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Multiple Geometric Viewpoints of Mixed Mode Dynamics Associated with
Pseudo-plateau Bursting∗
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Abstract. Pseudo-plateau bursting is a type of oscillatory waveform associated with mixed mode dynamics in
slow/fast systems and commonly found in neural bursting models. In a recent model for the electrical
activity and calcium signaling in a pituitary lactotroph, two types of pseudo-plateau bursts were
discovered: one in which the calcium drives the bursts and another in which the calcium simply
follows them. Multiple methods from dynamical systems theory have been used to understand the
bursting. The classic 2-timescale approach treats the calcium concentration as a slowly varying
parameter and considers a parametrized family of fast subsystems. A more novel and successful
2-timescale approach divides the system so that there is only one fast variable and shows that the
bursting arises from canard dynamics. Both methods can be effective analytic tools, but there has
been little justification for one approach over the other. In this work, we use the lactotroph model
to demonstrate that the two analysis techniques are different unfoldings of a 3-timescale system. We
show that elementary applications of geometric singular perturbation theory in the 2-timescale and
3-timescale methods provide us with substantial predictive power. We use that predictive power to
explain the transient and long-term dynamics of the pituitary lactotroph model.
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1. Introduction. Bursting is a type of complex oscillatory waveform commonly seen in
the electrical activity of nerve and endocrine cells [34, 18, 42, 28, 43, 44]. Characterized
by alternating periods of fast spiking in the active (depolarized) phase and quiescence during
which the cell is repolarized, bursts are typically more efficient than spikes in evoking hormone
and neurotransmitter release [33, 48]. Characteristics of the burst pattern such as frequency
and duration determine how much calcium enters the cell, which in turn determines the
level of hormone secretion [59]. One particular type of bursting that has been the focus of
recent modeling efforts is pseudo-plateau bursting, which features small amplitude oscillations
or spikes in the active phase superimposed on relaxation type oscillations [51, 47, 39, 56].
Pseudo-plateau bursts are distinguished from plateau bursts, which feature large amplitude
fast spiking in the active phase [40, 4, 32, 57].

Using geometric singular perturbation theory [19, 26], the authors showed that the pseudo-

∗Received by the editors September 9, 2012; accepted for publication (in revised form) by H. Osinga March 21,
2013; published electronically May 21, 2013.

http://www.siam.org/journals/siads/12-2/89284.html
†School of Mathematics and Statistics, University of Sydney, Sydney NSW, Australia (theodore.vo@sydney.edu.au,

wm@maths.usyd.edu.au). The first author’s research was partially supported by an A.E. and F.A.Q. Stephens
Scholarship and a Philipp Hofflin International Research Scholarship (University of Sydney). The third author’s
research was partially supported by the Australian Research Council and the Marsden Fund, New Zealand.

‡Department of Mathematics and Programs in Neuroscience and Molecular Biophysics, Florida State University,
Tallahassee, FL 32306 (bertram@math.fsu.edu). This author’s research was supported by NSF grant DMS 1220063.

789

D
ow

nl
oa

de
d 

06
/1

1/
13

 to
 1

28
.1

86
.1

03
.1

76
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

http://www.siam.org/journals/siads/12-2/89284.html
mailto:theodore.vo@sydney.edu.au
mailto:wm@maths.usyd.edu.au
mailto:bertram@math.fsu.edu


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

790 T. VO, R. BERTRAM, AND M. WECHSELBERGER

Figure 1. A typical 14 MMO generated by a system of the type (1.1).

plateau bursting that arose in a pituitary cell model [60, 53] was a canard-induced mixed mode
oscillation (MMO) [9, 8]. MMOs are oscillatory trajectories in which there is an alternation
between large amplitude and small amplitude spiking (Figure 1). A prototypical MMO is
composed of L large amplitude oscillations followed by s small amplitude oscillations. This
is denoted Ls and called the MMO signature. A general MMO pattern, then, is just a
concatenation of these MMO units resulting in a signature Ls1

1 Ls2
2 . . . Lsn

n .
A vital feature of the analysis of MMOs is the multiple timescale structure of the governing

system (see [14] for an extensive overview). In this work, we focus on MMOs in 3-timescale
systems of the form

ε ẋ = f(x, y, z),

ẏ = g(x, y, z),

ż = δh(x, y, z),

(1.1)

where ε, δ are small, independent parameters and f, g, and h are sufficiently smooth functions.
The variables (x, y, z) vary over different timescales with x ∈ R

m classified as fast, y ∈ R
n

classified as intermediate, and z ∈ R
k classified as slow. Such 3-timescale systems have

received little attention [25, 28, 29] and are typically treated as 2-timescale problems, which
is the natural setting for geometric singular perturbation theory. However, the presence of
two perturbation parameters means that there are various ways in which the theory can be
implemented. One particular implementation uses ε as the singular perturbation parameter
while keeping δ fixed. System (1.1) is then partitioned into a fast subsystem described by the
x dynamics and a slow subsystem described by the (y, z) dynamics. Another viewpoint of
(1.1) utilizes δ as the singular perturbation parameter with ε fixed, creating a family of fast
(x, y) subsystems parametrized by the slow variable z.

This asymptotic approach with perturbation parameter δ is the standard approach to
bursting oscillations [40, 41] in systems (1.1) with a single slow variable z [4, 32, 6, 51, 57, 47].
Bursts are classified according to the fast (x, y) subsystem bifurcations (with respect to z)
involved in the initiation/termination of the active phase [41, 24]. Plateau and pseudo-plateau
bursting in particular feature a Hopf bifurcation of the fast subsystem in the active phase,
the criticality of which distinguishes the two bursting types [39, 56]. In the plateau case,
the Hopf is supercritical and the large amplitude active phase spikes are related to stable
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MULTIPLE GEOMETRIC VIEWPOINTS OF MMOs 791

periodic orbits of the fast subsystem. In the pseudo-plateau case, the small amplitude spikes
are transient oscillations generated by unstable limit cycles emanating from a subcritical Hopf
[47]. Note that plateau and pseudo-plateau bursting can be converted into one another via
parameter changes that alter the criticality of the fast subsystem Hopf [39, 54]. Plateau
bursting and various features of pseudo-plateau bursting, such as resetting properties [47] and
burst termination due to fast subsystem manifolds [38], are well understood in the classic
approach.

More recent studies of pseudo-plateau bursting [60, 53, 52] make use of ε as the pertur-
bation parameter and complement the classic slow/fast analysis. Key organizing structures
are the fast x subsystem equilibria and singularities of the slow (y, z) subsystem. Hyperbolic
equilibria of the fast subsystem, parametrized by the slow variables, approximate attracting
and repelling slow manifolds. The extension of these manifolds by the flow into nonhyperbolic
regions gives rise to complex phenomena. In particular, transverse intersections of these slow
manifolds (canard solutions) shape the dynamics [11, 49, 62]. The theory of canard-induced
MMOs [9] then provides the theoretical basis for understanding burst phenomena such as the
transition from spiking (relaxation oscillations) to bursting (MMOs) and how spike-adding bi-
furcations can occur. The two slow/fast analysis techniques yield key insights into the mixed
mode dynamics of pseudo-plateau bursting. Comparative analyses of the two slow/fast meth-
ods have been performed (for instance, in [53]); however, there have been few attempts to
reconcile these approaches [52] in the context of (1.1).

There are multiple goals to our study. First and foremost, we wish to broaden the scope of
geometric singular perturbation theory by showing that elementary applications of the theory
can be a powerful analytical tool in understanding 3-timescale problems. We compare the
familiar 2-timescale methods with a 3-timescale analysis and demonstrate the efficacy of each
technique. In conjunction with this, we illustrate our assertions by analyzing a 3-timescale,
four-dimensional (4D) pituitary lactotroph model [51, 55] and show that our multiple geomet-
ric viewpoints provide a fairly complete view of the dynamics. Physiologically, we are mo-
tivated by a desire to understand a complex neuroendocrine model. Mathematically, we are
interested in the relationship between multiple analytical techniques. Our work complements
the work of [52], in which the relationship between geometric features of the 2-fast/1-slow and
1-fast/2-slow analysis techniques is demonstrated in a three-dimensional (3D) version of the
pituitary lactotroph model. We take a mostly expository and heuristic approach.

The outline of the paper is as follows: in section 2, we describe the pituitary lactotroph
model and briefly survey the work on it to date. We show, via dimensional analysis, that
our model belongs to the class of systems (1.1). In section 3, we investigate the bifurcation
structure of our model and identify the regions in parameter space where MMOs exist. Sections
2 and 3 serve as a preamble to the main results, which are presented in sections 4, 5, and 6.
Section 4 details a slow/fast analysis in which there is one fast variable and three slow variables,
examples of which are currently scarce [22, 23]. We then recall the standard slow/fast analysis
in section 5, where everything is treated as fast except for a single slow variable. The crux
of our work lies in section 6, where we perform a geometric singular perturbation analysis of
the full 3-timescale problem (1.1). We formulate our 3-timescale analysis in a general way to
emphasize that our approach can easily be adapted to other 3-timescale problems. We show
that the 3-timescale decomposition inherits the strengths of the 2-timescale methodologies,
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792 T. VO, R. BERTRAM, AND M. WECHSELBERGER

affording us a remarkable degree of control and predictive power. Sections 4, 5, and 6 highlight
an unusual degeneracy about which the small oscillations of the MMOs are localized. In section
7, we examine this degeneracy more closely while comparing the three analytical approaches.
We then conclude in section 8 with a discussion.

2. The mathematical model. We consider a 4D conductance-based model for the electri-
cal activity and calcium signaling in a pituitary lactotroph [51]. The model variables are the
membrane potential V of the cell, the fraction n of activated K+ channels of the delayed recti-
fier type, the fraction e of A-type K+ channels that are not inactivated, and the cytosolic-free
Ca2+ concentration c. The equations are

Cm
dV

dt
= − (ICa + IK + IBK + ISK + IA) ,

dn

dt
=

λ

τn
(n∞(V )− n),

de

dt
=

1

τe
(e∞(V )− e),

dc

dt
= −fc (αICa + kcc) ,

(2.1)

where ICa is an inward Ca2+ current, IK is an outward delayed rectifying K+ current, IBK

is a fast-activating large-conductance BK-type K+ current, ISK is a small Ca2+-activated K+

current, and IA is an A-type K+ current. The currents are defined by

ICa = gCam∞(V )(V − VCa),

IK = gKn(V − VK),

IBK = gBKf∞(V )(V − VK),

ISK = gSKs∞(c)(V − VK),

IA = gAa∞(V )e(V − VK).

The main parameters of interest are the maximal conductance of delayed rectifier K+ channels
gK , the maximum conductance of BK-type K+ channels gBK , and the maximal conductance
of A-type K+ channels gA. Details of the steady state functions and system parameters are
provided in Appendix A.

The pituitary lactotroph model (2.1) is capable of generating pseudo-plateau bursting
(MMOs) over a range of parameter values. In most endocrine cell bursting models, the bursting
oscillations are driven by the slow, systematic variation in the calcium concentration [32, 51,
57, 65]. Changes in the intracellular calcium concentration play a crucial role in the functioning
of almost every cell type [27]. When the intracellular calcium concentration is fixed, the
bursting ceases (Figure 2(a)). This is referred to in [55] as classic bursting. Unexpectedly
there are instances where the pseudo-plateau bursting persists almost unaltered when the
calcium concentration is fixed [55] (Figure 2(b)). This is unusual since the slow variation
of the intracellular calcium concentration is typically responsible for clustering impulses into
episodes of electrical activity. We dub MMOs driven by the calcium fluctuations dynamic
MMOs. We call those MMOs that do not require the calcium fluctuations calcium-conducting
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(a) (b)

Figure 2. Time traces of the electrical activity and calcium concentration in (2.1) for (a) classic bursting
(dynamic MMOs), in which the slow changes in the calcium concentration drive the bursts, and (b) “novel”
bursting (calcium-conducting MMOs), in which the calcium concentration is not driving the bursts but simply
follows them. The parameters were set at Cm = 2 pF, fc = 0.01, gBK = 0.4 nS, gA = 10 nS, and (a) gK = 4 nS
or (b) gK = 6 nS. The vertical dashed line marks the instant at which the calcium is fixed.

MMOs. Here, we use “conducting” in the sense that the calcium oscillations follow the bursts
rather than drive them.

The discovery of dynamic and calcium-conducting MMOs in [55] marked the juncture at
which studies of the pituitary lactotroph model diverged. Early treatments of (2.1) focused
on the calcium-conducting MMOs since they were novel. To study these calcium-conducting
MMOs a 3D model reduction, in which all nonessential elements (including the calcium con-
centration) were removed, was introduced [55]. Detailed analysis of these calcium-conducting
MMOs was then performed [60, 61]. However, due to the physiological importance of calcium
oscillations, attention was eventually given again to the dynamic MMOs. A 3D reduction
of (2.1) in which the hyperpolarizing A-type current was absent was used to study the dy-
namic MMOs [53]. In both cases, the theory of canard-induced MMOs showed that the
pseudo-plateau bursting arose from canard dynamics. In spite of these advances, the two 3D
reductions of (2.1) remain as fairly separate entities. There has been virtually no work done
to reconcile the results from the two 3D reductions and form a coherent picture. In this work,
we tie the various threads from [51, 55, 60, 53, 61] and provide a first step towards a unified
picture of the dynamics of (2.1).

