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Abstract
The task of evaluating correlations is central to computational structural biology. The rigid-body
correlation problem seeks the rigid-body transformation (R, t), R ∈ SO(3), t ∈ ℝ3 that maximizes
the correlation between a pair of input scalar-valued functions representing molecular structures.
Exhaustive solutions to the rigid-body correlation problem take advantage of the fast Fourier
transform to achieve a speedup either with respect to the sought translation or rotation. We present
PFcorr, a new exhaustive solution, based on the non-equispaced SO(3) Fourier transform, to the
rigid-body correlation problem; unlike previous solutions, ours achieves a combination of
translational and rotational speedups without requiring equispaced grids. PFcorr can be
straightforwardly applied to a variety of problems in protein structure prediction and refinement
that involve correlations under rigid-body motions of the protein. Additionally, we show how it
applies, along with an appropriate flexibility model, to analogs of the above problems in which the
flexibility of the protein is relevant.
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1. Introduction
Structural interactions between proteins are responsible for their functions as building blocks
in our cells. In order to understand protein interactions, it is essential to determine the three-
dimensional structure of the participating protein or smaller protein subunits. Based on the
analysis of data obtained via X-ray crystallography, NMR spectroscopy or Electron
Microscopy (EM), the structure of proteins can be evaluated. Typical tasks in protein
structure evaluation include molecular replacement to identify protein crystal structures [39],
protein-protein docking to calculate the structure of newly-formed protein complexes [19] or
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protein match and fit to refine low resolution maps of proteins by replacement of known
atomic structures [53].

One common aspect of these tasks is an optimization problem. The solution space is the set
of motions and transformations the molecules or groups of atoms can undergo, while the
objective function evaluates the quality of the complex with respect to the task. The vast
variety of approaches to this problem differ in the choice of the solution space, description
of the molecules or molecular subunits, the way the solution space is searched, and the
metric used to evaluate the quality of the complexes.

In this paper we address the optimization problem by a fast Fourier-based evaluation of
correlations over three dimensional rigid-body motion, i.e., given a pair of functions, we
find the rigid-body transformation such that the overlap of the two functions is maximized.
The primary contribution of this work is PFcorr, a Fourier-based approach to solve multi-
dimensional rotational correlation problems. PFcorr addresses two major deficiencies/
drawbacks in prior Fourier-based approaches; we discuss these drawbacks in the following
section, which also provides a brief overview of present work in this area. Section 3
provides necessary mathematical preliminaries to compute rigid-body correlations, which
are described in detail in Section 4. We continue by giving a practical description of a
matching/correlation procedure which can be used as a step-by-step guideline using PFcorr.
This includes sampling considerations and numerical results. In Section 5, we apply PFcorr
to the complementary problem of flexible multi-dimensional correlations, which takes into
account the flexibility of proteins in solvent (see Figure 1.1). We solve the flexible
correlation problem with a suitable parametrization of the space of flexible motions of the
protein, after which each element of that space is just a rigid entity, conducive to rigid-body
correlations.

2. Related and prior work
Solving optimization problems for protein structure interpretation reduces to a correlation
based scoring and search over a space of relative transformations. The objective function in
general is highly non-convex, possessing several local maxima and minima. The vast
number of existing solutions to the rigid-body correlation problem can be distinguished by a
few basic approaches. Feature-based methods compute and correlate reduced representations
of proteins. An early example of a feature-based approach is the method of vector
quantization [54], in which sets of vectors are used to represent molecules. A similar
approach is geometric hashing [23], whereby critical features are hashed into a table of
values, and a score—related to the correlation score—measures the match between the
participating proteins for a particular relative orientation. Feature-based approaches, used in
docking [40] and fitting [50], result in improved performance due to the reduced search
space, at the possible expense of poor resolution scaling.

Iterative approaches vary in sophistication, ranging from a simple version of steepest ascent
[30] to more powerful techniques such as Powell optimization [51]. Most such approaches
result in locally optimal solutions that, depending on the initial guess, may or may not be
close to the globally optimal correlation. They are thus usually used in conjunction with an
exhaustive approach that provides the requisite initial guess.

Exhaustive or Fourier-based approaches exploit the fact that it is beneficial if the
computation of the objective function can be done relatively fast or if the search space is
restricted. In these approaches the proteins are treated as rigid bodies. The automated search
of all possible motions, i.e., translations and rotations to maximize the overlap between both
structures is the main task of these programs. This is done by evaluating a correlation
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integral with respect to the motions using Fast Fourier transforms. Fourier based methods
combine an accurate and exhaustive search with reduced computational cost, and have thus
proven quite popular as a search scheme, see, e.g. [3, 7, 16, 26, 31, 37, 52, 57]. Many, if not
most, existing Fourier-based docking algorithms use a regular discrete three-dimensional
cartesian grid onto which the molecules are projected. The correlation score of these
discretised and suitably weighted structures serves as the objective function for the
optimization problem. The correlation score between pairs of grid cells is computed via fast
Fourier transforms, thus implicitly searching over the three dimensional space of
translations. The remaining rotational degrees of freedom however need to be incorporated
into a global search. Such an approach has been first published by [19] in 1992. Since then,
this approach has been adapted and improved many times. An overview of these
translational grid-based FFT search schemes can be found in [9]. In recent approaches, the
equispaced grid has been replaced with a non-equispaced Cartesian one, as in [3], or a polar
one, as in [10, 13, 38, 44]. Fast translational matching exploits the fact that for each rotation,
the objective function is a correlation integral, and can be computed by fast Fourier
transforms. On the other hand, the space of rotations is still subject to exhaustive search.

