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Introduction 

In recent decades, forests have started to experience significant changes in environmental 

conditions (Fontes et al., 2010). Ecosystems have to adapt to variations in  the mean climatic variables, 

but also the increased risk of extreme events such as drought, heat waves, storms, late frost and 

flooding (Lindner et al., 2010). The impact of environmental changes on forest function varies between 

different regions. In some areas positive effects on forest growth are expected because of longer 

growing seasons, nitrogen deposition and higher content of CO2 in the air. Conversely, forest 

productivity is likely to decline in areas that are more vulnerable to drought and fire. Therefore, it is 

essential to adapt forest management to these changing conditions. Process-based models are flexible 

tools that can support forest management under abiotic and biotic changes. Their use in forest research 

as well as in practical forest management has significantly increased (Johnsen et al., 2001). The 

reliability and robustness of models are conditional on their structure but also on their parameterisation 

(van Oijen et al., 2011; Minunno et al., 2013).  Hence the calibration of model parameters is a key stage 

in the model building process. 

Bayesian calibration (BC), based on probability theory, is a logical choice for model calibration 

(van Oijen et al., 2005). BC provides parameter quantification and quantifies uncertainties in model 

input and output.  Even though Bayes’ theorem was formulated in the 18
th

 century, its practical 

application has been hindered by the fact that it is often computationally demanding. Nowadays the use 

of Bayesian statistics is becoming increasingly common in the environmental sciences because of 

developments in computers and sampling based techniques such as Markov Chain Monte Carlo 

simulation (MCMC). However, the use of the Bayesian approach is still limited in forest research, 

especially for computationally expensive models with many parameters (van Oijen et al., 2005). To 

reduce the computational load and take full advantage of Bayesian statistics it is possible to act in two 

directions. First, one can increase the efficiency of the sampling based techniques by using more 

complex algorithms (Andrieu & Thoms, 2008). Second, the number of parameters involved in the 

calibration can be reduced by means of parameter screening. Of  these two options, screening is the 

most simple and straightforward. Parameter screening aims to rank model parameters according to their 

impact on the output (Saltelli et al., 2004). In this case, sensitivity analysis plays a key role in 



identifying the most important parameters. In earlier studies, screening was used with forest models to 

select parameters for Bayesian calibration (van Oijen et al., 2013; van Oijen et al., 2011; Xenakis et al., 

2008), however it has not been investigated if the BC of a parameter subset, instead of the full 

parameter set, affects model performance. Furthermore, parameter and output uncertainties may not be 

fully quantified. The method used for parameter selection can also affect parameter screening results. A 

key difference is that between local sensitivity analysis (LSA) and global sensitivity analysis (GSA). 

LSA quantifies model output variations in relation to changes of one parameter at a time at a specified 

point of the parameter space. GSA explores the full parameter space and evaluates the model's output 

sensitivity to simultaneous changes in several parameters, thus better characterising the behaviour of 

the model. The Fourier Amplitude Sensitivity Test method (Cukier et al., 1973), the Sobol’ (Sobol’, 

1990) and Saltelli’s method (Saltelli et al., 2010) are common GSAs, all of which can be 

computationally demanding for parameter-rich models. The Morris method (Campolongo et al., 2007; 

Morris, 1991) is a GSA that has already been used to screen parameters of a process-based forest model 

(van Oijen et al., 2011). Canonical correlation analysis (CCA) is a technique that can be used for GSA 

(Hair et al., 1998); CCA is a multivariate technique and thus has the advantage of evaluating multiple 

output variables simultaneously giving a quantitative measure of model output sensitivity. However, 

CCA has never been used to quantify the output variable sensitivity of forest models. 

The main objectives of this work were: 

1. Determine whether choosing a subset of parameters for calibration impacts the performance of a 

process-based forest model. 

2. Provide a methodology for parameter screening based on canonical correlation analysis. 

The model used for this exercise was 3PGN (Xenakis et al., 2008) and the analyses were carried 

out using a comprehensive dataset of Eucalyptus globulus plantations in Portugal. 

 

Materials and methods 

3PGN Structure 

3PGN was developed by Xenakis et al. (2008) coupling two models, 3PG (Physiological 

Principles in Predicting Growth) and ICBM (Introductory Carbon Balance Model). The first model 

simulates forest growth while the second computes soil carbon and nitrogen balances. The combination 

of the two models permits analysis at ecosystem level. 

