 -vertex of f_{1} and by Lemma 7 we can extend the coloring to f_{2} obtaining a coloring for G. So we can assume that x and w are colored differently.

Let x be colored 1 or 2 and w.l.o.g. we can assume that x is colored by 1 . Then we can properly color x_{n-1} and color t_{n-1} by 1 . Since w and x are colored differently, either x_{n-1} and t_{n-1} are both colored properly or share the same color. If $n=1$, then either we can color u properly or we can color u by Lemma 1. If $n \geq 2$, then by Lemma 7 we can extend the coloring to $\left\{T_{0}, T_{1}, \cdots, T_{n-1}\right\}$. Then since t_{n-1} and x are colored the same we can properly color v and the 3 -vertex of f_{1}. By Lemma 7 we can extend the coloring to f_{2} to obtain a coloring of G.

So let x be colored by 3 (then w is colored 1 or 2). Then y and z must be colored by 1 and 2 , respectively. To avoid being able to re-color x by 1 or 2 , the two other neighbors of y must be colored 1 and 3 and the two other neighbors of z must be colored 2 and 3 . Then we switch the colors of y and z and re-color x to be the same as w, and proceed as above to get a coloring for G.

Lemma 15. Every 6-vertex in G that is incident a bad (3,4,6)-face can be incident at most two (3, $\left.4^{-}, 6\right)$-faces.

Proof. Let v be a 6 -vertex in G. Let $v w x$ be a bad $(3,4,6)$-face with $d(w)=3$ and neighbor $(3,4,4)$-face $x y z$ with 3 -vertex y. Let v also be incident non-bad (3, 4, 6)-faces $t_{1} t_{2} v$ and $u_{1} u_{2} v$

Figure 8. Figure for Lemma 15
where $d\left(t_{1}\right)=d\left(u_{1}\right)=4$ (See Figure 8). By the minimality of $G, G \backslash\left\{t_{1}, t_{2}, u_{1}, u_{2}, v, w, x, y, z\right\}$ has a $(1,1,0)$-coloring. Properly color t_{1}, t_{2}, u_{1}, and u_{2}. If the color set of $\left\{t_{1}, t_{2}, u_{1}, u_{2}\right\}$ is not $\{1,2,3\}$, then we can properly color v and w. Then by Lemma 7, we can extend the coloring to x, y, and z, obtaining a coloring of G. So we can assume that the color set of $\left\{t_{1}, t_{2}, u_{1}, u_{2}\right\}$ includes 1,2 , and 3 .

If two of $\left\{t_{1}, t_{2}, u_{1}, u_{2}\right\}$ are colored by 3 , then we can color z, y, and x properly. If x is colored by 3 , then we can color w properly and color v by 1 or 2 to get a coloring of G. If x is colored by 1 or 2 , then since x is properly colored we can color w by 3 or the same as x. Then we can color v differently from 3 and x to obtain a coloring of G.

So we can assume that exactly one of vertices in the set $\left\{t_{1}, t_{2}, u_{1}, u_{2}\right\}$ is colored by 3 . Then w.l.o.g. we may assume that the color set of $\left\{t_{1}, t_{2}\right\}$ is $\{1,3\}$ and the color set of $\left\{u_{1}, u_{2}\right\}$ is $\{1,2\}$. Since u_{1} and u_{2} were colored properly, the outside neighbor of u_{2} must be 3. Let u_{1} be colored by 1 , then since it is colored properly we can recolor u_{2} by 1 . Then we can color v and w properly, and extend to x, y, and z to obtain a coloring of G. So we can assume that u_{1} is colored by 2 .

Now color z, y, and x properly in that order. If x is colored by 3 then color w properly. If w is colored by 1 , then color v by 2 to get a coloring for G. If w is colored by 2 , then since u_{1} is colored properly recolor u_{2} by 2 and color v by 1 to get a coloring for G. So we can assume that x is colored by 1 or 2 . Since x is properly colored we can color w by 3 or the same as x. Then either 1 or 2 but not both is in the color set of $\{x, w\}$. If 1 is in the color set, then v will have only one neighbor colored by 2 so we can color v by 2 and obtain a coloring of G. If 2 is in the color set, then v will have two neighbors colored by 1 , but we can recolor u_{2} by 2 and color v by 1 to obtain a coloring of G.

The following lemma says that a 3 -face with k vertices of degree 4 can have at most k chains of triangles ending at it.

Lemma 16. If a $\left(T_{0}, T_{1}, \ldots, T_{n}\right)$-chain and a $\left(T_{0}^{\prime}, T_{1}^{\prime}, \ldots, T_{m}^{\prime}\right)$-chain with $T_{m}^{\prime}=T_{n}$ satisfy $T_{n-1} \cap T_{n}=\left\{t_{n}\right\}=T_{m-1}^{\prime} \cap T_{m}^{\prime}$, then $T_{0}=T_{0}^{\prime}$.

Proof. For otherwise, the two chains have a common (4,4,4)-face T so that $T=T_{a}$ and $T=T_{b}^{\prime}$. Then we would have a $\left(T_{0}, T_{1}, T_{a-1}, T, T_{b-1}^{\prime}, \ldots, T_{1}^{\prime}, T_{0}^{\prime}\right)$-chain. But by Lemma 8 , this chain cannot exist in G.