While the optimal matching solution exists in a highly localized region of relative
translations, the range of relative rotations varies widely for each translation. The disparity
between size and sampling density of translational and rotational search spaces motivates
this work. We present a fast rotational correlation matching that extends the methods of [38]
and [44], which use spherical harmonic functions and classical orthogonal polynomials to
model molecular shapes. We employ algorithms to compute the fast Fourier transform on
the rotation group to solve the matching problem. In this work, instead of correlating
functions defined on the unit cube, we use functions defined on ℝ3 but split into ℝ+ × .
We exploit the fact that correlations of functions defined on  can be computed by means of
Fourier transforms on the rotation group. This enables efficient computation of the objective
function over rotational degrees of freedom instead of translational degrees of freedom.

A three-dimensional translation can be expressed as a translation along the z-axis followed
by two rotations, one about the y-axis and one about the z-axis. Hence, it has two rotational
degrees of freedom and one translational. Combining this in a motion, we have five rotation
angles that describe a motion and one absolute value of a translation along one axis. If we
are able to speed up the computation for the rotations by correlating functions on the sphere,
we get an improved complexity for five of the six degrees of freedom instead of the previous
three. This approach has been suggested in [21] for protein fitting and can also be found in
[10].

The essential mathematical tool used in this work for protein fitting is the fast calculation of
the discrete Fourier transform on the rotation group SO(3). An implementation of such an
algorithm can be found in [34]. For completeness, we also mention the related work of [15]
and [6]. The paper of [15] uses representation theory of the rotation group for approaching
optimization problems in the cryoEM setting, as we do. However the nature of our
optimization problem is fundamentally different than theirs. The paper of [6] develops
discrete Fourier transforms on the motion group SE(3), and applies it to topics ranging from
workspace density of robotic manipulators to conformational statistics of macromolecules.
This is quite different to our use of the fast discrete Fourier transform on the rotation group
SO(3), to provide an efficient solution to our optimization problem.

Current exhaustive techniques suffer from two main drawbacks. The first drawback relates
to local refinement. Depending as they do on the equispaced FFT, exhaustive techniques
cannot be gracefully used to refine existing solutions. Say we wish to improve a matching
pose, obtained using a translational FFT speedup with a certain grid size. If we redo the
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experiment with half the grid length of the previous computation, the three dimensional FFT
becomes eight times as expensive, but more importantly, it spends much of its time at points
on the new grid already excluded by the initial experiment. A similar argument applies to
rotational speedups; in both these approaches, the concept of a local refinement is largely
absent.

A second drawback relates to the question of uniform sampling in rotational space. While
sampling in translational space is straightforward, involving Cartesian grids with uniform,
possibly differing grid-sizes in each independent direction, the notions of uniformity and
direction do not translate easily to the rotational space SO(3). In particular, equispaced Euler
angular grids do not result in equispaced SO(3) samples as is illustrated in Figure 2.1. Due
to this, rotational FFT-based techniques are destined to oversample certain regions of SO(3)
while leaving others wholly unexamined.

2.1. Proteins and flexibility
One main point of criticism of rigid-body fitting methods is that proteins undergo
conformational changes during the induced fit, i.e., they not only move with respect to each
other but also deform, shear or bend. Flexibility often involves movements between large
rigid parts of the protein, called domains, flexible loops on the molecular surface and large
side chain at active sites. A commonly used method to deal with flexibility is using multi-
copying approaches or multi-term potentials. Due to the vastness of the space of flexible
motions, protein flexibility can be practically dealt with by (A) conducting all-atomistic
local searches, as in the case of molecular dynamical algorithms [17, 18, 24, 42, 43], (B)
Building a coarse-grained representation of the protein, also known as a domain
decomposition [1, 11, 33, 41], or (C) A combination of the strategies in (A) and (B) [47, 48,
59].

Domain-based approaches have so far lacked a search scheme that takes advantage of the
translational or rotational speedups that FFT-based approaches can afford. This has to do
with the issue of focusing: in uniform FFT-based techniques, there is no way to restrict the
search space to a small area of interest that can be occupied by a single domain rather than
the entire protein. By contrast, searching over the entire space for each domain is both time-
consuming and results in spurious and geometrically implausible false positives, and sifting
through these grows rapidly inefficient as the number of domains increases. This is also why
domain-based flexibility algorithms such as those in [46, 47, 48] prefer Monte-Carlo-based
or steepest-ascent-based search schemes.

2.2. Our contributions
We address the drawbacks mentioned in Section 2 with a pair of rotationally exhaustive,
non-equispaced techniques to compute rigid-body correlations. The resulting family of
techniques, which we call PFcorr, has the following properties:

• Sampling robust. The technique is capable of efficiently computing correlations
over arbitrary samples of rigid body motions ℝ3 × SO(3).

• Compatible. It can be used along with existing equispaced FFT-based techniques.

• General. It unifies the rotationally-exhaustive paradigms in [12, 22, 36, 38].