In 3PG the gross primary production (PG) is calculated by multiplying photosynthetically active 

radiation absorbed by the stand (aPAR) with a light-use efficiency (α). aPAR is determined through 

Beer's law, while α depends on atmospheric vapour pressure deficit, air temperature, frost events, soil 

water balance, tree age and site fertility. Net primary production (PN) is a constant fraction of PG and 

the biomass is allocated to the tree organs: root, stem and foliage. 3PG simulates stand attributes, such 

as stand timber volume, mean diameter at breast height, average stand height, basal area and mean 



annual growth increment. A detailed description of the model is provided in Landsberg and Waring 

(1997) and in Sands and Landsberg (2001). 

ICBM considers three pools of C and three pools of N in the soil, storing different forms of 

organic matter. Small tree detritus (from litterfall and root turnover) accumulates in a “young labile” 

pool, coarse woody detritus (i.e., coarse root, branches and stems) accumulates in a “young refractory” 

pool and the recalcitrant organic matter accumulates in an “old” pool. Each pool has a decomposition 

rate that varies with soil moisture and soil temperature. The sum of the outflows from the different 

pools represents the heterotrophic respiration. A complete description of ICBM is provided by Andrén 

and Kätterer (1997) and Kätterer and Andrén (1999; 2001). 

 3PGN was chosen because it is a simple process-based model; it has about 50 

parameters and initial constants. It has a monthly time step, so that the model is sufficiently efficient to 

easily perform Bayesian calibrations using the full parameter set or different parameter subsets. 

 

Experimental sites and data acquisition 

The data used for this exercise were collected at Espirra forest and the Furadouro experiment. 

The Espirra forest dataset consisted of measurements of net ecosystem production (PE, Mg C ha⁻¹ y⁻¹), 

mean stand height (H, m) and mean stand diameter at breast height (D, cm). The forest is a 300 ha 

Eucalyptus globulus plantation (38º38`N, 8º36`W) tended as a coppice (Pereira et al., 2007).  The mean 

annual temperature for the site is 16ºC and the mean annual rainfall is 709 mm. About 80% of the 

precipitation occurs between October and April. Espirra forest is a CarboEurope-IP site where  fluxes 

of H2O and CO2 have been measured by eddy covariance, following the Fluxnet protocols (Aubinet et 

al., 1999; Baldocchi, 2003). Flux data quality control followed the CarboEurope-IP recommendations; 

gap filling and partitioning of PE to gross primary production and ecosystem respiration was performed 

according to Reichstein et al. (2005). To allow model calibrations the PE data were monthly averaged. 

The Furadouro experiment dataset consisted of foliage (WF, Mg of dry mass (DM) ha⁻¹), stem 

(WS, Mg DM ha⁻¹) and root (WR, Mg DM ha⁻¹) biomasses, stand volume (V, m³ ha⁻¹), H and D. The 

data were collected from a E. globulus plantation at Quinta do Furadouro (Óbidos, Portugal, 39º29`N, 

9º13`W, 30 m a.s.l.) from 1986 to 1992. The mean annual temperature is 15.2 ºC and the mean annual 

precipitation is 607 mm, of which less than 10% occurs between May and September. The 

experimental design consisted of three treatments and a control. In the first treatment, daily irrigation 

was supplied from April to October (I), in the second treatment a pelleted fertilizer was applied in 

March and October of each year (F), in the third treatment the daily irrigation as in I was combined 

with a liquid fertilizer solution (IF). No fertilization and irrigation were supplied to the control (C). 

Table 1 shows the number of measurements for each data type and their relative uncertainty 

expressed through the coefficient of variation (CV). 

 



Table 1. Data types, number of measurements and coefficient of variation used for the calibration of 

3PGN for Eucalyptus globulus in Portugal. 

Data type Number of data 
Coefficient of 

variation 

PE 38 0.3 

D 36 0.1 

H 35 0.2 

V 32 0.3 

WS 20 0.2 

WF 20 0.3 

WR 12 0.4 

 

 

Canonical correlation analysis 

Canonical correlation analysis (CCA) is a multivariate technique that aims to find the 

relationship between two sets of variables. Therefore, CCA is particularly useful for sensitivity 

analyses of process-based models that have many parameters and multiple outputs. Canonical 

correlation analysis was introduced by Hotelling in 1936 (Hotelling, 1936). As with many multivariate 

techniques, the application of CCA has recently increased with the availability of computer programs 

that facilitate its implementation. 

