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AJDA FOŠNER∗, ZEJUN HUANG† , CHI-KWONG LI‡ , AND NUNG-SING SZE§

Abstract. For a positive integer n, let Mn be the set of n × n complex matrices. Suppose ‖ · ‖ is the Ky Fan

k-norm with 1 ≤ k ≤ mn or the Schatten p-norm with 1 ≤ p ≤ ∞ (p 6= 2) on Mmn, where m,n ≥ 2 are positive

integers. It is shown that a linear map φ : Mmn →Mmn satisfying

‖A⊗B‖ = ‖φ(A⊗B)‖ for all A ∈Mm and B ∈Mn

if and only if there are unitary U, V ∈ Mmn such that φ has the form A ⊗ B 7→ U(ϕ1(A) ⊗ ϕ2(B))V , where ϕs(X)

is either the identity map X 7→ X or the transposition map X 7→ Xt. The results are extended to tensor space

Mn1 ⊗ · · · ⊗Mnm of higher level. The connection of the problem to quantum information science is mentioned.
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1. Introduction and preliminaries. For a positive integer n, let Mn be the set of n × n
complex matrices. Now, suppose that m,n ≥ 2 are positive integers. Then for A ∈ Mm and

B ∈ Mn, we denote by A ⊗ B ∈ Mmn their tensor product (a.k.a. the Kronecker product). In

many applied and pure studies, one considers the tensor product of matrices; for example, see

[2, 9, 18, 21]. Most noticeably, the tensor product is often used in quantum information science [19].

In a quantum system, quantum states are represented as density matrices (positive semi-definite

matrices with trace one). Suppose A ∈ Mm and B ∈ Mn are two quantum states in two quantum

systems. Then their tensor product A⊗B describes the joint state in the bipartite system, in which

the general states are density matrices in Mmn. More generally, one may consider tensor states and

general states in a multipartite system Mn1
⊗ · · · ⊗Mnm

identified with MN where N =
∏m
i=1 ni.

In general, it is relatively easy to construct and extract information from matrices in tensor

product form. For instance, the eigenvalues (respectively, the singular values) of A ⊗ B have the

form aibj with 1 ≤ i ≤ m and 1 ≤ j ≤ n if A ∈ Mm and B ∈ Mn have eigenvalues (respectively,

singular values) a1, . . . , am and b1, . . . , bn, respectively. Thus, it is interesting to get information on

the tensor space Mmn by examining the properties of the small collection of matrices in tensor form

A ⊗ B. In particular, if we consider a linear map φ : Mmn → Mmn and if one knows the images

φ(A ⊗ B) for A ∈ Mm and B ∈ Mn, then the map φ can be completely characterized as every

C ∈ Mmn is a linear combination of matrices in tensor form A ⊗ B. Nevertheless, the challenge

is to use the limited information of the linear map φ on matrices in tensor form to determine the

structure of φ. In [5], we considered linear maps preserving the spectrum σ(A ⊗ B) and spectral

∗ Faculty of Management, University of Primorska, Cankarjeva 5, SI-6104 Koper, Slovenia. (Email:
ajda.fosner@fm-kp.si)
† Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong. (Email:

huangzejun@yahoo.cn)
‡ Department of Mathematics, College of William and Mary, Williamsburg, VA 23187, USA; Department of

Mathematics, University of Hong Kong, Pokfulam, Hong Kong. (Email: ckli@math.wm.edu)
§ Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong. (Email:

raymond.sze@polyu.edu.hk)

1



radius r(A⊗B) of Hermitian matrices A ∈Mm and B ∈Mn. In [10], the author considered linear

maps φ : Mmn →Mmn satisfying

‖|A⊗B‖| = ‖|φ(A⊗B)‖| for all A ∈Mm and B ∈Mn,

where ‖| · ‖| is a certain (separability) norm defined in [11]. This family of (separability) norms was

shown to be related to the problem of detecting bounded entangled non-positive partial transpose

states and characterizing k-positive linear maps in quantum information science.

Suppose X ∈ MN has singular values s1(X) ≥ · · · ≥ sN (X). The Ky Fan k-norm of X is

defined by

‖X‖(k) = s1(X) + · · ·+ sk(X).

The Ky Fan 1-norm reduces to the spectral norm and the Ky Fan N -norm is also called the trace

norm. For p ≥ 1, the Schatten p-norm of X is defined by

‖X‖p ≡

(
N∑
i=1

si(X)p

)1/p

.

The limiting case p = ∞ is just the spectral norm, ‖ · ‖1 is the trace norm, and ‖ · ‖2 is the

Frobenius norm, i.e., ‖X‖2 = (tr (XX∗))1/2. In bipartite quantum systems, a well known criterion

for separability of a state is the computable cross norm (CCNR) criterion [4, 20], which asserts that

if a state (density matrix) X in Mmn is separable, the trace norm of the realignment of X (see e.g.

[4]) is at most 1.

The purpose of this paper is to study linear maps φ : Mmn →Mmn satisfying

‖A⊗B‖ = ‖φ(A⊗B)‖ for all A ∈Mm and B ∈Mn,

where ‖ · ‖ denotes the Ky Fan k-norm with 1 ≤ k ≤ mn, or the Schatten p-norm with 1 ≤ p ≤ ∞.

Note that even if we know that φ : Mmn →Mmn is linear and satisfies ‖A⊗B‖ = ‖φ(A⊗B)‖ for

all A ∈Mm and B ∈Mn, it does not ensure that ‖A1⊗B1 +A2⊗B2‖ = ‖φ(A1⊗B1)+φ(A2⊗B2)‖
because A1 ⊗ B1 + A2 ⊗ B2 may not be of the form A ⊗ B. Thus, the proofs of our main results

(Theorems 2.6 and 2.9) are quite delicate as shown in the following discussion (in Section 2). We

will also extend the results to multipartite systems Mn1 ⊗ · · · ⊗Mnm in Section 3.

