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Skew Hadamard difference sets from cyclotomic strongly

regular graphs

Koji Momihara∗

Abstract

We find new constructions of infinite families of skew Hadamard difference sets in ele-

mentary abelian groups under the assumption of the existence of cyclotomic strongly regular

graphs. Our construction is based on choosing cyclotomic classes in finite fields.
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1 Introduction

We assume that the reader is familiar with the basic theories of difference sets and strongly regular
graphs (srg) as can found in [4, 6].

A difference set D in an (additively written) finite group G is called skew Hadamard if G is the
disjoint union of D, −D, and {0}. The primary example (and for many years, the only known
example in abelian groups) of skew Hadamard difference sets is the classical Paley (quadratic
residue) difference set in (Fq,+) consisting of the nonzero squares of Fq, where Fq is the finite field
of order q, a prime power congruent to 3 modulo 4. Skew Hadamard difference sets are currently
under intensive study, see [7, 8, 9, 11, 13, 14, 18, 23, 24]. There were two major conjectures in
this area: (i) If an abelian group G contains a skew Hadamard difference set, then G is necessarily
elementary abelian. (ii) Up to equivalence the Paley difference sets mentioned above are the only
skew Hadamard difference sets in abelian groups. The former conjecture is still open in general.
The latter conjecture turned out to be false: Ding and Yuan [8] constructed a family of skew
Hadamard difference sets in (F3m ,+), where m ≥ 3 is odd, and showed that two examples in
the family are inequivalent to the Paley difference sets. Very recently, Muzychuk [18] constructed
infinitely many inequivalent skew Hadamard difference sets in an elementary abelian group of order
q3. The reader may check the introduction of [13] for a good short survey of known constructions
of skew Hadamard difference sets and related problems.

A classical method for constructing both connection sets of strongly regular Cayley graphs (called
partial difference sets) and ordinary difference sets in the additive groups of finite fields is to use
cyclotomic classes of finite fields. Let p be a prime, f a positive integer, and let q = pf . Let k > 1

be an integer such that k|(q−1), and γ be a primitive root of Fq. Then the cosets C
(k,q)
i = γi〈γk〉,

0 ≤ i ≤ k − 1, are called the cyclotomic classes of order k of Fq. Many authors have studied the
problem of determining when a union D of some cyclotomic classes forms a (partial) difference
set. Especially, when D consists of only a subgroup of Fq, many authors have studied extensively
[1, 2, 12, 13, 14, 15, 17, 20, 21, 22]. We call such a strongly regular Cayley graph Cay(Fq, D)
cyclotomic. The well known Paley graphs are primary examples of cyclotomic srgs. Also, if D is
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the multiplicative group of a subfield of Fq, then it is clear that Cay(Fq, D) is strongly regular.
These cyclotomic srgs are usually called subfield examples. Next, if there exists a positive integer t
such that pt ≡ −1 (mod k), then Cay(Fq, D) is strongly regular. This case is usually called semi-

primitive. In [20], Schmidt and White conjectured that if k | q−1
p−1 and Cay(Fpf , C

(k,q)
0 ) is strongly

regular, then one of the following holds:

(1) (subfield case) C0 = F∗
pd where d | f ,

(2) (semi-primitive case) −1 ∈ 〈p〉 ≤ (Z/kZ)∗,

(3) (exceptional case) Cay(Fpf , C0) has one of the parameters given in Table 1.

Table 1: Eleven sporadic examples

No. k p f e := [(Z/kZ)∗ : 〈p〉]
1 11 3 5 2
2 19 5 9 2
3 35 3 12 2
4 37 7 9 4
5 43 11 7 6
6 67 17 33 2
7 107 3 53 2
8 133 5 18 6
9 163 41 81 2
10 323 3 144 2
11 499 5 249 2

Recently, in [12, 14, 15, 19], it was succeeded to generalize the sporadic examples of Table 1 except
for the srg of No. 1 and several subfield examples into infinite families using “index 2 or 4 Gauss
sums” and “relative Gauss sums.” Also, Wu [25] gave a necessary and sufficient condition for