A detailed description of the method can be found in Hair et al. (1998), while here we provide a 

brief outline. CCA computes relationships between linear combinations of dependent and independent 

variables. The linear composites are called canonical variates, while the relationships between them 

are the canonical functions. An array of canonical functions is developed to maximize the correlation 

(canonical correlation) between two linear composites, one for the dependent and one for the 

independent variables. Therefore each function is developed using pairs of canonical variates; the 

maximum number of functions is equal to the number of variables in the smallest set. The first pair of 

canonical variates has the highest correlation between the dependent and independent variables and it 

accounts for the maximum variance in the set of variables. The second pair of canonical variates is then 

derived maximizing the correlation between the two sets of variables, based on the residual variance. 

Successive canonical functions are computed on the basis of the remaining variance and the canonical 

correlations become smaller as new pairs are extracted.  

CCA results can be interpreted through three measures: canonical weights, canonical loadings 

and canonical cross-loadings (see Hair et al. (1998) for further details). Because we were interested in 

analyzing the sensitivity of model output (dependent variables) to the parameters (independent 

variables), we examined the canonical cross-loadings. Canonical cross-loadings are the correlations 

between individual variables, dependent or independent, and their opposite canonical variates. Our 

interest was in quantifying the impact of each parameter on the set of model outputs. We therefore 

examined the canonical cross-loadings between the individual parameters and the composite output 

variates. 



Table 2. Symbols, units, minimum and maximum values for the 3PGN parameters calibrated for 

Eucalyptus globulus in Portugal. 

 

Parameter description Symbols Units Min Max 

Constant in the aboveground biomass vs. 

height relationship 
aH ― 1.9 2.8 

Canopy quantum efficiency alpha mol C * MJ
-1

 0.04 0.08 

Canopy boundary layer conductance BLcond m*s
-1

 0.16 0.24 

Power in the aboveground biomass vs. 

height relationship 
bW ― 0 0.3 

Stomatal response to VPD CoeffCond Mbar
-1

 0.04 0.06 

Wood density Density Mg*m
3
 0.36 0.54 

Convertion of fresh biomass to dry biomass dmC ― 0.45 0.55 

Value of fNutr when FR = 0 fN0 ― 0 0.5 

Branch and bark fraction at age 0 fracBB0 ― 0.6 0.9 

Branch and bark fraction for mature stands fracBB1 ― 0.12 0.18 

Age at canopy cover fullCanAge years 2 5 

Litterfall rate at t = 0  gammaF0 month
-1

 0.0008 0.0012 

Maximum litterfall rate gammaFx month
-1

 0.0216 0.0324 

Humification coefficient Hc ― 0.1 0.15 

Extinction coefficient for absorption of 

PAR by canopy 
K ― 0.4 0.6 

Days of production lost per frost day kF days 0 3 

Decomposition rate constant for the 

‘‘young and labile’’ pool per month 
klmax month

-1
 0.006 0.01 

Decomposition rate constant for the ‘‘old’’ 

pool 
komax month

-1
 0.0004 0.0006 

Decomposition rate constant for the 

‘‘young and refractory’’ pool per month 
krmax month

-1
 0.03 0.05 

LAI for maximum canopy conductance LAIgcx ― 2.664 3.996 

LAI for maximum rainfall interception LAImaxIntcptn ― 0 0.05 

Value of the fertility modifier when FR = 0 m0 ― 0 0.2 

Maximum stand age MaxAge years 80 200 

Maximum canopy conductance MaxCond m*s
-1

 0.016 0.024 

Maximum proportion of rainfall evaporated 

from canopy 
MaxIntcptn ― 0.12 0.18 

Power of relative age in function for fAge nAge ― 2 5 

Foliage–stem partitioning ratio @ D = 2 cm pFS2 ― 0.8 1.2 

Foliage–stem partitioning ratio @ D = 20 

cm 
pFS20 ― 0.12 0.18 

Maximum fraction of NPP to roots pRn ― 0.2 0.3 

Minimum fraction of NPP to roots pRx ― 0.64 0.96 

Relative age to give fAge = 0.5 rAge ― 0.76 1 

Average monthly root turnover rate Rttover month
-1

 0.012 0.018 

 



Table 2. (Concluded) 

Parameter description Symbols Units Min Max 

Specific leaf area at age 0 SLA0 m
2
*kg

-1
 10.5 14 

Specific leaf area for mature leaves SLA1 m
2
*kg

-1
 3.7 4.4 

Constant in the aboveground biomass vs. 