PFcorr thus provides an alternative to existing rigid-body correlation techniques.

The second half of this work presents an algorithm that uses PFcorr to explore correlations
in multi-domain search spaces. The non-uniformity inherent to PFcorr implies that these
correlations can be focused in a specific subset of ℝ3 ×SO(3), while its exhaustive nature
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guarantees that it is not sensitive to local optima. We believe that the above properties, along
with its speed, make PFcorr a realistic and in many ways preferable alternative to existing
correlation search schemes.

One of the two halves of PFcorr depends on looking up certain matrices describing the
influence of a translation on the obtained series expansions. The high complexity of
computing these matrix entries means that they often have to be precomputed and stored.
We outline an efficient algorithm, based on polynomial update rules, that, while not
obviating the need for precomputation and storage, has nevertheless a lower complexity than
existing algorithms.

Finally, this work also aims to be a self-contained overview of correlation techniques that
depend on expressing the input scalar valued functions in terms of rotationally invariant
bases. In particular, we prove all relevant properties inherent to our mathematical
framework.

3. Background
In this Section we give some necessary definitions and background information needed for
the PFcorr algorithms. Note that we defer most multi-line proofs to the Appendix.

Let A, B: ℝ3 ↦ ℂ be a pair of scalar-valued functions. We define the rigid-body correlation
problem as follows.

Definition 3.1—For two functions A: ℝ3 ↦ ℂ and B : ℝ3 ↦ ℂ we define

(3.1)

as the rigid-body correlation between A and B for a given set S = {(Ri, tj)}, Ri ∈ SO(3), tj ∈
ℝ3 of rigid-body motions. The rigid-body correlation problem is to maximize C(Ri, tj) over
the set S.

The rigid-body correlation problem is a non-convex geometric optimization problem. The
several problem domains in computational biology to which it applies can be distinguished
by their choice of A and B. In protein-protein docking, for instance, A and B are affinity
functions that represent a relevant property, such as shape or electrostatics, of the underlying
protein; in protein-density map fitting, A is a blurred representation of the atoms of the
protein, while B is the density map itself.

The objective function (3.1) can be efficiently calculated by expanding it in a series of
orthogonal basis functions. The starting point of this approach is a coordinate transform of
vectors x ∈ ℝ3 from Cartesian to spherical coordinates. The inner product of two square-
integrable functions f, g : ℝ3 ↦ ℂ parameterized in spherical coordinates is given by

(3.2)

We now consider the orthogonal bases for the two components of the product space
separately. Let ξ ∈  and let (ϕ, θ) ∈ [0, 2π) × [0, π] be its coordinates. For any l ∈ ℕ0 and
m = −l, … l the spherical harmonics of degree l are defined as
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where  are associated Legendre polynomials, cf. [45], that arise as the
derivatives of ordinary Legendre polynomials Pl(x).

The spherical harmonics satisfy the orthogonality relation

(3.3)

Secondly, we employ a weighted version of the Laguerre polynomials denoted by .
These functions have been used to describe the radial part of the orbitals of hydrogenic
atoms and are also known as radial wavefunctions, see [2, pp. 368 3] for general
informations. In [36] these functions have been employed in the context of six-dimensional
rigid-body docking.

Definition 3.2—For , l, k ∈ ℕ0, k > l, the weighted Laguerre polynomials

 are given by

using the Laguerre polynomials , see [45]. For , l, k ∈ ℕ0, k > l, the functions

 satisfy

(3.4)

Based on the previous orthogonality relations (3.3) and (3.4), we see that the functions

 for k, l ∈ ℕ, k > l ≥ |m| are orthonormal with respect to the inner product from
(3.2). This follows immediately by

(3.5)

Moreover, these products of functions constitute an orthogonal basis of the space of square-
integrable functions on ℝ3. Therefore, we find a unique series expansion of the two given
functions A(x) and B(x) in terms of these functions as

(3.6)

with coefficients

BAJAJ et al. Page 6

SIAM J Sci Comput. Author manuscript; available in PMC 2013 December 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(3.7)

and analogously for B(x).

Typically the initial data for A(x) and B(x) will be obtained by an EM or read in from a
database as an atomic structure in terms of a collection of atoms and charges. Either way the
methods only provide a finite number of samples of the unknown functions A and B. Hence
the integral (3.7) will be approximated by a suitable quadrature rule. In PFcorr we use a
combination of the Clenshaw-Curtis formula for the spherical part cf. [8, pp. 86] and a
Gauss-Legendre formula for the radial part cf. [8, pp. 222]. Alternatives to such
deterministically sampled quadrature schemes are quasi Monte-Carlo methods or Monte-
Carlo methods. Since this is not the focus of this work we omit further details on quadrature
and merely comment on the error induced by step.

Lemma 3.3—Let A : ℝ3 ↦ ℂ be a complex scalar-valued, 2-Lipschitz continuous function
with finite support on the domain Ω ⊂ ℝ3. For a given spherical grid with maximum grid-
diameter h1, for small h the coefficients âklm can be computed with an error E = Ch|Ω| for a
constant C ∈ ℝ.

3.1. Multi-basis framework
As a first step in solving the rigid-body correlation problem in Equation 3.1, A and B are
represented in terms of orthogonal basis functions. PFcorr offers two distinct choices of how
to proceed.