One may see [1, 3, 7, 13] and their references for some background on linear preserver problems,

and the preservers of the Ky Fan k-norms and Schatten p-norms (without the tensor structure). It

was shown in these papers that such norm preservers (except for the Schatten 2-norm preservers)

φ : Mn →Mn have the form

φ(A) = UAV or φ(A) = UAtV

for some unitary matrices U, V ∈Mn, where At is the transpose of A. One can also see [5, 6, 10, 14]

and their references for some recent results on linear preserver problems on tensor spaces arising in

quantum information science.
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In our discussion, we will use Xt and X∗ to denote the transpose and the conjugate transpose

of a square matrix X, respectively. For any A ∈Mm and B ∈Mn, we denote by A⊕B their direct

sum. The n× n identity matrix will be denoted by In. Denote by Eij the square matrix which the

(i, j)-entry is equal to one and all the others are equal to zero, where the size of Eij should be clear

in the context.

2. Bipartite systems.

2.1. Spectral norm. In what follows we denote by ‖ · ‖ the spectral norm. Recall that the

spectral norm is the same as Ky Fan 1-norm. We first present the result for spectral norm.

Theorem 2.1. The following are equivalent for a linear map φ : Mmn →Mmn.

(a) ‖φ(A⊗B)‖ = ‖A⊗B‖ for all A ∈Mm and B ∈Mn.

(b) There are unitary matrices U, V ∈Mmn such that

φ(A⊗B) = U(ϕ1(A)⊗ ϕ2(B))V for all A ∈Mm and B ∈Mn,

where ϕs is the identity map or the transposition map X 7→ Xt for s = 1, 2.

Proof. The implication (b) ⇒ (a) is obvious. Conversely, assume that ‖φ(A ⊗ B)‖ = ‖A ⊗ B‖
for all A ∈ Mm and B ∈ Mn. In the following, we first show that φ maps the matrix Eii ⊗ Ejj to

U(Eii ⊗ Ejj)V for all 1 ≤ i ≤ m and 1 ≤ j ≤ n, where U and V are some unitary matrices.

Let 1 ≤ i ≤ m and 1 ≤ j, s ≤ n with j 6= s. Then φ(Eii ⊗ Ejj) has norm one and the same

is true for φ(Eii ⊗ Ejj + γEii ⊗ Ess) whenever |γ| ≤ 1. Suppose xj , yj ∈ Cmn are the left and

right norm attaining unit vectors of φ(Eii ⊗ Ejj), i.e., x∗jφ(Eii ⊗ Ejj)yj = 1. Then for any unitary

matrices Xj and Yj with xj and yj as their first columns, we have X∗
j φ(Eii ⊗Ejj)Yj = [1]⊕Gj for

some Gj ∈Mmn−1 with ‖Gj‖ ≤ 1. Since φ(Eii⊗Ejj + γEii⊗Ess) has norm one for all |γ| ≤ 1, the

matrix X∗
j φ(Eii⊗Ess)Yj must have the form [0]⊕Gs for some Gs ∈Mmn−1. It follows that the left

and right norm attaining vectors of φ(Eii ⊗ Ess), say xs and ys, must be orthogonal to xj and yj

respectively. As j and s are arbitrary, it follows that {x1, . . . , xn} and {y1, . . . , yn} are orthonormal

sets.

Let Ui be an mn × mn unitary matrix with x1, . . . , xn as its first n columns and Vi be an

mn×mn unitary matrix with y∗1 , . . . , y
∗
n as its first n rows. From the above discussion, one has

φ(Eii ⊗ Ejj) = Ui(Ejj ⊕ Pij)Vi for all j = 1, . . . , n

for some Pij ∈Mmn−n and hence

φ(Eii ⊗D) = Ui(D ⊕ Pi,D)Vi for any diagonal matrix D ∈Mn

for some Pi,D ∈Mmn−n. Note also that if 1 ≤ i, r ≤ m with i 6= r, then φ(Eii ⊗D+ γErr ⊗D) has

norm one for any diagonal unitary matrix D ∈ Mn and any scalar γ with |γ| ≤ 1. Consequently,

we see that the left and right norm attaining vectors of φ(Eii ⊗ D) and those of φ(Err ⊗ D) are

orthogonal. By a similar argument, there are unitary U, V ∈Mmn such that

φ(Eii ⊗D) = U(Eii ⊗D)V for any 1 ≤ i ≤ m and unitary diagonal D ∈Mn.
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In particular,

φ(Eii ⊗ Ejj) = U(Eii ⊗ Ejj)V for 1 ≤ i ≤ m and 1 ≤ j ≤ n.

For the sake of the simplicity, we assume that U and V are identity matrices. Next, we show

that φ(Eii ⊗ B) = Eii ⊗ ϕi(B) for all B ∈ Mn, where ϕi is a linear map on Mn. For any unitary

Y ∈ Mn and 1 ≤ i ≤ m, 1 ≤ j ≤ n we can apply the argument in the preceding paragraphs to

conclude that φ(Eii ⊗ Y EjjY ∗) has rank one. Since

‖φ(Eii ⊗ In) + γφ(Eii ⊗ Y EjjY ∗)‖ = ‖φ(Eii ⊗ In + γEii ⊗ Y EjjY ∗)‖ = 1 + γ

for any positive scalar γ, the left and right norm attaining vectors of φ(Eii ⊗ Y EjjY ∗) are also left

and right norm attaining vectors of φ(Eii ⊗ In) = Eii ⊗ In. Thus, φ(Eii ⊗ Y EjjY ∗) = Eii ⊗ Z for

some rank one Z ∈ Mn. Since this is true for any unitary Y ∈ Mn, by linearity of φ, we conclude

that there exists a linear map ϕi : Mn →Mn such that

φ(Eii ⊗B) = Eii ⊗ ϕi(B) for all B ∈Mn.