diameter relationship 
StemConst ― 1.15 1.4 

Power in the aboveground biomass vs. 

diameter relationship 
StemPower ― 0.5 0.55 

Moisture ratio deficit for fq = 0.5 SWconst ― 0.63 0.77 

Power of moisture ratio deficit SWpower ― 8.1 9.9 

Age at which fracBB = (fracBB0 + 

fracBB1)/2 
tBB years 1.6 2.4 

Age at which litterfall rate has median 

value 
tgammaF years 9.6 14.4 

Maximum temperature for growth Tmax ºC 32 48 

Minimum temperature for growth Tmin ºC 6.8 10.2 

Optimum temperature for growth Topt ºC 12.8 19.2 

Age at which specific leaf area = (SLA0 + 

SLA1)/2 
tSLA years 1.2 2 

Ratio NPP/GPP Y ― 0.376 0.564 

Fertility rating for the Espirra plot FR_Espirra ― 0.4 0.7 

Fertility rating for the C plot FR_C ― 0.4 0.7 

Fertility rating for the F plot FR_F ― 0.6 1 

Fertility rating for the I plot FR_I ― 0.4 0.7 

Fertility rating for the IF plot FR_IF ― 0.6 1 

 

The advantages of using canonical correlation analysis for model sensitivity analysis are that 

CCA can calculate the relationships between multiple sets of variables, parameters and outputs, and it 

also provides quantitative information (i.e., canonical cross-loadings) about model output sensitivity to 

individual parameters. The main limitation is that CCA is a linear analysis so any non-linearity in the 

model is not considered, although higher order non-linear terms can be included. CCA finds the linear 

combinations of terms but the terms themselves can be appropriately transformed in order to convert 

non-linear relationships to linear forms. 

Canonical correlation analysis was performed to calculate the influence of 3PGN parameters on 

seven output variables (foliage, stem and root biomasses, net ecosystem production, mean stand 

diameter at breast height, mean stand height and stand volume). Model outputs were predictions at the 

end of the rotation (12 years stand age). The analyses were made for the Espirra forest and for the four 

treatments, i.e., I, F, FI and C, of the Furadouro experiment. For the sensitivity analyses parameter 

values varied between the minimum and maximum values shown in Table 2. 

CCA was performed between the full parameter set (51 independent variables) and the seven 

outputs over the five sites (35 dependent variables). Parameter vectors were created using Latin 

hypercube sampling, to efficiently sample the whole parameter space, and the 35 outputs were 

calculated for each parameter vector. To ensure that canonical correlation analysis results were not 



specific only to the sample, but could be generalized, we increased the sample number until achieving 

similar values of the canonical cross-loadings of subsequent CCAs. A sample of 50000 parameter 

vectors was required to generalize the CCA results. 

CCA produced a matrix C of canonical cross-loadings with 35 columns of canonical variates 

and 51 rows of 3PGN parameters. The cross-loadings expressed the importance of parameters for each 

canonical variate, so in C each parameter had 35 canonical cross-loadings. The highest cross-loading of 

each parameter was selected and a ranking of parameters was created. The most important parameters 

had the highest cross-loadings. 

 

Bayesian calibrations 

The calibration of 3PGN, using the Espirra and Furadouro data, was carried out by means of the 

Bayesian method. Bayesian calibration updates the current state of knowledge about parameter values, 

expressed as a joint probability distribution (prior distribution), using new data. The data, by means of 

the likelihood function (L(θ)), are used to modify the prior uncertainty. The updated joint probability 

distribution for the parameters is the posterior distribution. 

For the likelihood function, the Gaussian distribution is the most common choice. However, the 

Gaussian assigns very low likelihoods when a large mismatch between the observed and simulated data 

occurs, so its use is not recommended in the presence of outliers. Sivia (2006) proposed the likelihood 

function of Eq. 3 that gives less weight to outliers because of its slowly decaying Cauchy-like tails. 

L(θ) = ∏
 

  √  

 
   

     (   
  ⁄ )

  
         

where, sim(θ) is the output from the model for the parameter vector θ, N is the number of data 

points, σ is the uncertainty about the random error of the i-th data point and Ri = (sim(θ) - Oi)/σi (O are 

the observed data). 

The Sivia likelihood was used here because outliers can occur in eddy covariance 

measurements. A uniform prior was assigned to all 3PGN parameters; the parameter bounds were the 

same as those reported in Minunno et al. (2013) and are shown in Table 2. 