Discharging Procedure

As we mentioned in the introduction, we set the initial charge of a vertex v to be $\mu(v)=2 d(v)-6$ and the initial charge of a face f to be $\mu(f)=d(f)-6$. For the discharging procedure we must introduce the notion of a bank, which serves as a temporary placeholder for charges. We set the bank with initial charge zero and will show it has a non-negative final charge.

The following are the rules for discharging:
(R1) Each 4 -vertex gives $\frac{1}{2}$ to each pendant 3 -face and the rest to the incident 3 -faces evenly.
(R2) Every 6-vertex gives $\frac{9}{4}$ to incident bad (3, 4, 6)-faces, 2 to other incident (3, $\left.4^{-}, 6\right)$-faces and $\frac{3}{2}$ to all other incident 3 -faces; every 7^{+}-vertex gives $\frac{9}{4}$ to all incident 3 -faces.
(R3) Every 6^{+}-vertex gives $\frac{1}{2}$ to all pendant 3 -faces.
(R4) Every $\left(4^{+}, 4^{+}, 5^{+}\right)$-face and every (4, 4, 4)-face with a good 4 -vertex give $\frac{1}{2}$ to the bank and every bad $\left(3,4,5^{+}\right)$-face gives $\frac{1}{4}$ to the bank.
(R5) The bank gives $\frac{1}{2}$ to each $(3,4,4)$-face without good 4 -vertices.
(R6) Every 5-vertex gives
(a) 2 to each incident $(3,3,5)$-face and $9 / 4$ to each incident bad $(3,4,5)$-face.
(b) $7 / 4$ to incident non-bad $(3,4,5)$-faces when also incident a bad (3,4,5)-face, and gives 2 to incident non-bad (3,4,5)-faces otherwise.
(c) $5 / 4$ to incident $\left(3,5^{+}, 5^{+}\right)$-faces when also incident to a bad $(3,4,5)$-face and a pendant $\left(3,4^{-}, 4^{-}\right)$-face, and gives $3 / 2$ to incident $\left(3,5^{+}, 5^{+}\right)$-faces otherwise.
(d) $3 / 2$ to all $\left(4,4^{+}, 5\right)$-faces with a chain of triangles to a $(3,4,4)$-face and gives 1 to $\left(4,4^{+}, 5\right)$-faces otherwise.
(e) $1 / 2$ to each pendant $\left(3,4^{-}, 4^{-}\right)$-face and $(3,3, k)$-face and $1 / 4$ to all other pendant 3 -faces.

Let v be a k-vertex. By Proposition 1, $k \geq 3$.
For $k=3$, the final charge $\mu^{*}(v)$ of v is $\mu^{*}(v)=\mu(v)=0$.
For $k=4$, by (R1), the final charge of v is 0 . We note that v gives at least 1 to each incident 3 -face, and gives at least $3 / 2$ to 3 -faces when v is a good 4 -vertex.

For $k=5$, if v has at most one incident 3 -face, then by (R6a) and (R6e), $\mu^{*}(v) \geq$ $\mu(v)-\frac{9}{4} \cdot 1-\frac{1}{2} \cdot 3=1 / 4>0$. Let v have two incident 3 -faces f_{1} and f_{2} and a pendant 3 -face f_{3}.

Let f_{3} be a $\left(3,4^{-}, 4^{-}\right)$-face. When f_{1} is a bad $(3,4,5)$-face, by Lemma $3 f_{2}$ cannot be a $\left(3,4^{-}, 5\right)$-face. By Lemma 14 , if f_{2} is a $\left(4,4^{+}, 5\right)$-face, then there is no chain of triangles from some (3, 4, 4)-face to f, so by (R6a), (R6c), (R6d), and (R6e), $\mu^{*}(v) \geq \mu(v)-\frac{1}{2} \cdot 1-\frac{9}{4} \cdot 1-\frac{5}{4} \cdot 1=$ 0 . When f_{1} is a non-bad (3,4,5)-face, then by Lemma 3, f_{2} cannot be a $\left(3,4^{-}, 5\right)$-face, so by (R6b), (R6c), (R6d), and (R6e), $\mu^{*}(v) \geq \mu(v)-\frac{1}{2} \cdot 1-2 \cdot 1-\frac{3}{2} \cdot 1=0$. When neither f_{1} nor f_{2} are ($3,4^{-}, 5$)-faces, by (R6c), (R6d), and (R6e), $\mu^{*}(v) \geq \mu(v)-\frac{1}{2} \cdot 1-\frac{3}{2} \cdot 2=\frac{1}{2}>0$.

Now let f_{3} be a $(3,4,5)$-face. When f_{1} or f_{2} is $\left(3,4^{-}, 5\right)$-face, by Lemma 3 , the other one cannot be a $\left(3,4^{-}, 5\right)$-face, so by (R6b), (R6c), (R6d), and (R6e), $\mu^{*}(v) \geq \mu(v)-\frac{1}{4} \cdot 1-\frac{9}{4}$. $1-\frac{3}{2} \cdot 1=0$. When neither f_{1} nor f_{2} are ($3,4^{-}, 5$)-faces, by rules (R6c), (R6d), and (R6e), $\mu^{*}(v) \geq \mu(v)-\frac{1}{4} \cdot 1-\frac{3}{2} \cdot 2=\frac{3}{4}>0$.