1. Mixed bases. The standard approach uses the expansion (3.6) and approximates it
by

(3.8)

and analogously for BL(x). For convenience, we shall omit the subscript L from
now on.

2. Pure spherical basis. This slightly modified approach following [22] and [12],
divides the three dimensional space into discrete spherical slices and uses only a
spherical basis expansion in terms of spherical harmonics on each slice with fixed
radius r. The pure spherical representation of a scalar valued function A : ℝ3 ↦ ℂ
for a given radial coordinate r is given by

(3.9)

with coefficients

(3.10)

where Ar(u) = A(r, u).

1The grid-diameter is the diameter of the smallest ball that the grid-cell can be enclosed in.
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The next step in solving the rigid-body correlation problem from Definition 3.1 involves
applying a motion to the functions A and B. We assume that A and B are rigid bodies, and
restrict the motion to rotations and translations in three-dimensional space.

3.2. Rotating basis expansions of scalar-valued functions
We shall now examine how a function expanded as in (3.8) behaves under the application of
a rotation. We conveniently employ the representation property of spherical harmonics
stating for arbitrary rotations R ∈ SO(3) that

(3.11)

where  is a Wigner-D function [49].

The Wigner-D functions  with degree l and orders m, n with max{|m|, |n|} ≤ l are given
by the explicit expression

where α, γ ∈ [0, 2π) and β ∈ [0, π] are the Euler angle decomposition of a rotation R ∈

SO(3) and  are the Wigner-d functions

(3.12)

 are the Jacobi polynomials and

Note that  is a polynomial of degree l if m + n is even. Otherwise, it is a polynomial of
degree l − 1 times a factor of (1 − x2)1/2.

By virtue of (3.11), applying an arbitrary rotation R ∈ SO(3) to the given function A(x) will
yield

Note that the rotation does not affect the radial parts of the function as a rotation preserves
distance. Hence, a similar result holds for the radial-basis independent coefficients âlm.
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Lemma 3.4—Given two functions A : ℝ3 ↦ ℂ and B : ℝ3 ↦ ℂ expanded in terms of a
mixed basis as given in (3.8) the pure rotational correlation can be obtained by evaluating

(3.13)

for arbitrary choices of R ∈ SO(3). This is a direct result from using the orthogonality
property (3.5) with the basis expansions of A(x) and B(RTx) in

Lemma 3.5—Given two functions A : ℝ3 ↦ ℂ and B : ℝ3 ↦ ℂ expanded in terms of a
pure spherical basis as given in (3.9) the pure rotational correlation can be obtained by
evaluating

(3.14)

for arbitrary choices of R ∈ SO(3).

3.3. Fourier Transforms on the rotation group SO(3)
To efficiently calculated the correlations (3.13), (3.13), we will use the Fast SO(3) Fourier
Transform. For details on the algorithm we refer the reader to [34]. Here we simply outline
the basic idea and show how it can be applied to compute our scoring function.

The space of square integrable functions in SO(3) is denoted L2 (SO(3)) and defined via the
standard inner product

A convenient orthogonal basis for L2(SO(3)) are the Wigner-D functions  which
satisfy the orthogonality condition

Definition 3.6 (NDSOFT)—The nonequispaced discrete SO(3) Fourier transform
(NDSOFT) is defined as the evaluation of the sums

(3.15)
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for given Fourier coefficients  and nodes (αq, βq, γq).

We outline our strategy for the fast approximate algorithm, a detailed description of this
algorithm, called the nonequispaced fast Fourier transform (NFSOFT) can be found in [34].
We can rearrange (3.15) to

We can then calculate new coefficients  from the coefficients  in (L3 log2 L)
arithmetic operations to rewrite the inner most sum for m, n = −L, …, L using the Chebyshev
polynomials of first kind Tl(x),

(3.16)

where χ = [m + n odd]. We are now able to replace the Chebyshev polynomials of first kind
with complex exponentials,

We can compute the coefficients  from the coefficients  with (L3) arithmetic
operations. The obtained form is now ready to be inserted into (3.15) to become

(3.17)

This is a plain three-dimensional Fourier sum and we can use the NFFT algorithm to
evaluate it with (L3 log L + Q) operations, where Q is the number of nodes at which we
evaluate the function; see [35]. Hence, the application of a NFSOFT results in (L3 log2 L +
Q) operations.

4. Rigid-body correlations
Although not immediately apparent, the idea of exploiting the rotational invariance of the
spherical harmonics that serve as basis functions in the Fourier expansion of a functions in
L2( ) has some advantages over translation-invariant Fourier expansion in [3, 7].

The key idea is to first express the three-dimensional translation in terms of two rotations
and a translation in one dimension. Hence, this translation will have two rotational degrees
of freedom and one translational. A three dimensional translation t ∈ ℝ3 of a object can be
uniquely expressed as t = r RZ(ϕ)RY (θ)ez for ϕ ∈ [0, 2π), θ ∈ [0, π] and r ∈ ℝ+ where ez =
(0, 0, 1)T. Combining, this with the three independent rotation parameters of the object, we
have five rotation angles that describe a motion and one absolute value of a translation along
one axis. Consequently, are able to speed up the computation for the rotations by spherical
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Fourier transforms and obtain an improved complexity for five of the six degrees of freedom
of rigid-body correlations instead of the previous three. For U = RZ(ϕ)RY (θ), we have

(4.1)

with R̃ = UTR. A similar approach has been previously suggested in [21] for protein
matching. Here we will focus on its efficient computation. A schematic depiction can be
found in Figure 4.1.