The Bayesian calibration was carried out by means of Markov Chain Monte Carlo sampling 

(MCMC), using the Metropolis-Hastings random walk. A complete description of the algorithm, in the 

context of forest modelling, is given by van Oijen et. al. (2005). For the BC, three chains of 500,000 

iterations were computed. Convergence of iterative simulations was assessed through the Gelman-

Rubin test (Gelman & Rubin 1992). After convergence, the three chains were joined together and 

treated as a single sample from the posterior distribution. 

Four Bayesian calibrations were performed, one using the full 3PGN parameter set (denoted as 

'p100%') and the other three using parameter subsets selected by means of CCA. The full parameter set 

consisted of 51 parameters, five parameters were site-specific and related to site fertility (FR 



parameters), while the remaining 46 were common over the sites. CCA was used to rank the 46 

common parameters according to their influence on model output. From the ranking created through 

CCA, three parameter subsets (p25%, p50% and p75%) were created representing  the 25%, 50% and 

75% most important parameters. The five site-specific parameters were always included in the 

calibrations because the model is highly sensitive to FR (Esprey et al. 2004; Minunno et al., 2013). For 

the calibration of the parameter subsets, average values between parameter minimum and maximum 

were assigned to the parameters not involved in the calibrations. 

 

Results 

CCA 

Table 3 lists the 3PGN parameters ranked using the highest cross-loading value of each 

parameter; the five site-specific parameters were not included in the list. The 12 most important 

parameters are those reported in the first column of Table 3 (p25% subset). The parameters in the first 

and second column were used for the p50% BC. The parameters of the first, second and third columns 

represent the parameter subset used in the p75% BC. The 25% of the parameters that were most 

important were related to allometric equations, light use efficiency, decomposition rates and 

autotrophic respiration, wood density, litterfall and temperature stress. The sets consisting of the 50% 

and 75% most important parameters included parameters related to water stress, allocation routines, 

specific leaf area and frost stress. According to CCA screening, the least important parameters (column 

four of Table 3) were parameters related to age stress, initial soil carbon content and decomposition 

rates of humified organic matter. 

Bayesian calibrations 

Each of the Bayesian calibrations carried out (i.e., p25%, p50%, p75%, p100%) generated a 

joint probability distribution of the parameter sets involved in the calibration process. By means of the 

Kolmogorov-Smirnov test for each parameter it was tested if the marginal posterior distributions 

obtained by p25%, p50% and p75% were statistically different from the marginal distributions 

achieved through the p100% calibration. 

The marginal posterior parameter distributions that were different from the marginal posterior 

distributions of p100% are shown in Figure 1. The parameters that were common over the sites are 

ordered according to the highest cross-loading value as listed in Table 3; while the distributions of the 

site specific parameters (FRs) are plotted at the end of Figure 1. Because the marginal posterior 

distributions contain only part of the information about the posterior, ignoring parameter interactions, 

in Table 4 the parameter correlations with absolute value higher than 0.24 are reported for each 

calibration. 

For some of the parameters (i.e., rho1, pRn, LAIgx, MaxCond, pRx), the marginal posterior 

distributions were the same for the different calibrations (data not shown). Significant differences were 

found between the marginal distributions of other parameters (i.e., StemPower, bW, alpha, aH, fracBB1, 



Y, Tmin, pFS2, klmax, k, fullCanAge, tBB) (Figure 1). For almost all the parameters, no significant 

differences were found between the marginal posterior parameter distributions of p75% and p100%, 

while the differences increased when smaller set of parameters were calibrated. Furthermore, results 

showed that parameter uncertainty decreased when the number of parameters involved in the 

calibrations was reduced, but at the same time the interactions between parameters increased (Table 4). 

In fact, the second order correlations between parameters were similar in p100% and p75% (Table 4), 

while in p25% and p50% more correlations with absolute value higher than 0.24 were found. The 

parameter alpha interacted with many others in p25%, while, in the other calibrations, alpha was 

significantly correlated with just Y. We did not quantify higher order correlations between the 

parameters that are likely to decrease when parameters are discarded from the calibration. 

 

Table 3. List of parameters ranked on the basis of the canonical correlation analysis. The highest 

cross-loadings of each parameter with the output canonical variates are shown (‘Hc-l’). 

