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A RELAXATION OF STEINBERG’S CONJECTURE

OWEN HILL AND GEXIN YU

ABSTRACT. A graph is (¢, ¢, -+, c)-colorable if the vertex set can be partitioned into k
sets V1, Va, ..., Vi, such that for every i : 1 <14 < k the subgraph G[V;] has maximum degree
at most ¢;. We show that every planar graph without 4- and 5-cycles is (1,1, 0)-colorable
and (3,0, 0)-colorable. This is a relaxation of the Steinberg Conjecture that every planar
graph without 4- and 5-cycles are properly 3-colorable (i.e., (0,0, 0)-colorable).

1. INTRODUCTION

It is well-known that the problem of deciding whether a planar graph is properly 3-colorable
is NP-complete. Grotzsch in 1959 [5] showed the famous theorem that every triangle-free
planar graph is 3-colorable. A lot of research was devoted to find sufficient conditions for a
planar graph to be 3-colorable, by allowing a triangle together with some other conditions.
One of such efforts is the following famous conjecture made by Steinberg in 1976.

Conjecture 1 (Steinberg, [7]). All planar graphs without 4-cycles and 5-cycles are 3-colorable.

Not much progress in this direction was made until Erdés proposed to find a constant
C such that a planar graph without cycles of length from 4 to C is 3-colorable. Borodin,
Glebov, Raspaud, and Salavatipour [2] showed that C' < 7. For more results, see the recent
nice survey by Borodin [1].

Yet another direction of relaxation of the Conjecture is to allow some defects in the color
classes. A graph is (cy, o, - ,cx)-colorable if the vertex set can be partitioned into k sets
Vi, Va, ..., Vi, such that for every i : 1 < i < k the subgraph G[V;] has maximum degree at
most ¢;. Thus a (0,0, 0)-colorable graph is properly 3-colorable.

Eaton and Hull 4] and independently Skrekovski [6] showed that every planar graph
is (2,2,2)-colorable (actually choosable). Xu [§] proved that all planar graphs with no
adjacent triangles or 5-cycles are (1,1, 1)-colorable. Chang, Havet, Montassier, and Ras-
paud [3] proved that all planar graphs without 4-cycles or 5-cycles are (2, 1, 0)-colorable and
(4,0, 0)-colorable. In this paper, we further prove the following relaxation of the Steinberg
Conjecture.

Theorem 1. All planar graphs without 4-cycles and 5-cycles are (1,1,0)-colorable.
Theorem 2. All planar graphs without 4-cycles and 5-cycles are (3,0,0)-colorable.

We will use a discharging argument in the proofs. We let the initial charge of vertex u € G
be p(u) = 2d(u) — 6, and the initial charge of face f be u(f) = d(f) — 6. Then by Euler’s

formula, we have

(1) S o+ Y ul(f) =12

VeV (G) FEF(G)
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Our goal is to show that we may re-distribute the charges among vertices and faces so
the final charges of the vertices and faces are non-negative, which would be a contradiction.
In the process of discharging, we will see that some configurations prevent us from showing
some vertices or faces to have non-negative charges. Those configurations will be shown
to be reducible configurations, that is, a valid coloring outside of the configurations can be
extended to the whole graph. It is worth to note that in the proof of Theorem [I} we prove
a somewhat global structure, a special chain of triangles, to be reducible.

The following are some simple observations about the minimal counterexamples to the
above theorems.

Proposition 1. Among all planar graphs without 4-cycles and 5-cycles that are not (1,1,0)-
colorable or (3,0,0)-colorable, let G be one with minimum number of vertices. Then

(a) G contains no 2~ vertices.

(b) a k-vertez in G can have a < | %] incident 3-faces, and at most k — 2« pendant 3-faces.

We will use the following notations in the proofs. A k-vertex (k*-vertex, k™-vertex) is a
vertex of degree k (at least k, at most k resp.). The same notation will apply to faces. An
(bq,0s, ..., 0lg)-face is a k-face with incident vertices of degree (1, 0y, ... lx. A bad 3-vertex is
a 3-vertex on a 3-face. A face f is a pendant 3-face to vertex v if v is adjacent to some bad
3-vertex on f. The pendant neighbor of a 3-vertex v on a 3-face is the neighbor of v not on
the 3-face. A vertex v is properly colored if all neighbors of v have different colors from wv.
A vertex v is nicely colored if it shares colors with at most max{s; — 1,0} neighbors, thus if
a vertex v is nicely colored by a color ¢ which allows deficiency s; > 0, then an uncolored
neighbor of v can be colored by c.

In the next section, we will give a proof to Theorem |1} and in the last section, we will give
a proof to Theorem

2. (1,1,0)-COLORING OF PLANAR GRAPHS

We will use a discharging argument in our proof. First we will prove some reducible
configurations.

Let G be a minimum counterexample to Theorem [I], that is, G is a planar graph without
4-cycles and 5-cycles, and G is not (1,1,0)-colorable, but any proper subgraph of G is
(1,1,0)-colorable.

The following is a very useful tool in the proofs.

Lemma 1. Let H be a proper subgraph of G so that there is a (1,1,0)-coloring of G — H.
If vertex v € H satisfies either (i) 3 meighbors of v are colored, with at least two properly
colored, or (ii) 4 neighbors of v are colored, all properly, then the coloring of G — H can be
extended to G — (H — v).

Proof. (i) Let v € H be a vertex with 3 colored neighbors, two of which are properly colored,
such that the coloring of G — H can not be extended to v. Since v is not (1, 1, 0)-colorable,
the three neighbors of v must have different colors, and furthermore, two of the colored
neighbors cannot be properly colored, a contradiction to the assumption that two of the
colored neighbors of v are properly colored.

(ii) Let v € H be a vertex of degree 4 with all neighbors properly colored such that the
coloring of G — H can not be extended to v. Then due to the coloring deficiencies, v must
have at least 2 neighbors colored by 1, at least 2 neighbors colored by 2, and at least 1

neighbor colored by 1. Then v has at least five colored neighbors, a contradiction. O
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Lemma 2. There is no (3,3,47)-face in G.

Proof. Let uvw be a (3,3,47)-face in G with d(u) = d(v) = 3 and d(w) < 4. Then
G\{u,v,w} is (1,1, 0)-colorable. Color w and v properly, then u is colorable by Lemma [
thus G is (1,1, 0)-colorable, a contradiction. O

Lemma 3. There is no 5-vertex that is incident to two (3,47,5)-faces and adjacent to a
3-vertezx in G.