Clearly, ϕi preserves the spectral norm. Therefore, ϕi has the form X 7→WiXW̃i or X 7→WiX
tW̃i

for some unitary Wi, W̃i ∈Mn (e.g., see [3] and its references). For simplicity, we may assume that

Wi = W̃i = In for all i = 1, . . . ,m.

Let X ∈Mm be any unitary matrix. Repeating the same argument as above, one can show that

φ(XEiiX
∗ ⊗B) = UX(Eii ⊗ ϕi,X(B))VX

for 1 ≤ i ≤ m and B ∈ Mn, where UX , VX ∈ Mmn are unitary matrices depending on X and

ϕi,X : Mn → Mn is either the identity map or the transposition map depending on i and X.

Moreover, since φ(Imn) = Imn, we have VX = U∗
X .

Now we show that all the maps ϕi,X are the same. For any real symmetric S ∈ Mn and any

unitary X ∈Mm we have

φ (Im ⊗ S) = φ

(
m∑
i=1

XEiiX
∗ ⊗ S

)
= UX

(
m∑
i=1

XEiiX
∗ ⊗ S

)
U∗
X = UX (Im ⊗ S)U∗

X .

In particular, when X = Im, we have φ (Im ⊗ S) = Im ⊗ S. Thus, UX (Im ⊗ S)U∗
X = Im ⊗ S and

this yields that UX commutes with Im⊗S for all real symmetric S. Hence, UX has the form WX⊗In
for some unitary WX ∈Mm and

φ (XEiiX
∗ ⊗B) = (WXEiiW

∗
X)⊗ ϕi,X(B) for 1 ≤ i ≤ m and B ∈Mn.

Now, consider the linear maps tr1 : Mmn →Mn and Tr1 : Mmn →Mn defined by

tr1(A⊗B) = (trA)B and Tr1(A⊗B) = tr 1 (φ(A⊗B))

for all A ∈ Mm and B ∈ Mn. Notice that the map tr1 is known as the partial trace function in

quantum information science context. Then

Tr1 (φ (XEiiX
∗ ⊗B)) = ϕi,X(B).
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So, Tr1 induces a map XEiiX
∗ 7→ ϕi,X , where ϕi,X is either the identity map or the transpose map.

Note that Tr1 is linear and therefore continuous, and the set

{XEiiX∗ : 1 ≤ i ≤ m,X∗X = Im} = {xx∗ ∈Mm : x∗x = 1}

is connected. So, all the maps ϕi,X have to be the same. Replacing φ by the map A⊗B 7→ φ(A⊗Bt),
if necessary, we may assume that this common map is the identity map. Next, using the linearity

of φ, one can conclude that for every A ∈Mm and B ∈Mn we have

φ (A⊗B) = ϕ1(A)⊗B,

where ϕ1(A) ∈Mm depends on A only. Recall that ϕ1 : Mm →Mm is a linear map and ‖ϕ1(A)‖ =

‖A‖ for all A ∈Mm. Hence, ϕ1 has the form A 7→ UAV or A 7→ UAtV for some unitary U, V ∈Mm.

This completes the proof.

2.2. Ky Fan k-norms. We now turn to Ky Fan k-norms. Two matrices A,B ∈ Mn are

called orthogonal if AB∗ = A∗B = 0 (see [16]). We write A⊥B to indicate that A and B are

orthogonal. It is shown in [16] that A⊥B if and only if there are unitary matrices U, V ∈ Mn

such that UAV = diag (a1, . . . , an) and UBV = diag (b1, . . . , bn) with ai, bi ≥ 0 and aibi = 0 for

i = 1, . . . , n. The matrices A1, . . . , At are said to be pairwise orthogonal if A∗
iAj = AiA

∗
j = 0 for any

distinct i, j ∈ {1, . . . , t}. In this case, there are unitary matrices U, V ∈ Mn such that UAiV = Di

for i = 1, . . . , t with each Di being nonnegative diagonal matrix and DiDj = 0 for any distinct

i, j ∈ {1, . . . , t}.
We have the following lemmas relating to orthogonality, which are useful in the proof of Ky Fan

k-norm results (Theorems 2.6 and 3.1).

Lemma 2.2. [16] Let A,B ∈Mn be nonzero matrices. Then

‖αA+ βB‖(k) = |α|‖A‖(k) + |β|‖B‖(k)

for every pair of complex numbers α and β if and only if A⊥B and rankA+ rankB ≤ k.

Denote by σ(A) the spectrum of a matrix A ∈ Mn. Using the same arguments as in the proof

of Lemma 2 in [16], we have the following result. (One can also see [8, p.468, Problem 3] for part

(a) of Lemma 2.3.)

Lemma 2.3. Let A ∈Mn be positive semidefinite and let B ∈Mn be Hermitian.

(a) σ(AB) ⊆ R.

(b) If σ(AB) = {0}, then there exists a unitary U ∈Mn such that

UAU∗ =

[
A1 0
0 0

]
and UBU∗ =

[
0 X
X∗ B1

]
,

where A1 ∈Ms is invertible and B1 ∈Mn−s with 0 ≤ s ≤ n.

Lemma 2.4. Let 1 ≤ k ≤ n and A,B ∈Mn with spectral norm at most 1. Suppose

rankA ≤ k, ‖A+ αB‖(k) = k and ‖2A+ αB‖(k) = ‖A‖(k) + ‖A+ αB‖(k)
5



for any unit complex number α. Then A⊥B and σ(A∗A) ⊆ {0, 1}.
Proof. First, let α = 1 and suppose 2A+B has singular value decomposition 2A+B = U1DV1

with D = diag (d1, . . . , dn) and d1 ≥ · · · ≥ dn ≥ 0. Then

D = U∗
1 (2A+B)V ∗

1 = U∗
1AV

∗
1 + U∗

1 (A+B)V ∗
1 .