 

p25% p50% 

Ranking parameter Hc-l ranking Parameter Hc-l 

1 rho1 0.779 13 Y 0.358 

2 StemPower 0.775 14 LAIgcx 0.343 

3 pRn 0.654 15 Tmin 0.311 

4 bW 0.627 16 MaxCond 0.301 

5 alpha 0.596 17 pFS2 0.254 

6 aH 0.588 18 StemConst 0.23 

7 gammaF1 0.587 19 pRx 0.216 

8 fN0 0.541 20 Klmax 0.214 

9 Topt 0.506 21 K 0.198 

10 pFS20 0.496 22 m0 0.166 

11 fracBB1 0.488 23 fullCanAge 0.144 

12 gammaR 0.448 24 tBB 0.142 

      p75% p100% 

Ranking parameter Hc-l ranking Parameter Hc-l 

25 CoeffCond 0.139 36 tgammaF 0.017 

26 SLA1 0.117 37 Yl_C_i 0.012 

27 tSLA 0.106 38 nAge 0.011 

28 krmax 0.09 39 O_C_i 0.01 

29 kF 0.068 40 Yr_C_i 0.009 

30 fracBB0 0.059 41 gammaF0 0.009 

31 Tmax 0.047 42 rAge 0.008 

32 BLcond 0.038 43 LAImaxIntcptn 0.008 

33 MaxIntcptn 0.036 44 Komax 0.008 

34 SLA0 0.035 45 MaxAge 0.007 

35 hc 0.019 46 dmC 0.007 



Figure 1. Marginal posterior distributions of 3PGN parameters for the four calibrations carried out. 

Only those parameters for which the cumulative distribution functions had a Kolmogorov-Smirnov 

distance of at least 0.05 from p100% are shown. 

  



Figure 1. (Concluded). 

   



 Table 4a. Pearson product-moment correlation coefficients (r) of 3PGN parameters higher than 

0.24 or lower than -0.24, for p100% and p75%. 

p100% p75% 

parameters R Parameters r 

aH, bW -0.94 aH, bW -0.94 

tBB, fracBB0 -0.89 tBB, fracBB0 -0.9 

StCn, StPw -0.8 StCn, StPw -0.82 

Y, alpha -0.53 Y, alpha -0.53 

fN0, FR_Espirra -0.37 fN0, FR_Espirra -0.39 

fN0, FR_C -0.29 fN0, FR_C -0.3 

alpha, FR_F -0.28 alpha, FR_F -0.27 

fCanAge, dmC -0.26 alpha, k -0.26 

alpha, k -0.24 
fCanAge, 

FR_Espirra 
-0.25 

Topt, FR_Espirra -0.27 
 

  

 

Table 4b. Pearson product-moment correlation coefficients (r) of 3PGN parameters higher than 0.24 

or lower than -0.24, for p50% and p25%. 

p50% p25% 

parameters R Parameters r 

aH, bW -0.93 aH, bW -0.92 

StCn, StPw -0.8 alpha, Topt -0.44 

tBB, fracBB0 -0.54 alpha, StPw -0.4 

Y, alpha -0.53 alpha, FR_I -0.33 

fN0, FR_Espirra -0.34 alpha, FR_IF -0.32 

fN0, FR_C -0.33 alpha, FR_F -0.31 

Topt, Tmin 0.27 alpha, FR_C -0.31 

alpha, FR_F -0.26 StPw, FR_F -0.29 

 

The log-likelihood distribution (logL) associated with the posterior parameter distribution 

provides a measure of model fit and output uncertainty. We used the logL for this purpose because it 

integrates information about all different model output variables into one measure. Better model fit 

corresponds to higher values of logL and a high variance of logL is indicative of high variability of 

model output for the posterior parameter sample, i.e. high output uncertainty. In this case the likelihood 

is proportional to the joint posterior distribution because a uniform prior was used. Figure 2 shows logL 

distributions of p25%, p50%, p75% and p100%, giving an idea of how model fit changes for the 

different calibrations; in other words Figure 2 shows to which extent parameter screening affects the 

calibration process. Model fit decreased when fewer parameters were included in the calibrations. logL 

assumed lowest values for the calibrations that involved just 25% of parameters, while the highest logL 

values were achieved by p75% and p100%. Model output uncertainty decreased for smaller sets of 

parameters, while p75% and p100% were characterized by the highest uncertainty in model output. The 

log-likelihood of the calibrations with 75% parameters and with the whole parameter set had similar 



distributions (Figure 2). In order to provide a more direct measure of model performance, the 

normalised root mean squared errors (NRMSE) were calculated. From the posterior distribution of each 

calibration 1000 parameter vectors were sampled. The outputs generated from these samples were 

averaged and used to calculate the NRMSEs; Table 5 shows the prediction errors aggregated for each 

output variable. p75% and p100% had similar NRMSEs for all outputs; while the errors of p25% and 

p50% for predictions of PE, V, WF, WR and WS were significantly higher than those of p75% and 

p100%, meaning that there was a model fit degradation when smaller subsets of parameters were 

calibrated. 