FIGURE 1. Figure for Lemma [3]

Proof. Let v be a 5-vertex with neighbors u,w,z,y, z so that wz,yz € E(G) and d(u) =
d(x) =d(z) = 3and d(w), d(y) < 4 (See Figure(l]). By the minimality of G, G\{u, v, w, z,y, z}
is (1,1, 0)-colorable. Properly color u, w, and y, then properly color z and z. For v to not
be colorable, v must have two neighbors colored by 1, two neighbors colored by 2 and one
neighbor colored by 3. Since the w,x and y, z vertex pairs must be colored differently, one
of them must have the colors 1 and 2. W.l.o.g. we can assume that w is colored by 1 and x
by 2. Then since w is properly colored, we can either recolor x by 1 or 3, and color v by 2
obtaining a coloring of (G, a contradiction. O

Lemma 4. No 3-verter in G can be adjacent to two other 3-vertices. In particular, the
3-vertices on a (3,3,5")-face must have another neighbor with degree four or higher.

Proof. Let v be a 3-vertex with x and y being two neighbors of degree 3. By the minimality
of G, G\{v,x,y} is (1,1, 0)-colorable. Then we can first properly color  and y, and then by
Lemma [1] color v to get a coloring of GG, a contradiction. U

Lemma 5. The pendant neighbor of the 3-vertex on a (3,4, 4)-face must have degree 4 or
higher.

FIGURE 2. Figure for Lemma



Proof. Let vy be a (3,4,4)-face in G such that the pendant neighbor u of the 3-vertex v has
degree 3 (See Figure[2)). By the minimality of G, G\{u, v} is (1, 1, 0)-colorable. We properly
color u and then color v differently from both x and y. If v and v are not both colored by
3, then we get a coloring for GG, a contradiction, so we may assume both u and v are colored
by 3. This means that both v and v have two remaining neighbors colored by 1 and 2. Let
x and y be colored by 1 and 2 respectively. The neighbors of x must be colored by 1 and 3
or else we could recolor v by 1 and x by 3 if necessary to obtain a coloring of GG. Likewise,
the neighbors of y must be colored by 2 and 3. In this case we switch the colors of x and y
and color v by 1 to obtain a coloring of GG, a contradiction again. O

Let a (T, T, ...,T,)-chain be a sequence of triangles, Ty, T4, ..., T,, such that (i) Tp is
a (3,4,4)-face and T, is a (3T, 4,47 )-face, and all other triangles are (4,4, 4)-faces, and (ii)
for 0 <i¢ <n—1,T; and T;;; share a 4-vertex t;. In a (T, T1,...,T,)-chain, let z; € T; for
0 <7 < n be a non-connecting 4*-vertex.

Let a special 4-verter be a 4-vertex that is incident to one 3-face and has two pendant
3-faces, and let a 3-face be a special 3-face if it has at least one special 4-vertex. Let a good
4-vertex be a 4-vertex with only one incident 3-face and at most one pendant 3-face.

We will prove in the following lemmas that a (3,4, 4)-face Ty may get help in discharging
from a (37,4%,5)-face or special 3-face T,, through a (Ty, Ty, . .., T,)-chain.

Lemma 6. There are no special (3,4,4)-faces in G.

Proof. Let uwvw be a special (3,4,4)-face in G such that d(v) = d(w) = 4. W.Lo.g. we can
assume that v is a special 4-vertex with pendant neighbors v; and v5. By the minimality of
G, G\{u, v, vy, vy, w} is (1,1, 0)-colorable. We can properly color w and u in that order then
properly color v; and v,. Then by Lemma [I, we can color u, obtaining a coloring of G, a
contradiction. 0

The following is a very useful tool in extending a coloring to a chain.

Lemma 7. Consider a (Ty,T1,- -+ ,Ty,)-chain with n > 1 and T,, being a (4,47, k)-face. If
G\{To,T1, - ,T,_1} has a coloring such that the k-vertex of T, is properly colored, or it
shares the same color with the 4~ -vertex, then the coloring can be extended to G.

Proof. We assume that the (4,47, k)-face T, has k-vertex x, and 4~ -vertex t,. Also let
G\{To, T1,-- ,T;_1} has a coloring such that z,, is properly colored or shares the same color
with ¢, and G does not have a (1, 1,0)-coloring. Finally let u be the 3-vertex of Tj and let
w be the pendant neighbor of w.

We consider two cases. First let n = 1. If z; and #; have the same color, then we can
properly color xy and ¢y in that order, thus by Lemma |I| we can color u so G has a (1,1, 0)-
coloring, a contradiction. So we know that x; and t; must be colored differently, and further
x1 is colored properly. We can properly color zg. If xq and w share the same color then
we can color ty by Lemma [I| and properly color u, a contradiction. So we may assume that
ro and w are colored differently. If any two of xg,z1, and t; are colored the same then we
could color ty properly and color v by Lemma [l a contradiction. Since xg,z, and ¢; are
colored differently, if xq is not colored by 3 then we could color ¢y by the same color as xy and
properly color u, a contradiction. So xy must be colored by 3 and w.l.o.g. we can assume
that w is colored by 1. Since z; is properly colored, it must be colored by 2, or we could
color ty by 1 and properly color u, a contradiction. It follows that ¢; is colored by 1. If ¢; is

colored properly, then we could color ¢y by 1 and properly color u, a contradiction, so we may
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assume that ¢; is not colored properly. Further, neither z nor 2’ (the two other neighbors of
t1) can be colored by 2, or we could recolor t; properly, then color tg by 1 and u properly, a
contradiction. So we color t; by 2 and tg by 1, and properly color u, a contradiction.

Now we assume that n > 2. For all j : 1 < 57 < n, properly color z,_; and color t,_; by
Lemma [1} or properly if possible. Then since x; was properly colored, and t; was colored
after xq, either x; remains properly colored, or t; has the same color as x;. Also, we know
that 77 must be a (4,4, 4)-face, so by the previous case, we can extend the coloring to Tj
and get a coloring of G, a contradiction. OJ

Lemma 8. There is no (Ty, ..., T,)-chain so that (i) n > 1 and T, is a special (4,4, 4)-face
or (1) n > 2 and T, is a (3,4, k)-face or (iit) n =1 and T, is a (3,4,47)-face.

Proof. Let Ty = uxoty be a (3,4,4)-face with d(u) = 3.

(i) Let v be a special 4-vertex of T, and let y and z be the neighbors of v other than ¢,
and x,. Let S = {t;,z; : 0 <i <n —1}. By the minimality of G, G \ (S U {u,v,z,,y, z})
has a (1,1, 0)-coloring. Properly color z,, y and z, then by Lemma [I| color v. Then, either
x,, remains properly colored or v shares the same color, so by Lemma [7] we can extend the
coloring to {7, Ty, -+ ,T,—1} to obtain a coloring of G.

(ii) Let v be the 3-vertex of T), and let S = {t;,z; : 0 < i <n — 1}. By the minimality of
G, G\ (SU{u,v}) has a (1,1,0) coloring. Properly color v and z,,_;. Then by Lemma [1]
we can color ¢, ;. Either x,,_; remains properly colored or ¢,,_; shares the same color, so by
Lemma [7| we can extend the coloring to {Tp, 11, -+ ,T,,_2} to obtain a coloring of G.