Finally, let v have two incident 3 -faces f_{1} and f_{2}, and no pendant 3 -face. If f_{1} is a bad $(3,4,5)$-face, then by Lemma 11, f_{2} cannot also be a bad (3, 4,5)-face or a (3, 3,5)-face.

Then by (R6), $\mu^{*}(v) \geq \mu(v)-\frac{9}{4} \cdot 1-\frac{7}{4} \cdot 1=0$. If neither f_{1} nor f_{2} is a bad $(3,4,5)$-face, then by (R6b), (R6c), and (R6d), $\mu^{*}(v) \geq \mu(v)-2 \cdot 2=0$.

For $k=6$, if v is incident to at most two 3 -faces, then by (R2) and (R3), $\mu^{*}(v) \geq$ $\mu(v)-\frac{9}{4} \cdot 2-\frac{1}{2} \cdot 2=\frac{1}{2}$. So we can assume that v is incident to three 3 -faces. If v is incident a bad (3, 4, 6)-face then by Lemma 15 only one other incident 3 -face can be a (3, $\left.4^{-}, 6\right)$-face. So by (R2), $\mu^{*}(v) \geq \mu(v)-\frac{9}{4} \cdot 2-\frac{3}{2} \cdot 1=0$. If v is not incident a bad ($3,4,6$)-face, then by (R2), $\mu^{*}(v) \geq \mu(v)-2 \cdot 3=0$.

For $k \geq 7$, if k is odd, then $\mu^{*}(v) \geq \mu(v)-\frac{k-1}{2} \cdot \frac{9}{4}-\frac{1}{2} \cdot 1=2 k-6-\frac{9 k-9}{8}-\frac{4}{8}=\frac{7 k-43}{8} \geq \frac{3}{4}$. If k is even, then $\mu^{*}(v) \geq \mu(v)-\frac{k}{2} \cdot \frac{9}{4}=2 k-6-\frac{9 k}{8}=\frac{7 k-48}{8} \geq 1$.

Now let f be a k-face. Since G is a simple graph, $k \geq 3$. By the condition that there is no 4 -cycle and 5 -cycle, $k=3$ or $k \geq 6$. Since no faces above degree 3 are involved in the discharging procedure, the final charge of 6^{+}-face f is $\mu^{*}(f)=\mu(f)=d(f)-6 \geq 0$.

For $k=3$, by Lemma 2 , we have no $\left(3,3,4^{-}\right)$-faces, but we still have a few different cases:
Case 1: Face f is a $\left(3,3,5^{+}\right)$-face. By Lemma $4, f$ will have two pendant neighbors of degree 4 or higher. So by (R1), (R2), (R4), and (R7), $\mu^{*}(f) \geq(3-6)+2 \cdot 1+\frac{1}{2} \cdot 2=0$.

Case 2: Face f is a $(3,4,4)$-face. By Lemma 5, f will have a pendant neighbor of degree 4 or higher. If f has a good 4 -vertex, then by $(\mathrm{R} 1), \mu^{*}(f) \geq \mu(f)+\frac{3}{2} \cdot 1+1 \cdot 1+\frac{1}{2} \cdot 1=0$. If f has no good 4-vertices, then by (R5), f receives $1 / 2$ from the bank, so $\mu^{*}(f)=\mu(f)+$ $1 \cdot 2+\frac{1}{2} \cdot 1+\frac{1}{2}=0$.

Case 3: Face f is a bad (3,4,5)-face. By (R1), (R4) and (R6a), $\mu^{*}(f)=\mu(f)+1$. $1+\frac{9}{4} \cdot 1-\frac{1}{4} \cdot 1=0$.

Case 4: Face f is a non-bad (3,4,5)-face. If the 5 -vertex of f is not incident a bad $(3,4,5)$-face, then by (R1) and (R6b), $\mu^{*}(f)=\mu(f)+1 \cdot 1+2 \cdot 1=0$. If the 5 -vertex of f is incident a bad (3,4,5)-face, then by Lemma $12, f$ has a pendant neighbor of degree 4 or higher. So by (R1), (R6b), and (R6e), $\mu^{*}(f) \geq \mu(f)+1 \cdot 1+\frac{7}{4} \cdot 1+\frac{1}{4} \cdot 1=0$.

Case 5: Face f is a $(3,4,6)$-face. If f is a bad $(3,4,6)$-face, then by (R1), (R2), and (R4), $\mu^{*}(f)=\mu(f)+1 \cdot 1+\frac{9}{4} \cdot 1-\frac{1}{4} \cdot 1=0$. If f is a non-bad ($3,4,6$)-face then by (R1) and (R2), $\mu^{*}(f)=\mu(f)+1 \cdot 1+2 \cdot 1=0$.

Case 6: Face f is a $\left(3,4,7^{+}\right)$-face. By (R1) and (R2), $\mu^{*}(f)=\mu(f)+1 \cdot 1+\frac{9}{4} \cdot 1=\frac{1}{4}$.
Case 7: Face f is a $(3,5,5)$-face. If neither 5 -vertex of f is also incident to a bad $(3,4,5)$-face and a pendant $\left(3,4^{-}, 4^{-}\right)$-face, then by (R6c), $\mu^{*}(f)=\mu(f)+\frac{3}{2} \cdot 2=0$. If one of the 5 -vertices of f is also incident to a bad (3,4,5)-face and a pendant (3, $\left.4^{-}, 4^{-}\right)$-face then by Lemma 12 , f must have a pendant neighbor of degree 4 or higher. In addition, by Lemma 13 the other 5 -vertex of f cannot have both an incident bad (3, 4,5)-face and a pendant $\left(3,4^{-}, 4^{-}\right)$-face. So by (R6c) and (R6e), $\mu^{*}(f)=\mu(f)+\frac{5}{4} \cdot 1+\frac{1}{4} \cdot 1+\frac{3}{2} \cdot 1=0$.