 According to our results, the parameters that had a highest canonical cross-loading lower than 

0.02 could be discarded from the calibration, because they did not affect model fit. In fact, in addition 

to the parameters reported in the fourth column of Table 3, the 35
th

 parameter (hc) was also not 

influential on the likelihood and the NRMSEs (data not shown).  

 

 

Figure 2. log-likelihood (logL) distributions for the four calibrations carried out. 

 

 



Table 5. Normalised root mean squared errors of the four calibrations (i.e., p25%, p50%, p75% and 

p100%) for each data type. 

 
 

PE D H V WF WR WS 

p100% 96.9 20.6 32.4 52.6 58.2 44.8 59.1 
p75% 96.8 20.4 33 51.9 57.8 44.5 58.6 

p50% 102.8 19.9 33.4 57.4 65 48.6 63.4 
p25% 

 

109.4 19.5 30.2 89.3 66.4 50.4 65.8 

 

Discussion 

The impact of parameter screening on Bayesian calibration 

During the last decades, the use of Bayesian statistics has increased substantially in biological 

science (van Oijen et al., 2013; Correia et al., 2012; Ogle & Barber, 2008). However, Bayesian 

calibration of parameter-rich models, like process-based forest models, is still challenging. The 

calibration process is computationally demanding and can be prohibitive when many parameters are 

involved, simulated time periods are long, or the time step of the model is short. The practice of 

limiting the BC to just a subset of model parameters (Xenakis et al., 2008; Van Oijen et al., 2011) is 

one potential solution for Bayesian calibration of complex models. For the first time, we investigated if 

this practice has an impact on model performance and model uncertainty. Our results showed that 

parameter screening for BC must be carried out carefully. We found that only parameters to which the 

model was least sensitive could be excluded from the calibration without strongly affecting the a 

posteriori behaviour of the model. When the calibration was limited to a more restricted subset (p25% 

or p50%), some influential parameters ended up being fixed at constant values; also parameter 

interactions were changed (Table 4). As a consequence, we obtained different joint posterior 

probability distributions from the p25% and p50% calibrations than from p100%, which must be 

considered the best parameterization of 3PGN, taking into account uncertainty about all parameters. 

Even though the same model was used, the likelihood distributions of p25% and p50% assumed lower 

values than the likelihood distributions of p75% and p100% (Figure 2) and the NRMSEs of p25% and 

p50% were higher than the prediction errors of p75% and p100% (Table 5).  Hence the exclusion of 

parameters from BC can lead to a reduction of model performance and an underestimation of the 

uncertainty associated with model predictions.   

As in all Bayesian approaches, the choice of the prior can influence the calibration (Efron, 

2013). ‘Strong’ priors could influence the range of likelihood-values that are sampled by the MCMC, 

especially when the dataset used for calibration is characterized by a low number of measurements 

and/or high measurement uncertainty. An extreme situation would be that of a highly informative prior, 

where all parameters are considered to be known with high accuracy and precision. That would 

effectively shield the joint parameter distribution from subsequent calibration. We examined here the 

more common situation in process-based vegetation modelling, where considerable parameter 

uncertainty exists and calibration is required. The values assigned to the parameters that were removed 

from the calibration process in p75%, p50% and p25% could affect model fit. In this exercise we 

choose the average value between the minimum and maximum of each parameter. The more those 



values were distant from the maximum a posteriori parameter vector of p100% the more the model fit 

is expected to deteriorate; but it depends also on the sensitivity of the model to the parameters. 

Our results showed that parameter screening can be done if limited to the least important 

parameters. In fact, p75% had nearly the same joint posterior distribution and the same likelihood 

distribution as p100%. Hence it may be possible to reduce the computational load of BC by excluding 

from the calibration process those parameters that have negligible influence on model output variables. 