Cay(Fp(k−1)/e , C
(p1,p

(k−1)/e)
0 ) to be strongly regular by generalizing the method of [15] when k is

a prime. On the other hand, in [13, 14], Feng, Xiang, and this author found new constructions
of skew Hadamard difference sets via a computation of a character sum involving index 2 Gauss

sums. In particular, in [13, 14], it was shown that D =
⋃

i∈{0}∪〈p〉∪2〈p〉 C
(k,pf )
i is a skew Hadamard

difference sets or a Paley type partial difference sets for the triples (k, p, f) of Table 2 and these
examples can be generalized into infinite families. (A partial difference set D in a group G is
said to be of Paley type if the parameters of the corresponding strongly regular Cayley graph are
(v, (v − 1)/2, (v − 5)/4, (v − 1)/4).) Now, one may recognize an interesting interaction between

Table 2: Skew Hadamard difference sets and Paley type partial difference sets from index 2 case

No. k p f

1 2 · 11 3 5
2 2 · 19 5 9
3 2 · 67 17 33
4 2 · 107 3 53
5 2 · 163 41 81
6 2 · 499 5 249
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cyclotomic srgs and skew Hadamard difference sets of Tables 1 and 2: for odd primes p and p1 such

that p is of index 2 modulo p1, the graph Cay(Fq, C
(p1,p

(p1−1)/2)
0 ) is strongly regular if and only

if D =
⋃

i∈{0}∪〈p〉∪2〈p〉 C
(2p1,p

(p1−1)/2)
i is a skew Hadamard difference set or a Paley type partial

difference set in Fq.

In this paper, we investigate such a relation between cyclotomic srgs and skew Hadamard difference
sets, and find new constructions of infinite families of skew Hadamard difference sets from known
cyclotomic srgs.

2 Background

Let p be a prime, f a positive integer, and q = pf . The canonical additive character ψ of Fq is
defined by

ψ : Fq → C∗, ψ(x) = ζ
Trq/p(x)
p ,

where ζp = exp(2πip ) and Trq/p is the trace from Fq to Fp. For a multiplicative character χk of
order k of Fq, we define the Gauss sum

Gf (χk) =
∑

x∈F∗
q

χk(x)ψ(x),

which belongs to the ring Z[ζkp] of integers in the cyclotomic field Q(ζkp). Let σa,b be the auto-
morphism of Q(ζkp) determined by

σa,b(ζk) = ζak , σa,b(ζp) = ζbp

for gcd (a, k) = gcd (b, p) = 1. Below are several basic properties of Gauss sums [3]:

(i) Gf (χk)Gf (χk) = q if χ is nontrivial;

(ii) Gf (χ
p
k) = Gf (χk), where p is the characteristic of Fq;

(iii) Gf (χ
−1
k ) = χk(−1)Gf (χk);

(iv) Gf (χk) = −1 if χk is trivial;

(v) σa,b(Gf (χk)) = χ−a
k (b)Gf (χ

a
k).

In general, to explicitly evaluate Gauss sums is very difficult. There are only a few cases where
the Gauss sums have been evaluated. The most well known case is quadratic case, in other words,
the order of χ is two. In this case, as can found in [3, Theorem 11.5.4], it holds that

Gf (χk) = (−1)f−1

(√
(−1)

p−1
2 p

)f

. (2.1)

The next simple case is the so-called semi-primitive case (also referred to as uniform cyclotomy or
pure Gauss sum), where there exists an integer j such that pj ≡ −1 (mod k), where k is the order
of the multiplicative character χ involved. The explicit evaluation of Gauss sums in this case is
given in [3]. The next interesting case is the index 2 case where the subgroup 〈p〉 generated by
p ∈ (Z/kZ)∗ is of index 2 in (Z/kZ)∗ and −1 6∈ 〈p〉. In this case, it is known that k can have at
most two odd prime divisors. Many authors have investigated this case, see [26] for the complete
solution to the problem of evaluating index 2 Gauss sums. Recently, these index 2 Gauss sums
were applied to show the existence of infinite families of new strongly regular graphs and skew
Hadamard difference sets in Fq [12, 13, 14].

Now we recall the following well-known lemmas in the theories of difference sets and strongly
regular graphs (see e.g., [6, 16]).

3



Lemma 2.1. Let (G,+) be an abelian group of odd order v, D a subset of G of size v−1
2 . Assume

that D ∩ −D = ∅. Then, D is a skew Hadamard difference set in G if and only if

ψ(D) =
−1±√−v

2

for all nontrivial characters ψ of G. On the other hand, assume that 0 6∈ D and −D = D. Then
D is a Paley type partial difference set in G if and only if

ψ(D) =
−1±√

v

2

for all nontrivial characters ψ of G.