Denote the diagonal entries of U∗
1AV

∗
1 and U∗

1BV
∗
1 by a1, . . . , an and b1, . . . , bn, respectively. Then

we have

k∑
i=1

|ai| ≤ ‖A‖(k),
k∑
i=1

|ai + bi| ≤ ‖A+B‖(k),
k∑
i=1

(2ai + bi) =

k∑
i=1

di = ‖2A+B‖(k).

It follows that

k∑
i=1

(ai + (ai + bi)) ≤
k∑
i=1

(|ai|+ |ai + bi|) ≤ ‖A‖(k) + ‖A+B‖(k) = ‖2A+B‖(k) =

k∑
i=1

(2ai + bi),

and so all the above inequalities are indeed equalities, which ensure that ai = |ai| and ai+bi = |ai+bi|
are nonnegative real numbers with

k∑
i=1

ai =

k∑
i=1

|ai| = ‖A‖(k) and

k∑
i=1

(ai + bi) =

k∑
i=1

|ai + bi| = ‖A+B‖(k).

By Theorem 3.1 of [12], we have

U∗
1AV

∗
1 = A1 ⊕A2 and U∗

1 (A+B)V ∗
1 = (A1 +B1)⊕ (A2 +B2),

where A1 and A1 +B1 are k × k positive semidefinite matrices and

‖A‖(k) = ‖A1‖(k) = trA1, ‖A+B‖(k) = ‖A1 +B1‖(k) = tr (A1 +B1).

Since rankA ≤ k, it follows that A2 = 0 and we may assume that B2 = diag (dk+1, . . . , dn). Without

loss of generality, we also assume that U1 = V1 = In and

A = A1 ⊕ 0, B = B1 ⊕ diag (dk+1, . . . , dn).

Now take a unit α1 6= ±1. Suppose the singular value decomposition of 2A1 + α1B1 is 2A1 +

α1B1 = U2D1V2 with D1 = diag (β1, . . . , βk) and β1 ≥ · · · ≥ βk ≥ 0. Let U3 = U∗
2 ⊕ In−k and

V3 = V ∗
2 ⊕ α−1

1 In−k. Set A3 = U∗
2A1V

∗
2 and B3 = α1U

∗
2B1V

∗
2 . Then

diag (β1, . . . , βk, dk+1, . . . , dn) = U3(2A+ α1B)V3

= U∗
2A1V

∗
2 ⊕ 0n−k + U∗

2 (A1 + α1B1)V ∗
2 ⊕ diag (dk+1, . . . , dn)

= A3 ⊕ 0n−k + (A3 +B3)⊕ diag (dk+1, . . . , dn).

First, assume that ‖2A+α1B‖(k) =
∑k
i=1 βi. Using the same argument as above, we see that A3 and

A3+B3 are k×k positive semidefinite matrices with ‖A‖(k) = trA3 and ‖A+α1B‖(k) = tr (A3+B3).

By Lemma 2.3(a), σ(A1B1) ⊆ R and σ(A3B3) ⊆ R. Also

σ(α1A3B3) = σ(α1A3B
∗
3) = σ(α1(U∗

2A1V
∗
2 )(α1U

∗
2B1V2)∗) = σ(U∗

2A1B1U2) = σ(A1B1) ⊆ R.
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This implies σ(A1B1) = σ(A3B3) = {0}. According to Lemma 2.3(b), we know that there exists a

unitary U4 such that

U4A3U
∗
4 = A4 ⊕ 0, U4B3U

∗
4 =

[
0 X
X∗ B4

]
,

where A4 ∈Ms is positive definite for some 0 ≤ s ≤ k, B4 ∈Mk−s, and ‖A3+B3‖(k) = trA4+trB4.

Since both A and B have spectral norm at most 1, the diagonal entries of A4 and B4 are less than

or equal to one. So tr (A3 + B3) = ‖A3 + B3‖(k) = ‖A+ α1B‖(k) = k ensures that all the diagonal

entries of A4 and B4 are equal to one and that the singular values of A3 + B3 are all equal to one.

It follows that X = 0, A4 = Is, and B4 = Ik−s, which implies A⊥B and σ(A∗A) ⊆ {0, 1}.
Now, assume that ‖2A + α1B‖(k) 6=

∑k
i=1 βi and suppose that the largest k singular values of

2A + α1B are β1, . . . , βr, dk+1, . . . , dk+s with r + s = k and r < k. Denote by Ã = A3 ⊕ 0 and

B̃ = B3 ⊕ diag (dk+1, . . . , dn). Applying Theorem 3.1 of [12] again, it follows that

Ã = Ã[1, . . . , r]⊕ 0n−r ≥ 0 and B̃ = B̃[1, . . . , r]⊕ diag (βr+1, . . . , βk, dk+1, . . . , dn) ≥ 0,

where Ã[1, . . . , r] and B̃[1, . . . , r] are the principal submatrices of Ã and B̃ indexed by 1, . . . , r.

Without loss of generality, we can assume

A = Ã[1, . . . , r]⊕ 0n−r and B = B̃[1, . . . , r]⊕ diag (βr+1, . . . , βk, dk+1, . . . , dn).

Choosing a unit α2 6= {±1,±α1} and repeating the above process at most n− 2 times, we can show

that A⊥B and σ(A∗A) ⊆ {0, 1}.
Lemma 2.5. Let 1 ≤ k ≤ n and A,B ∈Mn such that A has rank at least k and σ(A∗A) ⊆ {0, 1}.

If

‖A+ αB‖(k) = k

for all unit complex numbers α, then A⊥B.