(iii) Assume that n = 1 and T,, is a (3,4, 4)-face with 3-vertex v. By the minimality of
G, G\ {to,u,v, 29,21} has a (1,1,0)-coloring. Properly color zy and u in that order and
properly color x; and v in that order. Then ¢, has four neighbors colored, all properly, so
by Lemma [1| we can color t; to get a coloring for G. O

Remark: By above lemma, a (T}, T1)-chain with T being a (3,4,5")-face is not neces-
sarily reducible. Let a bad (3,4,5%)-face be a (3,4,5%)-face that shares a 4-vertex with a
(3,4,4)-face.

Lemma 9. There is no (Ty,. .., T,)-chain with T; = T, for some i # n.

i) I

FIGURE 3. Figure for Lemma [J]



Proof. Let (Ty,...,T,)-chain be a chain with T; = T,, for some i < n. Let u be the 3-
vertex of Ty and let S = {t;,z; : 0 < j < n —1}. Since T; = T,,, the vertex that would
have been labelled x; is instead labelled ¢, ; (See Figure [3)). By the minimality of G,
G\ (SU{u}) is (1,1,0)-colorable. Start by properly coloring x; 1, #;y2, and ;1. Then for
all 71142 < j <n—2, properly color x;;; and color ¢; by Lemma . Next, properly color
t,—1, and we have two cases:

Case 1: i = 0. We can properly color u, then color ¢; by Lemmal[I] to get a coloring of G,
a contradiction.

Case 2: 1 > 0. We can then color ¢; by Lemma[l{and then either ¢, is properly colored,
or t; shares the same color, so by Lemma [7| we can extend the coloring to {7y, 71, ,T;—1}
to obtain a coloring of GG, a contradiction. U

Lemma 10. For each (3,4, 4)-face Ty without good 4-vertices, there exist two chains, (T, ..., T,)-
chain and (Ty, ..., T! )-chain, such that T,, and T}, are either bad (3,4,5")-faces, (4,4%,5%)-
faces, or (4,4,4)-faces with a good 4-vertex. Furthermore, T,, # T),.

Proof. As G is finite, any chain of triangles in G must be finite. By Lemma [§ and [9] no
chain of triangles in G can end with a special 3-face or a non-bad (3,4, 5%)-face, thus it
must end with a bad (3,4,5%)-face or a (4,4",4%)-face. Since a (4, 4,4)-face in a chain can
not be a special 3-face, any chain of triangles in G must end with a bad (3,4, 5")-face, a
(4,4*,5%)-face or a (4, 4,4)-face with a good 4-vertex.

Now we assume that T,, = T,,,. Then by Lemma (7| T,, must be a (4, 4,5")-face, and since
G has no 4- and 5-cycles, n +m > 6. Assume that n < m. Let S = {t;,z; : 1 <i<n—1},
where S =0 ifn=1, and S’ = {th, 2% : 0 < j <m—1} and let u be the 3-vertex of Ty. By
the minimality of G, G\S U S’ U {u} has a (1,1, 0)-coloring. We have two cases:

If n =1, properly color 2/, _, and ¢/, ;. Then, by Lemma we can extend the coloring to
{1, T7],---T),_,} to obtain a coloring of G, a contradiction.

If n > 2, then properly color z,,_1, t,—; and x},_, in that order, then by Lemma 1| we can
color t/ ;. If n >3, foralli:2 <i<mn-—1, properly color z,,_; and by Lemma [l| we can
color t,,_1. Then since either x/,_, is still properly colored or shares the same color as ¢/, _;,
by Lemma [7| we can extend the coloring to {7y, T7,--- ,T), 5} to obtain a coloring of G, a
contradiction. O

We will now prove some lemmas which will ensure that bad (3,4, 5)-faces will have extra
charge to help (3, 4,4)-faces.

Lemma 11. A 5-vertex incident to a bad (3,4,5)-face cannot be incident to another bad
(3,4,5)-face or a (3,3,5)-face.

Proof. We only show the case when a 5-vertex v is incident to two bad (3, 4, 5)-faces, and it
is very similar (and easier!) to show the case when it is incident to a bad (3,4, 5)-face and
a (3,3, 5)-face.

Let v be a 5-vertex that is incident two bad (3, 4, 5)-faces, f; and fs, and let u be a k-vertex
adjacent v (see Figure [d). Let f5 be the (3,4,4)-face sharing a 4-vertex with f; and let fy
be the (3,4,4)-face sharing a 4-vertex with f,. Let f3 and f; have outer 4-vertices of = and
2’ respectively and 3-vertices of y and ¥’ respectively. Also, let f; and f, have 4-vertices z

and 2. Then, by the minimality of G, G\{f1, f2, fs, f4+} has a (1,1, 0)-coloring.
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FI1GURE 4. Figure for Lemma

If u is colored by 1 or 2, then we can color v by 3 and color the 3-vertices of f; and fs
properly. Since v is properly colored, by Lemma [7| we can extend the coloring to f; and fs.
Then, since v is colored by 3, it would remain properly colored, so again by Lemma 7| we
can extend the coloring to fy and f; to get a coloring of G.

If w is colored by 3, then we properly color x and x’ then properly color y and y'. We
then properly color z and z’. If either z or 2’ is colored by 3, then we can properly color
the 3-vertices of f; and f, and color v by either 1 or 2 getting a coloring for G. So we can
assume neither is colored by 3, and w.l.o.g. we can assume that z is colored by 1. Then since
z and 2’ are properly colored, we can color the 3-vertices of f; and fy by either 1 or 3. Then
since v will have at most one neighbor colored by 2, and that neighbor colored properly, we
can color v by 2 to obtain a coloring for G. O

Lemma 12. A (3,5,k)-face in G that is incident a 5-vertex that is also incident to a bad
(3,4,5)-face and a pendant (3,4~ ,47)-face will have a pendant neighbor that is a 41 -vertex.

FiGure 5. Figure for Lemma

Proof. Let fi be a (3,5, k)-face in G with a 5-vertex v, a 3-vertex u, and a pendant neighbor
u’ that is a 3-vertex. Let the k-vertex of f; be w. Let v be incident a bad (3,4,5)-face f,
with neighbor (3,4, 4)-face f3, and let v have a pendant (3,4,4)-face f;. Let the 3-vertex
of f4 be x and the 4-vertices of f; be y and z (See Figure [5)). By the minimality of G,
G\{f2, f3,u,u',x} has a (1,1, 0)-coloring. Properly color z. If w and = share the same color,
then we can properly color v’ and u, then properly color v and the 3-vertex of f;. Then the
coloring can be extended to f3 by Lemma [7] obtaining a coloring of G. So we can assume

that w and z are colored differently. If x is colored by 1 or 2 (w.l.o.g. we may assume that
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x is colored by 1), then we can color « properly and color u by 1. Then we can properly
color v and properly color the 3-vertex of f,. Finally we can apply Lemma [7| to extend the
coloring to f3, obtaining a coloring of G. So we can assume that x is colored by 3.