Lemma 2.2. Let (G,+) be an abelian group and D a subset of G. Then, Cay(G,D) is a strongly
regular graph if and only if the size of the set

{ψ(D) |ψ ∈ Ĝ \ {ψ0}}

is exactly two, where Ĝ is the character group of G and ψ0 is the trivial character.

Let q be a prime power and let C
(k,q)
i = γi〈γk〉, 0 ≤ i ≤ k − 1, be the cyclotomic classes of order

k of Fq, where γ is a fixed primitive root of Fq. In this paper, we assume that D is a union of

cyclotomic classes of order k of Fq. In order to check whether a candidate subset D =
⋃

i∈I C
(k,q)
i

is a skew Hadamard difference set or a Paley type partial difference set, we will compute the sums
ψ(aD) =

∑
x∈D ψ(ax) for all a ∈ F∗

q , where ψ is the canonical additive character of Fq, because of
Lemma 2.1. Similarly, to check whether D is a connection set of a strongly regular Cayley graph,
we should compute the sums ψ(aD) for all a ∈ F∗

q by Lemma 2.2. Note that the sum ψ(aD) can be
expressed as a linear combination of Gauss sums (cf. [25, Lemma 3.1]) by using the orthogonality
of characters:

ψ(aD) =
1

k

∑

χ∈C⊥

0

Gf (χ
−1)

∑

i∈I

χ(aγi),

where C⊥
0 is the subgroup of F̂∗

q consisting of all χ which are trivial on C
(k,q)
0 . Thus, the com-

putation to know whether a candidate subset D =
⋃

i∈I C
(k,q)
i is a skew Hadamard difference set

or a Paley type partial difference set is essentially reduced to evaluating Gauss sums. In fact,
in [13, 14], known evaluation of index 2 Gauss sums are used. However, as previously said, to
explicitly evaluate Gauss sums is very difficult. In this paper, we will show the existence of skew
Hadamard difference sets and Paley type partial difference sets without computing explicit values
of Gauss sums. Instead, we use the following theorem, called the Davenport-Hasse product formula

Theorem 2.3. ([3]) Let η be a multiplicative character of order ℓ > 1 of Fq = Fpf . For every
nontrivial character χ on Fq,

Gf (χ) =
Gf (χ

ℓ)

χℓ(ℓ)

ℓ−1∏

i=1

Gf (η
i)

Gf (χηi)
.

3 Construction of skew Hadamard difference sets

To show our main theorem, we use the following result of [20]. (They gave this result in terms of
irreducible cyclic codes.)
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Proposition 3.1. ([20, Lemma 2.8, Corollary 3.2]) Let m be the order of p modulo k and set

q = pf = psm. Assume that k | pf−1
p−1 is odd and Cay(Fpf , C

(k,q)
0 ) is strongly regular. Then, for a

system L of coset representatives of F∗
pf /C

(k,pf )
0 , there exists a partition L1 ∪ L2 = L such that

Gf (χk) = ǫpsθ
∑

x∈L1

χk(x) = −ǫpsθ
∑

x∈L2

χk(x),

where ǫ = ±1 and θ is the integer such that pθ||Gm(χk). (In this case, psθ||Gf (χk) also holds.)
Furthermore, if |L1| = k − d and |L2| = d, then it holds that

k · ψ(γaC(k,q)
0 ) + 1 =

∑

χ∈C⊥∗

0

χ(γa)Gf (χ
−1)

= psθǫd or psθǫ(d− k). (3.1)

Remark 3.2. Note that L1 and L2 are cyclic difference sets in F∗
pf /C

(k,pf )
0 since χk(Li)χk(Li) =

Gf (χk)Gf (χk)/p
2sθ = ps(f−2θ). As determined in [10, 20], the corresponding cyclic (v, k, λ) differ-

ence sets with k ≤ (v−1)/2 to cyclotomic strongly regular graphs of the Schmidt-White conjecture
are as follows:

(1) (subfield case) the Singer (p
f−1

pd−1
, p

f−d−1
pd−1

, p
f−2d−1
pd−1

) difference set;

(2) (semi-primitive case) the trivial (v, 1, 0) difference set;

(3) (exceptional case) see Table 3.