Proof. Without loss of generality, we may assume that A = Is ⊕ 0 with s ≥ k. Denote A = [aij ]

and B = [bij ]. We claim that for any arbitrary and fixed 1 ≤ p1 < · · · < pk ≤ s, bij = 0 whenever

{i, j} ∩ {p1, . . . , pk} 6= ∅. If the claim holds, then B has the from 0s ⊕ B2 and therefore A⊥B. To

prove the claim, it suffices to show the case when (p1, . . . , pk) = (1, . . . , k). Notice that

k = ‖A+ αB‖(k) ≥
k∑
j=1

|ajj + αbjj | ≥

∣∣∣∣∣∣
k∑
j=1

(ajj + αbjj)

∣∣∣∣∣∣ =

∣∣∣∣∣∣k + α

k∑
j=1

bjj

∣∣∣∣∣∣ .
The two equalities holds for all complex unit α if and only if bjj = 0 for all 1 ≤ j ≤ k. Thus, we

have ‖A+ αB‖(k) = k =
∑k
j=1 |ajj + αbjj | for all complex unit α. Now by [12, Theorem 3.1],

A+ αB = Cα ⊕Dα

where Cα is positive semidefinite and ‖Cα‖(k) = k. It follows that B = B1 ⊕ B2 with B1 ∈ Mk.

Notice that Cα = Ik + αB1 is positive semidefinite for all complex unit α. Then B1 has to be the

zero matrix, i.e., B = 0k ⊕B2. Therefore, the claim holds and the result follows.
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We now present of the result for the Ky Fan k-norm.

Theorem 2.6. Let m,n ≥ 2 and 2 ≤ k ≤ mn and φ : Mmn → Mmn be a linear map. The

following are equivalent.

(a) ‖φ(A⊗B)‖(k) = ‖A⊗B‖(k) for all A ∈Mm and B ∈Mn.

(b) There are unitary matrices U, V ∈Mmn such that

φ(A⊗B) = U(ϕ1(A)⊗ ϕ2(B))V for all A ∈Mm and B ∈Mn,

where ϕs is the identity map or the transposition map X 7→ Xt for s = 1, 2.

Proof. The implication (b)⇒ (a) is obvious. Conversely, assume that ‖φ(A⊗B)‖(k) = ‖A⊗B‖(k)
for all A ∈Mm and B ∈Mn. We assert that there exist unitary U, V ∈Mmn such that

φ(Eii ⊗ Ejj) = U(Eii ⊗ Ejj)V for 1 ≤ i ≤ m and 1 ≤ j ≤ n. (2.1)

It suffices to show that

φ(Eii ⊗ Ejj)⊥φ(Err ⊗ Ess) (2.2)

for any distinct pairs (i, j) and (r, s) with 1 ≤ i, r ≤ m and 1 ≤ j, s ≤ n. We distinguish three cases.

Case 1. Suppose i = r or j = s. We have

‖αφ(Eii ⊗ Ejj) + βφ(Err ⊗ Ess)‖(k) = |α|‖φ(Eii ⊗ Ejj)‖(k) + |β|‖φ(Err ⊗ Ess)‖(k)

for all complex numbers α and β. Applying Lemma 2.2, we have (2.2) and

rankφ(Eii ⊗ Ejj) + rankφ(Err ⊗ Ess) ≤ k. (2.3)

Case 2. Suppose i 6= r and j 6= s. Let

G = φ(Eii ⊗ (Ejj + Ess)) and H = φ(Err ⊗ (Ejj + Ess)).

Subcase 2.a. Assume first that k ≤ 3. By Case 1, φ(Eii ⊗Ejj) and φ(Eii ⊗Ess) are orthogonal

with ‖φ(Eii ⊗ Ejj)‖(k) = ‖φ(Eii ⊗ Ess)‖(k) = 1. So, ‖G‖ ≤ 1 and rankG ≤ k. Similarly, ‖H‖ ≤ 1

and rankH ≤ k. Furthermore, ‖G + γH‖(k) = k, and ‖2G + γH‖(k) = ‖G‖(k) + ‖G + γH‖(k) for

all complex units γ. Applying Lemma 2.4, we get G⊥H. Because φ(Eii ⊗Ejj)⊥φ(Eii ⊗Ess) and

φ(Err ⊗ Ejj)⊥φ(Err ⊗ Ess), we have (2.2).

Subcase 2.b. Now, suppose that k > 3. We have

‖αG+ βH‖(k) = |α|‖G‖(k) + |β|‖H‖(k)

for all complex numbers α, β. Applying Lemma 2.2 again, we get G⊥H and, hence, (2.2) follows.

From above, we showed that (2.1) holds. For the sake of the simplicity, we assume that U and

V are identity matrices. Now, for any unitary Y ∈ Mn and 1 ≤ i ≤ m, 1 ≤ j ≤ n we can apply

the argument in the preceding paragraphs to conclude that φ(Eii ⊗ Y EjjY ∗) has rank one and it is

orthogonal to φ(Err ⊗ Y EssY ∗) for any distinct pairs (i, j) and (r, s). It follows that

‖φ(Eii ⊗ In) + γφ(Eii ⊗ Y EjjY ∗)‖ = ‖φ(Eii ⊗ In + γEii ⊗ Y EjjY ∗)‖ = 1 + γ
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for any positive scalar γ. Thus, φ(Eii ⊗ Y EjjY ∗) = Eii ⊗ Z for some rank one Z ∈ Mn. Since

this is true for any 1 ≤ i ≤ m and unitary Y ∈ Mn, we conclude that there exists a linear map

ϕi : Mn →Mn such that

φ(Eii ⊗B) = Eii ⊗ ϕi(B)

for all complex matrices B ∈ Mn. Clearly, ϕi preserves the Ky Fan k-norm of all B ∈ Mn and

ϕi(Ejj) = Ejj for all 1 ≤ j ≤ n. (Here the Ky Fan k-norm reduces to the trace norm if k ≥ n.)