To facilitate our analysis, we first perform a dimensional analysis of (2.1). The variables
(V, n, e, c) vary on different timescales. To see this, we introduce a dimensionless timescale
tI = t/kt with reference timescale kt = τe, transforming (2.1) to

Cm

gmaxkt

dV

dtI
≡ ε

dV

dtI
=f(V, n, e, c),

dn

dtI
=
kt
τn

(n∞(V )− n) ≡ g1(V, n),

de

dtI
=
kt
τe
(e∞(V )− e) ≡ g2(V, e),(2.2)

D
ow

nl
oa

de
d 

06
/1

1/
13

 to
 1

28
.1

86
.1

03
.1

76
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

794 T. VO, R. BERTRAM, AND M. WECHSELBERGER

dc

dtI
=− kt

(fckc)−1

(
α

kc
ICa + c

)
≡ δh(V, c),

where gmax = 10nS is a typical conductance scale and

f(V, n, e, c) = − 1

gmax
(ICa + IK + IBK + ISK + IA)

is a rescaled version of the right-hand side of the V -equation of (2.1).1 The membrane potential
V evolves on a fast timescale (given to leading order by Cm/gmax < 1 ms), while (n, e) evolve
on an intermediate timescale (τe = 20ms and τn/λ ≈ 43ms). The Ca2+ concentration evolves
on a slow timescale ( 1

fckc
= 625ms). In particular, decreasing Cm increases the timescale

separation between V and (n, e, c), which is reflected in the singular perturbation parameter
ε = Cm

ktgmax
� 1. Similarly, decreasing fc increases the timescale separation between (V, n, e)

and c, which is reflected in the singular perturbation parameter δ = ktfckc � 1. We will
use (ε, δ) and (Cm, fc) interchangeably since (ε, δ) have simple linear dependences on the
biophysical parameters (Cm, fc). Thus, system (2.2) is a singularly perturbed problem with
fast variable V , intermediate variables (n, e), and slow variable c and small, independent
perturbation parameters ε, δ.

In its current form, system (2.2) is written such that the motions in V are O(ε−1), the
motions in (n, e) are O(1), and the motions in c are O(δ). Thus, over O(1) time intervals,
(2.2) naturally highlights the motions in the intermediate variables (n, e). We say that (2.2)
is written over an intermediate timescale. An equivalent description of the dynamics can be
obtained by rescaling time (tI = ε tF ) to obtain the fast system

dV

dtF
= f(V, n, e, c),

dn

dtF
= ε g1(V, n),

de

dtF
= ε g2(V, e),

dc

dtF
= ε δ h(V, c).

(2.3)

Alternatively, we can obtain a different viewpoint of the dynamics by rescaling time (tS = δtI)
to give the equivalent slow system

ε δ
dV

dtS
= f(V, n, e, c),

δ
dn

dtS
= g1(V, n),

δ
de

dtS
= g2(V, e),

dc

dtS
= h(V, c).

(2.4)

1We avoid complete nondimensionalization, as the V and c scalings have no influence on the timescales.
This also allows easy comparison with data and prior studies.

D
ow

nl
oa

de
d 

06
/1

1/
13

 to
 1

28
.1

86
.1

03
.1

76
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MULTIPLE GEOMETRIC VIEWPOINTS OF MMOs 795

Systems (2.2), (2.3), and (2.4) stress the notion that the choice of reference scale kt is not
important. The multi-timescale structure is an intrinsic feature of the model, and (2.2), (2.3),
and (2.4) simply reflect different choices of kt.

3. Full system bifurcation analysis. The first step towards a classification of the dy-
namics is a full system bifurcation analysis, which complements slow/fast analysis techniques
and views the MMOs as periodic solutions with complex structure [44, 56]. In [60, 53, 61],
two-parameter diagrams were constructed for reductions of (2.2) that focused on calcium-
conducting MMOs (with δ → 0 and c removed) or dynamic MMOs (with gA = 0 nS and e
decoupled) but not both. Here, we extend that work to the full 4D system.

3.1. The three conductances. In [61], the authors performed careful one-parameter bi-
furcation analyses of (2.2) with δ = 0. We now extend the bifurcation analysis to (2.2) with
δ �= 0. However, since the bifurcation structure of (2.2) is not a primary focus of this work,
we highlight only the salient features for our purposes and leave more detailed discussions to
future work. Using AUTO [15, 16], the bifurcation structure of the lactotroph model (2.2)
was calculated for each of the three conductances gK , gBK , and gA (Figure 3). The L2 norm
refers to either the standard Euclidean norm for equilibria or the L2 norm for periodic orbits.

Figure 3(a) shows the bifurcation structure of (2.2) with gK as the principal continuation
parameter. Here, we are considering bifurcations that arise from variations in the repolarizing
current IK . For small gK , the depolarized equilibrium state (labeled Dep) is attracting (black
curve). The depolarized steady state loses stability at a subcritical Hopf bifurcation (denoted
by HBgK ) at gK ≈ 0.576 nS. Emanating from the Hopf point is the spiking branch (blue
curve), which terminates outside the physiological domain at another subcritical Hopf point.
The s = 1 bursting branch (red) connects with the spiking branch at period doubling (PD)
points, where s denotes the number of small oscillations in the MMO. The s = 2 branch
(green) is born at a saddle node (SN) of periodics at gK ≈ 0.613 nS and is a closed isola of
MMOs. The bursting families s = k, k > 2 (not shown), have the same configuration as the
s = 2 case with ever-decreasing stability plateaus. These closed isolas are all born in SN points
in a neighborhood of the PD point where the spiking and first bursting branches connect (at
gK ≈ 0.617 nS). It has been observed (numerically) that situated between the s = k and
s = k+1 (k ≥ 0) bursting families are isolas of MMOs with signatures that are some mixture
of 1k and 1k+1 patterns (not shown). For additional details we refer the reader to [61], where
the transitions between MMO families are carefully studied in system (2.2) with δ = 0.

Figure 3(b) shows bifurcations of (2.2) with respect to gBK , the biophysical parameter that
controls the BK current and reliably increases c (with increasing gBK) [51]. The bifurcation
structure of gBK has a reversed orientation to the gK bifurcation structure, but the core
elements are the same. There is a curve of (depolarized) equilibria (black curve) that loses
stability at a subcritical Hopf bifurcation (HBgBK

) at gBK ≈ 2.499 nS. Spiking orbits (blue
curve) arise from the Hopf bifurcation and are stable for the smallest gBK values. As gBK is
increased from 0 nS, we encounter the various MMO families. The s = 1 branch (red curve)
connects with the s = 0 branch at PD points, and the remaining bursting families are disjoint,
closed curves. The isolas are born in SN points in a neighborhood of the PD point where the
s = 0 and s = 1 branches connect (at gBK ≈ 2.338 nS). As before, there exist MMO families
with complex signature between each bursting family.
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(a)

(b)

(c)

Figure 3. One-parameter bifurcation structure of (2.2) with Cm = 2 pF and fc = 0.01. (a) gBK = 0.4 nS,
gA = 4 nS. (b) gK = 5 nS, gA = 4 nS. (c) gK = 5 nS, gBK = 0.4 nS. Stable and unstable objects are denoted
by solid and dashed lines, respectively. Insets: transition between spiking and bursting branches.

Figure 3(c) shows a bifurcation diagram of (2.2) with principal continuation parameter gA.
The bifurcations we are treating in this case are due to variations in the subthreshold current
IA. The gA bifurcation structure is inherently different from the gK and gBK structures. In
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MULTIPLE GEOMETRIC VIEWPOINTS OF MMOs 797

the gA case, there is no Hopf bifurcation. The depolarized steady state (black curve) bifurcates
at a saddle node on invariant circle (SNIC) bifurcation well beyond the physiological domain
(not shown), where it meets a hyperpolarized steady state. Like the gBK case, the spiking
orbits (blue curve) are stable for the smallest gA values. The first bursting family (red curve)
arises from the spiking branch at a PD point at gA ≈ 0.316 nS but terminates (at large gA)
at a homoclinic point. The remaining MMO families are disjoint but not closed. In fact, they
all terminate at homoclinics far outside the physiological domain. Moreover, unlike the gK
and gBK cases, there is a maximal MMO family (not shown). This maximal bursting family
has the largest stability plateau and terminates at the SNIC point.

In each panel of Figure 3, there is an inset that shows the transition from the spiking
branch (blue, s = 0) to the first bursting branch (red, s = 1). In each case the spiking branch
loses stability at a PD point, labeled PDgx , where x ∈ {K,BK,A}. The s = 1 branch does
not immediately become stable, and there is a window of complex MMO families. The s = 1
branch eventually becomes stable at the SN point, denoted by SNgx , with x ∈ {K,BK,A}.
This window of complex MMOs sitting between adjacent bursting families vanishes as the
perturbation parameter Cm is decreased. In fact, for sufficiently small Cm (i.e., ε), the adjacent
MMO branches overlap and there is bistability (see [61]).

3.2. The bursting boundaries. Using the one-parameter diagrams (Figure 3), we can now
construct two-parameter diagrams to identify the regions in parameter space where MMOs
exist (Figure 4). We can also use these diagrams to see where the bursting sits relative to
other types of dynamical behavior. We will only concentrate on the boundaries of the bursting
behavior and save refinements of our two-parameter diagrams for future work.

In Figure 4, we show diagrams for the singular limit (ε, δ) → (0, 0) (panels (a), (c),
and (e)) but defer the discussion to section 6. Panel (b) shows the (gK , gBK) diagram for
gA = 4 nS, Cm = 2 pF, and fc = 0.01. In the physiologically relevant domain, there are
three distinct types of behavior: spiking, bursting, and depolarized steady states. The spiking
and bursting regions are separated by the PDgK/PDgBK

curve, which was calculated by a
two-parameter continuation of the PDgK point. Equivalently, this border can be computed
by continuation of the PDgBK

point. In any case, we choose the PD point instead of the
SN point as the spiking/bursting boundary since the PD point is where the spiking branch
loses stability and gives way to trajectories that are mixtures of spikes and bursts. Note
that continuation of the SN point would generate essentially the same boundary. The other
boundary that delimits the MMO regime is the HBgK/HBgBK

curve, which was obtained from
a two-parameter continuation of the HBgK (or HBgBK

) point.
In Figure 4(d), gBK = 0.4 nS, and in Figure 4(f), gK = 5 nS. As in panel (b), the main

types of dynamical behavior in panels (d) and (f) are spiking, bursting, and depolarization.
The spiking and bursting behaviors in (d) are separated by the PDgK/PDgA curve, and in
(f) the border is the PDgBK

/PDgA curve. Moreover, the divide between spiking and depo-
larization arises from continuation of the Hopf bifurcation (the HBgK/HBgA curve in (d) and
the HBgBK

/HBgA curve in (f)). Note in Figures 4(d) and (f) that the 1D gA slice taken in
Figure 3(c) never intersects a Hopf bifurcation.

Thus, using the full system bifurcation analysis, we have identified the regions in parameter
space where MMOs exist. In addition, we can deduce that the bursting waveform broadens
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798 T. VO, R. BERTRAM, AND M. WECHSELBERGER

(a) (b)

(c) (d)

(e) (f)

Figure 4. Two-parameter bifurcation structure of (2.2). In (a) and (b), gA = 4 nS. In (c) and (d),
gBK = 0.4 nS. In (e) and (f), gK = 5 nS. Panels (a), (c), and (e) have Cm = 0 pF and fc = 0, while panels
(b), (d), and (f) have Cm = 2 pF and fc = 0.01. The MMO boundaries are generated by continuing the PD
and Hopf points from section 3.1 (see text for details). The crosses in panels (c) and (d) indicate the positions
of Figures 2(a) and (b). The dashed lines denote the one-dimensional ( 1D) slices taken in Figure 3.

(s → ∞) when the parameters approach the HB boundary. Conversely, the bursting waveform
narrows (s → 0) when the spiking/bursting boundary is approached. In other words, our
diagrams suggest that gA has little effect on the number of subthreshold oscillations and that
s is determined primarily by gK and gBK . We now concern ourselves with the question of
the origin and properties of the MMOs. At the core of our approach is geometric singular
perturbation theory.
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4. The ε-viewpoint. Geometric singular perturbation theory [19, 26] is a geometric ap-
proach to multiscale systems that allows one to predict the full system dynamics based on
lower-dimensional subproblems. The presence of two perturbation parameters, ε and δ, in
(2.2) provides us with multiple pathways along which we may proceed. In this section we
consider a timescale splitting of (2.2) in which there is only one fast variable and everything
else is considered slow. Such timescale splittings have been used to effectively explain neuronal
dynamics [17, 18, 43, 44, 64] and intracellular calcium dynamics [22, 23]. This section also
adds to the currently sparse literature of examples dealing with systems that have more than
two slow variables [22, 23, 63]. The 1-fast/k-slow approach has been applied to 3D reductions
of (2.2) in which k = 2. The addition of a third slow variable does not significantly change
the procedure.