Table 3: Cyclic difference sets corresponding to eleven sporadic examples

No. v k λ Name
1 11 5 2 Quadratic residue difference set [5, Theorem 1.12]
2 19 9 4 Quadratic residue difference set
3 35 17 8 Twin-prime difference set [5, Theorem 8.2]
4 37 9 2 Biquadratic residue difference set [5, Theorem 8.11]
5 43 21 10 Hall’s sextic difference set [5, Theorem 8.3]
6 67 33 16 Quadratic residue difference set
7 107 53 26 Quadratic residue difference set
8 133 33 8 Quadratic residue difference set
9 163 81 40 Hall’s sporadic difference set [5, Remarks 8.21(b)]
10 323 161 80 Twin-prime difference set
11 499 249 124 Quadratic residue difference set

The following is our main theorem of this paper.

Theorem 3.3. We assume that Li ∩ C(k,q)
0 = ∅. Let L′ = {y (mod k) | γ−y ∈ Li; 0 ≤ y ≤ q − 2}

and let I be the |Li|-element set of odd integers modulo 2k such that I (mod k) = L′. Set

J = {0} ∪ I ∪ 2
(
(Z/kZ) \ 2−1 · (L′ ∪ {0})

)
(mod 2k).

Then, D =
⋃

j∈J C
(2k,q)
j in Fq is a skew Hadamard difference set or a Paley type partial difference

set according to q ≡ 3 (mod 4) or ≡ 1 (mod 4), i.e., it holds that

ψ(D) =
−1±√±q

2
.
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Proof: First of all, we observe the following facts:

(1) It is clear that J (mod k) = {0, 1, . . . , k−1}. In particular, if q ≡ 3 (mod 4), i.e., −1 ∈ C
(2k,q)
k ,

it follows that Fq = {0} ∪D ∪ −D.

(2) By the Davenport-Hasse product formula, it holds that

Gf (χ2k) =
Gf (χk)Gf (χ2)

χk(2)Gf (χ2−1

k )
.

Then, by noting that Gf (χ
2−1

k )Gf (χ
−2−1

k ) = χ2−1

k (−1)q and the restriction of χk to Fp is
trivial, it follows that

Gf (χ2k) =
1

q
Gf (χ2)Gf (χk)Gf (χ

−2−1

k ). (3.2)

(3) The sum
∑

y∈J χ
x
2k(γ

y) for any x such that 2, k 6 |x is computable by using Proposition 3.1 as
follows:

∑

y∈J

χx
2k(γ

y) =
∑

y∈J

(−1)yχx2−1

k (γy)

= 1−
∑

y∈L′

χx2−1

k (γy) +
∑

y∈(Z/kZ)\(L′∪{0})

χx2−1

k (γy)

= −2
∑

y∈L′

χx2−1

k (γy)

= −2
∑

ω∈Li

χ−x2−1

k (ω)

= (−1)i2ǫG(χ−x2−1

k )/psθ. (3.3)

Now, we compute the sum

Ta =
∑

2,k 6|x

Gf (χ
−x
2k )

∑

y∈J

χx
2k(γ

a+y).

By (3.2) and (3.3), we have

Ta = (−1)a+iǫ
2

psθ

∑

2,k 6|x

Gf (χ
−x
2k )G(χ−x2−1

k )χx2−1

k (γa)

= (−1)a+iǫ2
Gf (χ2)

qpsθ

k−1∑

x=1

Gf (χ
−x
k )Gf (χ

x2−1

k )G(χ−x2−1

k )χx2−1

k (γa)

= (−1)a+iǫ2
Gf (χ2)

psθ

k−1∑

x=1

Gf (χ
−x
k )χx

k(γ
2−1a)

= (−1)a+iǫ2
Gf (χ2)

psθ
(k · ψ(γ2−1aC

(k,q)
0 ) + 1),

6



where we used Gf (χ
x2−1

k )Gf (χ
−x2−1

k ) = χx2−1

k (−1)q. Then, by (3.1), we obtain

k(2 · ψ(aD) + 1) =

2k−1∑

ℓ=1

Gf (χ
−ℓ
2k )

∑

y∈J

χℓ
2k(γ

a+y)

= Gf (χ2)
∑

y∈J

χ2(γ
a+y) + Ta

= (−1)aGf (χ2) (k − 2|Li|)

+ǫ2(−1)a+iGf (χ2)

psθ
(k · ψ(γ2−1aC

(k,q)
0 ) + 1)

= ±(−1)akGf (χ2).

By (2.1), we obtain

ψ(aD) =
−1±√

δq

2
,

where δ = 1 or −1 according to q ≡ 3 (mod 4) or ≡ 1 (mod 4). This completes the proof. �

Applying our theorem to subfield examples of cyclotomic strongly regular graphs, we obtain skew
Hadamard difference sets in Fq for any q = pst with st ≥ 3 by a nontrivial and different cyclotomic
construction from that of the Paley difference sets although we do not know the constructed
difference sets are inequivalent or not.