Hence, ϕi has the form X 7→ WiXW̃i or X 7→ WiX
tW̃i for some unitary Wi, W̃i ∈ Mn. Now,

we can adapt the arguments in the last two paragraphs in the proof of Theorem 2.1 to obtain our

conclusion.

2.3. Schatten p-norms. We now study the linear preserver for Schatten p-norms. We first

present a key lemma of the result.

Lemma 2.7. [17] Let T, S ∈Mn. Then

(i) 2p−1(‖T‖pp + ‖S‖pp) ≤ ‖T + S‖pp + ‖T − S‖pp ≤ 2(‖T‖pp + ‖S‖pp) if 1 ≤ p ≤ 2,

(ii) 2(‖T‖pp + ‖S‖pp) ≤ ‖T + S‖pp + ‖T − S‖pp ≤ 2p−1(‖T‖pp + ‖S‖pp) if 2 ≤ p <∞.

If p = 2, all equalities always hold; if p 6= 2, any equality holds if and only if T ∗TS∗S = S∗ST ∗T = 0.

Remark 2.8. Suppose p 6= 2 and the singular values of T and S are {t1, . . . , tn} and {s1, . . . , sn},
respectively. If any of equality in Lemma 2.7 holds, then T ∗TS∗S = S∗ST ∗T = 0 implies T ∗T⊥S∗S.

So there exists unitary U ∈Mn such that U∗T ∗TU = diag (t21, . . . , t
2
n) and U∗S∗SU = diag (s21, . . . , s

2
n)

with siti = 0 for i = 1, . . . , n. Replacing T and S with T ∗ and S∗, we get TT ∗SS∗ = 0 and there

exists unitary V ∈ Mn such that V ∗TT ∗V = diag (t21, . . . , t
2
n) and V ∗SS∗V = diag (s21, . . . , s

2
n). It

follows that V ∗TU = diag (t1, . . . , tn) and V ∗SU = diag (s1, . . . , sn), which implies T ⊥S.

Theorem 2.9. Let 1 ≤ p < ∞ and p 6= 2 and φ : Mmn → Mmn be a linear map. Then the

following are equivalent.

(a) ‖φ(A⊗B)‖p = ‖A⊗B‖p for all A ∈Mm and B ∈Mn.

(b) There are unitary matrices U, V ∈Mmn such that

φ(A⊗B) = U(ϕ1(A)⊗ ϕ2(B))V for all A ∈Mm and B ∈Mn,

where ϕs is the identity map or the transposition map X 7→ Xt for s = 1, 2.

Proof. The implication (b) ⇒ (a) is obvious. Conversely, assume that ‖φ(A⊗B)‖p = ‖A⊗B‖p
for all A⊗B ∈Mmn. We first conclude there exist unitary U, V ∈Mmn such that

φ(Eii ⊗ Ejj) = U (Eii ⊗ Ejj)V for 1 ≤ i ≤ m and 1 ≤ j ≤ n. (2.4)

Then we can adapt the arguments in the last three paragraphs in the proof of Theorem 2.1 to verify

that φ has the form claimed in (b).

As in the proof of Theorem 2.6, to prove (2.4), it suffices to show that

φ(Eii ⊗ Ejj)⊥φ(Err ⊗ Ess) (2.5)

for any distinct pairs (i, j) and (r, s) with 1 ≤ i, r ≤ m and 1 ≤ j, s ≤ n.
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If i = r or j = s, we have

‖φ(Eii⊗Ejj)+φ(Err⊗Ess)‖pp+‖φ(Eii⊗Ejj)−φ(Err⊗Ess)‖pp = 2
(
‖φ(Eii ⊗ Ejj)‖pp + ‖φ(Err ⊗ Ess)‖pp

)
.

Applying Lemma 2.7 and Remark 2.8, we get (2.5). If i 6= r and j 6= s, we have

‖φ(Eii ⊗ (Ejj +Ess)) + φ(Err ⊗ (Ejj +Ess))‖pp + ‖φ(Eii ⊗ (Ejj +Ess))− φ(Err ⊗ (Ejj +Ess))‖pp
= 2

(
‖φ(Eii ⊗ (Ejj + Ess))‖pp + ‖φ(Err ⊗ (Ejj + Ess))‖pp

)
.

By Lemma 2.7, we have φ(Eii ⊗ (Ejj + Ess))⊥φ(Err ⊗ (Ejj + Ess)). With the fact that φ(Eii ⊗
Ejj)⊥φ(Eii ⊗Ess) and φ(Err ⊗Ejj)⊥φ(Err ⊗Ess), we conclude that (2.5) holds. This completes

the proof.

Remark 2.10. For p = 2, i.e., the Frobenius norm case, the statements (a) and (b) in Theorem

2.9 are not equivalent. One can consider the linear map ψ(A) = [bij ] for A = [aij ] ∈Mmn such that

b1,mn = amn,1, bmn,1 = a1,mn and bij = aij for (i, j) 6∈ {(1,mn), (mn, 1)}. In fact, any linear map on

Mmn preserving the inner product (A,B) = tr (AB∗) on Mmn will preserve the Frobenius norm.

Remark 2.11. Note that the maps in Theorems 2.1, 2.6, and 2.9 may not satisfy ‖φ(C)‖ = ‖C‖
for all C ∈Mmn. For instance, if φ(A⊗B) = A⊗Bt and if

Cr = r2E11 ⊗ E11 + r(E12 ⊗ E12 + E21 ⊗ E21) + E22 ⊗ E22 for r ≥ 0,

then Cr has singular values r2 + 1, 0, . . . , 0, and φ(Cr) has singular values r2, r, r, 1, 0, . . . , 0. Then

for any positive number r 6= 1, ‖φ(Cr)‖ 6= ‖Cr‖ unless ‖ · ‖ is the Frobenious norm. However, if

we assume that φ satisfies ‖φ(C)‖ = ‖C‖ for C of the tensor form A ⊗ B, and also for C = Cr for

some positive number r 6= 1, then one easily deduces that both ϕi mentioned in the theorems have

to be of the same type, i.e., both are identity map, or both are the transposition map. It follows

that there are unitary U, V ∈Mmn such that φ has the form

X 7→ UXV or X 7→ UXtV

and hence, ‖φ(X)‖ = ‖X‖ for all X ∈Mmn.