4.1. Geometric singular perturbation analysis. For a fixed δ, system (2.2) is a singularly
perturbed problem with perturbation parameter ε where V is fast and (n, e, c) are “slow.”
The fast system is given by (2.3), and an equivalent “slow” system is given by (2.2) (or (2.4)).
Taking the singular limit ε → 0 on the fast timescale tF gives the 1D layer problem

dV

dtF
= f(V, n, e, c),

dn

dtF
= 0,

de

dtF
= 0,

dc

dtF
= 0,

(4.1)

which is an approximation of (2.2) in which the “slow” processes are assumed to stand still.
A different approximation can be obtained by taking the singular limit ε → 0 in the “slow”
system (i.e., on the intermediate timescale tI) to give the 3D reduced problem

0 = f(V, n, e, c),

dn

dtI
= g1(V, n),

de

dtI
= g2(V, e),

dc

dtI
= δh(V, c).

(4.2)

In the approximation (4.2), the fast variable V is assumed to be so rapid that it adjusts
instantaneously to any changes in state.

Remark 4.1. We note in (4.2) that c operates on a slower timescale than the other vari-
ables. That is, (4.2) itself is a singularly perturbed problem with δ as a small parameter. We
demonstrate in this section what information can be gleaned from the 2-timescale method-
ology with ε as the principal perturbation parameter. In section 6, we acknowledge the full
3-timescale structure of (2.2) and show that we can use the extra timescale to our advantage
to gain greater predictive power.
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800 T. VO, R. BERTRAM, AND M. WECHSELBERGER

The aim of geometric singular perturbation theory is to concatenate the information ob-
tained from the lower-dimensional subproblems (4.1) and (4.2) to provide a unified global
description of (2.2). We start with a bifurcation analysis of the 1D layer problem (4.1). The
set of critical points of (4.1) is typically called the critical manifold, S, defined by

(4.3) S :=
{
(V, n, e, c) ∈ R

4 : f(V, n, e, c) = 0
}
.

If the eigenvalues of the Jacobian fV are uniformly bounded away from the imaginary axis for
some compact subset S0 of S, we call S0 normally hyperbolic. Fenichel theory [19, 26] is the
thread that ties the singular (4.1), (4.2) and nonsingular (2.2) systems together. It guarantees
that normally hyperbolic invariant manifolds of equilibria of the layer problem (4.1) persist as
locally invariant slow manifolds Sε of the full problem (2.2) for sufficiently small ε. Moreover,
the restriction of the flow (2.2) to Sε is a small smooth perturbation of the flow of the reduced
problem (4.2).

For normally hyperbolic critical manifolds the geometric theory is fairly complete. How-
ever, Fenichel theory breaks down at points on the critical manifold where normal hyperbolicity
is lost (such as folds of S due to a zero eigenvalue). Not surprisingly, the dynamics we are
interested in are usually localized around these bifurcations. In our model system, S is a 3D
folded manifold with 2D fold surface, L, defined as the set of equilibria of (4.1) with a zero
eigenvalue:

(4.4) L := {(V, n, e, c) ∈ S : fV (V, n, e, c) = 0} .
The fold surface L divides the critical manifold S into attracting sheets Sa (where fV < 0)
and repelling sheets Sr (where fV > 0). Solutions of (4.1) flow along the 1D fast fibers
{(n, e, c) constant} towards an attracting sheet Sa or away from a repelling sheet Sr.

The critical manifold S is not only the manifold of equilibria of (4.1) but is also the phase
space of the differential-algebraic system (4.2). That is, S is the interface between the layer
and reduced problems, (4.1) and (4.2), respectively. A complete description of the dynamics
of (4.2) is given by projection onto a slow-fast variable base, (V, e, c) say:

−fV
dV

dtI
= fn g1(V, n) + fe g2(V, e) + δfc h(V, c) ≡ Fδ(V, n, e, c),

de

dtI
= g2(V, e),

dc

dtI
= δh(V, c),

(4.5)

where n satisfies (4.3). Desingularization (i.e., a rescaling in time dtI = −fV dt∗I) removes the
singular term at the fold and gives the desingularized system

dV

dt∗I
= Fδ(V, n, e, c),

de

dt∗I
= −fV g2(V, e),

dc

dt∗I
= −δ fV h(V, c).

(4.6)
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We observe that the desingularized system (4.6) is equivalent to (4.5) on the attracting sheets
Sa but has opposite orientation on the repelling sheets Sr due to the time rescaling.

The desingularized system (4.6) has two kinds of singularities: ordinary and folded. Or-
dinary singularities are true equilibria of (2.2), defined by

(4.7) E := {(V, n, e, c) ∈ S : g1(V, n) = g2(V, e) = h(V, c) = 0} .
The ordinary singularities are isolated points on the critical manifold. Folded singularities,
on the other hand, are points along the fold surface L where the right-hand side of the V
equation vanishes. That is, the curve of folded singularities Mδ is defined by2

(4.8) Mδ := {(V, n, e, c) ∈ L : Fδ(V, n, e, c) = 0} .
Note that the folded singularities are special points of (4.5) where there is a cancellation of
a simple zero, allowing trajectories of the reduced problem (4.5) to cross the fold L with
nonzero speed. Such solutions are called singular canards [49, 62, 63], and their persistence
under small perturbations can give rise to complex dynamics such as in [12, 34, 42, 43, 64].

Since there is a curve of folded singularities, the Jacobian of (4.6) evaluated along Mδ

has two linearly dependent rows. Consequently, there will always be a zero eigenvalue. The
eigenvector corresponding to this zero eigenvalue is tangent to Mδ. Generically, the remaining
two eigenvalues have nonzero real part. We classify the folded singularities Mδ, using their
nonzero eigenvalues, as equilibria of (4.6). There are three generic types: Those with real
eigenvalues of opposite sign are called folded saddles. Folded singularities that have two
negative (or positive) real eigenvalues are called folded nodes. Folded foci are defined as
points of Mδ with complex eigenvalues.

The boundary between folded saddles and folded nodes is a degenerate singularity called
folded saddle node (FSN). We are interested in the FSN points because they are the organizing
centers for delay phenomena (we refer the reader to [31] for details of FSN singularities). In
particular, an FSN of type II occurs when there is a transcritical bifurcation of ordinary and
folded singularities. That is, the set of FSN II points is precisely the set of singular Hopf
bifurcations [1, 2, 20]:

(4.9) ESHB := {(V, n, e, c) ∈ E : fV (V, n, e, c) = 0} .
An FSN of type I corresponds to the coalescence of a folded saddle and a folded node.

Remark 4.2. There are two ways in which an FSN I can occur in (4.6). In the first scenario,
an FSN I may occur at a fold in the curve of folded singularities Mδ. Alternatively, an FSN I
bifurcation is associated with the change in sign of an eigenvalue when a special curve crosses
the fold surface L:

(4.10) M I
δ := {(V, n, e, c) ∈ L : g1 = δG1(V, n, e, c, δ), g2 = δG2(V, n, e, c, δ)} ,

where the functions G1(V, n, e, c, δ) and G2(V, n, e, c, δ) are computable. The geometric inter-
pretation of (4.10) will become clear in section 6.1, where we make use of the full 3-timescale
machinery.

2The δ subscript in Fδ and Mδ is a notational convenience used to indicate the δ dependence and does not
denote a derivative.
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Both FSN singularities are common in applications. FSN II singularities have been iden-
tified in several neural models [43, 44, 53, 60] and are recognized as mechanisms for MMOs
[20]. FSN I singularities have turned up, for instance, in the forced van der Pol oscillator [50],
where they mark the onset of complex and chaotic dynamics. More recently, FSN I points
have been observed in the 3D reduction of (2.2) in which the A-type current is removed [53].

4.2. Singular orbits and canards. As we saw in section 3.2, the attractor of system (2.2)
can be in one of three states: a steady depolarized state, a bursting state, or a spiking state.
We now use our analysis from section 4.1 to construct singular approximations of (2.2) in
order to understand the transient and long-term evolution for each of the three attractors.
For convenience, we introduce some notation. We denote solutions of the fully perturbed
problem (2.2) by Γ(ε,δ). We write Γx

(0,δ), x ∈ {F, I} to denote trajectories of the fast subsystem

(4.1) and “slow” subsystem (4.2) written over the intermediate timescale tI . The singular
orbits we construct take the form

ΓF
(0,δ) ∪ ΓI

(0,δ),

where ΓF
(0,δ) represents fast jumps in V and ΓI

(0,δ) is the “slow” flow along S.

Figure 5 illustrates the 1-fast/3-slow singular orbit construction for equilibria and peri-
odic orbits. In each case, the folded singularities Mδ (red), c-nullcline (dashed, black) and full
system trajectory Γ(ε,δ) (black) are plotted. When the attractor of the system is a depolarized
steady state (panels (a) and (b)), the singular trajectory is simple, consisting of a fast and
a “slow” orbit segment. The fast evolution ΓF

(0,δ) brings the trajectory onto an attracting
sheet of the critical manifold S. On S, the layer flow predicts trivial dynamics. The appro-
priate approximation, then, is the reduced system (4.6), which prescribes a nontrivial flow
on S. We observe that the “slow” orbit segment ΓI

(0,δ) converges to the equilibrium point
E. The full system trajectory Γ(ε,δ) then shows that the singular orbit is a suitable predictor
of the transient evolution to the equilibrium. More precisely, since the singular trajectories
stay in normally hyperbolic regions of S, the full system trajectory Γ(ε,δ) is simply an O(ε)

perturbation of the singular attractor ΓF
(0,δ) ∪ ΓI

(0,δ) (by Fenichel theory).
Parameter variations shift the position of the steady state on S. There eventually comes

a point when the equilibrium crosses the fold surface L and moves from an attracting sheet
Sa to a repelling sheet Sr. When the equilibrium crosses the fold surface L, we observe a
transcritical bifurcation of an ordinary singularity with a folded singularity. Thus, we have
an FSN II bifurcation leading to the birth of limit cycles [20]. Figures 5(c) and (d) show that
the 1-fast/3-slow singular attractor is composed of a fast jump from a folded node together
with a “slow” flow that returns the orbit to the folded node. That is, we have the singular
limit representation of a canard-induced (dynamic) MMO [9].

Fortunately, the main results of canard theory in the case of two slow variables (see section
6.4) carry over to the case of k slow variables, where k ≥ 2 [63]. Thus, we can supplement our
understanding by using a well-known result from the 2-timescale theory. Namely, the maximal
number of small amplitude oscillations, smax, of an MMO of the full system can be bounded
for sufficiently small perturbations [49, 62, 9]. This bound smax depends on the eigenvalue
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(a) (b)

(c) (d)

(e) (f)

Figure 5. Singular orbit construction for equilibria (top row) and periodic orbits (middle and bottom rows)
projected onto the (V, c) plane (left column) and the (V, e) plane (right column). For (a) and (b), gK = 5 nS,
gBK = 3 nS, and gA = 10 nS. The full system trajectory has Cm = 2 pF and fc = 0.01. For panels (c) and
(d), gK = 3 nS, gBK = 0.4 nS, and gA = 8 nS. Panels (e) and (f) have gK = 5 nS, gBK = 0.4 nS, and
gA = 8 nS. The solution of (2.2) in panels (c)–(f) has Cm = 0.2 pF and fc = 0.001.

ratio μ = λw/λs (where |λw| < |λs|) of the folded node:

(4.11) smax :=

⌊
μ+ 1

2μ

⌋
.
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In Figures 5(c) and (d), we find that the folded node of the singular attractor is O(δ) close to
an FSN I point M II

δ . This means the eigenvalue ratio is μ = O(δ) and smax is large. However,
we typically do not see the maximal number of subthreshold oscillations. Moreover, the small
oscillations occur some distance away from the folded node. This can again be accounted
for by properties of the folded node. Figure 5(c) shows that the singular MMO approaches
the folded node along its weak eigendirection, vw. The weak eigendirection serves as a linear
approximation to the axis of rotation for the small oscillations. Thus, the small oscillations of
trajectories close to vw are not observed until the trajectory is some maximal distance from
the folded node and is repelled. In light of this canard theory, we can easily see that the
offset between singular and nonsingular trajectories around the folded node (most prominent
in Figure 5(c)) is due to the oscillatory behavior.