Case 8: Face f is a $\left(3,5,6^{+}\right)$-face. If the 5 -vertex of f is not incident to a bad $(3,4,5)$ face and a pendant ($3,4^{-}, 4^{-}$)-face then by (R2) and (R6c), $\mu^{*}(f) \geq \mu(f)+\frac{3}{2} \cdot 2=0$. If the 5 -vertex of f has both an incident bad (3,4,5)-face and a pendant (3, $\left.4^{-}, 4^{-}\right)$-face, then by Lemma $12 f$ must have a pendant neighbor of degree 4 or higher. So by (R2), (R6c), and $($ R6e $), \mu^{*}(f) \geq \mu(f)+\frac{5}{4} \cdot 1+\frac{1}{4} \cdot 1+\frac{3}{2} \cdot 1=0$.

Case 9: Face f is a $\left(3,6^{+}, 6^{+}\right)$-face. By $(\mathrm{R} 2), \mu^{*}(f) \geq \mu(f)+\frac{3}{2} \cdot 2=0$.
Case 10: Face f is a $(4,4,4)$-face. If f has no good 4 -vertices then by (R1), $\mu^{*}(f)=$ $\mu(f)+1 \cdot 3=0$. If f has a good 4 -vertex then by (R1) and (R4), $\mu^{*}(f) \geq \mu(f)+1 \cdot 2+\frac{3}{2} \cdot 1-\frac{1}{2} \cdot 1=$ 0 .

Case 11: Face f is a $\left(4^{+}, 4^{+}, 5^{+}\right)$-face. If f has no chains of triangles to a $(3,4,4)$-face, then each incident vertex gives at least 1 to f, so $\mu^{*}(f) \geq \mu(f)+1 \cdot 3=0$. If f has a chain of triangles to a $(3,4,4)$-face then by (R6d), at least one vertex must give $\frac{3}{2}$ to f, so combined with $(\mathrm{R} 4), \mu^{*}(v) \geq \mu(v)+1 \cdot 2+\frac{3}{2} \cdot 1-\frac{1}{2} \cdot 1=0$.

Finally, we show that the bank has a non-negative charge. By Lemma 10 , for each $(3,4,4)$ face without good 4 -vertices in G, there exist at least two chains of triangles from the (3,4,4)face to a bad $\left(3,4,5^{+}\right)$-face, a $(4,4,4)$-face with a good 4 -vertex, or a $\left(4^{+}, 4^{+}, 5^{+}\right)$-face. Then by Lemma 16, there exist at most two chains of triangles to $\left(4^{+}, 4^{+}, 5^{+}\right)$-face from $(3,4,4)$ faces and at most one chain of triangles to a $\left(3,4,5^{+}\right)$-face from $(3,4,4)$-faces. So we can see the transfer of charge from triangles with extra charge to the bank and back to $(3,4,4)$ faces is a transfer of $\frac{1}{4}$ charge over each chain of triangles. Each $(4,4,4)$-face with a good 4 -vertex and $\left(4^{+}, 4^{+}, 5^{+}\right)$-face gives $\frac{1}{2}$ to the bank, and the bank will give at most $\frac{1}{4} \cdot 2$ to (3, 4, 4)-faces for each (4, 4, 4)-face with a good 4 -vertex or $\left(4^{+}, 4^{+}, 5^{+}\right)$-face. Also, each bad $\left(3,4,5^{+}\right)$-face gives $\frac{1}{4}$ to the bank, and the bank will give at most $\frac{1}{4} \cdot 1$ to (3,4,4)-faces for each bad $\left(3,4,5^{+}\right)$-face. Hence the bank will always have a non-negative charge.

This completes the discharging, showing that the final charges of all faces, vertices, and the bank are non-negative, a contradiction to (1). This completes the proof of Theorem 1.1.

3. $(3,0,0)$-COLORING OF PLANAR GRAPHS

In this section, we give a proof for Theorem 2. Our proof will again use a discharging method. Let G be a minimum counterexample to Theorem 2, that is, G is a planar graph without 4 -cycles and 5 -cycles and is not ($3,0,0$)-colorable, but any proper subgraph of G is properly $(3,0,0)$-colorable. We may assume that vertices colored by 1 may have up to three neighbors colored by 1 .

The following is a very useful tool to extend a coloring on a subgraph of G to include more vertices.

Lemma 17. Let H be a proper subgraph of G. Given a $(3,0,0)$-coloring of $G-H$, if two neighbors of $v \in H$ are colored so that one is a 5^{-}-vertex and the other is nicely colored, then the coloring can be extended to $G-(H-v)$ such that v is nicely colored by 1 .