After having considered the effects of rotations, it remains for us to examine the effect of the
single one dimensional translation, say along the z-axis. In spherical coordinates a

translation of the vector x about zez is given by x – zez = rzuz with 

and . We point out that the longitudal angle ϕ does not change
during a translation along the z-axis. The effect of a translation along the z-axis on the ℝ+ ×

 basis functions can be expressed in terms of translation matrix (T-matrix) elements

 as described in [36] as

(4.2)

Note that the T-Matrices apply only to mixed basis expansions (3.8); for pure spherical basis
expansions, the coefficients âlm for each radial slice with radius r have to be recomputed
after each translation t ∈ ℝ3.

These translation coefficients are expressed as

(4.3)

where

Moreover  denotes the Wigner 3-j symbol and (·)m is the Pochhammer symbol.

Directly computing T-Matrix entries in Equation 4.3 for fixed k, l, k′, l′, m takes (L3Nt)
steps, where Nt is the number of translations in one dimension. The overall complexity is
thus L5· (L3Nt) = (L8Nt). An important contribution of the PFcorr algorithm is the fast
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and efficient computation of the T-Matrix entries in (L7+L6Nt) steps. Details of this
speedup can be found in the Appendix.

Having collected all the ingredients we state the following important Theorem.

Theorem 4.1
For a fixed cut-off degree L ∈ ℕ0 and two given functions

the objective function (3.1) can be evaluated by computing

for arbitrary choices of R ∈ SO(3) and t ∈ ℝ3. Its proof can be found in the Appendix.

Following an observation in [12], it is not as efficient to use the pure spherical basis
expansions to express a general rigid-body correlation. Instead, Equation 3.14 is used along
with a scan of the translational degrees of freedom, in which the basis coefficients are
recomputed for each distinct t ∈ ℝ3. Hence we omit mentioning the case of pure spherical
expansions here.

We conclude this section with some notes on the complexity of the evaluation of the
introduced expansions. If we use the NFSOFT [34] to compute Equations (3.13) then the

pure rotational correlation in Lemma 3.4 can be computed in  steps using the
following recipe, where NR is the number of distinct rotation angles per rotational degree of
freedom, i.e., per Euler angle.

Recipe 1—Evaluate

(4.4)

for  different choices of Euler angles.

1. Rearrange the multiple summations such that the sum over k becomes the
innermost sum.

2. Compute

BAJAJ et al. Page 12

SIAM J Sci Comput. Author manuscript; available in PMC 2013 December 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



in (L4) steps.

3. Use the SO(3) Fourier transform to compute the remaining sums

in  steps, where NR is the number of unique Euler angles per
rotation axis.

In a similar fashion, the pure rotational correlation in Lemma 3.5 can be computed in (L3

log2 L+NR + L3I) steps where I is the complexity of computing the integral ∫R+â(r)b̂(r)r2dr
for a given pair of scalar-valued functions â, b̂: ℝ+ ↦ ℂ. Since there are (L3) integrals
∫ℝ+â(r) b̂(r)r2dr we get the aforementioned complexity.

Let us now consider general rigid-body motion. The general rigid-body correlation in

Theorem 4.1 can be computed in  steps using the outlined a way to

speed up computations of the translation matrix entries (4.3) and the NFSOFT, where 

and  are the number of rotations of A and B respectively, and Nt is the number of one-
dimensional translations. The computation is performed according to the following recipe.

Recipe 2—Evaluate

for NR different choices of R and Nt different choices of one-dimensional translations z ∈ ℝ

1. Compute

in (L6) steps.

2. Compute

using a modification of the NFSOFT in  steps.

3. Compute
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4. Compute

using the standard NFSOFT [34] in  steps.

Hence, the overall cost is , i.e.,

.

With these recipes established, we now outline algorithms to perform fast rigid-body
correlations given a pair of scalar-valued functions as input. Algorithm 1 uses the mixed
basis, while Algorithm 2 uses the pure spherical harmonic basis.

Algorithm 1

Fast Rotational Correlation with mixed radial/spherical basis functions
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Algorithm 2

Fast Rotational Correlations with pure spherical harmonic basis functions

4.1. Rigid-body correlations: numerical results and discussion
There are three sources of error in PFcorr. The first is the expansion error, i.e., the error
induced by truncating the basis expansion at a finite value of L. The second is the
representation error, i.e., the error induced in numerically integrating the coefficients in
Equation (3.7). The third is the NFFT error, i.e., the error induced by approximating the
exponential sums by the NFFT.

Following [12, 36, 38], the first two sources of error can be respectively mitigated by
choosing an expansion degree between 20 ≤ L ≤ 25, and using a single-point quadrature rule.
We provide further evidence in Section 4.2 of the former assertion.