Figure 5(d) shows that the folded node is not the only region where there is disparity
between Γ(ε,δ) and its singular counterpart. At the “slow”-fast transition near e ≈ 0.4, the
full system trajectory deviates significantly from the predicted path before it realigns with
the “slow” orbit segment. To understand the discrepancy, we must consider the geometry of
the critical manifold more carefully. Recall that S is folded with fold surface L. In fact, L
itself is folded with a curve, C, of cusp bifurcations, where different branches of L coalesce
(not shown). This creates an unusual scenario in a neighborhood of C, where trajectories
may either encounter L with ever-shortening fast up-jumps or they may avoid L entirely by
circumventing C (as in Figure 5(f)). The scenario depicted in Figure 5(d) shows that the
singular orbits are close to the curve of cusps (since ΓF

(0,δ) is so short), and consequently,
the full system trajectories exhibit slow passage effects associated with a cusp. Currently,
cusp singularities in slow/fast systems have been treated only for the case of a single cusp
point [7], whereas our system presents a whole curve of them. Numerically, we observe that
small perturbations to C change the geometry of the trajectory significantly (as highlighted
by Figures 5(d) and (f)), but the precise details are unknown and left to future work.

In section 2, we distinguished between two types of MMOs: dynamic (where the slow vari-
ations in the calcium drive the bursts) and calcium-conducting (where the calcium oscillations
follow the burst, rather than drive it). As far as the 1-fast/3-slow decomposition is concerned,
there is no intrinsic difference between dynamic MMOs and calcium-conducting MMOs. In
both cases, the singular orbit is a concatenation of “slow” and fast segments that join contin-
uously at a folded node. The main observation is that dynamic MMOs have μ = O(δ), while
calcium-conducting MMOs have μ above some threshold. Figure 5(e) suggests that the singu-
lar orbit is not a very good predictor of the full system calcium-conducting MMO. Figure 5(f)
counterbalances this and reveals that the (V, c) projection is a special projection in which the
approximation error is most pronounced. As before, Γ(ε,δ) and ΓF

(0,δ) ∪ ΓI
(0,δ) are separated

by an O(ε) distance except near the folded node and the cusp (which is circumvented in this
case).

The other attractor we need to consider in our 1-fast/3-slow analysis is the spiking orbit
(not shown). Once again, properties of folded nodes can be used to tell the difference between
the spiking attractor and the MMO attractor. The funnel of a folded node is the 2D trapping
region of S that filters all solutions into that folded node. It is delimited by the strong canard
(the unique trajectory γ0 tangent to the strong eigendirection) of the folded node and by the
fold surface L. Each folded node of Mδ possesses a 2D funnel, and together, these form a
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3D funnel volume for Mδ. Singular orbits that land inside the funnel volume on their fast
upstroke will jump at one of the folded nodes of Mδ and so correspond to MMOs. Singular
orbits that land outside the funnel volume on their fast upstroke will return to L at either a
regular jump point or at a folded focus, which has no canards. In that case the singular orbit
is a relaxation oscillation and corresponds to spiking trajectories of the full system.

Remark 4.3. Note that the funnel of the folded nodes of Mδ is a theoretical construct
that loses practical utility as the number of slow variables increases. The concept is truly
effective only in the case of two slow variables where Mδ is a single point, the funnel of Mδ

is a 2D region, and everything can be visualized (see section 6.5). In practice, a simpler way
of identifying a spiking trajectory is to monitor Fδ and the eigenvalues of (4.6) at the upper
jump point of the singular orbit. More precisely, if Fδ �= 0 at the upper jump point, then the
singular orbit hits the fold surface at a regular jump point. Alternatively, if Fδ = 0 but the
eigenvalues of (4.6) are complex, then the singular orbit jumps at a folded focus.

We have now computed the main objects essential to a standard 2-timescale geometric
singular perturbation analysis. We point out that additional information can be obtained from
the singular analysis, but within the scope of this paper, we have extracted the chief ingre-
dients. In the 1-fast/3-slow splitting, the bursting behavior is the result of canard dynamics
associated with a folded node singularity [49, 62, 9, 14]. This 1-fast/3-slow decomposition is
somewhat new in the sense that only relatively recently has it become an established method
in mathematical neuroscience for understanding bursting phenomena. Early work on the anal-
ysis of neural bursters used an alternative slow/fast analysis. The next section reviews the
main components of this more traditional approach.

5. The δ-viewpoint. The classic slow/fast analysis, pioneered by [40], treats δ as the
principal perturbation parameter. It has been used to great effect in unravelling the dynamics
of plateau or square wave bursting in pancreatic islets [5], trigeminal motoneurons [10], and
neonatal CA3 hippocampal principal neurons [46]. The classical slow/fast splitting is also
useful in explaining how pseudo-plateau bursting can be converted to plateau bursting [54].
Here, we review the classic approach and apply it to our system (2.2). In this particular
viewpoint, the system is partitioned such that c is the sole slow variable and everything else
is relatively fast [4, 32, 38]. In the language of geometric singular perturbation theory, (2.2)
is a singularly perturbed problem with small perturbation parameter δ and fixed nonzero ε.

5.1. Geometric singular perturbation analysis. When using δ as the perturbation pa-
rameter, system (2.2) can be considered to have three fast variables (V, n, e) and one slow
variable c. In this 3-fast/1-slow analysis, the equivalent “fast” and slow systems are given by
(2.2) (or (2.3)) and (2.4), respectively. The singular limit δ → 0 in (2.2) gives the 3D layer
problem

ε
dV

dtI
= f(V, n, e, c),

dn

dtI
= g1(V, n),

de

dtI
= g2(V, e),(5.1)
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806 T. VO, R. BERTRAM, AND M. WECHSELBERGER

dc

dtI
= 0,

in which the slow variable c is assumed to be so slow that it is essentially fixed. Another
approximation of (2.2) assumes the “fast” processes are extremely rapid compared with the c
dynamics. By taking the singular limit δ → 0 in (2.4), i.e., on the slow timescale tS, we have
the 1D reduced problem

0 = f(V, n, e, c),

0 = g1(V, n),

0 = g2(V, e),

dc

dtS
= h(V, c),

(5.2)

where (V, n, e) adjust instantaneously to changes in the slow variable c.
Remark 5.1. Obviously, the layer problem (5.1) of the 3-fast/1-slow method is another

singularly perturbed problem with small parameter ε. In fact, it is precisely the 3D model
reduction of (2.2) dealt with in [55] and subsequent studies. Our objective here is to illustrate
the strengths and weaknesses of the 2-timescale method with perturbation parameter δ. As
such, we defer discussion of the full 3-timescale structure to section 6.

To understand the dynamics of the simpler subsystems (5.1) and (5.2), we proceed with
a bifurcation analysis, as usual. The critical manifold of the 3D layer problem is the set of
equilibria of (5.1), defined by

(5.3) Z :=
{
(V, n, e, c) ∈ R

4 : f(V, n, e, c) = g1(V, n) = g2(V, e) = 0
}
,

which is a 1D subset of the critical manifold S. Often, we deal with critical manifolds Z which
are folded curves with isolated fold points L defined by

(5.4) L :=

⎧⎨
⎩(V, n, e, c) ∈ Z : det

⎛
⎝ fV fn fe
g1V g1n 0
g2V 0 g2e

⎞
⎠ = 0

⎫⎬
⎭ .

In the classic slow/fast analysis, Z is known as the “z-curve” and the fold points L are
called the “knees.” The other generic codimension one bifurcation we may encounter is the
Andronov–Hopf bifurcation. A standard analysis of the eigenvalues of (5.1) shows that the
Hopf bifurcation is given by the condition

(5.5) ZH := {(V, n, e, c) ∈ Z : fV = εH(V, n, e, c, ε)} ,

where H(V, n, e, c, ε) can be computed explicitly. Note that there are other Hopf bifurcations
on Z, but these have been found (numerically) to occur on the repelling branch Zr of Z, and
so we will concentrate only on those Hopfs that are O(ε) close to the fold surface L. The
criticality of the fast subsystem Hopf typically differentiates between plateau and pseudo-
plateau bursting [47, 39, 56, 54]. In our model system, ZH has always been found (numerically)
to be subcritical so that the associated bursts are of pseudo-plateau type.
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MULTIPLE GEOMETRIC VIEWPOINTS OF MMOs 807

System (5.2) describes the slow motions on the restricted phase space Z. A complete
description of (5.2) is obtained by projection:

(5.6)
d

dtS

⎛
⎝V
n
e

⎞
⎠ = −

⎛
⎝ fV fn fe
g1V g1n 0
g2V 0 g2e

⎞
⎠

−1⎛
⎝fch

0
0

⎞
⎠ =

1

detA

⎛
⎝−g1ng2e

g1V g2e
g1ng2V

⎞
⎠ fch,

where A is the matrix appearing in (5.4). We note that the slow flow along Z is singular at
the folds L . For our model, the only singularities of the slow subsystem are the equilibria E
of the fully perturbed problem. However, it is conceivable that there are discrete parameter
values, g∗ say, where the full system equilibrium coincides with a fold point L and a singular
Hopf bifurcation may occur [39]. That is, it is possible that the set

L ∩ E = {(V, n, e, c) ∈ L : h(V, c) = 0}

is nonempty and a canard point of (5.6) exists, making canard solutions feasible in an expo-
nentially small parameter window localized around g∗. Despite this, such canard points have
no bearing on the full system dynamics since they have always been found (numerically) to oc-
cur on the repelling branch of Z. This is due to the geometric structure of Z wherein the Hopf
point ZH occurs at a more depolarized voltage level than the fold points L . Consequently,
any canard points must occur on Zr and the singular attractor of (5.1) and (5.2) never visits
the canard point. As such, (2.2) has no (observable) canard dynamics with respect to the
slow-fast decomposition (5.1)–(5.2) and the oscillatory behavior cannot be due to a folded
node. The oscillation mechanism must be encoded, then, in the layer problem (5.1).

5.2. Singular orbits and bifurcations. We can now proceed to construct singular orbits
as in the previous section to extract useful information about the dynamics. The singular
orbits

ΓI
(ε,0) ∪ ΓS

(ε,0)

are continuous concatenations of solutions of (5.1) and (5.2), denoted by ΓI
(ε,0) and ΓS

(ε,0),

respectively. Figure 6 shows the 3-fast/1-slow singular orbit construction for equilibria and
for dynamic MMOs.

In Figures 6(a) and (b), the equilibrium E of (2.2) sits on Za. Initial conditions generically
start away from Z, and so the first part of the transient evolution is a rapid motion ΓI

(ε,0)

towards the critical manifold Z. Due to the slow/fast structure of (5.1), the “fast” orbit
segment initially overshoots Z before settling down to it. The slow flow ΓS

(ε,0) along Za brings

the trajectory to E before it can reach either the Hopf point ZH or the fold point L . Since the
singular orbit stays away from bifurcations of the “fast” and slow subsystems, Fenichel theory
guarantees that the full system trajectory Γ(ε,δ) is an O(δ) perturbation of ΓI

(ε,0)∪ΓS
(ε,0). Note

that the asymptotic matching in this case occurs at Z, where the reduced problem (outer
solution) and layer problem (inner solution) overlap (cf. Figures 5(a) and (b)).

Parameter variations move E through ZH , and the attractor eventually becomes a limit
cycle. The singular dynamic MMO attractor is a hysteresis loop that alternates between the
attracting branches of Z (Figures 6(c) and (d)). The singular orbit jumps at the fold point
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808 T. VO, R. BERTRAM, AND M. WECHSELBERGER

(a) (b)

(c) (d)

Figure 6. Singular orbit and one-parameter bifurcation diagram (with bifurcation parameter c) for equilibria
(top row) and dynamic MMOs (bottom row). Parameter values in (a) and (b) are gK = 5 nS, gBK = 3 nS, and
gA = 10 nS with Cm = 2 pF and fc = 0.01 for Γ(ε,δ) (cf. Figures 5(a) and (b)). In (c) and (d), gK = 3 nS,
gBK = 0.4 nS, and gA = 8 nS with Cm = 0.2 pF and fc = 0.001 for Γ(ε,δ) (cf. Figures 5(c) and (d)). In
both cases, there is an unstable spiking branch (blue, dashed) emanating from the subcritical Hopf bifurcation
of (5.1).

L − and also at the (subcritical) Hopf bifurcation ZH . The inset of Figure 6(c) shows that the
full system trajectory Γ(ε,δ) does not immediately jump when it passes through ZH . Instead,
there is a long delay in which the trajectory traces out Zr before it eventually displays small
amplitude oscillations and jumps to a different branch of Z. Thus, we have a Hopf bifurcation
of the layer problem (5.1) that is unrelated to equilibria of the full system (2.2), which causes
delayed oscillations. Hence, according to the 3-fast/1-slow analysis, the oscillation mechanism
of dynamic MMOs is a delayed Hopf bifurcation [3, 14, 21].

The flow of (2.2) in a neighborhood of ZH can be understood in very simple terms. For
δ = 0, the variable c is a fixed parameter, but for 0 < δ � 1, c is a slow variable that drifts
through the vicinity of the Hopf bifurcation. Near the Hopf, we can write

Z = Za ∪ ZH ∪ Zr,

where Za and Zr denote the parts of Z with eigenvalues having negative and positive real
parts, respectively. Trajectories that approach Za a distance O(1) from the Hopf bifurcation
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MULTIPLE GEOMETRIC VIEWPOINTS OF MMOs 809

are attracted to and oscillate around Za. Exponential contraction of the system means that
the trajectory becomes exponentially close to Za on the slow timescale as it passes close to
ZH . As the trajectories pass over to Zr, the layer equations undergo a Hopf bifurcation, but
in analytic systems, the trajectories remain close to Zr for O(1) times. That is, trajectories
remain close to Zr for an O(1) distance after the Hopf bifurcation ZH has occurred. The
delay occurs because the trajectory is exponentially close to Z and must be repelled before it
can follow limit cycles of the layer problem. Furthermore, the slow/fast analysis can identify
buffer points, which determine the maximal distance orbits can trace Zr before they must
leave Zr and oscillate [36, 37, 3]. Typically, the small amplitude oscillations associated with
the passage through the Hopf are below a visible threshold, resulting in trajectories that are
virtually indistinguishable from the manifold Z.