Since x is colored by 3, we may assume that w is colored by 1. Properly color u’ and color
u by 2. Since x is properly colored, y and z must be colored by 1 and 2. W.l.o.g. let y be
colored by 1. Then to avoid being able to re-color x by 1, the two other neighbors of y must
be colored 1 and 3. For similar reasons the other two neighbors of z must be colored 2 and
3. Then switch the colors of y and z and color x by 1 or 2 and color v by 3, we can color
the 3-vertex of f, properly and by Lemma[7], extend the coloring to f3, obtaining a coloring
of G. 0

Lemma 13. A (3,5,5)-face in G can not have both 5-vertices also be incident to bad (3,4,5)-
faces and have pendant (3,4, 4)-faces.

FI1GURE 6. Figure for Lemma

Proof. Let uvw be a (3,5, 5)-face in G where d(v) = d(w) = 5 and u has pendant neighbor «’.
Also let v and w both be incident bad (3,4, 5)-faces, f; and fy with neighbor (3,4, 4)-faces
fs and f, respectively and let v and w have pendant (3,4, 4)-faces. Let the pendant (3,4, 4)-
faces to v and w have 3-vertices = and 2’ respectively (See Figure |§[) By the minimality of
G, G\{f1, f, f3, fa,u,z, 2’} has a (1, 1,0)-coloring.

Properly color x and z’. If either x or ' has a coloring different from u/, w.l.o.g. we can
assume x, then we color u the same as x. We can properly color w and v in that order, then
properly color the 3-vertices of f; and f;. Then by Lemma [7] we can extend the coloring to
f3 and f; to obtain a coloring of G. So we can assume that z, 2/, and u’ are colored the
same. If x is colored by 3, since x is properly colored, y and z must be colored by 1 and 2.
Then to avoid being able to re-color x by 1, the other two neighbors of y must be colored 1
and 3. For similar reasons the other two neighbors of z must be colored 2 and 3. Then we
can switch the colors of y and z and color = differently from u’. Then we follow the above
procedure to obtain a coloring for G.

So we may assume that w.l.o.g. z, 2/, and «’ are all colored by 1. Then we color u by 2
and w by 3. Color the 3-vertex of f, properly and by Lemma [7] extend the coloring to f;.
We now have v adjacent to 3 differently and properly colored vertices. Properly color the
outer 4-vertex and the 3-vertex of f3 in that order, then properly color the 4-vertex of f;. If
it is colored by 3, then properly color the 3-vertex of f; and color v by either 1 or 2 to obtain

a coloring of GG. If it is not colored by 3, then w.l.o.g. we can assume that it is colored by 1.
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Then since it is properly colored, we can color the 3-vertex of f; by either 1 or 3 and color

v by 2, obtaining a coloring of G. U
Lemma 14. A 5-vertez in G that is incident a bad (3,4,5)-face and has a pendant (3,4,4)-
face cannot also be incident a (4,4",5)-face T,, that is in a (Ty,...,T,)-chain.

u to tn—2 Tn—1

FiGURE 7. Figure for Lemma

Proof. Let v be a 5-vertex in G that is incident a bad (3, 4, 5)-face f; with neighbor (3,4, 4)-
face fy. Let v have a pendant (3,4, 4)-face with 3-vertex w and 4-vertices y and z. Also let
v be incident a (4,4",5)-face T,, such that there exists a chain of triangles from Ty to T,,.
Let the 47-vertex of T,, be w. Let S = {t;,x; : 0 <i < n — 1} and let u be the 3-vertex of
To (See Figure [7)). By the minimality of G, G \ (S U{fi, f2,u,z}) has a (1, 1,0)-coloring.

Properly color z. If x and w are colored the same then we can properly color x,,_1, t,_1,
and v. If n = 1, then by Lemma [, we can color w. If n > 2, then by Lemma []] we can
extend the coloring to {7y, T1,- -+ ,T,,—1}. Then we can properly color the 3-vertex of f; and
by Lemma [7] we can extend the coloring to fs obtaining a coloring for G. So we can assume
that = and w are colored differently.

Let x be colored 1 or 2 and w.l.o.g. we can assume that x is colored by 1. Then we can
properly color x,_; and color t,_1 by 1. Since w and x are colored differently, either x,,_;
and t,,_1 are both colored properly or share the same color. If n = 1, then either we can color
u properly or we can color u by Lemma [I] If n > 2, then by Lemma [7] we can extend the
coloring to {Ty, Ty, -+ ,T,—1}. Then since t,_; and x are colored the same we can properly
color v and the 3-vertex of f;. By Lemma [7] we can extend the coloring to f; to obtain a
coloring of G.

So let = be colored by 3 (then w is colored 1 or 2). Then y and z must be colored by 1
and 2, respectively. To avoid being able to re-color x by 1 or 2, the two other neighbors of
y must be colored 1 and 3 and the two other neighbors of z must be colored 2 and 3. Then
we switch the colors of y and z and re-color x to be the same as w, and proceed as above to
get a coloring for G. O

Lemma 15. Fvery 6-vertez in G that is incident a bad (3,4, 6)-face can be incident at most
two (3,47, 6)-faces.

Proof. Let v be a 6-vertex in G. Let vwz be a bad (3,4, 6)-face with d(w) = 3 and neighbor

(3,4, 4)-face xyz with 3-vertex y. Let v also be incident non-bad (3, 4, 6)-faces t1tv and ujugv
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F1GURE 8. Figure for Lemma

where d(t1) = d(u1) = 4 (See Figure[§). By the minimality of G, G\{t1, t2, u1, us, v, w, z,y, z}
has a (1,1, 0)-coloring. Properly color t1, ta, u;, and uy. If the color set of {¢,ts, ur, us} is
not {1,2,3}, then we can properly color v and w. Then by Lemma , we can extend the
coloring to z,y, and z, obtaining a coloring of G. So we can assume that the color set of
{t1,t2,u1, us} includes 1,2, and 3.

If two of {t1,t2,u1,us} are colored by 3, then we can color z, y, and x properly. If z is
colored by 3, then we can color w properly and color v by 1 or 2 to get a coloring of G. If x
is colored by 1 or 2, then since x is properly colored we can color w by 3 or the same as x.
Then we can color v differently from 3 and x to obtain a coloring of G.

So we can assume that exactly one of vertices in the set {t1, s, us,us} is colored by 3.
Then w.l.o.g. we may assume that the color set of {t1,%2} is {1,3} and the color set of
{ug,us} is {1,2}. Since u; and uy were colored properly, the outside neighbor of uy must be
3. Let u; be colored by 1, then since it is colored properly we can recolor uy by 1. Then we
can color v and w properly, and extend to x, y, and z to obtain a coloring of G. So we can
assume that wu; is colored by 2.