Proof. Let H be a subgraph of G such that $G-H$ has a ($3,0,0$)-coloring. Let $v \in H$ have neighbors u and w that are colored. Let $d(u) \leq 5$ and let w be nicely colored. Color v by 1 . Since w is nicely colored, if this coloring is invalid, then u must be colored by 1 . In addition, u must have at least 3 neighbors colored by 1 . To avoid recoloring u by 2 or $3, u$ must have at least one neighbor of color 2 and at least one neighbor of color 3 . This implies that $d(u) \geq 6>5$, a contradiction. So v is colorable by 1 . In addition, since the deficiency of color 1 is 3 and v only has 2 neighbors, it follows that v is nicely colored.

Lemma 18. Every 3-vertex in G has a 6^{+}-vertex as a neighbor.

Proof. Let v be a vertex in G such that each neighbor vertex of v has degree 5. By the minimality of $G, G-v$ is $(3,0,0)$-colorable. If two vertices in $N(v)$ share the same color, then v can be properly colored, so we can assume all the neighbors of v are colored differently. Let u be the neighbor of v that is colored by 1 . Then u must have 3 neighbors colored by 1 to forbid v to be colored by 1 . In addition, u must have neighbors colored by 2 and 3 to forbid v to be colored by 2 or 3 . Then, u has at least 6 neighbors, a contradiction.

Let a $\left(3,3,3^{+}\right)$-face to be poor if the pendant neighbors of the two 3 -vertices have degrees at most 5. A $\left(3,3^{+}, 3^{+}\right)$-face is semi-poor if exactly one of the pendant neighbors of the 3 -vertices has degree 5 or less. A 3 -face is non-poor if each 3 -vertex on it has the pendant neighbor being a 6^{+}-vertex. Finally, a poor 3-vertex is a 3 -vertex on a poor or semi-poor 3 -face that has a 5^{-}-vertex as its pendant neighbor.

Lemma 19. All (3,3, 6^{-})-faces in G are non-poor.
Proof. For all $\left(3,3,5^{-}\right)$-faces in G, the proof is trivial by Lemma 18. Let uvw be a $(3,3,6)$ face in G with $d(u)=d(v)=3$ such that the pendant neighbor v^{\prime} of v has degree at most 5. By the minimality of $G, G \backslash\{u, v\}$ is (3,0,0)-colorable. Properly color u and color v differently than both w and v^{\prime}. Then u and v are both colored by 2 or 3, w.l.o.g. assume 2. This means that u^{\prime} and v^{\prime} share the same color (where u^{\prime} is the pendant neighbor of u), different from the color of w.

Let w be colored by 1 , then to avoid being able to recolor u or v by $1, w$ must have 3 outer neighbors colored by 1 . Then w can be recolored by 2 or 3 depending on the color of its fourth colored neighbor. We recolor w by 2 or 3 and recolor u and v by 1 to get a coloring of G, a contradiction.

So we may assume that w is colored by 3, and that u^{\prime} and v^{\prime} are colored by 1. To avoid recoloring v by $1, v^{\prime}$ must have at least 3 neighbors colored by 1 . In addition, to avoid recoloring v^{\prime} by 2 or 3 and coloring v by $1, v^{\prime}$ must have neighbors colored by both 2 and 3 . This contradicts that v^{\prime} has degree less than 6 .

Lemma 20. No vertex $v \in V(G)$ can have $\left\lfloor\frac{d(v)}{2}\right\rfloor$ incident poor 3-faces.
Proof. Let v be a k-vertex in G with $\left\lfloor\frac{k}{2}\right\rfloor$ incident poor $(3,3, k)$-faces. Let $u_{1}, u_{2}, \cdots, u_{k}$ be the neighbors of v, and let u_{i}^{\prime} be the pendant neighbor if u_{i} is in a poor 3 -face. Note that $d\left(u_{i}^{\prime}\right) \leq 5$ and we know that all except possibly u_{k} are in poor 3-faces.

By the minimality of $G, G \backslash\left\{v, u_{1}, u_{2}, \cdots, u_{k-1}\right\}$ is (3, 0, 0)-colorable. If $d(v)$ is odd, then by Lemma 17, for all i with $1 \leq i \leq k-1$, we can color u_{i} by 1 . Then we can properly color v to get a coloring of G, so we can assume that $d(v)$ is even. If $d(v)$ is even, then by Lemma 17, for all i with $1 \leq i \leq k-2$, we can color u_{i} by 2 . Then if u_{k} is colored by 1 we can color u_{k-1} properly and v properly to get a coloring of G. If u_{k} is colored by 2 or 3 , then it is colored properly and by Lemma 17 we can color u_{k-1} by 1 . Then we can properly color v to get a coloring of G, a contradiction.

Lemma 21. If an 8-vertex v is incident to three incident poor (3,3,8)-faces, then it cannot be incident to a semi-poor face, nor two pendant 3 -faces.