Remark 5.2. Apart from the fast subsystem Hopf point, the other bifurcation point in
the singular orbit is the fold point L −. The behavior of the full system trajectory Γ(ε,δ) in
a neighborhood of L − is that of classic fold behavior [30, 50]. More specifically, consider a
section perpendicular to the fast direction at V = −40, say. The full system trajectory Γ(ε,δ)

and the layer solution that jumps from L − pass through this section O(δ2/3) close to each
other. At an O(1) distance from the singular points ZH and L −, the full system trajectory
is O(δ) close to ΓI

(ε,0) ∪ ΓS
(ε,0).

5.3. The distinction between MMO types. As noted in Figure 6(c), the singular dynamic
MMO orbit is a hysteresis cycle that jumps at the thresholds L − and ZH , where L − sits to
the left of ZH in the (V, c) projection. Under variation of the conductances (gK , gBK , gA), the
positions of the fold point L − and the Hopf point ZH change. We immediately see an issue:
what happens when L − sits to the right of ZH so that the bistable region of Z disappears?
We illustrate the problem in Figure 7.

Figure 7 is a prototypical example of a scenario in which the fold point L − sits to the right
of the Hopf point ZH . The attractor Γ(ε,δ) of the fully perturbed problem (2.2) sits in the c-
interval between the two bifurcation points. Transients of the fully perturbed problem closely
trace the critical manifold Z until they encounter either L − or ZH , at which point they start
bursting (Figure 7(a)). The transient bursting exhibits differing numbers of small amplitude
oscillations, depending on the position of the trajectory in phase space. An explanation of this
dynamical behavior using geometric singular perturbation theory requires more work than in
previous scenarios.

For our transient singular orbit construction we can, without loss of generality, take an ini-
tial condition on the curve Za. Transients move along Za (described by the reduced problem
(5.2)) until they encounter the fold point L − or the Hopf point ZH (where normal hyper-
bolicity breaks down). At the fold point L −, the layer flow description (5.1) takes over and
it generates a stable MMO, Γ1

(ε,0), with fixed c. Similarly, at ZH the layer problem, (5.1)

produces a stable MMO, Γ2
(ε,0), with c fixed at ZH (Figures 7(b) and (c)). We then find that

for every fixed c value between ZH and L −, the attractor of (5.1) is an MMO (not shown). In
short, when there is no bistability in Z, the 3-fast/1-slow splitting predicts a torus of MMOs
of calcium-conducting type between ZH and L −.

Remark 5.3. Recall from section 4.2 that there is a curve of cusp bifurcations in the
1-fast/3-slow splitting, where the trajectories deviate significantly from the singular limit
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(a)

(b) (c)

Figure 7. Geometric configuration of Z in which there is no bistability for gK = 5 nS, gBK = 0.4 nS, and
gA = 8 nS (cf. Figures 5(e) and (f)). In (a) the transient evolution to the attractor of (2.2) with Cm = 0.2 pF,
fc = 0.0001 exhibits a variety of bursts. In (b) there is a c-interval of stable singular MMOs bounded by Γ1

(0,0)

and Γ2
(0,0) (see text). The attractor of the fully perturbed problem Γ(ε,δ) for Cm = 0.2 pF, fc = 0.001 lies

somewhere in this c-interval. (c) The (V, e) projection shows a clearer picture of the periodic orbits.

predictions. Figure 7(c) shows that the cusp continues to play a role in shaping the trajectories.
However, in the 3-fast/1-slow setting, the cusp cannot be detected, and hence the disparity
between singular and nonsingular orbits cannot be explained.

Within this torus of stable singular MMOs, there is a unique singular attractor that the
full system attractor Γ(ε,δ) converges to in the singular limit δ → 0. To locate this singular
attractor, we use averaging. A rigorous discussion of the averaging method is presented
in [45], and we also refer the reader to [4, 6] for examples of the method applied to singular
perturbation problems. In the context of our lactotroph model (2.2), the autonomous averaged
equation (to leading order) for the slow motions is

(5.7)
dc

dtI
= δ

1

T (c)

∫ T (c)

0
h(V(ε,0)(s, c), c) ds ≡ δh(c),

where V(ε,0)(t, c) is the V -coordinate of the MMO attractor of (5.1) with period T (c) for a

fixed c between ZH and L −. We are interested in equilibria of (5.7), where there is no net
drift in c.

Figure 8 shows how the averaging method can be used to approximate the MMO attractor
of (2.2). In panel (a), the averaged vector field h(c) is plotted over the c-interval between
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MULTIPLE GEOMETRIC VIEWPOINTS OF MMOs 811

(a)

(b) (c)

Figure 8. The averaging method for the parameter set given in Figure 7. (a) The function h(c) plotted over
the c-interval between ZH and L − shows that (5.7) has a unique stable equilibrium. (b) Bifurcation structure
of the layer problem (5.1). The maxima and minima of the various MMO families are shown. The spiking
family comes from the Hopf ZH , and the MMO families with s ≥ 1 are born nearby. (c) The singular averaged
MMO attractor (red, ΓF

(ε,0)) is a good approximation of the full system trajectory Γ(ε,δ).

ZH and L −. We can immediately see that the averaged equation (5.7) has a single stable
equilibrium at c ≈ 0.277 μM. We then use c in the layer problem (5.1) to generate a stable
singular MMO. Panel (b) shows the bifurcation structure of (5.1) with respect to c. The
critical manifold Z is unstable over the c-interval between the Hopf bifurcation ZH and the
lower fold point L −. Emanating from the Hopf point is the unstable spiking branch (labeled
10), which terminates in homoclinic points on the unstable branch of Z. There exist stable
MMO families in the c-interval between ZH and L −. These are computed in AUTO using c
as the principal continuation parameter.

In Figure 8, the MMO family for s = 1 (green) has a small window of stability and
terminates at homoclinics. The adjacent MMO branch for s = 2 (blue) is a closed isola
of orbits. Similarly, the s = 3 branch (red) is an isola of MMOs with a stability window
adjacent to the stability window of the s = 2 branch. Further calculations show that there
are additional MMO families within the c-interval between the Hopf ZH and the fold point
L −. The number of subthreshold oscillations s increases as c tends towards ZH . The singular
averaged attractor, ΓF

(ε,0), is then superimposed on the bifurcation diagram in Figure 8. We

observe that ΓF
(ε,0) lies in the stable window of the 13 MMOs and that Γ(ε,δ) itself is a 13

MMO. Moreover, since the singular orbit ΓF
(ε,0) with c = c never runs into any singularities,

Fenichel theory holds and Γ(ε,δ) is an O(δ) perturbation of the averaged singular orbit. In this
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812 T. VO, R. BERTRAM, AND M. WECHSELBERGER

way, we can use the singular limit δ → 0 to predict the full system dynamics.
Variations in the conductances change the bifurcation structure of (5.1). By choosing

parameter sets closer to the spiking/bursting boundary (see Figure 4), the MMO families are
pushed to lower c values. That is, the MMO branches with large s are squeezed into ever-
decreasing neighborhoods of ZH . The averaged singular MMO moves through these MMO
families towards the fold point L − and thus traverses the MMOs with smaller s. Eventually,
the s = 0 branch itself becomes stable and the averaged MMO trajectory lies in the stability
plateau of the spiking family.

Thus, the 3-fast/1-slow analysis can be used to explain the main dynamical behaviors
of (2.2): depolarized steady states, (dynamic and calcium-conducting) MMOs, and spiking.
In particular, the bifurcation structure of Z provides a simple test for dynamic or calcium-
conducting MMOs. A Hopf bifurcation in the layer problem explains the oscillation mechanism
of dynamic MMOs. For calcium-conducting MMOs, however, the singular analysis does not
provide any clear oscillation mechanism.

6. The 3-timescale problem. So far we have taken two different approaches to the analy-
sis of the 3-timescale problem (2.2). In the 1-fast/3-slow approach, we found that the MMOs
were due to canards, which provided a strong theoretical framework for explaining the de-
lay phenomena. However, the canard theory had no way of distinguishing between dynamic
MMOs and calcium-conducting MMOs. Then, in the 3-fast/1-slow approach, we had a very
simple criterion to differentiate between the two MMO types based on the geometric config-
uration of Z, but we did not have a clear oscillation mechanism. In each case, we alluded
to the presence of the third timescale (but made no use of it). In this section, we finally
acknowledge the full 3-timescale structure of (2.2) and perform a geometric singular pertur-
bation analysis. Analyses of 3-timescale problems are currently rare [25, 28, 29, 52], and a
rigorous theoretical framework has yet to be developed. Regardless, we demonstrate that our
approach is effective for dealing with 3-timescale problems. In particular, we show that the
3-timescale analysis combines the information from 2-timescale methodologies, affording us
greater predictive power than any of the 2-timescale approaches.

6.1. Geometric singular perturbation analysis. Recall that the lactotroph model (2.2) is
a 3-timescale problem with fast variable V , intermediate variables (n, e), and slow variable
c. We have observed in the transient evolution of (2.2) that the fastest timescale initially
dominates the evolution. The slower timescales come into effect when the trajectory enters
some special neighborhood of phase space (either S or Z). With this in mind, we proceed to
define the singular subsystems of the 3-timescale problem in the order in which we expect to
encounter them.

The double limit (ε, δ) → (0, 0) on the fast timescale gives the fast subsystem, which is the
approximation of (2.2) in which the intermediate and slow variables (n, e, c) move so slowly
(compared to V ) that they are fixed. The fast subsystem is precisely the layer problem (4.1)
of the 1-fast/3-slow approach. The double limit on the intermediate timescale tI gives the 2D
intermediate subsystem

0 = f(V, n, e, c),(6.1)
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MULTIPLE GEOMETRIC VIEWPOINTS OF MMOs 813

dn

dtI
= g1(V, n),

de

dtI
= g2(V, e),

dc

dtI
= 0,

an approximation of (2.2) in which V is sufficiently rapid that it immediately responds to
changes in state and c is sufficiently slow that it has no movement. Note that (6.1) is the
δ → 0 limit of the 3D reduced problem (4.2) of the 1-fast/3-slow splitting. It is also the
ε → 0 limit of the 3D layer problem (5.1) of the 3-fast/1-slow decomposition. Thus, we can
interpret the intermediate subsystem (6.1) as the interaction between the 1-fast/3-slow and
3-fast/1-slow analyses. What that means, as we will show, is that all the geometric structures
encountered previously persist in the double limit.

We inherit the 3D critical manifold S (and its 2D fold surface L), which serves as a manifold
of equilibria of the fast subsystem and as the phase space of the intermediate subsystem (6.1).
Projection and desingularization of (6.1) give a complete description of the nontrivial flow
on S:

dV

dt∗I
= F0(V, n, e, c) ≡ fn g1 + fe g2,

de

dt∗I
= −fV g2(V, e),

dc

dt∗I
= 0,

(6.2)

where n is determined by (4.3). The desingularized system (6.2) inherits the curve of folded
singularities M0, where M0 is simply the δ → 0 limit of Mδ:

(6.3) M0 := {(V, n, e, c) ∈ L : F0(V, n, e, c) = 0} .
The ordinary singularities E of (4.6) do not persist as singularities of (6.2). The δ → 0
limit frees the system from the constraint h = 0, and the δ → 0 analogue of the ordinary
singularities is in fact the critical manifold Z of the 3-fast/1-slow splitting.

Remark 6.1. The persistence of the curve of folded singularities in the desingularized sys-
tem (6.2) gives us access to canard theory, which in turn provides an oscillation mechanism for
the MMOs. Moreover, the presence of the critical manifold Z in (6.2) provides the geometric
information needed to distinguish between dynamic MMOs and calcium-conducting MMOs.

The critical manifold Z forms a 1D subset of the critical manifold S. As such, we expect
bifurcations of (6.2) at bifurcations of (4.1), i.e., at the fold surface L. This can be easily
verified by computing the determinant of the Jacobian of (6.2) evaluated along Z:

det

(
∂V (F0) ∂e(F0)

∂V (−fV g2) ∂e(−fV g2)

)∣∣∣∣
Z
= −fV fn g1V g2e,

which has opposite sign to fV . In particular, along the fold surface L, system (6.2) possesses a
zero eigenvalue. Thus, the attracting branch Za of Z is the subset of Z embedded in Sa along
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which the eigenvalues have negative real part. The repelling branch Zr of Z is the subset of
Z (embedded in either Sa or Sr) along which at least one eigenvalue has positive real part.3

The curve of folded singularities M0 consists of folded nodes, saddles, and foci. The folded
SN points can be located by examining the Jacobian determinant of (6.2) evaluated along M0:

det

(
∂V (F0) ∂e(F0)

∂V (−fV g2) ∂e(−fV g2)

)∣∣∣∣
M0

= g2 (F0efV V − F0V fV e) .