Now color z, y, and x properly in that order. If x is colored by 3 then color w properly.
If w is colored by 1, then color v by 2 to get a coloring for G. If w is colored by 2, then
since u; is colored properly recolor us by 2 and color v by 1 to get a coloring for G. So we
can assume that z is colored by 1 or 2. Since x is properly colored we can color w by 3 or
the same as x. Then either 1 or 2 but not both is in the color set of {x,w}. If 1 is in the
color set, then v will have only one neighbor colored by 2 so we can color v by 2 and obtain
a coloring of G. If 2 is in the color set, then v will have two neighbors colored by 1, but we
can recolor us by 2 and color v by 1 to obtain a coloring of G. 0

The following lemma says that a 3-face with k& vertices of degree 4 can have at most k
chains of triangles ending at it.

Lemma 16. If a (To,Th,...,T,)-chain and o (T3,T71,...,T) )-chain with T = T, satisfy
T, NT,={t,} =T, NT, then Ty =T,

Proof. For otherwise, the two chains have a common (4,4,4)-face T so that T" = T, and
T = T). Then we would have a (T, Ty, To—1,T,T,_4,...,T],T})-chain. But by Lemma ,
this chain cannot exist in G. U

Discharging Procedure
10



As we mentioned in the introduction, we set the initial charge of a vertex v to be
wu(v) = 2d(v) — 6 and the initial charge of a face f to be u(f) = d(f) — 6. For the dis-
charging procedure we must introduce the notion of a bank, which serves as a temporary
placeholder for charges. We set the bank with initial charge zero and will show it has a
non-negative final charge.

The following are the rules for discharging:

(R1) Each 4-vertex gives % to each pendant 3-face and the rest to the incident 3-faces evenly.
(R2) Every 6-vertex gives 2 to incident bad (3,4, 6)-faces, 2 to other incident (3,47, 6)-faces
and % to all other incident 3-faces; every 7T -vertex gives % to all incident 3-faces.

(R3) Every 6*-vertex gives 1 to all pendant 3-faces.
(R4) Every (41,4, 5T)-face and every (4,4, 4)-face with a good 4-vertex give 1 to the bank
and every bad (3,4,5")-face gives ; to the bank.
(R5) The bank gives 3 to each (3,4, 4)-face without good 4-vertices.
(R6) Every 5-vertex gives
(a) 2 to each incident (3,3, 5)-face and 9/4 to each incident bad (3,4, 5)-face.
(b) 7/4 to incident non-bad (3,4, 5)-faces when also incident a bad (3,4, 5)-face, and
gives 2 to incident non-bad (3,4, 5)-faces otherwise.
(c) 5/4 to incident (3,5%,5%)-faces when also incident to a bad (3,4,5)-face and a
pendant (3,47,47)-face, and gives 3/2 to incident (3,5T, 5 )-faces otherwise.
(d) 3/2 to all (4,4",5)-faces with a chain of triangles to a (3,4, 4)-face and gives 1 to
(4,47, 5)-faces otherwise.
(e) 1/2 to each pendant (3,47,47)-face and (3, 3, k)-face and 1/4 to all other pendant
3-faces.

Let v be a k-vertex. By Proposition [I £ > 3.
For k = 3, the final charge p*(v) of v is pu*(v) = p(v) = 0.

For k = 4, by (R1), the final charge of v is 0. We note that v gives at least 1 to each
incident 3-face, and gives at least 3/2 to 3-faces when v is a good 4-vertex.

For k£ = 5, if v has at most one incident 3-face, then by (R6a) and (R6e), p*(v) >
p(w)—2-1—1.3=1/4> 0. Let v have two incident 3-faces fi and f» and a pendant 3-face
JEY

Let f3 be a (3,47,47)-face. When f; is a bad (3,4, 5)-face, by Lemma |3 fo cannot be a
(3,47, 5)-face. By Lemmal[l4] if f5 is a (4,4", 5)-face, then there is no chain of triangles from
some (3,4, 4)-face to f, so by (R6a), (R6c), (R6d), and (R6e), p*(v) > p(v)—3-1—5-1-2.1 =
0. When f; is a non-bad (3,4, 5)-face, then by Lemma , f2 cannot be a (3,47, 5)-face, so
by (R6b), (R6c), (R6d), and (R6e), p*(v) > p(v) —3-1—2-1—3.1=0. When neither f;
nor fy are (3,47, 5)-faces, by (R6¢), (R6d), and (R6e), p*(v) > p(v) —3-1—3-2=13>0.

Now let f3 be a (3,4, 5)-face. When f; or fy is (3,47, 5)-face, by Lemma the other one
cannot be a (3,47, 5)-face, so by (R6b), (R6c), (R6d), and (R6e), pu*(v) > p(v) —1-1-19.
1 —32.1=0. When neither f; nor f, are (3,47,5)-faces, by rules (R6c), (R6d), and (R6e),
prv) > pv) = 3-1-35-2=3>0.

Finally, let v have two incident 3-faces f; and f;, and no pendant 3-face. If f; is a bad
(3,4, 5)-face, then by Lemma f2 cannot also be a bad (3,4,5)-face or a (3,3, 5)-face.
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Then by (R6), p*(v) > p(v) — 91— 2.1 =0. If neither f; nor f, is a bad (3,4, 5)-face,
then by (R6b), (R6¢c), and (R6d), p*(v) > pu(v) —2-2=0.

For £k = 6, if v is incident to at most two 3-faces, then by (R2) and (R3), u*(v) >

w(v) — % 2-1.2= % So we can assume that v is incident to three 3-faces. If v is incident

2
a bad (3,4, 6)-face then by Lemma |15 only one other incident 3-face can be a (3,47, 6)-face.
So by (R2), p*(v) > p(v) —2-2—35-1=0. If v is not incident a bad (3, 4, 6)-face, then by

(R2), p*(v) = p(v) =2-3=0.

For k > 7, if k is odd, then p*(v) > p(v) — 512 — 1.1 =2k —6— %9 4 = Thds >
If k is even, then p*(v) > p(v) — & -2

5"

= Qo

Now let f be a k-face. Since G is a simple graph, £ > 3. By the condition that there is
no 4-cycle and 5-cycle, k = 3 or kK > 6. Since no faces above degree 3 are involved in the
discharging procedure, the final charge of 67-face f is p*(f) = u(f) =d(f) —6 > 0.

For k = 3, by Lemma , we have no (3, 3,47 )-faces, but we still have a few different cases:

Case 1: Face f is a (3,3,5")-face. By Lemma , f will have two pendant neighbors
of degree 4 or higher. So by (R1), (R2), (R4), and (R7), p*(f) > (3—6)+2-14+1-2=0.

Case 2: Face f is a (3,4, 4)-face. By Lemma |5 f will have a pendant neighbor of
degree 4 or higher. If f has a good 4-vertex, then by (R1), p*(f) > pu(f)+3-1+1-1+1-1 = 0.
If f has no good 4-vertices, then by (R5), f receives 1/2 from the bank, so u*(f) = u(f) +
1-2+41-1+1=0.

Case 3: Face f is a bad (3,4,5)-face. By (R1), (R4) and (R6a), pu*(f) = pu(f) +1-
1+2.1-4.1=0.