Also, we may obtain an infinite family of skew Hadamard difference sets starting from each skew
Hadamard difference set of Theorem 3.3 by applying the following theorem.

Theorem 3.4. ([19]) Let h = 2p1 with an odd prime p1 and let p be a prime such that 〈p〉 is of
index e modulo h. Furthermore, let k = 2pm1 and assume that 〈p〉 is again of index e modulo k.

Put q = p(p1−1)/e and q′ = pp
m−1
1 (p1−1)/e. Define J as any subset of {0, 1, . . . , h − 1} such that

J (mod p1) = {0, 1, . . . , p1 − 1}. Let

D =
⋃

i∈J

C
(h,q)
i and D′ =

pm−1
1⋃

i1=0

⋃

i∈J

C
(k,q′)
2i1+ik/h.

If D is a skew Hadamard difference set or a Paley type partial difference set in Fq, then so does
D′ in Fq′ .

By combining Theorems 3.3 and 3.4, we immediately have the following corollary, which yields an
infinite family of skew Hadamard difference sets from a cyclotomic strongly regular graph.

Corollary 3.5. Let k = pm1 and let p be of index e both of modulo p1 and k. Put q = p(p1−1)/e,

q′ = pp
m−1
1 (p1−1)/e, and

D =

pm−1
1 −1⋃

i=0

⋃

j∈J

C
(2k,q)

2i+pm−1
1 j

,

where J is defined as in Theorem 3.3. If Cay(Fq, C
(p1,q)
0 ) is strongly regular, then D in Fq′ is a

skew Hadamard difference set or a Paley type partial difference set according to q ≡ 3 (mod 4) or
≡ 1 (mod 4).

Example 3.6. By Corollary 3.5, we obtain new constructions of infinite families of skew Hadamard
difference sets and Paley type partial difference sets for the quadruples (p1, p, f, e) of No. 2, 4,
5, 6, 7, 9, and 11 in Table 1. Note that we can not obtain an infinite family of skew Hadamard
difference sets from the cyclotomic srg of No. 1 because p is not of index 2 in Z/2pm1 Z for m ≥ 2

while
⋃

j∈{0}∪〈p〉∪2〈p〉 C
(2p1,p

f )
j forms a skew Hadamard difference set.

7



Table 4: Subfield examples

p1 p f e p1 p f e
13 3 3 4 1723 41 3 574
31 5 3 10 2801 7 5 560
307 17 3 102 3541 59 3 1180
757 3 9 84 5113 71 3 1704
1093 3 7 156 8011 89 3 2670

Also, there are a lot of subfield examples satisfying [(Z/p1Z)
∗ : 〈p〉] = e and p1 = p(p1−1)/e−1

pt−1

for some t | (p1 − 1)/e. We list ten examples satisfying these conditions in Table 4. From these
examples, we obtain infinite families of skew Hadamard difference sets and Paley type partial
difference sets by Corollary 3.5.

4 Concluding remarks and open problems

In this section, we give important remarks and open problems related to our results.

Remark 4.1. In [19], the author found two examples of skew Hadamard difference sets of in-

dex 4, those are,
⋃

j∈{p1}∪Q∪2QC
(2p1,p

f )
j for (p1, p, f) = (13, 3, 3) and

⋃
j∈{0}∪Q∪2Q C

(2p1,p
f )

j for

(p1, p, f) = (29, 7, 7), where Q is the subgroup of index 2 of (Z/2p1Z)
∗. These two examples

are not covered by Theorem 3.3, i.e., there do not exist corresponding cyclotomic strongly regular
graphs and cyclic difference sets. More generally, via a computation similar to [15] involving known

evaluations of index 4 Gauss sums, one can prove that either of
⋃

j∈{0}∪Q∪2Q C
(2p1,p

(p1−1)/4)
j or

⋃
j∈{p1}∪Q∪2Q C

(2p1,p
(p1−1)/4)

j is a skew Hadamard difference set or a Paley type partial difference
set in Fp(p1−1)/4 if the following conditions are fulfilled:

(i) p is of index 4 modulo p1,

(ii) p1 = 4p(p1−1)/4−2b + 1, where b is defined as

b = min

{
1

p1

∑

x∈S

x |S ∈ (Z/p1Z)
∗/〈p〉

}
,

(iii) p1 = A2 + 4 for some integer A ≡ 3 (mod 4).