Proof. Let v be an 8 -vertex in G with 3 incident poor (3,3,8)-faces. Let u_{1}, u_{2}, \cdots, u_{6} be the 3 -vertices in the poor $(3,3,8)$-face and let $u_{1}^{\prime}, u_{2}^{\prime}, \cdots, u_{6}^{\prime}$ be the corresponding pendant neighbors, respectively. We know that for all i with $1 \leq i \leq 6, d\left(u_{i}^{\prime}\right) \leq 5$.
(i) Let $v u_{7} u_{8}$ be the incident semi-poor face with u_{7} being the poor 3 -vertex. Then by the minimality of $G, G \backslash\left\{v, u_{1}, u_{2}, \cdots, u_{7}\right\}$ is (3, 0, 0)-colorable. By Lemma $17, u_{1}, u_{2}, \cdots, u_{6}$ can be colored by 1 . Then if u_{8} is colored by 1 , we can properly color u_{7} and then v to get a coloring of G. So we may assume that u_{8} is not colored by 1 , in which case it is nicely colored and we may color u_{7} with 1 by Lemma 17, and then properly color v to get a coloring of G, a contradiction.
(ii) Let u_{7} and u_{8} be the bad 3 -vertices adjacent to v. Then $G \backslash\left\{v, u_{1}, u_{2}, \cdots, u_{7}, u_{8}\right\}$ is (3, 0, 0)-colorable, by the minimality of G. Properly color both u_{7} and u_{8}. If either u_{7} or u_{8} is colored by 1 or both have the same color, then by Lemma 17 , we may color $u_{1}, u_{2}, \cdots, u_{6}$ by 1 and then properly color v. So we may assume that u_{7} is colored by 2 and u_{8} is colored by 3 . Then we properly color $u_{1}, u_{2}, \cdots, u_{6}$, and it follows that for each i with $1 \leq i \leq 3$, $u_{2 i-1}$ and $u_{2 i}$ must be colored differently. Then v can have at most 3 neighbors colored by 1 , all properly colored, so v can be colored by 1 , a contradiction.

Lemma 22. If a 7-vertex v is incident to two poor (3,3,7)-faces, then it cannot be (i) incident to a semi-poor $\left(3,6^{-}, 7\right)$-face and adjacent to a pendant 3 -face, or (ii) adjacent to three pendant 3-faces.

Proof. Let v be a 7 -vertex in G with 2 incident poor (3,3,7)-faces. Let u_{1}, u_{2}, u_{3}, and u_{4} be the 3 -vertices on the poor (3,3,7)-faces and let $u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime}$, and u_{4}^{\prime} be their corresponding pendant neighbors, respectively. We know that for all i with $1 \leq i \leq 4, d\left(u_{i}^{\prime}\right) \leq 5$.
(i) Let $v u_{5} u_{6}$ be a semi-poor face with u_{5} being a poor 3 -vertex and $d\left(u_{6}\right) \leq 6$ and let u_{7} be a bad 3 -vertex adjacent to v. By the minimality of $G, G \backslash\left\{v, u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{7}\right\}$ is $(3,0,0)$-colorable. Since at this point u_{6} has only 4 colored neighbors, if u_{6} is colored by 1 then either it is nicely colored or it can be recolored properly. If u_{6} is not nicely colored, then recolor u_{6} properly.

Color u_{7} properly. If u_{7} is colored by 1 , then by Lemma 17 , we can color $u_{1}, u_{2}, \cdots, u_{5}$ by 1 and then color v properly, a contradiction. So we may assume w.l.o.g. that u_{7} is colored by 2. Color $u_{1}, u_{2}, \cdots, u_{5}$ properly. Then, for each i with $1 \leq i \leq 3, u_{2 i}$ and $u_{2 i-1}$ are colored differently and nicely. This leaves v with at most 3 neighbors colored by 1 , all nicely, so we may color v by 1 to get a coloring of G, a contradiction.
(ii) Let u_{5}, u_{6}, and u_{7} be the bad 3 -vertices adjacent to v. By the minimality of G, $G \backslash\left\{v, u_{1}, \ldots, u_{7}\right\}$ is (3, 0, 0)-colorable. Properly color u_{5}, u_{6}, and u_{7}. If the set $\left\{u_{5}, u_{6}, u_{7}\right\}$ does not contain both colors 2 and 3 , then by Lemma 17, we can color u_{1}, u_{2}, u_{3}, and u_{4} by 1 and color v properly. So we can assume that $\left\{u_{5}, u_{6}, u_{7}\right\}$ contains both colors 2 and 3 . This implies that at most one vertex is colored by 1 . So we properly color u_{1}, u_{2}, u_{3}, and u_{4}. Then v has at most 3 neighbors colored by 1 , all nicely, so we can color v by 1 to get a coloring of G, a contradiction.

Lemma 23. Let uvw be a semi-poor (3,7,7)-face in G such that $d(v)=d(w)=7$. Then vertices v and w cannot both be 7-vertices that are incident to two poor 3-faces, one semi-poor (3,7,7)-face, and adjacent to one pendant 3-face.

Proof. Let uvw be a semi-poor (3,7,7)-face in G such that $d(v)=d(w)=7$ and both v and w are incident to two poor 3 -faces, one ($3,7,7$)-face, and adjacent to one pendant 3 -face. Let the neighbors of v and w be $t_{1}, t_{2}, \cdots, t_{5}$ and $z_{1}, z_{2}, \cdots, z_{5}$, respectively such that t_{5} and z_{5} are bad 3 -vertices (See Figure 9).

Figure 9. Figure for Lemma 23
By the minimality of $G, G \backslash\left\{u, v, w, t_{1}, t_{2}, \cdots, t_{5}, z_{1}, z_{2}, \cdots, z_{5}\right\}$ is $(3,0,0)$-colorable. By Lemma 17, we can color t_{1}, t_{2}, t_{3}, and t_{4} by 1 . Then properly color t_{5}, v, and z_{5} in that order. Vertex v will not be colored by 1 , so w.l.o.g. lets assume that v is properly colored by 2. If z_{5} is colored by 1 , then by Lemma 17 , we can color $z_{1}, z_{2}, z_{3}, z_{4}$, and u by 1 and then properly color w, to get a coloring of G, a contradiction. So we can assume that z_{5} is not colored by 1 . Then we properly color $z_{1}, z_{2}, z_{3}, z_{4}$ and u, so w can have at most 3 neighbors colored by 1 , all properly. We can color v by 1 to get a coloring of G, a contradiction.