Case 4: Face f is a non-bad (3,4,5)-face. If the 5-vertex of f is not incident a bad
(3,4, 5)-face, then by (R1) and (R6b), p*(f) = pu(f)+1-1+2-1=0. If the 5-vertex of f
is incident a bad (3,4, 5)-face, then by Lemma f has a pendant neighbor of degree 4 or
higher. So by (R1), (R6b), and (R6e), p*(f) > pu(f)+1-1+Z-1+1.1=0.

Case 5: Face f is a (3,4,6)-face. If f is a bad (3,4, 6)-face, then by (R1), (R2), and
(R4), p*(f) = p(f)+1-14+2-1—1-1=0. If f is a non-bad (3,4, 6)-face then by (R1) and
(R2), p(f) =p(f) +1-14+2-1=0.

Case 6: Face fis a (3,4,7")-face. By (R1) and (R2), p*(f) = p(f)+1-1+5-1=1.

Case T: Face f is a (3,5,5)-face. If neither 5-vertex of f is also incident to a bad
(3,4,5)-face and a pendant (3,47, 47)-face, then by (R6c), p*(f) = pu(f) + 2 -2 =0. If one
of the 5-vertices of f is also incident to a bad (3,4, 5)-face and a pendant (3,47,47)-face
then by Lemma [12] f must have a pendant neighbor of degree 4 or higher. In addition,
by Lemma |13| the other 5-vertex of f cannot have both an incident bad (3,4, 5)-face and a
pendant (3,47,47)-face. So by (R6c) and (R6e), p*(f) =p(f)+53-1+1-1+2.1=0.

Case 8: Face fisa (3,5,6")-face. If the 5-vertex of f is not incident to a bad (3,4, 5)-
face and a pendant (3,47, 47)-face then by (R2) and (R6¢), p*(f) > pu(f) + 2 -2 =0. If the
5-vertex of f has both an incident bad (3,4, 5)-face and a pendant (3,4, 47 )-face, then by
Lemma (12| f must have a pendant neighbor of degree 4 or higher. So by (R2), (R6c), and
(R6e), p*(f) > pu(f)+2-14+5-1+32-1=0.
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Case 9: Face f is a (3,6",6%)-face. By (R2), p*(f) > pu(f)+3-2=0.

Case 10: Face f is a (4,4,4)-face. If f has no good 4-vertices then by (R1), pu*(f) =
p(f)+1-3 = 0. If f has a good 4-vertex then by (R1) and (R4), p*(f) > p(f)+12+3-1-1-1 =
0.

Case 11: Face fisa (47,47, 5%)-face. If f has no chains of triangles to a (3, 4, 4)-face,
then each incident vertex gives at least 1 to f, so u*(f) > pu(f)+1-3 = 0. If f has a chain of
triangles to a (3,4, 4)-face then by (R6d), at least one vertex must give % to f, so combined
with (R4), p*(v) > p(v) +1-2+2-1—-3-1=0.

Finally, we show that the bank has a non-negative charge. By Lemma , for each (3,4, 4)-
face without good 4-vertices in G, there exist at least two chains of triangles from the (3,4, 4)-
face to a bad (3,4, 5)-face, a (4,4, 4)-face with a good 4-vertex, or a (4T,4", 5%)-face. Then
by Lemma [16] there exist at most two chains of triangles to (47,47, 5)-face from (3,4, 4)-
faces and at most one chain of triangles to a (3,4, 5% )-face from (3,4,4)-faces. So we can
see the transfer of charge from triangles with extra charge to the bank and back to (3,4, 4)-
faces is a transfer of }l charge over each chain of triangles. Each (4,4, 4)-face with a good
4-vertex and (4T,4%,5T)-face gives 1 to the bank, and the bank will give at most § - 2 to
(3,4, 4)-faces for each (4, 4,4)-face with a good 4-vertex or (47,41 5%)-face. Also, each bad
(3,4,5T)-face gives }l to the bank, and the bank will give at most % -1 to (3,4,4)-faces for

each bad (3,4, 57)-face. Hence the bank will always have a non-negative charge.

This completes the discharging, showing that the final charges of all faces, vertices, and
the bank are non-negative, a contradiction to . This completes the proof of Theorem 1.1.

3. (3,0,0)-COLORING OF PLANAR GRAPHS

In this section, we give a proof for Theorem Our proof will again use a discharging
method. Let G be a minimum counterexample to Theorem 2] that is, G is a planar graph
without 4-cycles and 5-cycles and is not (3,0, 0)-colorable, but any proper subgraph of G is
properly (3,0, 0)-colorable. We may assume that vertices colored by 1 may have up to three
neighbors colored by 1.

The following is a very useful tool to extend a coloring on a subgraph of GG to include more
vertices.

Lemma 17. Let H be a proper subgraph of G. Given a (3,0,0)-coloring of G — H, if two
neighbors of v € H are colored so that one is a 5~ -vertex and the other is nicely colored,
then the coloring can be extended to G — (H — v) such that v is nicely colored by 1.

Proof. Let H be a subgraph of G such that G — H has a (3,0,0)-coloring. Let v € H have
neighbors u and w that are colored. Let d(u) < 5 and let w be nicely colored. Color v
by 1. Since w is nicely colored, if this coloring is invalid, then v must be colored by 1. In
addition, v must have at least 3 neighbors colored by 1. To avoid recoloring v by 2 or 3, u
must have at least one neighbor of color 2 and at least one neighbor of color 3. This implies
that d(u) > 6 > 5, a contradiction. So v is colorable by 1. In addition, since the deficiency
of color 1 is 3 and v only has 2 neighbors, it follows that v is nicely colored. 0

Lemma 18. Every 3-vertex in G has a 6T -vertex as a neighbor.
13



Proof. Let v be a vertex in G such that each neighbor vertex of v has degree 5. By the
minimality of G, G — v is (3,0, 0)-colorable. If two vertices in N(v) share the same color,
then v can be properly colored, so we can assume all the neighbors of v are colored differently.
Let u be the neighbor of v that is colored by 1. Then u must have 3 neighbors colored by
1 to forbid v to be colored by 1. In addition, u must have neighbors colored by 2 and 3 to
forbid v to be colored by 2 or 3. Then, u has at least 6 neighbors, a contradiction. U

Let a (3, 3,3%)-face to be poor if the pendant neighbors of the two 3-vertices have degrees
at most 5. A (3,37,3T)-face is semi-poor if exactly one of the pendant neighbors of the
3-vertices has degree 5 or less. A 3-face is mon-poor if each 3-vertex on it has the pendant
neighbor being a 6*-vertex. Finally, a poor 3-vertex is a 3-vertex on a poor or semi-poor
3-face that has a 5~ -vertex as its pendant neighbor.

Lemma 19. All (3,3,6~ )-faces in G are non-poor.