3. Multipartite systems. In this section we extend the previous results to multipartite sys-

tems Mn1
⊗· · ·⊗Mnm

, m ≥ 2. Let Ai ∈Mni
, i = 1, . . . ,m. We denote

⊗m
i=1Ai = A1⊗A2⊗· · ·⊗Am.

Theorem 3.1. Let 1 ≤ k ≤
∏m
i=1 ni and φ : Mn1···nm

→ Mn1···nm
be a linear map. The

following are equivalent.

(a) ‖φ(A1 ⊗ · · · ⊗Am)‖(k) = ‖A1 ⊗ · · · ⊗Am‖(k) for all Ai ∈Mni
, i = 1, . . . ,m.

(b) There are unitary matrices U, V ∈Mn1···nm
such that

φ(A1 ⊗ · · · ⊗Am) = U(ϕ1(A1)⊗ · · · ⊗ϕm(Am))V for all Ai ∈Mni , i = 1, . . . ,m, (3.1)

where ϕs is the identity map or the transposition map X 7→ Xt for s = 1, . . . ,m.

Proof. The sufficiency part is clear. To prove the necessity part, we use induction on m. By

Theorem 2.1 and Theorem 2.6, we already know that the statement of Theorem 3.1 is true for

bipartite systems. So, assume that m ≥ 3 and that the result holds for all (m− 1)-partite systems.

We need to prove that the same is true for m-partite systems.
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Denote N =
∏m
i=1 ni. First we claim that there exist unitary U, V ∈MN such that

φ(Ej1j1 ⊗ · · · ⊗ Ejmjm) = U(Ej1j1 ⊗ · · · ⊗ Ejmjm)V for all 1 ≤ ji ≤ ni. (3.2)

When k = 1, as in the proof of Theorem 2.1, we can successively consider

φ(Ei1i1 ⊗ · · · ⊗ Eim−2,im−2 ⊗ Eim−1,im−1 ⊗ (Eimim + γEjmjm)),

φ(Ei1i1 ⊗ · · · ⊗ Eim−2,im−2
⊗ (Eim−1im−1

+ γEjm−1jm−1
)⊗Dm), . . . ,

φ((Ei1i1 + γEj1j1)⊗D2 ⊗ · · · ⊗Dm−2 ⊗Dm−1 ⊗Dm)

to obtain (3.2), where D2, . . . , Dm are arbitrary diagonal matrices.

When k ≥ 2, as in the proof of Theorem 2.6, it suffices to show

φ(Ei1i1 ⊗ · · · ⊗ Eimim)⊥φ(Ej1j1 ⊗ · · · ⊗ Ejmjm) for any (i1, . . . , im) 6= (j1, . . . , jm). (3.3)

To confirm (3.3), it suffices to verify that for any 1 ≤ r ≤ m,

φ

(
r−1⊗
u=1

(Eiuiu + Ejuju)⊗ Eirir ⊗
m⊗

u=r+1

Eiuiu

)
⊥ φ

(
r−1⊗
u=1

(Eiuiu + Ejuju)⊗ Ejrjr ⊗
m⊗

u=r+1

Eiuiu

)
(3.4)

for any distinct i = (i1, . . . , im) and j = (j1, . . . , jm) with iu 6= ju, 1 ≤ u ≤ r. Denote by Gr = Gr(i, j)

and Ĝr = Ĝr(i, j) the two matrices in (3.4) accordingly. We consider two cases.

Case 1. For r ≤ log2 k, as ‖αGr + βĜr‖(k) = |α|‖Gr‖(k) + |β|‖Ĝr‖(k) for all complex α and β.

Applying Lemma 2.2, we get

Gr ⊥ Ĝr and rankGr + rank Ĝr ≤ k for all r ≤ log2 k.

Now as Gs+1 = Gs + Ĝs and Gs⊥ Ĝs for all s ≤ log2 k,

‖Gs+1‖ ≤ max{‖Gs‖, ‖Ĝs‖} ≤ max {‖Gs(i, j)‖ : iu 6= ju, 1 ≤ u ≤ s} ,

where ‖ · ‖ is the spectral norm. Hence,

max {‖Gs+1(i, j)‖ : iu 6= ju, 1 ≤ u ≤ s+ 1} ≤ max {‖Gs(i, j)‖ : iu 6= ju, 1 ≤ u ≤ s} .

As the inequality holds for all s ≤ log2 k, it follows that

‖Gr‖ ≤ max {‖G1(i, j)‖ : i1 6= j1} = max {‖φ(Ei1i1 ⊗ · · · ⊗ Eimim)‖ : (i1, . . . , im)}
≤ max

{
‖φ(Ei1i1 ⊗ · · · ⊗ Eimim)‖(k) : (i1, . . . , im)

}
= 1.

Similarly, one conclude that ‖Ĝr‖ ≤ 1.

Case 2. For r > log2 k, we claim that Gr and Ĝr are orthogonal and both of them have singular

values 0 and 1 only. We prove the claim by induction on r.
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Suppose log2 k < r ≤ 1 + log2 k. Notice that Gr = Gr−1 + Ĝr−1. By Case 1,

Gr−1⊥ Ĝr−1, ‖Gr−1‖ ≤ 1, ‖Ĝr−1‖ ≤ 1, and rankGr−1 + rank Ĝr−1 ≤ k.

