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On Near-controllability, Nearly-controllable
Subspaces, and Near-controllability Index of a Class

of Discrete-time Bilinear Systems: A Root Locus
Approach

Lin Tie

Abstract

This paper studies near-controllability of a class of discrete-time bilinear systems via a root locus approach.
A necessary and sufficient criterion for the systems to be nearly controllable is given. In particular, by using
the root locus approach, the control inputs which achieve the state transition for the nearly controllable systems
can be computed. Furthermore, for the non-nearly controllable systems, nearly-controllable subspaces are derived
and near-controllability index is defined. Accordingly, the controllability properties of such class of discrete-time
bilinear systems are fully characterized. Finally, examples are provided to demonstrate the results of the paper.

Index Terms

discrete-time bilinear systems, near-controllability, nearly-controllable subspaces, near-controllability index,
root locus approach.

I. INTRODUCTION

Given the capability of modeling a large number of processesin the real world, bilinear systems have
received considerable attention [1-4]. Furthermore, bilinear systems are thought to be simpler and better
understood than most other nonlinear systems. Such systemshave particular advantages on structural
properties, optimization, identification, and control. The relaxed version of a linear switched system is
actually a bilinear system [5]. Owing to both the practical and theoretical importance, bilinear systems
have been a hot topic in the literature of nonlinear systems over decades.

Controllability is one fundamental concept in mathematical control theory. It was identified in the early
1960s, and then the theory of controllability for linear systems based on the state space description was
systematically established [6,7]. During nearly the same period, controllability of nonlinear systems also
was considered. Since the 1970s, Lie algebra methods and other powerful tools of differentiable manifold
theory have been developed to study controllability of nonlinear systems [8-11]. Today, controllability
has played an essential role in the development and application of mathematical control theory. There are
many different kinds of definitions on controllability, such as local controllability, global controllability,
approximate controllability, positive controllability,and null controllability. Roughly speaking, controlla-
bility is defined as the ability of a system that the system canbe steered from an arbitrary initial state to an
arbitrary terminal state under the action of admissible controls. It is an important as well as fundamental
property of control systems and is of great practical relevance.

In bilinear system theory, controllability is one of the main research topics. This is particularly true
for the continuous-time case. More specifically, controllability of continuous-time bilinear systems has
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been extensively investigated profiting from the Lie algebra methods. Various Lie-algebraic criteria on
controllability of continuous-time bilinear systems wereobtained in the literature, which have been
summarized and updated in a recent monograph [4] on bilinearsystems. However, for discrete-time bilinear
systems, the controllability results are rather sparse compared with their continuous-time counterparts.
Most of the works on controllability of discrete-time bilinear systems were done in the 1970s [12-15],
dealing with systems of the form

x (k + 1) = (A + u (k)B) x (k) (1)

wherex(k) ∈ R
n, A,B ∈ R

n×n, andu(k) ∈ R. System (1) is said to be controllable if, for anyξ, η in R
n
∗

(Rn
∗
:= R

n \ {0}), there exist a positive integerl and a finite control sequenceu(k) (k = 0, 1, . . . , l − 1)
such that the system can be steered fromξ to η at k = l. In particular, [12] gave a sufficient condition for
controllability of system (1), which requires, at least,A is similar to an orthogonal matrix. [13] studied
controllability of system (1) under the assumption of rankB = 1 and presented necessary as well as
sufficient conditions; based on the work in [13], [15] improved these conditions by raising necessary
and sufficient ones. It can be seen that, for controllabilityof discrete-time bilinear systems, only specific
subclasses have been considered, while most cases remain unsolved. Since the middle 1980s, few work
has been reported until the 2000s. One of the reasons leadingto such a few results on controllability
of discrete-time bilinear systems is that the controllability problems are quite difficult to deal with due
to the systems’ nonlinearity. Another one is that, for discrete-time nonlinear systems, semigroups tend
to appear so that less algebraic structure of the systems is available [16]. Recently, [17] continued the
study on controllability of system (1) and obtained necessary and sufficient conditions for the case of
AB = BA, where it was shown that the system can be controllable only if its dimension is no greater
than two. Nevertheless, an uncontrollable system can stillhave a largecontrollable region1. This has first
been proved for system (1) withA = I, i.e.

x (k + 1) = (I + u (k)B) x (k) (2)

which is uncontrollable with dimension greater than two [17]. Indeed, ifB has only real eigenvalues that
are nonzero and pairwise distinct, then the system (2) has a large controllable region, which nearly covers
the whole space, and is nearly controllable.