Proof. For all (3,3,57)-faces in G, the proof is trivial by Lemma . Let uvw be a (3,3, 6)-
face in G with d(u) = d(v) = 3 such that the pendant neighbor v" of v has degree at most
5. By the minimality of G, G\{u,v} is (3,0,0)-colorable. Properly color u and color v
differently than both w and v’. Then u and v are both colored by 2 or 3, w.l.o.g. assume
2. This means that «’ and v" share the same color (where ' is the pendant neighbor of w),
different from the color of w.

Let w be colored by 1, then to avoid being able to recolor v or v by 1, w must have 3
outer neighbors colored by 1. Then w can be recolored by 2 or 3 depending on the color of
its fourth colored neighbor. We recolor w by 2 or 3 and recolor u and v by 1 to get a coloring
of GG, a contradiction.

So we may assume that w is colored by 3, and that «' and v’ are colored by 1. To avoid
recoloring v by 1, v" must have at least 3 neighbors colored by 1. In addition, to avoid
recoloring v’ by 2 or 3 and coloring v by 1, v" must have neighbors colored by both 2 and 3.
This contradicts that v" has degree less than 6. 0

Lemma 20. No vertex v € V(G) can have L@J incident poor 3-faces.

Proof. Let v be a k-vertex in G with ng incident poor (3,3, k)-faces. Let wuq,us, -+ ,ux be
the neighbors of v, and let u; be the pendant neighbor if u; is in a poor 3-face. Note that
d(u}) <5 and we know that all except possibly wy are in poor 3-faces.

By the minimality of G, G\{v, u1,uq, -+ ,up_1} is (3,0, 0)-colorable. If d(v) is odd, then
by Lemma [T7] for all 7 with 1 < i < k — 1, we can color u; by 1. Then we can properly
color v to get a coloring of G, so we can assume that d(v) is even. If d(v) is even, then by
Lemma [17] for all ¢ with 1 < i < k — 2, we can color w; by 2. Then if uy is colored by 1
we can color u,_; properly and v properly to get a coloring of G. If wy is colored by 2 or 3,
then it is colored properly and by Lemma [17| we can color ug_1 by 1. Then we can properly
color v to get a coloring of GG, a contradiction. O

Lemma 21. If an 8-vertex v is incident to three incident poor (3,3, 8)-faces, then it cannot
be incident to a semi-poor face, nor two pendant 3-faces.

Proof. Let v be an 8-vertex in G with 3 incident poor (3,3,8)-faces. Let uy,ug, -+, ug be
the 3-vertices in the poor (3,3, 8)-face and let u),uj, - - ,ug be the corresponding pendant

neighbors, respectively. We know that for all ¢ with 1 <i <6, d(u;) < 5.
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(i) Let vurug be the incident semi-poor face with u; being the poor 3-vertex. Then by
the minimality of G, G\{v, w1, u2, -+ ,us} is (3,0,0)-colorable. By Lemma[l7, u,us, -+, ug
can be colored by 1. Then if ug is colored by 1, we can properly color u; and then v to get
a coloring of G. So we may assume that ug is not colored by 1, in which case it is nicely
colored and we may color u; with 1 by Lemma[I7} and then properly color v to get a coloring
of GG, a contradiction.

(ii) Let uy and ug be the bad 3-vertices adjacent to v. Then G\{v,uy,ug,- - ,uz,ug} is
(3,0,0)-colorable, by the minimality of G. Properly color both u; and ug. If either u; or ug
is colored by 1 or both have the same color, then by Lemma |17, we may color uy, us, - -+ , ug
by 1 and then properly color v. So we may assume that w7 is colored by 2 and ug is colored
by 3. Then we properly color wuy,us, - ,ug, and it follows that for each ¢ with 1 <1 < 3,
ug;—1 and uy; must be colored differently. Then v can have at most 3 neighbors colored by
1, all properly colored, so v can be colored by 1, a contradiction. 0

Lemma 22. If a 7T-vertez v is incident to two poor (3,3,7)-faces, then it cannot be (i)
incident to a semi-poor (3,67,7)-face and adjacent to a pendant 3-face, or (ii) adjacent to
three pendant 3-faces.

Proof. Let v be a 7-vertex in G with 2 incident poor (3,3,7)-faces. Let uj, ug, us, and uy
be the 3-vertices on the poor (3,3, 7)-faces and let u}, ub, uf, and u)y be their corresponding
pendant neighbors, respectively. We know that for all ¢ with 1 < <4, d(u}) < 5.

(i) Let vusug be a semi-poor face with us being a poor 3-vertex and d(ug) < 6 and let
ur be a bad 3-vertex adjacent to v. By the minimality of G, G\{v, u1, us, us, ug, us, ur} is
(3,0, 0)-colorable. Since at this point ug has only 4 colored neighbors, if ug is colored by 1
then either it is nicely colored or it can be recolored properly. If ug is not nicely colored,
then recolor ug properly.

Color u;7 properly. If uz is colored by 1, then by Lemma [I7, we can color uy, ug, - - , us by
1 and then color v properly, a contradiction. So we may assume w.l.o.g. that u; is colored by
2. Color uy,us, -+ ,us properly. Then, for each ¢ with 1 < i < 3, ug; and ug;_1 are colored
differently and nicely. This leaves v with at most 3 neighbors colored by 1, all nicely, so we
may color v by 1 to get a coloring of GG, a contradiction.

(ii) Let us, ug, and u; be the bad 3-vertices adjacent to v. By the minimality of G,
G\{v,uq,...,us} is (3,0,0)-colorable. Properly color us, ug, and uz. If the set {us, ug, us}
does not contain both colors 2 and 3, then by Lemma [I7, we can color uy, us, ug, and uy
by 1 and color v properly. So we can assume that {us, ug, u7} contains both colors 2 and 3.
This implies that at most one vertex is colored by 1. So we properly color uq, us, us, and
uy4. Then v has at most 3 neighbors colored by 1, all nicely, so we can color v by 1 to get a
coloring of (G, a contradiction. 0

Lemma 23. Let wow be a semi-poor (3,7,7)-face in G such that d(v) = d(w) = 7. Then
vertices v and w cannot both be T-vertices that are incident to two poor 3-faces, one semi-poor
(3,7,7)-face, and adjacent to one pendant 3-face.

Proof. Let uvw be a semi-poor (3,7, 7)-face in G such that d(v) = d(w) = 7 and both v and
w are incident to two poor 3-faces, one (3,7, 7)-face, and adjacent to one pendant 3-face.
Let the neighbors of v and w be t1,t5, -+ ,t5 and 21, 29, - - - , 25, respectively such that ¢5 and

z5 are bad 3-vertices (See Figure [9).
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FiGURrE 9. Figure for Lemma

By the minimality of G, G\{u,v,w,t1,ta, -+ ,t5, 21,29, -+, 25} is (3,0,0)-colorable. By
Lemma [I7] we can color ty,ts,t3, and ¢4, by 1. Then properly color t5, v, and z5 in that
order. Vertex v will not be colored by 1, so w.l.o.g. lets assume that v is properly colored by
2. If z5 is colored by 1, then by Lemma we can color 2y, 25, 23, 24, and u by 1 and then
properly color w, to get a coloring of GG, a contradiction. So we can assume that z5 is not
colored by 1. Then we properly color zy, 29, 23, 24 and u, so w can have at most 3 neighbors
colored by 1, all properly. We can color v by 1 to get a coloring of (G, a contradiction.  [J

Discharging Procedure:

We start the discharging process now. Recall that the initial charge for a vertex v is
w(v) = 2d(v) — 6 and the initial charge for a face f is u(f) = d(f) — 6.