It is clear that there are two ways in which an FSN of type I may occur: either F0efV V −
F0V fV e = 0 or g2 = 0. The first case corresponds to actual folds in M0. In the case g2 = 0,
the condition F0 = 0 simplifies to g1 = 0, and thus the corresponding FSN I points are defined
by

(6.4) M I
0 := M0 ∩ Z = {(V, n, e, c) ∈ Z : fV (V, n, e, c) = 0} .

Geometrically, the set M I
0 has two interpretations. First, the FSN I points M I

0 represent
direct interactions between geometric structures of the 1-fast/3-slow (M0) and 3-fast/1-slow
(Z) analyses, respectively. Second, the FSN I points M I

0 correspond to crossings of the critical
manifold Z over the fold surface L.

Remark 6.2. With the interpretation ofM I
0 as crossings of Z over L in mind, the geometric

meaning of (4.10) is now clear. The curve defined by

Zδ := {(V, n, e, c) ∈ S : g1 = δG1, g2 = δG2}
is an O(δ) perturbation of the critical manifold Z.

We note that the points of M I
0 are the ε → 0 limit of the Hopf bifurcation points ZH ,

defined by (5.5) encountered in the 3-fast/1-slow layer problem. Moreover, M I
0 is the δ → 0

counterpart of the FSN I points M I
δ , defined by (4.10), in the 1-fast/3-slow splitting (cf. [52]).

We further note that, as far as (6.2) is concerned, the FSN II points (4.9) are codimension 2
bifurcations (in fact, they are special cases of FSN I points M I

0).
The slow subsystem approximation of (2.2) assumes that (V, n, e) are so rapid when com-

pared with c that they immediately settle down to their steady state under changes in c. The
slow subsystem is obtained from the double limit (ε, δ) → (0, 0) of the slow system (2.4) and
is identical to (5.2). As before, the critical manifold Z is both the manifold of equilibria of
(6.2) and the phase space of the slow subsystem, and the fold points L are singular points
in the slow flow (but they are not singular points of the intermediate flow (6.1)). The only
equilibria of (5.2) are the true equilibria E of (2.2).

6.2. Transients and the depolarized steady state. As before, we use our geometric singu-
lar perturbation analysis to unravel the dynamics of (2.2). We now write Γx

(0,0), x ∈ {F, I, S},
to denote solutions of the fast, intermediate, and slow subsystems (4.1), (6.1), and (5.2),
respectively. Our singular orbits take the form

ΓF
(0,0) ∪ ΓI

(0,0) ∪ ΓS
(0,0).

As usual, solutions of the fully perturbed problem are denoted by Γ(ε,δ).

3In principle, we should also consider Hopf bifurcations along Z. Fortuitously, numerical studies show that
within the physiological domain, Hopf bifurcations of (6.2) usually occur on the repelling sheet Zr.
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(a) (b)

Figure 9. Singular orbit construction in the case of a stable equilibrium projected onto the (a) (V, c) plane
or (b) (V, e) plane. The parameters are gK = 5 nS, gBK = 3 nS, and gA = 10 nS (cf. Figures 5 and 6, panels
(a) and (b)). The solution Γ(ε,δ) of (2.2) with Cm = 2 pF and fc = 0.01 is approximated by solutions of the fast
subsystem (red, ΓF

(0,0)), intermediate subsystem (green, ΓI
(0,0)), and slow subsystem (blue, ΓS

(0,0)). The critical
manifold Z (blue) and folded singularities M0 (red) are also shown.

Figure 9 shows the singular orbit construction in the case when system (2.2) has a stable
depolarized steady state. We first identify the main objects from our geometric singular
perturbation analysis: the critical manifold Z intersects the curve of folded singularities M0

at the FSN I point M I
0. This marks the switch from an attracting branch to a repelling

branch (of both S and Z). Both Z and M0 are folded. The fold point L in Z (not labeled) at
c ≈ 0.355 μM occurs when an eigenvalue changes sign, so that there is a saddle on one side and
an unstable node on the other. The fold in M0 (also not labeled) at c ≈ 0.421 μM is another
FSN I point. The intersection of the critical manifold Z with the c-nullcline corresponds to a
true equilibrium E of (2.2). In Figure 9, E lies on the attracting sheets Sa and Za and so is
a stable equilibrium of the full system for sufficiently small perturbations.

We now explain, using our singular limit subsystems, the transient evolution to the at-
tractor starting from arbitrary initial conditions. Since an initial condition is (generically) off
the critical manifold S, the fast dynamics (4.1) dominate and there is a rapid evolution ΓF

(0,0)

along a 1D fast fiber to an attracting branch of S (red, 3 arrows). This is succeeded by an
intermediate decay ΓI

(0,0) (green, 2 arrows) towards the critical manifold Z. For the example

illustrated in Figure 9, the intermediate flow ΓI
(0,0) explains the overshoot previously seen in

Figure 6(a). Once the trajectory is on Z, the slow flow description (5.2) takes over and the
slow drift ΓS

(0,0) either brings the orbit towards the depolarized equilibrium state E (blue, 1

arrow) or to the lower fold point L −, depending on the initial conditions. In the case of the
fold point, the intermediate and fast subsystems describe the return of the trajectory to the
upper attracting branch of Z where the slow flow once again brings the trajectory to E.

Remark 6.3. Even though the fold point L − is embedded in the critical manifold S, the
results from classic studies of fold points hold [35, 50, 58, 63]. This can be shown formally by
computing a normal form for L −, which is beyond the scope of this work. The main result in
the context of our 4D 3-timescale problem is that there is a 2D slow/intermediate subsystem
that is precisely the classic fold problem and the remaining intermediate and fast directions
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are hyperbolic.
Since the singular orbit in Figure 9 does not involve any bifurcations of the fast, interme-

diate, or slow subsystems, the full system trajectory is an O(ε, δ) perturbation of the singular
attractor. Bearing in mind the results of sections 4.2 and 5.2, we can actually make more
precise asymptotic statements. At the interface where ΓF

(0,0) and ΓI
(0,0) meet, the fast timescale

switches to the intermediate timescale and the dominant perturbation parameter is ε. This
ε-dominance manifests as a nonuniform sensitivity of the trajectories to perturbations in ε
and δ in a neighborhood of the timescale switch. That is, small changes in δ have virtually
no effect on Γ(ε,δ) near the fast-intermediate timescale transition, while small changes in ε
quickly move Γ(ε,δ) away from the singular limit prediction. Similarly, the intermediate-slow

timescale switch (where ΓI
(0,0) and ΓS

(0,0) meet) is dominated by δ. Small changes in ε have
very minor impact on the full system trajectory near the intermediate-slow transition, whereas
small changes in δ cause more substantial deviations.

6.3. Bursting with dynamic calcium. Recall from sections 4 and 5 that the transition
from stable depolarized steady states, E, to MMOs occurred when the equilibrium crossed
from a stable branch of the critical manifold to an unstable one. The transition occurred
via either an FSN II (as in the 1-fast/3-slow case) or via a Hopf bifurcation ZH (as in the
3-fast/1-slow case). In the double limit, ZH moves to the fold surface L, becoming an FSN
I M I

0 in the process. Thus, when E crosses from Sa to Sr, it also crosses from Za to Zr at
the same time. Hence, the switch from depolarized steady states to MMOs still occurs via an
FSN II.

As we saw in section 6.2, any transient flow towards Z can be explained using the fast and
intermediate subsystems. We now focus on the singular MMO attractor and examine its key
features (Figure 10). The singular MMO consists of seven distinct orbit segments. Starting at
the lower fold point L −, the intermediate flow (6.1) brings the trajectory to the fold surface
L. From there, the flow along the fast fibers projects the trajectory onto a different attracting
manifold Sa. The intermediate timescale then dominates, and the trajectory is brought into
Za (along the weak eigendirection of one of the nodes of Z). The trajectory then travels along
Za according to the slow flow (5.2) until it hits the FSN I point M I

0. From M I
0, the trajectory

jumps off Sa to an alternate attracting branch of S. Yet another intermediate flow returns
the orbit to Z (again, via the weak eigendirection of a node of Z). The slow subsystem then
describes the motion of the trajectory until it returns to the fold point L −, thus completing
the singular MMO attractor. The full system attractor, Γ(ε,δ), is a perturbation of this singular
orbit.

Within our singular MMO attractor, there are three special regions where normal hyper-
bolicity breaks down. The first is the fold point L −, which exhibits classic fold behavior [30].
This is where the trajectory transitions from the slow timescale to the intermediate timescale
and δ is the important perturbation parameter. Trajectories Γ(ε,δ) are O(δ2/3) perturbations
of the singular orbit in a neighborhood of L −. The second nonhyperbolic region encountered
is the fold surface L, where the intermediate-fast timescale switch occurs and ε is the im-
portant perturbation parameter. This is a well-studied degeneracy in 2-timescale singularly
perturbed problems [50]. In our case, however, the fast up-jump is close to a cusp bifurcation
(see section 4.2) and the full system trajectory deviates significantly from the singular orbit

D
ow

nl
oa

de
d 

06
/1

1/
13

 to
 1

28
.1

86
.1

03
.1

76
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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(a) (b)

Figure 10. Singular orbit construction for a dynamic MMO with gK = 3 nS, gBK = 0.4 nS, and gA = 8 nS
(cf. Figures 5 and 6, panels (c) and (d)). A solution Γ(ε,δ) (black) of (2.2) for Cm = 0.2 pF and fc = 0.001
is shown along with the singularities Z and M0 of (6.2). There are three FSN I points (only one of which is
labeled M I

0). The singular MMO is a concatenation of seven distinct orbit segments.

in this region. The third singularity in our attractor is the FSN I point M I
0, which is new and

specific to 3-timescale problems. The small oscillations of the fully perturbed MMO occur in
a neighborhood of this FSN I point. Naively, we would expect the oscillation mechanism to
be related to folded singularities. This is only partly true. We defer detailed discussion of
how the FSN I point M I

0 unfolds to section 7.
As is clear from Figure 10, the limiting subsystems are an excellent approximation of

the fully perturbed problem. Away from the singularities L −, L, and M I
0, the full system

trajectory Γ(ε,δ) is O(ε) close to ΓF
(0,0) ∪ ΓI

(0,0). As in section 6.2, the perturbative effects of
ε and δ are nonuniform and δ has very weak influence on the shape of trajectories around
the fast-intermediate timescale transition. Similarly, Γ(ε,δ) is O(δ) close to ΓI

(0,0) ∪ ΓS
(0,0)

and ε has virtually no effect on the shape of orbits around the intermediate-slow timescale
transition. The singular dynamic MMO attractor is a hysteresis cycle that alternates between
stable branches of Z (and S). The benefit of the 3-timescale splitting is that we have access to
additional information about the shape of the trajectory that we did not have in the 2-timescale
splittings. On the other hand, the 3-timescale decomposition retains the degeneracies of the
1-fast/3-slow and 3-fast/1-slow methodologies, making the singular orbit construction more
difficult.

6.4. Calcium-conducting bursts. The geometric configuration of Z is an important fac-
tor in determining the type of MMO attractor. As we saw in section 5.3, parameter variations
alter the structure of Z and when bistability of Z no longer holds, the MMO attractor changes
dramatically. To reiterate the main points of section 5.3, there was a torus of stable singular
MMOs between the fold point L − and the Hopf point ZH . The unique attractor was sit-
uated somewhere between these two points. The method of averaging was identified as the
appropriate analytic tool to locate the MMO attractor.

These properties persist in the double limit (ε, δ) → (0, 0) with the Hopf bifurcation
ZH replaced by the FSN I point M I

0 (Figure 11). The net effect of the averaging process
is to remove the slowest variable so that the remaining (V, n, e) subsystem is a classic 2-

D
ow

nl
oa

de
d 

06
/1

1/
13

 to
 1

28
.1

86
.1

03
.1

76
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

818 T. VO, R. BERTRAM, AND M. WECHSELBERGER

(a) (b)

Figure 11. Singular orbit construction via averaging for a calcium-conducting MMO. The parameters are
gK = 5 nS, gBK = 0.4 nS, and gA = 8 nS (cf. Figures 5(e)–(f) and 8(b)–(c)) with Cm = 0.2 pF and fc = 0.001
for the full system trajectory. The oscillation region is bordered by the fold point L − and the FSN I point M I

0.

timescale problem. We immediately inherit the results established in [60, 61], which we briefly
summarize here. The singular orbit ΓF

(0,0) ∪ ΓI
(0,0) is an alternation between intermediate and

fast orbit segments that jump at a folded node. The singular orbit satisfies the criteria for a
canard-induced MMO: the presence of a folded node and a global reinjection mechanism that
resets the system dynamics after passage through the canard point [9].