The NFFT approximates exponential sums with a kernel basis expansion, providing a choice
of several kernels, and several parameters govern the actual error of the expansion. In our
implementation, we choose the Gaussian kernel with an oversampling factor of 3, see [35],
resulting in the errors in Table 4.1. On more information about the error of the NFFT and the
NFSOFT we refer to [35] and [34], respectively. Note that, in solutions to the correlation
problem, the absolute value of the correlation is less important than the value relative to
other rigid-body rotations, i.e., the ability of the search scheme to discriminate between two
different rigid-body motions. A measure of this ability is presented in Section 4.2 in the
context of sampling arbitrary subsets of the motion group SE(3).

We provide timing information in Figure 4.2. All timing information is from a single-
threaded, dual core Macbook Pro at 2.3 GhZ with 8GB of RAM. For Recipe 1, we see that
linear scaling with respect to the number of rotations and the quartic scaling with respect to
expansion degree as predicted are reproduced by the implementation. For Recipe 2, the
scaling with respect to expansion degree is not very important, as typically L6, the leading
expansion term, is much less than L4NRB, which, for practical correlation problems, is in
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turn less than the product of the number of rotations NRA NRB. We hence examine how
Recipe 2 scales with respect to the product NRA NRB; Figure 4.2(C), shows that the scaling is
linear, as expected.

For the T-Matrix computation (Figure 4.2(D)), a dramatic speedup with respect to the direct
algorithm is observed in L ≥ 10 regime, where the L7 v/s L8 scaling is apparent. However,
for typical values of L (see following paragraph), the computation times are still too slow to
be usable in the inner loop of any Fourier-based correlation approach, including our own.
Like prior work that uses the T-Matrix (See the introduction for an overview), we thus
prefer to precompute and store T-Matrix entries for given values of z and λ (See Equation
4.3).

From a practical standpoint, our rigid-body correlation search is seen to be a viable, if
somewhat slower, alternative to existing rigid-body correlation search techniques. Most of
the degradation in performance is due to the NFFT, which uses, in its implementation, an
oversampled FFT to enable the non-uniformity inherent to it. Following [38], we choose L
to typically lie between 20 and 25, in which case typical run times for an exhaustive
correlation involving about 1.5 · 107 distinct rigid-body samples lie between 2 and 3
minutes. We also note that, other than the argument in Section 4.2, there is no reason to
prefer the non-uniformity inherent to PFcorr and, if performance is a concern, each of the
steps involving the NFFT can be replaced by the equispaced FFT.

4.2. Sampling arbitrary subsets of the motion group SE(3); addressing the drawbacks of
existing techniques

The main advantage of PFcorr is in sampling arbitrary (finite) subsets of the space of rigid
body motion in three dimensions SE(3) = ℝ3 × SO(3). In our implementation (See Figure
4.3 for an example of its use in rigid-body fitting), this is as simple as specifying a set of
rigid-body motions on which correlations are to be performed. By contrast, all prior
techniques require an equispaced angular grid for rotational search, a property that results in
a highly non-uniform search of the space of rotations (See Drawback 2 in the introduction).
For exhaustive correlations between a pair of scalar-valued functions, one typically employs
uniform sampling of the space of rotations SO(3). As we mention in the introduction, most
of the uncertainty in the rigid-body correlation problem lies in the space of rigid-body
rotations, and it is thus more important to sample this space exhaustively. There are several
existing techniques that, given an angular sampling criterion, provide a set of samples that
are uniform with respect to accepted metrics of uniformity [14, 28, 55]. We use the approach
from [28], in which the metrics of local separation and global coverage compete to provide
a set of highly uniform samples in SO(3). See also Figure 2.1.

The ability to sample and correlate over arbitrary subsets of SE(3) is only useful if, at any
expansion degree, the fineness of the rotational sampling does not exceed the accuracy with
which âklm and b̂klm represent A and B respectively (See Equation (3.7)). Such a scenario
would give rise to correlations that are so close to each other as to be essentially
indistinguishable, and would result in a set of correlations clustered around the average
correlation. To measure this tendency, we compute the Z-score , a measure of the
distance of each individual correlation from the average. The results, in Figure 4.4, indicate
that the top-ranking Z-score increases with increase in degree, as expected, leveling off at L
≥ 20, where the error due to floating-point calculations begins to rival the error due to
representation, and that even at very low expansion degrees, the top-ranking Z-score is 3
standard deviations from the mean, indicating a very high confidence. Figure 4.4 also
presents another argument as to why the regime 20 ≤ L ≤ 25 is best, as the latter provides a
balance between the errors of representation and floating-point computation. For additional
information on the Z-score measure see e.g. [32].
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5. Flexible correlations: main results
We present an algorithm (Algorithm 3) for domain-based protein matching. This algorithm,
given as input

1. A protein ,

2. A hierarchical domain decomposition, defined in Section 5.1, of ,

3. A scalar-valued function B: ℝ3 ↦ ℝ representing a stationary target, and,

4. A scalar-valued representation A of ,

produces as output the optimal correlation between A and B under rigid-body motions of the
domains of . Algorithm 3 makes use of the ability of PFcorr to uniformly sample arbitrary
subsets of ℝ3 × SO(3).

5.1. Domain-based protein flexibility framework
We assume a generic framework for domain-based protein flexibility. This framework
consists of ideas from domain-decomposition of proteins that have existed in various forms
over the past decade (see especially [25]), as well as a set of techniques, described, for
instance, in [4], to assign motions to each of these domains.