Discharging Procedure:

We start the discharging process now. Recall that the initial charge for a vertex v is $\mu(v)=2 d(v)-6$ and the initial charge for a face f is $\mu(f)=d(f)-6$.

We introduce the following discharging rules:
(R1) Every 4-vertex gives 1 to each incident 3-face.
(R2) Every 5 and 6 -vertex gives 2 to each incident 3 -face.
(R3) every 6^{+}-vertex gives 1 to each adjacent pendant 3 -face.
(R4) Each d-vertex with $7 \leq d \leq 10$ gives 3 to each incident poor $(3,3, *)$-face, 2 to each incident semi-poor 3 -face, except 7 -vertices give 1 to special semi-poor 3 -face, where a special semi-poor ($3,7,7+$)-face is a semi-poor 3 -face incident to a 7 -vertex which is also incident to two poor 3 -faces and adjacent to one pendant 3 -face. Each d-vertex with $7 \leq d \leq 10$ gives 1 to all other incident 3 -faces.
(R5) Every 11^{+}-vertex gives 3 to all incident 3 -faces.

Now let v be a k-vertex. By Proposition 1, $k \geq 3$.
When $k=3, v$ is not involved in the discharging process, so $\mu^{*}(v)=\mu(v)=0$.
When $k=4$, by Proposition 1, v can have at most 2 incident 3 -faces. By (R1), $\mu^{*}(v) \geq$ $\mu(v)-1 \cdot 2=0$.

When $k=5$, by Proposition 1, v can have at most 2 incident 3 -faces. By (R2), $\mu^{*}(v) \geq$ $\mu(v)-2 \cdot 2=0$.

When $k=6$, by Proposition 1, v can have $\alpha \leq 3$ incident 3 -faces, and at most $(k-2 \alpha)$ pendant 3-faces. By (R2) and (R3), $\mu^{*}(v) \geq \mu(v)-2 \cdot \alpha-1 \cdot(k-2 \alpha)=k-6=0$.

When $k=7, v$ has an initial charge $\mu(v)=7 \cdot 2-6=8$. By Lemma 20, v has at most two poor 3 -faces. If v has less than two incident poor 3 -faces, then by (R3) and (R4), $\mu^{*}(v) \geq \mu(v)-3 \cdot 1-1 \cdot 5=0$ since v gives at most one charge per vertex excluding vertices in poor 3 -faces. So assume that v has exactly 2 incident poor 3 -faces. By Lemma 22, v is
adjacent to at most two pendant 3 -faces, and if it is incident to a semi-poor ($3,6^{-}, 7$)-face, then v is not adjacent to a pendant 3 -face. So if v is not incident to a semi-poor $\left(3,7^{+}, 7\right)$ face, then by $(\mathrm{R} 3)$ and $(\mathrm{R} 4), \mu^{*}(v) \geq \mu(v)-3 \cdot 2-2 \cdot 1=0$; If v is incident to a semi-poor $\left(3,7^{+}, 7\right)$-face, then by rules (R3) and (R4), $\mu^{*}(v) \geq \mu(v)-3 \cdot 2-1 \cdot 1-1 \cdot 1=0$.

When $k=8, v$ has an initial charge $\mu(v)=8 \cdot 2-6=10$. By Lemma 20, v has at most three poor 3 -faces. If v has less than 3 incident poor 3 -faces, then by (R3) and $(\mathrm{R} 4), \mu^{*}(v) \geq \mu(v)-3 \cdot 2-1 \cdot 4=10-6-4=0$ since v gives at most one charge per vertex excluding vertices in poor 3 -faces. So let v is incident to exactly 3 poor 3 -faces. By Lemma 21, v cannot be incident to a semi-poor 3 -face or adjacent to two pendant 3 -faces, then $\mu^{*}(v) \geq \mu(v)-3 \cdot 3-1 \cdot 1=0$.

When $k=9$, by Lemma 20, v is incident to at most three poor 3 -faces. The worst case occurs when v is incident 3 poor ($3,3,9$)-faces, incident one semi-poor (3, 3, 9)-face, and pendant one 3 -face. So by (R3) and (R4), $\mu^{*}(v) \geq \mu(v)-1 \cdot 1-3 \cdot 3-2 \cdot 1=12-1-9-2=0$.

When $k=10$, by Lemma 20, v is incident to at most four poor (3, 3, 10)-faces. So by (R3) and (R4), $\mu^{*}(v) \geq \mu(v)-3 \cdot 4-2 \cdot 1=14-3 \cdot 4-2 \cdot 1=0$.

When $k \geq 11$, we assume that v is incident to $\alpha 3$-faces, then by Proposition $1, \alpha \leq\lfloor k / 2\rfloor$. Thus the final charge of v is $\mu^{*} \geq 2 k-6-3 \alpha-1 \cdot(k-2 \alpha)=k-\alpha-6 \geq 0$.