The appearance of the small amplitude oscillations in the calcium-conducting MMOs can
then be explained by examining the geometry of the (V, n, e) subsystem away from the sin-
gular limit ε = 0. The normally hyperbolic regions of S perturb to invariant slow manifolds
Sa
(ε,0), S

r
(ε,0), which are O(ε) close to their singular limit counterparts. Extension of the invari-

ant slow manifolds by the flow of (2.2) with δ = 0 into the vicinity of the folded node results
in a local twisting of the attracting and repelling sheets [49, 62]. These rotations occur in
an O(ε1/2) neighborhood of the folded node with maximum amplitude of size O(ε1/2). We
illustrate this in Figure 12 by showing how the attracting and repelling manifolds Sa and Sr

unfold for nonzero ε. The numerical method used to compute the attracting and repelling
slow manifolds involves reformulating (2.2) with δ = 0 as a boundary value problem and using
homotopic continuation to generate a family of solutions that form a mesh of the surface. We
refer the reader to [11, 12, 13] for details of the method with examples and to the AUTO
demo files [16], which provide sample codes.

Remark 6.4. In comparing Figures 11(a) and 8(b), it is clear that the averaged singular
MMO undergoes a leftward shift as ε → 0. This can be explained using canard theory.
Note in (5.7) that the averaging takes the ε dependence into consideration. As a result, the
averaged orbit computed in section 5.3 fully accounts for the slow passage effects induced by
the canard dynamics in the active phase. As ε → 0, however, the small oscillations near the
folded node disappear (recall the O(ε1/2) dependence) and the time spent in the active phase
is underestimated. Consequently, as ε → 0, the silent phase has a greater contribution than
the active phase to the averaged orbit and the singular MMO shifts to lower c values.

The rotational properties of the slow manifolds are closely related to the existence of
canards in (2.2) with δ = 0. Canards are trajectories that cross from Sa

(ε,0) to Sr
(ε,0) and
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(a) (b)

(c) (d)

Figure 12. Unfolding of the slow attracting (blue) and repelling (red) manifolds for fixed c = c, calculated up
to a section passing through the folded node. The insets show the intersection of the manifolds with a hyperplane
through the folded node. The maximal canards correspond to the intersections of the attracting and repelling
surfaces. Parameter values are as in Figure 11 with (a) Cm = 0 pF, (b) Cm = 0.1 pF, (c) Cm = 0.5 pF, and
(d) Cm = 1 pF.

remain O(ε) close to Sr
(ε,0) for O(1) times on the intermediate timescale. Maximal canards

are transverse intersections of the slow attracting and repelling manifolds extended beyond
the fold surface L. Two particularly important canard solutions are the strong canard, γ0, and
the weak canard, γw, which correspond to the strong and weak eigendirections of the folded
node. The strong canard is easily identified as the first (or outermost) intersection of the slow
manifolds and marks the onset of oscillatory behavior. Trajectories on either side of γ0 either
simply jump off the repelling manifold or undergo small oscillations before jumping off Sr

(ε,0).

The weak canard is the last (or innermost) intersection of the slow manifolds and is the axis
of rotation for both the canards and the invariant manifolds [62, 11, 13]. Furthermore, the
canards shape the phase space in the sense that a trajectory lying between the nth and n+1st
maximal canards makes n small oscillations before it is repelled.

Recall from section 5.3 that the transient evolution to the calcium-conducting MMO at-
tractor exhibited a wide variety of bursts. The 3-timescale decomposition gives us access to
canard theory, allowing for a complete explanation of the transient behavior. For the param-
eter set in Figure 11, we find that the eigenvalue ratio of the folded node of the attractor
is μ ≈ 0.041 and smax = 12. At the FSN I point M I

0, the eigenvalue ratio μ is zero. As c
increases, μ increases until it eventually reaches μ = 1 (beyond the fold point L −), where the
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folded nodes of M0 become folded foci. Transients of (2.2) that pass through a neighborhood
of M I

0 undergo a large number of small oscillations. As the trajectory slowly drifts towards
the attractor, it encounters a different folded node (with larger μ) every time it returns to
M0. Thus, the maximal number of small oscillations gradually decreases until the attractor
is reached (see Figure 7(a)). A similar argument shows that there is a monotonic increase
(until the attractor is reached) in the number of subthreshold oscillations for those transients
of (2.2) that approach the attractor via the fold point L −.

Remark 6.5. An understanding of the transient evolution allows us to predict how our
model system responds to external stimuli such as a calcium pulse. We contend that this
can be experimentally significant since the transient evolution can distinguish between the
two MMO types. Transients featuring pseudo-plateau bursts with a wide variety of small
oscillations are associated with calcium-conducting MMOs. Meanwhile, transients that simply
decay to a slow flow along Z are characteristic features of dynamic MMOs.

Thus, the 3-timescale decomposition provides the geometric information necessary to iden-
tify calcium-conducting MMOs and the theoretical framework (canard theory) to explain their
oscillatory behavior. We observe that when there is no bistability, the singular MMO con-
struction consists only of intermediate and fast orbit segments. In other words, since we can
average out the c-dynamics, we are effectively down to a 2-timescale problem.

6.5. Spiking orbits. Spiking behavior always falls (for sufficiently small ε) into parameter
regimes where there is no bistability of Z and we are able to discard a slow direction (via
averaging). Consequently, we again deal with a family of 2-timescale problems with parameter
c. To determine the difference between spiking and bursting, we first note that the curve of
folded singularities M0 possesses degenerate folded nodes (DFNs), where folded nodes turn
into folded foci. Obviously, if the averaged singular attractor is fixed at a c value such that
M0 has a folded focus, then the corresponding full system trajectory will be a spiking pattern.
If the averaged singular attractor has a c value such that M0 has a folded node, there is no
guarantee that the singular orbit will converge to that folded node. Recall that associated
with each folded node is a trapping region called the funnel, delimited by the strong canard
and by the fold surface L. Trajectories that land inside the funnel inevitably pass through
the folded node. Trajectories that land outside the funnel encounter the fold surface L at a
jump point instead. The beauty of the double limit (ε, δ) → (0, 0) is that the funnel region
(and the spiking/bursting criterion) can be visualized (Figure 13).

In Figure 13(a), the averaged singular orbit has c ≈ 0.2245 μM and the associated folded
singularity has complex eigenvalues. The corresponding singular attractor ΓF

(0,0) ∪ ΓI
(0,0) with

c = c is a typical relaxation oscillator. For the example in Figure 13(a), the singular orbit does
not actually hit the upper fold at the folded focus but at a regular jump point. The associated
time trace of (2.2) shown in Figure 13(c) is a spiking pattern, as expected. In Figure 13(b),
the singular attractor has c ≈ 0.2467 μM and M0 possesses a folded node with eigenvalue
ratio μ ≈ 0.555 (and smax = 1). In this case, the fast up-jump projects the singular orbit into
the funnel region of the folded node. That is, we have a folded node and a global reinjection
mechanism (fast depolarization) that returns trajectories to the funnel region. The associated
full system trajectory is an MMO with 1 small oscillation (Figure 13(d)) in accordance with
the theoretical prediction.
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Figure 13. The difference between spiking and bursting for gBK = 0.4 nS, gA = 4 nS, and (a) gK = 9 nS
and (b) gK = 7 nS. Panels (a) and (b) are projections into the (V, e) plane. For fixed c, the fold surface L
is a curve (blue). Its projection P (L) (red) onto different branches of S is shown to indicate where fast orbit
segments land. In (a), the singular attractor hits the folds at regular jump points and the full system orbit (for
Cm = 2 pF and fc = 0.001) is a relaxation oscillation (panel (c)). In (b), the singular attractor is inside the
funnel of the folded node and the full system trajectory is a 11 MMO (panel (d)).

6.6. Bifurcation diagrams. We have shown that the 3-timescale splitting can be used as
an effective predictor to explain both the transient dynamics and attractors of (2.2). Our
central concern is in identifying the various mechanisms that cause the observed dynamical
behaviors (particularly the bursting). We do this by constructing singular two-parameter dia-
grams (shown in Figures 4(a), (c), and (e)). The singular two-parameter diagrams are divided
into three regions, reflecting the different attractors. The sector marked “Dep” represents the
subset of parameter space where the depolarized steady state is the attractor. The “Delayed
Hopf”‘ region corresponds to the dynamic MMOs. The “Calcium-conducting” region corre-
sponds to the MMOs where averaging can be used to fix the calcium. The singular spiking
orbits lie in the spiking region.

The boundary between the equilibrium state and the singular MMO state is the set of FSN
II points ESHB, where the equilibrium crosses from an attracting manifold Sa (and Za) to a
repelling manifold Sr (and Zr). The subdivision between dynamic and calcium-conducting
MMOs within the MMO regime is related to the geometric structure of the critical manifold
Z. When the stable branches of Z overlap (denoted “Delayed Hopf” in Figure 4), the singular
MMO attractor is a hysteresis cycle. The small oscillations occur in a neighborhood of M I

0,
but the precise oscillation mechanism is still unknown. When the stable branches of Z are
separated (labeled “Calcium-conducting”), the calcium variable can be fixed and the small
amplitude oscillations are associated with a folded node singularity. The degeneracy where
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822 T. VO, R. BERTRAM, AND M. WECHSELBERGER

the c-coordinate of L − and M I
0 coincide (labeled “Bistability”) approximates the boundary

between dynamic and calcium-conducting MMOs.
To complete our singular two-parameter diagrams, we must locate the border between

the calcium-conducting MMOs and spiking orbits. The singular spiking attractor can be
associated with either a folded focus or a folded node. In the case of a folded node, the
singular orbit lands outside the funnel of the folded node. Thus, there are two parts to
the border between the singular spiking and MMO orbits. One part of the spiking/MMO
boundary consists of the set of singular orbits that jump at a DFN. The other segment of
the spiking/MMO boundary is the set of singular orbits associated with folded nodes that
land neither inside nor outside the funnel; i.e., they land on the strong canard itself. Figure 4
clearly demonstrates that our singular subsystems provide a good first approximation to the
dynamics of the fully perturbed problem for sufficiently small (ε, δ).

By using the multiple timescale structure of (2.2) to our advantage, we can explain the
dynamics of (2.2). Canard theory in the 1-fast/3-slow approach provides the theoretical
basis for the oscillation mechanism. Geometric considerations in the 3-fast/1-slow approach
generate a criterion to identify the MMO type. The 3-timescale splitting then gives the best
of both worlds and allows the construction of diagrams such as Figure 4, which elucidate
the cause of the observed attractors of (2.2). However, there are setbacks to the 3-timescale
approach. The most obvious is that the dynamic MMOs jump at the FSN I point M I

0, which
is a doubly degenerate point where M II

δ and ZH merge. The rest of the paper is concerned
with unravelling the oscillation mechanism of dynamic MMOs.

7. The oscillation mechanism. We have seen that the complex oscillatory waveforms in
(2.2) can manifest as MMOs of either dynamic or calcium-conducting type. In the calcium-
conducting case, the small oscillations in the bursts were unequivocally identified as canards.
In the dynamic MMO case, the precise oscillation mechanism depends on the chosen geometric
viewpoint. The 1-fast/3-slow formulation suggests that the subthreshold oscillations are due to
canards, while the 3-fast/1-slow viewpoint insists that the oscillations are due to a slow passage
through a dynamic Hopf bifurcation. In this section we examine the oscillation mechanism
for dynamic MMOs more carefully and reconcile the seeming discrepancy.

7.1. Perturbations of the FSN I point M I
0. In section 6 we showed that when bistability

of the critical manifold Z holds, the resulting oscillatory behavior of (2.2) can be attributed
to the degenerate FSN I point M I

0. In section 4 we found that the oscillations were associated
with folded node singularities with μ ≈ 0. More specifically, there was always an FSN I M I

δ

that was O(δ) close. In section 5, the oscillatory behavior emerged from neighborhoods of a
Hopf bifurcation ZH that was O(ε) close to the fold surface L. In Appendix B, we show that
M I

δ and ZH are different unfoldings of the FSN I point M I
0. However, it is beyond our scope to

analyze how trajectories perturb in both ε and δ. We conjecture that if δ is sufficiently small,
then the small oscillations of the fully perturbed problem inherit their rotational properties
from the dynamic Hopf bifurcation. Alternatively, if δ is sufficiently large, the rotational
properties of trajectories are manifestations of the properties of the canards.