We introduce the following discharging rules:

1) Every 4-vertex gives 1 to each incident 3-face.

2) Every 5 and 6-vertex gives 2 to each incident 3-face.

3) every 6T-vertex gives 1 to each adjacent pendant 3-face.

4) Each d-vertex with 7 < d < 10 gives 3 to each incident poor (3,3, *)-face, 2 to each
incident semi-poor 3-face, except 7-vertices give 1 to special semi-poor 3-face, where
a special semi-poor (3,7, 7+)-face is a semi-poor 3-face incident to a 7-vertex which is
also incident to two poor 3-faces and adjacent to one pendant 3-face. Each d-vertex
with 7 < d < 10 gives 1 to all other incident 3-faces.

(R5) Every 11*-vertex gives 3 to all incident 3-faces.

(R
(R
(R
(R

Now let v be a k-vertex. By Proposition [} & > 3.

When k = 3, v is not involved in the discharging process, so pu*(v) = p(v) = 0.

When k = 4, by Proposition [I} v can have at most 2 incident 3-faces. By (R1), u*(v) >
uv) —1-2=0.

When k = 5, by Proposition |1, v can have at most 2 incident 3-faces. By (R2), u*(v) >
u(v) —2-2=0.

When k = 6, by Proposition , v can have o < 3 incident 3-faces, and at most (k — 2a)
pendant 3-faces. By (R2) and (R3), p*(v) > u(v) =2 -a—1-(k—2a) =k —6=0.

When k = 7, v has an initial charge p(v) = 7-2 — 6 = 8. By Lemma 20| v has at
most two poor 3-faces. If v has less than two incident poor 3-faces, then by (R3) and (R4),
w*(v) > p(v) —3-1—1-5 =0 since v gives at most one charge per vertex excluding vertices

in poor 3-faces. So assume that v has exactly 2 incident poor 3-faces. By Lemma [22] v is
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adjacent to at most two pendant 3-faces, and if it is incident to a semi-poor (3,67, 7)-face,
then v is not adjacent to a pendant 3-face. So if v is not incident to a semi-poor (3,7, 7)-
face, then by (R3) and (R4), p*(v) > p(v) —3-2—2-1=0; If v is incident to a semi-poor
(3,7%,7)-face, then by rules (R3) and (R4), pu*(v) > pu(v) —3-2—1-1—-1-1=0.

When k = 8, v has an initial charge p(v) = 8 -2 —6 = 10. By Lemma 20| v has
at most three poor 3-faces. If v has less than 3 incident poor 3-faces, then by (R3) and
(R4), p*(v) > p(v) —=3-2—1-4=10—-6 —4 = 0 since v gives at most one charge per
vertex excluding vertices in poor 3-faces. So let v is incident to exactly 3 poor 3-faces. By
Lemma [21] v cannot be incident to a semi-poor 3-face or adjacent to two pendant 3-faces,
then p*(v) > pu(v) —3-3—-1-1=0.

When k£ = 9, by Lemma v is incident to at most three poor 3-faces. The worst
case occurs when v is incident 3 poor (3, 3,9)-faces, incident one semi-poor (3, 3,9)-face, and
pendant one 3-face. So by (R3) and (R4), p*(v) > p(v)—1-1-3-3—-2-1=12—-1-9-2=0.

When & = 10, by Lemma[20] v is incident to at most four poor (3,3, 10)-faces. So by (R3)
and (R4), p*(v) > p(v) —3-4—-2-1=14-3-4-2-1=0.

When k£ > 11, we assume that v is incident to « 3-faces, then by Proposition |l o < |k/2].
Thus the final charge of vis u* >2k—6—-3a—1-(k—2a)=k—a—6>0.

Now let f be a k-face in G. By the conditions on G, k =3 or k > 6. When k£ > 6, f is
not involved in the discharging procedure, so p* (f) = pu(f) = k—6 > 0. So in the following
we only consider 3-faces.

Case 1: fisa (47,41 47)-face. By the rules, each 4"-vertex on f gives at least 1 to
fosopx(f) = p(f)+1-3=0.

Case 2: f is a (3,47,4%")-face with vertices u,v,w such that d(u) = 3. If u is not
a poor 3-vertex, then by (R2), f gains 1 from the pendant neighbor of u and by the other
rules, f gains at least 2 from vertices on f, thus pu*(f) > u(f)+1-3 = 0. If u is a poor vertex
(it follows that f is a semi-poor 3-face), then by Lemma [18] f is a (3,47, 6")-face. Since v
or w is a 61-vertex, it gives at least 2 to f unless f is a special semi-poor (3,7, 71)-face, and
as the other is a 4"-vertex, it gives at least 1 to f. Therefore, if f is not a special semi-poor
3-face, then p*(f) > p(f)+2-1+1-1=0;if f is a special semi-poor (3,7,8")-face, then
[ receives at least 2 from the 8*-vertex, so u*(v) > p(v) +2-141-1=0. If f is a special
semi-poor (3,7, 7)-face so that both v and w are incident to two poor 3-faces, one semi-poor
(3,7,7)-face and adjacent to one pendant 3-face, then by Lemma , is impossible.

Case 3: fis a (3,3,4")-face with 4"-vertex v. If d(v) > 11, then by (R5), p*(f) >
p(f) +3 = 0. So assume d(v) < 10. By Lemma [1§] if 4 < d(v) < 6, then each 3-vertex
has the pendant neighbor of degree 6 or higher. So by (R1) and (R3) (when d(v) = 4),
w(f) > u(f)+1-3=0,or by (R1) and (R2) (when d(v) > 4), u*(f) = p(f)+2-1+1-1=0.

Let 7 < d(v) < 10. If f is poor, then by (R4), pu*(f) = p(f) +3-1=0. If f is semi-poor,
then one 3-vertex on f is adjacent to a 67-vertex and thus by (R3) f gains 1 from it, together
the 2 that f gains from v by (R4), we have pu*(f) = pu(f)+2-1+1-1=0. If f is non-poor,
then both 3-vertices on f are adjacent to the pendant neighbors of degrees more than 5, thus
by (R3) and (R4), 1*(f) = pu(f) +1-2+1-1=0.

Case 4: f is a (3,3,3)-face. By Lemma each 3-vertex will have the pendant
neighbor of degree 6 or higher, so by (R3), u*(f) = u(f) +1-3=0.

Since for all z € VU F, p*(z) > 0, >, o w*(v) + 3 ;e w*(f) > 0, a contradiction. This
completes the proof of Theorem 1.2.
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