Now let f be a k-face in G. By the conditions on $G, k=3$ or $k \geq 6$. When $k \geq 6, f$ is not involved in the discharging procedure, so $\mu *(f)=\mu(f)=k-6 \geq 0$. So in the following we only consider 3 -faces.

Case 1: f is a $\left(4^{+}, 4^{+}, 4^{+}\right)$-face. By the rules, each 4^{+}-vertex on f gives at least 1 to f, so $\mu *(f) \geq \mu(f)+1 \cdot 3=0$.

Case 2: f is a $\left(3,4^{+}, 4^{+}\right)$-face with vertices u, v, w such that $d(u)=3$. If u is not a poor 3 -vertex, then by (R2), f gains 1 from the pendant neighbor of u and by the other rules, f gains at least 2 from vertices on f, thus $\mu^{*}(f) \geq \mu(f)+1 \cdot 3=0$. If u is a poor vertex (it follows that f is a semi-poor 3 -face), then by Lemma $18, f$ is a $\left(3,4^{+}, 6^{+}\right)$-face. Since v or w is a 6^{+}-vertex, it gives at least 2 to f unless f is a special semi-poor $\left(3,7,7^{+}\right)$-face, and as the other is a 4^{+}-vertex, it gives at least 1 to f. Therefore, if f is not a special semi-poor 3 -face, then $\mu^{*}(f) \geq \mu(f)+2 \cdot 1+1 \cdot 1=0$; if f is a special semi-poor $\left(3,7,8^{+}\right)$-face, then f receives at least 2 from the 8^{+}-vertex, so $\mu^{*}(v) \geq \mu(v)+2 \cdot 1+1 \cdot 1=0$. If f is a special semi-poor $(3,7,7)$-face so that both v and w are incident to two poor 3 -faces, one semi-poor $(3,7,7)$-face and adjacent to one pendant 3 -face, then by Lemma 23 , is impossible.

Case 3: f is a $\left(3,3,4^{+}\right)$-face with 4^{+}-vertex v. If $d(v) \geq 11$, then by $(\operatorname{R5}), \mu^{*}(f) \geq$ $\mu(f)+3=0$. So assume $d(v) \leq 10$. By Lemma 18, if $4 \leq d(v) \leq 6$, then each 3-vertex has the pendant neighbor of degree 6 or higher. So by (R1) and (R3) (when $d(v)=4$), $\mu^{*}(f) \geq \mu(f)+1 \cdot 3=0$, or by (R1) and (R2) (when $\left.d(v)>4\right), \mu^{*}(f)=\mu(f)+2 \cdot 1+1 \cdot 1=0$.

Let $7 \leq d(v) \leq 10$. If f is poor, then by (R4), $\mu^{*}(f)=\mu(f)+3 \cdot 1=0$. If f is semi-poor, then one 3 -vertex on f is adjacent to a 6^{+}-vertex and thus by (R3) f gains 1 from it, together the 2 that f gains from v by $(\mathrm{R} 4)$, we have $\mu^{*}(f)=\mu(f)+2 \cdot 1+1 \cdot 1=0$. If f is non-poor, then both 3 -vertices on f are adjacent to the pendant neighbors of degrees more than 5 , thus by (R3) and (R4), $\mu^{*}(f)=\mu(f)+1 \cdot 2+1 \cdot 1=0$.

Case 4: f is a $(3,3,3)$-face. By Lemma 18, each 3 -vertex will have the pendant neighbor of degree 6 or higher, so by (R3), $\mu^{*}(f)=\mu(f)+1 \cdot 3=0$.

Since for all $x \in V \cup F, \mu^{*}(x) \geq 0, \sum_{v \in V} \mu^{*}(v)+\sum_{f \in F} \mu^{*}(f) \geq 0$, a contradiction. This completes the proof of Theorem 1.2.

Acknowledgement

The research is supported in part by NSA grant H98230-12-1-0226 and NSF CSUMS grant. The authors thank Bernard Lidicky for some preliminary discussion.

References

[1] O.V. Borodin, Colorings of planar graphs: a survey. Disc. Math., to appear.
[2] O. V. Borodin, A. N. Glebov, A. R. Raspaud, and M. R. Salavatipour. Planar graphs without cycles of length from 4 to 7 are 3-colorable. J. of Comb. Theory, Ser. B, 93 (2005), 303-311.
[3] G. Chang, F. Havet, M. Montassier, and A. Raspaud, Steinberg's Conjecture and near colorings, preprint.
[4] N. Eaton and T. Hull. Defective list colorings of planar graphs. Bull. Inst. Combin. Appl., 25 (1999), 78-87.
[5] H. Grötzsch, Ein dreifarbensatz fur dreikreisfreienetze auf der kugel. Math.-Nat.Reihe, 8 (1959), $109-$ 120.
[6] R. Škrekovski. List improper coloring of planar graphs. Comb. Prob. Comp., 8 (1999), 293299.
[7] R. Steinberg, The state of the three color problem. Quo Vadis, Graph Theory?, Ann. Discrete Math. 55 (1993), 211-248.
[8] B. Xu, On $(3,1)^{*}$-coloring of planar graphs, SIAM J. Disc. Math., 23 (2008), 205-220.
Department of Mathematics, College of William and Mary, Williamsburg, VA 23185.
E-mail address: oshill@email.wm.edu, gyu@wm.edu