Figure 14 shows the effect of “small” and “large” δ on trajectories of the fully perturbed
problem (2.2). In panel (a), δ is small enough that the 3-fast/1-slow splitting is valid. The
slow drift in the calcium variations moves the trajectory through the Hopf bifurcation. As a
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(a) (b)

Figure 14. Oscillatory behavior associated with the FSN I point M I
0 for various δ. The parameters are

gK = 3 nS, gBK = 0.4 nS, gA = 8 nS, Cm = 0.2 pF, and (a) fc = 0.01 or (b) fc = 0.03. The singularities Z
and M0 (red, solid) of (6.2) are shown along with the folded singularities Mδ (red, dashed) of (4.6). (a) When
δ is small, the trajectories exhibit properties of the Hopf. (b) When δ is large, the trajectories no longer stick
to Z and the small oscillations arise from canards.

result, we see trajectories typical of a delayed Hopf. By increasing the perturbation parameter
δ, we eventually cross a secondary bifurcation and the nature of the orbit changes. Panel (b)
shows the trajectory after the secondary bifurcation has been crossed. The trajectory no
longer closely follows the manifold Z. Clearly, Γ(ε,δ) undergoes its small oscillations in a
neighborhood of Mδ (about a folded node). Thus, by increasing δ, we have moved from a
parameter regime where the 3-fast/1-slow splitting is favored to a regime where the 1-fast/3-
slow splitting is appropriate.

7.2. Delayed Hopf bifurcation and tourbillon. There exists a subset of parameter space
such that the dynamic MMOs exhibit oscillations above an observable threshold. Such dy-
namic MMOs are called a tourbillon [14]. The burst patterns associated with a tourbillon are
qualitatively different from those arising from delayed Hopf or folded node mechanisms (see
Figure 15). Despite this, a tourbillon is actually just a different manifestation of a dynamic
Hopf bifurcation. Recall that MMOs approaching the Hopf ZH from an O(1) distance be-
come exponentially close to Z(ε,0) and so display virtually no small oscillations. In the case
of a tourbillon, the trajectory approaches the dynamic Hopf bifurcation from a much closer
distance. In that case, the real part of the eigenvalues is small and the attraction to Z(ε,0) is
weak. As a result, the trajectory does not have sufficient time to be exponentially attracted
and the oscillations are visible throughout. The speed at which the trajectory traverses the
dynamic Hopf region is governed by the slowest timescale. As δ increases, the time spent near
the Hopf decreases, and hence the number of observed oscillations decreases.

Figure 15 illustrates the difference between the two types of trajectories that pass by a
dynamic Hopf bifurcation. Panel (a) depicts a geometric configuration in which the lower
fold point L − and the FSN I point M I

0 are well separated. This means that the full system
bursting attractor shows virtually none of its subthreshold oscillations. The only observable
small oscillation is at the end of the oscillatory regime when the trajectory jumps off the
slow manifold. Figure 15(b) shows that when L − and M I

0 are not well separated, the hys-
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(a) (b)

Figure 15. The two types of dynamic Hopf bifurcation for gBK = 0.4 nS, gA = 4 nS: (a) delayed Hopf
bifurcation (gK = 2 nS) and (b) tourbillon (gK = 4 nS). Full system trajectories (black) have Cm = 2 pF and
fc = 0.001.

teresis loop narrows in width when viewed in the (V, c) projection. This means trajectories
return sufficiently close to the Hopf that the rotations occur before the the trajectory can
be exponentially attracted to the slow manifold. The amplitude of the small oscillations in a
tourbillon initially decreases and eventually increases before the trajectory jumps away. This
is because the real part of the eigenvalues is initially negative and increases through zero to
positive values where the manifold becomes repelling.

It becomes clear that when the parameters are chosen such that bistability holds and
the fold point L − and the FSN I point M I

0 are weakly separated, the resulting full system
trajectory will (in principle) be a tourbillon. However, for fixed ε, the difference between a
tourbillon and a delayed Hopf MMO is not always clear. There is no predefined distance that
can be used to differentiate between the two types of dynamic Hopf phenomena.

8. Discussion. MMOs are complex oscillatory waveforms characterized by an alternation
between large and small amplitude oscillatory motion. Often appearing in the time course
evolution of neural bursting models, MMOs have become a new metric in neuroscience [18].
As a result, a thorough understanding of the structure of MMOs and their mechanisms has be-
come a significant interdisciplinary endeavor. An important aspect of MMOs is the multiscale
structure of their governing equations, making them amenable to singular perturbation meth-
ods. One particular singular perturbation technique that has been used with great success
is geometric singular perturbation theory. Using this geometric approach, we have examined
the transient and long-term dynamics of a 3-timescale neuroendocrine cell model (2.2). Our
results show that the early investigations of (2.2) produced limited, nonoverlapping views of
the mixed mode dynamics in the pituitary cell model.
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The dynamics of pseudo-plateau bursting have been of interest to both the cell modeling
community and to those interested in MMOs in multiscale systems. Historically, the analysis
of bursting in slow/fast systems was pioneered by [40], and several treatments of pseudo-
plateau bursting followed suit [38, 39, 47, 56]. In this traditional 3-fast/1-slow approach, the
small oscillations are born from a slow passage through a dynamic Hopf bifurcation [36, 37, 3]
and the MMOs are hysteresis loops that alternately jump at a fold and a subcritical Hopf
(fold/sub-Hopf bursts) [41, 24]. We extended the standard slow/fast analysis and computed
the additional MMO families that bifurcate from the unstable spiking branch (Figure 8).
This classic slow/fast analysis is particularly effective for dynamic MMOs and for detecting
the switch from dynamic to calcium-conducting MMOs. Away from singularities of the slow
and “fast” subsystems, Fenichel theory guarantees that the singular and nonsingular orbits
are O(δ) close to each other.

An alternative and more recent take on pseudo-plateau bursting complements the classic
approach. In the 1-fast/3-slow analysis, a folded critical manifold and canard orbits shape the
dynamics. This novel slow/fast analysis is particularly effective in explaining the oscillatory
behavior of calcium-conducting MMOs. We showed that other geometric features, such as a
curve of cusp bifurcations, could influence the resetting behavior of MMOs via fast depolar-
ization at a fold or via circumnavigation of the cusps. The full system trajectories were O(ε)
perturbations of the singular limit predictions in regions of normal hyperbolicity [19, 26]. In
a neighborhood of the fold surface L or a folded node, the asymptotic error estimates were
O(ε2/3) [30, 50] and O(ε1/2) [9, 62], respectively. Our work also adds to the currently scarce
supply of examples of canard-induced MMOs in systems with more than two slow variables
[22, 23]. In both the 3-fast/1-slow and 1-fast/3-slow analyses, the underlying geometry influ-
ences the bursting through a combination of local and global mechanisms. These two slow/fast
analyses of (2.2) stem from the inherent 3-timescale structure.

The core focus of our work has been the comparison of the relative strengths and weak-
nesses of these two complementary geometric methods in the context of the 3-timescale singu-
lar perturbation problem (2.2). When dealing with such problems, there are always questions
of which analysis is appropriate and how the different methods are related [52]. In this work,
we have directly addressed how the classic and novel 2-timescale methods are related in the
context of system (2.2). To be precise, they are different unfoldings of the more degenerate
3-timescale decomposition. As to the question of which method is most appropriate, we assert
that the 3-timescale decomposition provides the best results asymptotically, independent of
the model, as it inherits all of the geometric information contained in the different 2-timescale
analyses. As a result, the 3-timescale decomposition provides us with a remarkable degree of
control and predictive power.

To the authors’ knowledge, there has been little work done on 3-timescale problems [25,
28, 29]. In this article, we have concentrated on 3-timescale problems of the form (1.1), in
which there is an obvious ordering of the timescales, i.e.,

δ � 1 � 1

ε
.

In particular, we analyzed a 3-timescale pituitary lactotroph model using geometric singular
perturbation analysis techniques. We have demonstrated the potency of such an approach
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and formulated our analysis in a general way that easily carries over to other 3-timescale
problems. Our analysis showed that, for the most part, each transition of a trajectory could
be explained locally by the interaction of 2-timescales only. However, we have also shown that
there is a need for the development of a comprehensive theoretical framework for 3-timescale
systems. In the 3-timescale formulation, we encountered degeneracies not yet seen before in
the form of the FSN I points M I

0, which represent the interaction of objects from the 3-fast/1-
slow theory (the critical manifold Z) with objects from the 1-fast/3-slow theory (the folded
singularitiesM0). The unfolding ofM

I
0 is particularly important because it is new and it marks

regions in phase space where all three timescales interact. Moreover, there are elements of
the 2-timescale theory that require deeper analysis. For instance, the unfolding of FSN type
I singularities via blow-up and complex time path analysis has yet to be done [31], and our
work demonstrates that it is becoming a priority. In any case, we have shown that there is
great benefit in combining geometric singular perturbation theory with bifurcation analysis.
The moral of the story, then, is that it never hurts to look at a problem from multiple points
of view.

Appendix A. The pituitary lactotroph model. The mathematical model we study is a
4D dynamical system describing the electrical activity and calcium signaling in a pituitary
lactotroph cell [51]. The model equations are provided in (2.1). The ionic currents are as
given in section 2, and the steady state functions are given by

x∞(V ) =

[
1 + exp

(
Vx − V

sx

)]−1

,

e∞(V ) =

[
1 + exp

(
V − Ve

sx

)]−1

,

s∞(c) =
c2

c2 + k2s
,

where x ∈ {m,n, f, a}. Standard parameter values are provided in Table 1.

Appendix B. The FSN I point M I
0. In [63], the canard theory of singularly perturbed

problems is extended to the general case of k slow and m fast variables, with k ≥ 2 and m ≥ 1.
We restate Theorem 3.1 of [63], as it applies to our problem. Suppose we have a standard 2-
timescale singularly perturbed problem with a locally folded m-dimensional critical manifold
S with an (m− 1)-dimensional manifold of fold points. Suppose further that S possesses an
(m−2)-dimensional set of generic folded singularities and that the (m−1) nonzero eigenvalues
of S along the fold have negative real part. Then there exists (after center manifold reduction)
a smooth change of coordinates that transforms the standard slow/fast system to

ε ẋ = y1(1 + xO(y2, z)) + x2(1 +O(x, y1)) + εO(x, y1, y2, ε),

ẏ1 = B2(z)y2 + C(z)x+O(y1, x
2, y22 , xy2) + εO(x, y1, y2, z),

ẏ2 = A2(z) + β2y2 +O(x, y1, ε),

ż = A3(z) +O(x, y1, y2, ε),

(B.1)
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Table 1
System parameters for the pituitary lactotroph model (2.1).

Parameter Value Definition

Cm 0− 10 pF Membrane capacitance
gCa 2 nS Maximal conductance of Ca2+ channels
VCa 50 mV Reversal potential for Ca2+

Vm −20 mV Voltage value at midpoint of m∞
sm 12 mV Slope parameter of m∞
gK 0− 10 nS Maximal conductance of delayed rectifier K+ channels
VK −75 mV Reversal potential for K+

Vn −5 mV Voltage value at midpoint of n∞
sn 10 mV Slope parameter of n∞
τn 30 ms Time constant for n
λ 0.7 Parameter used to control spiking pattern

gBK 0− 0.7 nS Maximum conductance of BK-type K+ channels
Vf −20 mV Voltage value at midpoint of f∞
sf 5.6 mV Slope parameter of f∞
gSK 1.7 nS Maximum conductance of SK channels
ks 0.5 μM c at midpoint of s∞
gA 0− 25 nS Maximal conductance of A-type K+ channels
Va −20 mV Voltage value at midpoint of a∞
sa 10 mV Slope parameter of a∞
Ve −60 mV Voltage value at midpoint of e∞
se 10 mV Slope parameter of e∞
τe 20 ms Time constant of e
fc 0.01 Fraction of free Ca2+ ions in cytoplasm
α 0.0015 μMfC−1 Conversion from charge to concentration
kc 0.16 ms−1 Rate of Ca2+ extrusion

where

Aj(z) = aj + gj,1(z),

B2(z) = b2 + g1,1(z),

C(z) = c+ g1,2(z),

with gi,j(0) = 0 and computable constants a2, a3, b2, c, β2, which are generically nonzero.
Using (B.1) as our starting point, we wish to compute a canonical form for an FSN I point

M I
0. Without loss of generality, we assume the curves Z and M0 cross at the origin (i.e., M I

0 is
at the origin). This requires a2 = 0 and a3 = 0. We also assume that the folded singularities
change from folded nodes (with two negative real eigenvalues) to folded saddles at the FSN I
point. A sufficient condition for this is C(z) < 0 in a neighborhood of the origin.

The critical manifold Z is given parametrically by

Z =

{
x =

A2(z)B2(z)

β2C(z)
, y1 = −A2

2(z)B
2
2(z)

β2
2C

2(z)
, y2 = −A2(z)

β2

}
,

and the curve of folded singularities is defined by

M = {x = 0, y1 = 0, y2 = 0} .
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A Hopf bifurcation of the (x, y1, y2) subsystem is given by the condition

A2(z)B2(z)
(
2A2(z)B2(z) −C2(z) + ε β2

2C(z)
)
= 0,

together with
C(z)

(
2A2(z)B2(z)− C2(z)

)
> 0.

The nonzero eigenvalues of the desingularized system of (B.1) with a2 = 0, a3 = 0 are given
by

2λ = C(z)±
√

C2(z)− 8A2(z)B2(z).

We thus have both a Hopf bifurcation of the (x, y1, y2) subsystem and an FSN of the desin-
gularized system as we pass through M I

0 (i.e., as A2(z) → 0).
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