The author found only three examples satisfying these conditions, which are

(p1, p, f) = (13, 3, 3), (29, 7, 7), (53, 13, 13).

For each of these three examples, we obtain an infinite family of skew Hadamard difference sets or
Paley type partial difference sets by applying Theorem 3.4. Here, we have the following natural
question.

Problem 4.2. Determine for which (p, p1, e) either
⋃

j∈{0}∪Q∪2QC
(2p1,p

(p1−1)/e)
j or

⋃
j∈{p1}∪Q∪2QC

(2p1,p
(p1−1)/e)

j

forms a skew Hadamard difference set or a Paley type partial difference set.

Also, by computer, the author found an interesting example of a skew Hadamard difference set in
the case where (p, f, p1) = (7, 3, 19) and e = 6:

D =
⋃

x∈I

C
(2p1,p

f )
i ,

8



where
I = {p1} ∪ 〈p〉 ∪ 3〈p〉 ∪ 33〈p〉 ∪ 2 · 3〈p〉 ∪ 2 · 33〈p〉 ∪ 2 · 34〈p〉 (mod 2p1).

One can use a computer to find that the automorphism group of the symmetric design Dev(D)
derived from D has size 34 · 73. (We will write the size as #Aut(Dev(D)).) On the other hand,
#Aut(Dev(P )) = 33 · 73 · 19 for the Paley difference set P with the same parameter. Thus,
the skew Hadamard difference set D is inequivalent to the Paley difference set. Furthermore,
since the size of the Sylow p-subgroup of the automorphism group of the design derived from a
difference set constructed by Muzychuk [18] is strictly greater than q, we conclude that D is also
inequivalent to the corresponding skew Hadamard difference sets of [18]. Also, since the set I
satisfies I (mod p1) = {0, 1, . . . , p1 − 1}, we obtain an infinite family of skew Hadamard difference
sets including this example by Theorem 3.4.

Remark 4.3. As described in Introduction, to check whether obtained skew Hadamard difference
sets and Paley type partial difference sets are equivalent or not to the classical Paley (partial)
difference sets is very important. Although the problem is in general difficult and the author
could not prove that our construction always yields inequivalent skew Hadamard difference sets
and Paley type partial difference sets to the Paley (partial) difference sets, the author still believes
that our infinite families include inequivalent ones abundantly. As an evidence for my believe, we

can see by computer that the skew Hadamard difference set D =
⋃

x∈J C
(2p1,p

f )
i with

J = {0} ∪
(⋃

i∈I

gi〈p〉
)

∪


2

⋃

i∈(Z/eZ)\I

gi−s〈p〉


 (mod 2p1),

where assume that (Z/kZ)∗/〈p〉 is a cyclic group of order e and let g be a representative of a
generator of (Z/kZ)∗/〈p〉, is inequivalent to the Paley difference set in the following cases:

• (p, f, p1) = (3, 5, 11), (g, s) = (−1, 1) and I = {0}: In this case, #Aut(Dev(D)) = 35 · 5 · 11
and #Aut(Dev(P )) = 35 · 5 · 112 for the corresponding Paley difference set P .

• (p, f, p1) = (3, 7, 1093), (g, s) = (5, 63) and take I as
⋃

i∈I g
i〈p〉 = 5 ·(S+948)) for the Singer

difference set S of PG(6, 3): In this case, #Aut(Dev(D)) = 37 · 7 and #Aut(Dev(P )) =
37 · 7 · 1093 for the corresponding Paley difference set P .

• (p, f, p1) = (7, 5, 2801), (g, s) = (3, 58) and take I as
⋃

i∈I g
i〈p〉 = 358·(S+292)) for the Singer

difference set S of PG(4, 7): In this case, #Aut(Dev(D)) = 3 · 5 · 75 and #Aut(Dev(P )) =
3 · 5 · 75 · 2801 for the corresponding Paley difference set P .

Furthermore, the author checked by computer that the Paley type srgs with parameters (p1, p, f) =
(31, 5, 3) and (307, 17, 3) of Example 3.6 are not isomorphic (as graph isomorphism) to the classical
Paley graphs. (Note that in these cases there is no factor m > 2 of pf − 1 such that p is semi-
primitive modulo m.)

Problem 4.4. Determine whether or not skew Hadamard difference sets and Paley type partial
difference sets obtained in this paper are equivalent to the classical Paley (partial) difference sets.
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