Let a protein crystal structure  comprise a set of atoms. Designate a subset of  as a
domain D. A domain decomposition of  is a set  = {Di}, 1 ≤ i ≤ n , where Di is a
domain. A hierarchical domain decomposition  = { }, 1 ≤ i ≤ n  is a set of domain
decompositions  such that each domain in  is a subdomain of some domain in 
(See, for example, [5]). For each  of the hierarchical domain decomposition , a motion
graph MG specifying relative motions between domains of  can be specified. The motion
graph consists of a set of edges Fij, called flexors, between pairs of domains i, j that undergo
relative motion. The geometric properties of each flexor imply a set of rigid-body

transformations ( ), k ∈ {1 … NT} applied to Dj relative to Di [4].
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Algorithm 3

Greedy multi-domain matching

5.2. Algorithm for flexible matching
Algorithm 3 applies to a particular domain decomposition of , i.e, it applies to a particular
index in the hierarchical domain decomposition of . It uses the ability of PFcorr to sample
arbitrary subsets of SE(3) to match representations of domains Ai ∈ A to a target scalar-
valued function B: ℝ3 ↦ ℝ. Note by contrast that a classic equispaced Fourier-based
correlation scheme would not be able to perform the tasks in Algorithm 3 without also
producing several results that do not belong to the chosen subset of SE(3). This focusing
property enables PFcorr to combine the merits of both local and global optimization
schemes in the following sense. The algorithm is local in that it is restricted to the chosen

BAJAJ et al. Page 18

SIAM J Sci Comput. Author manuscript; available in PMC 2013 December 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



subset of SE(3), but global in that it samples that subset exhaustively. It thus combines the
speed of a local search without being sensitive, as local search algorithms are, to local
optima.

6. Conclusion
We have presented PFcorr, a non-uniform correlation search scheme. PFcorr displays the
following properties: (A) It is sampling robust, making searches over arbitrary subsets of
SE(3) efficient while retaining the capabilities of classical exhaustive Fourier-based search
schemes, (B) It is compatible with existing equispaced FFT-based techniques, in the sense
that its non-equispaced nature is desirable but not necessary, and (C) Its algorithms extend to
the rotationally exhaustive paradigms in [12, 22, 36, 38]. We have also presented an
algorithm to compute translation matrix entries for SO(3) that achieves a better scaling than
existing direct algorithms. Finally, we have presented an algorithm for multi-dimensional
flexible correlations that leverages the sampling robustness of PFcorr. PFcorr applies to
several fields within computational biology, including, most notably, molecular fitting and
docking, where the above properties make it a natural and efficient tool for correlation-
amenable search. A link to download PFcorr can be found at http://www.ices.utexas.edu/
CVC/software/.
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Appendix
Here we give additional details on the mathematical background of the used algorithms.

T-Matrices Computation

The translation coefficients  are polynomials of degree

Let d = 2k − l + 2k′ − l′ − 4, n = min(p, l + l′) − s and  Then Equation (4.3) can be
arranged to obtain

where

and s is even if and only if d is even.

The coefficients αp can be computed for all p in (L3) steps. For fixed k, l, k′, l′, m, the T-
Matrix polynomial can be computed in (LNt). The complexity for fixed k, l, k′, l′, m is
hence (L3 +LNt), resulting in an overall complexity of (L8 + L6Nt).

A polynomial can be evaluated at a set of equispaced arguments with (L) multiplications.
Applying Nuttall’s update rule for polynomials [29] reduces these multiplications to
additions without altering the number of operations required. This affords a small speedup.
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T-Matrices Computation Speedup

If  is precomputed for all m, the other terms in Equation (4.3) have to be calculated
only once for fixed k, l, k′, l′. In the first step, we compute

for all m and fixed n, l, n′, l′. The summation over j and the computation of  each
takes (L) steps, implying a complexity of (L2) for each bn, and a complexity for all m of

(L3).

In the second step we compute the T-Matrix entries .

Since the above calculation has to be done for all k, l, k′, l′ and for Nt translations, the overall

complexity for  is now (L7Nt), instead of (L8).

Computation of the coefficients  can also be sped up. Only these coefficients and the
boundary of the innermost sum depend on k and k′. If k and k′ are switched, the boundary of

the sum does not change, so for switched k and k′ only the value  changes. In the first
step

is computed for all j, n, l, l′. In the second step

and tk′l,kl′ respectively are computed. In the third step

and  respectively are computed.
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Moreover, the symmetry property [36]  implies

. Hence, the dynamic programming approach above allows us to

calculate  and  by calculating .

The complexity of the approach of representing the T -coefficients as a polynomial can be
reduced by using the speed-up by dynamic programming as explained above. To achieve the
reduction in the complexity we consider the calculation of αp. Instead of computing αp
directly, first

is precomputed. Due to the summation and the parameters s and p, this computation has the
complexity (L3) Afterwards the αp

are computed This has the complexity (L2), implying a complexity of (L3) for the
precomputation of αp for all m. The total computation of the αp for all m is hence (L3 + L3)
= (L3).