Reducing dimensionality is attractive because convergence of an MCMC requires that all parameters 

have converged to their marginal distribution, and correlations between parameters may hamper 

convergence if the proposal distribution is not adaptive (Gill, 2008). Roberts et al. (1997) proved, albeit 

for Gaussian distributions rather than process-based models such as 3PGN, that the optimal acceptance 

rate in an MCMC decreases with dimensionality of the distribution. Parameter screening may therefore 

accelerate a BC carried out by means of MCMC, but the screening does pose a risk: parameters that are 

not important for some outputs could have strong impact on other outputs or could become more 

influential in different conditions (e.g. different environmental conditions or stand age). For instance in 

our study, the age related stress parameters (i.e., nAge, rAge and MaxAge) are the parameters to which 

3PGN was least sensitive. But sensitivity analyses were carried out considering model outputs at 12 

years, an age at which Eucalyptus plantations are commonly cut in Portugal. The impact of those 

parameters on model outputs could increase when simulating old stands. Sensitivity analysis is a key 

process that should always be carried out over the parameter space before the calibration, this will help 

modelers to better interpret model behavior in representing the natural processes.  

In addition, the method presented here of comparing model performance using the full 

parameter set and different parameter subsets, selected by means of sensitivity analysis, could also  be 

used for model structure simplification if a comprehensive and complete dataset is available. 

 

On the use of CCA for parameter screening 

This work is the first attempt to use canonical correlation analysis to quantify the parameter 

sensitivity of a process-based forest model, and to use the results in parameter screening. Our results 

about model sensitivity are in agreement with other studies that have already explored the sensitivity of 

3PGN, through local sensitivity analyses (Xenakis et al., 2008) and global sensitivity analysis 

(Minunno et al., 2013). However the aim of this work was not to explore model sensitivity but to 

provide a method for parameter screening by means of canonical correlation analysis, in order to 

increase the efficiency of the BC. Results showed that model performances are strongly affected by the 

parameter selection used in the calibration, so it is important to find a robust and reliable method for 

parameter screening. The Morris method (Campolongo et al., 2007; Morris, 1991) is a GSA that has 

already been used to screen parameters of a process-based forest model (van Oijen et al., 2011). This 

method is efficient, requires a relatively small number of runs, and is therefore particularly suitable for 

parameter-rich models. But Morris screening is applied to one output variable at a time and it is not 

straightforward to obtain a parameter ranking that relates to all outputs of the model. The procedure 

presented in this study based on canonical correlation analysis is an alternative to Morris screening, 

because it is not too computationally demanding and provides an overall ranking in relation to all 



outputs of the model. CCA is particularly suitable when several inputs and outputs are involved in the 

analyses, and is most appropriate for models that do not appear to be especially non-linear in the 

parameters. 

The number of parameters that can be left out from the calibration process is highly case-

specific and depends on the model and the data; but the methodology introduced here is generally 

applicable. However, we are far from finding an optimal solution for parameter screening, and there are 

still a number of issues to be considered. CCA can rank the relationships between parameters and 

model outputs by means of the highest canonical cross-loadings. But from a Bayesian perspective we 

are mostly interested in the impact that parameter changes have on the likelihood. Unfortunately, 

involving the likelihood in the sensitivity analysis is not straightforward, because of the difficulty in 

quantifying the change in the likelihood in a robust way. The main problem is that the likelihood 

function tends to be highly peaked in parameter space and any global sensitivity analysis technique 

may not sample the area of high likelihood intensively enough. We therefore did not carry out a GSA of 

the likelihood itself but instead a CCA involving all model output variables as composite variates. 

Future work should investigate how to improve the screening method provided here, integrating the 

likelihood in a methodology that can be generally applied. 

 

 

Conclusions 

We introduced a new methodology for parameter screening, based on canonical correlation 

analysis. This methodology can be generally applied and is particularly suitable for complex process-

based models because it is not computationally demanding and is easy to implement. Furthermore it 

provides an overall ranking in relation to all outputs of the model, as opposed to common GSA-

methods that can only analyse the sensitivity of one model output variable at a time. 

We applied the screening method to a process-based forest model to select parameters that 

could be excluded from calibration. We used Bayesian calibration and quantified, for the first time, the 

impact of parameter screening on calibration and subsequent performance of a process-based forest 

model. In this case study, about 25% of 3PGN parameters could be excluded from the calibration 

without affecting model performance. The percentage of parameters that can be excluded without 

significantly influencing the results will vary with the model and the observations used. 
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