Therefore, ‖Gr‖ ≤ 1 and rankGr ≤ k. Since

‖Gr + αĜr‖(k) = k and ‖2Gr + βĜr‖(k) = ‖Gr‖(k) + ‖Gr + βĜr‖(k),

for any complex unit α, by Lemma 2.4, we obtain Gr ⊥ Ĝr. Moreover, Gr has singular values 0 and

1 only. Similarly, one can conclude that Ĝr has singular values 0 and 1 only. Now assume that the

claim holds for some r > log2 k. We will show that the claim also holds for r + 1. By induction

assumption and the fact that Gr+1 = Gr + Ĝr, we conclude that Gr+1 has singular values 0 and 1

only. The same conclusion holds for Ĝr+1. By Lemma 2.5 and the fact that ‖Gr+1 + αĜr+1‖ = k

for all complex unit α, we get Gr+1⊥ Ĝr+1. Therefore the claim holds.

Combining the above two cases, we see that (3.4) holds and hence the statement (3.3) follows.

Therefore, the claim (3.2) holds for all k. Without loss of generality, we may assume U = V = IN

in (3.2). Following a similar argument as in Theorems 2.1 and 2.6, one can conclude that

φ
(
Ej1j1 ⊗ · · · ⊗ Ejm−1jm−1

⊗B
)

= Ej1j1 ⊗ · · · ⊗ Ejm−1jm−1
⊗ ϕj1,...,jm−1

(B)

for all 1 ≤ ji ≤ ni with 1 ≤ i ≤ m− 1 and B ∈Mnm
, where ϕj1,...,jm−1

can be assumed to be either

the identity map or the transposition map. Following the same argument, we can further conclude

that for any X = X1⊗· · ·⊗Xm−1 with Xi ∈Mni
being unitary for 1 ≤ i ≤ m−1, there are unitary

UX and VX such that

φ

((
m−1⊗
i=1

XiEjijiX
∗
i

)
⊗B

)
= UX

((
m−1⊗
i=1

XiEjijiX
∗
i

)
⊗ ϕj1,...,jm−1,X(B)

)
VX

for all 1 ≤ ji ≤ ni with 1 ≤ i ≤ m − 1 and B ∈ Mnm , where ϕj1,...,jm−1,X can be assumed to be

either the identity map or the transposition map, depending on j1, . . . , jm−1 and X. By the fact

that φ(IN ) = IN , we have V ∗
X = UX .

Again, considering all symmetric S ∈ Mnm as in the proof of Theorem 2.1, we can show that

there exists WX ∈Mn1···nm−1 such that

φ

((
m−1⊗
i=1

XiEjijiX
∗
i

)
⊗B

)
= WX

(
m−1⊗
i=1

XiEjijiX
∗
i

)
W ∗
X ⊗ ϕj1,...,jm−1,X(B)

for all 1 ≤ ji ≤ ni with 1 ≤ i ≤ m − 1 and B ∈ Mnm
. Consider the linear map (known as the

partial trace function in quantum information science context) on MN defined by X⊗Y 7→ (trX)Y

for X ∈ Mn1···nm−1
and Y ∈ Mnm

and apply to the above equation, we see that every choice of⊗m−1
j=1 XiEjijiX

∗
i gives rise to a linear map ϕj1,...,jm,X , which is either the identity map or the

transposition map. Evidently, the map

m−1⊗
j=1

XiEjijiX
∗
i 7→ ϕj1,...,jm,X
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is linear and hence continuous; the set


m−1⊗
j=1

XiEjijiX
∗
i : 1 ≤ ji ≤ ni and X∗

i Xi = Ini , for i = 1, . . . ,m− 1


=
{
x1x

∗
1 ⊗ · · · ⊗ xm−1x

∗
m−1 : xi ∈ Cni with 1 ≤ i ≤ m− 1

}
is connected. Thus, all the maps ϕj1,...,jm−1,X have to be the same. Assume that this common map

is ϕm, which is either the identity map or the transposition map. By linearity, one can conclude

that for any A1 ⊗ · · · ⊗Am ∈Mn1 ⊗ · · · ⊗Mnm , we have

φ (A1 ⊗ · · · ⊗Am) = ψ(A1 ⊗ · · · ⊗Am−1)⊗ ϕm(Am)

for some ψ(A1 ⊗ · · · ⊗ Am−1) ∈ Mn1···nm−1 . Note that ψ : Mn1···nm−1 → Mn1···nm−1 preserves the

Ky Fan k-norm of all matrices in Mn1 ⊗ · · · ⊗Mnm−1 . By the induction hypothesis, we know there

exist unitary Ũ , Ṽ such that

ψ(A1 ⊗ · · · ⊗Am−1) = Ũ(ϕ1(A1)⊗ · · · ⊗ ϕm−1(Am−1))Ṽ

with each ϕj being either the identity map or the transposition map. Hence, φ has the desired form

and the proof is completed.

Using a similar argument and applying Lemma 2.7, we can extend Theorem 2.9 to multipartite

systems as follows.

Theorem 3.2. Let 1 ≤ p < ∞ and p 6= 2 and φ : Mn1···nm
→ Mn1···nm

be a linear map. The

following are equivalent.

(a) ‖φ(A1 ⊗ · · · ⊗Am)‖p = ‖A1 ⊗ · · · ⊗Am‖p for all Ai ∈Mni
, i = 1, . . . ,m.

(b) There are unitary matrices U, V ∈Mn1···nm
such that

φ(A1 ⊗ · · · ⊗Am) = U(ϕ1(A1)⊗ · · · ⊗ ϕm(Am))V, for all Ai ∈Mni , i = 1, . . . ,m,

where ϕs is the identity map or the transposition map X 7→ Xt for s = 1, . . . ,m.

Acknowledgment

This research was supported by a Hong Kong GRC grant PolyU 502411 with Sze as the PI.

The grant also supported the post-doctoral fellowship of Huang and the visit of Fošner to the Hong
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