The subsequent computation of

is for fixed k, l, k′, l′, m and all m is (L2Nt). Therefore the overall complexity for fixed k, l,
k′, l′ and all m is (L3 + L2Nt). Thus, for all k, l, k′, l′ the complexity is (L4) (L3 + L2Nt)
= (L7 + L6Nt).

Proof of Lemma 3.3
Let Ω be subdivided in N grid-cells Ωi with centers xi, volume Vi and diameter di. The
approximation error in the ith grid-cell is given by

Expanding A(x) in a Taylor series about xi, we get
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for some constant c, due to A(x) being 2-Lipschitz continous on Ω. Thus the error across all

grid cells is the sum . Since the maximum diameter of the grid-cells
is proportional to the grid fineness h, we have E ≤ Ch|Ω| for a fixed constant C.

Proof of Theorem 4.1
Consider a rotation R ∈ SO(3) that is applied to the molecule A. By the representation
property of spherical harmonics 3.11 the affinity function becomes

The molecule B will be rotated by U = RZ (ϕ)RY (θ) and translated by the vector (0, 0, z)T.
Using (4.2), this yields the series expansion

After inserting both of the above expansions of the affinity functions into the correlation
integral (4.1), we are now able to use the orthonormality property

to simplify the correlation integral to

If we now approximate the infinite sums by sums with a certain maximum degree L we
obtain the formula from Theorem 4.1.
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Fig. 1.1.
Domain-based flexible fitting as a sample application of the flexible correlation algorithm
using PFcorr. The Figure chose an example of a domain decomposition with 3 hierarchical
levels. The protein crystal structure  is decomposed into domains at level  according to
a chosen criterion. The domains of  are consecutively decomposed into domains at level

. The motions between pairs of domains of  can be specified in a motion graph. They
imply a set of rigid-body transformations with respect to the domains.
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Fig. 2.1.
(A) A uniform grid with respect to three Euler Angles grid with angular resolution 20° in
each angle leads to (B) a non-uniform sampling of SO(3), with very high angular resolution
in certain regions and holes in certain others. By contrast, (C) a highly non-uniform Euler
angular grid leads to (D) a more uniform sampling of SO(3). (C) and (D) were obtained by
the techniques in [28]; they contain fewer samples, exhibit a separation very close to the
required angular resolution of 20°, and are highly uniform with respect to suitable metrics on
SO(3). We discuss sampling on SO(3) in Section 4.1.
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Fig. 4.1.
Schematic of the rigid-body correlation search scheme introduced in this work. Here A, B
are two complex or real scalar-valued functions. In (a) the initial positions of A and B are
given in different coordinate frames. Both functions are rotated. A is manipulated by a three-
dimensional rotation, B only by a two dimensional rotation. In (b) A and B are translated to
share the same origin. A set of a translation along the z-axis is searched until the best
arrangement (c) is found.

BAJAJ et al. Page 28

SIAM J Sci Comput. Author manuscript; available in PMC 2013 December 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 4.2.
Time taken by each of the algorithms in Section 4. (A) Time requirements of the algorithms
from Recipe 1 as a function of the number of rotations at fixed degree L = 25. Note that in
Recipe 1 we search over three rotational degrees of freedom. (B) Time requirements of the
algorithms from Recipe 2 as a function of the number of rotations at fixed degree L = 25.
Note that in Recipe 2 we search over five rotational degrees of freedom. (B) Time
requirements of the algorithms from Recipe 1 as a function of the maximum degree of the
series expansion L at a fixed number of 30.000 rotations. (D) Time requirements of the T-
Matrix computation as a function of the maximum degree of the series expansion L for the
direct computation and the speedup.
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Fig. 4.3.
An example of a rigid-body fitting exercise. Here an atomic structure of the Rotavirus
subunit is fit into a segmented 3D EM map. (A) Atomic structure of the rotavirus (PDB ID
1QHDa [27]). (B) Bilaterally smoothed rotavirus subunit segmented from EMD 1461 [58] at
3.8 Å using the techniques in [56]. (C) The atomic structure is placed into the 3D EM map
subunit using the algorithms in PFcorr.
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Fig. 4.4.
Average top-ranking Z-Scores for Recipe 1 at varying degrees. The rotational sampling
fineness is fixed at 8° per Euler angle.
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Table 4.1

(A) Relative errors between the directly computed correlation and the correlation as computed by Recipes 1
and 2 for two real-valued functions A, B: ℝ3 → ℝ at varying expansion degrees over 500 randomly-generated
rigid-body rotations. For L > 12, the direct correlation is exceedingly slow to compute therefore the relative
error is omitted here. (B) The maximum complex value of the correlation score as a different error measure.
Note that we used real valued input functions, and hence this table demonstrates the numerical error due to
cut-offs. The above experiments were conducted with mixed bases; similar results hold for pure spherical
bases, as the speedup scheme for these bases is the same as that used for Recipe 1.

(A)

L Recipe 1 Recipe 2

4 1.93e-5 1.26e-4

6 1.37e-5 1.44e-4

8 1.61e-5 1.22e-4

10 1.61e-5 1.34e-4

12 1.72e-5 1.32e-4

(B)

L Recipe 1 Recipe 2

4 1.71e-10 1.84e-10

6 1.53e-10 1.76e-10

8 1.72e-10 1.71e-10

10 1.77e-10 1.85e-10

12 1.41e-10 1.81e-10
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