If we only use “uncontrollable” to describe a system which isnot controllable according to the
general controllability definition, we may miss some valuable properties of it. Near-controllability is thus
introduced to describe those systems that are uncontrollable but have a very large controllable region.
Nearly controllable systems exist widely in nonlinear systems. This property was first defined and was
demonstrated on system (2) in [18], and it was then generalized to system (1) withB = I in [19] and
to both continuous-time and discrete-time nonlinear systems that are not necessarily bilinear in [20].
The definition of near-controllability, which was first given in [18], has now been updated in [20].A
continuous-time systeṁx (t) = f (x (t) , u (t)) (discrete-time systemx (k + 1) = f (x (k) , u (k))) is said
to be nearly controllable if, for anyξ ∈ R

n \E and anyη ∈ R
n \F , there exist a piecewise continuous

control u (t) and T > 0 (a finite control sequenceu (k), k = 0, 1, . . . , l− 1, wherel is a positive integer)
such that the system can be steered fromξ to η at somet ∈ (0, T ) (k = l), whereE andF are two sets of
zero Lebesgue measure inRn. If we let E ,F = ∅, then the near-controllability definition degenerates to
the general controllability definition. Thus, near-controllability includes the notion of controllability and
may better characterize the controllability properties ofnonlinear systems. However, most of the existing
works on near-controllability are reported for discrete-time bilinear systems and the study on this topic is
just at the beginning.

1A controllable region is a region inRn on which the system is controllable. Namely, for anyξ, η in this region, there exist control inputs
that steer the system fromξ to η.
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In this paper, we continue the research on near-controllability of system (2) withB having real
eigenvalues only. We improve the sufficient condition for near-controllability of the system (2) in [18]
by giving a necessary and sufficient one. In particular, we apply a new approach this time to prove near-
controllability. That is, a root locus approach is proposedin this paper. Compared with the technique
used in [18,19] which is based on the implicit function theorem, by the root locus approach we can not
only improve the obtained result on near-controllability,but also compute the required control inputs that
achieve the state transition2. We thus present a useful algorithm. Furthermore, inspiredby the state space
description for linear systems, we also consider the non-nearly controllable systems. It is well known that
if a linear time-invariant system is uncontrollable, then the state space can be decomposed as a direct
sum of a controllable subspace and an uncontrollable subspace. For the non-nearly controllable systems,
we derive nearly-controllable subspaces and define near-controllability index by using the improved near-
controllability result, which shows that the non-nearly controllable systems can be controllable on the
nearly-controllable subspaces. The near-controllability index is used to determine the largest nearly-
controllable subspaces that a non-nearly controllable system has. In summary, the controllability properties
of the system (2) are fully characterized. Finally, we provide examples to illustrate the conceptions and
the results of this paper.

II. A ROOT LOCUS APPROACH TONEAR-CONTROLLABILITY

In this section, we propose a root locus approach and apply itto prove near-controllability of the system
(2). The idea of the root locus approach is to use the root locus theory to achieve the state transition,
including transferring any initial state to itself and to a state close to it. More importantly, the control
inputs are computable in these steps. Then, we use the matrixtheory by establishing a transition matrix
and some algebraic techniques to prove near-controllability. The proof steps are similar to those in [18,19],
but the factor that plays the key role has changed. That is, the implicit function theorem has been replaced
by the root locus approach.

Lemma 1: If B ∈ R
n×n has only nonzero and real eigenvalues, then there exist nonzero real numbers

u (0) , u (1) , . . . , u (L− 1) , u (L) such that

(I + u (L)B) (I + u (L− 1)B) · · · (I + u (1)B) (I + u (0)B) = I (3)

if and only if the dimension of the largest Jordan block in theJordan canonical form ofB is no greater
than two. Further, ifB not only satisfies the necessary and sufficient condition butalso is cyclic3, then
there exist(2m+ 3) nonzero real and pairwise distinct numbersu (0) , u (1) , . . . , u (2m+ 1) , u (2m+ 2)
such that (3) holds, wherem is the number of the distinct eigenvalues ofB.

Proof: We put the proof of necessity in Appendix and only prove sufficiency here. Assume first that
B has the following cyclic form



























λ1 1
λ1

. . .
λr 1

λr

λr+1

. . .
λm



























(4)

2For nonlinear systems, it is, in general, hard to compute thecontrol inputs to achieve state transition even if controllability has been
proved. In this paper, we obtain both the controllability and “control computability” (the ability of computing the required control inputs for
the transition of any given initial and terminal states).

3A matrix is said to be cyclic if its characteristic polynomial is equal to its minimal polynomial. Namely, only one Jordanblock exists
for each eigenvalue in the Jordan canonical form of the matrix.
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whereB is already in Jordan canonical form since a nonsingular transformation toB does not affect the
proof andλ1, . . . , λm are nonzero real and pairwise distinct. In addition,m+ r = n. We now show that
the equation

(I + u (2m+ 2)B) (I + u (2m+ 1)B) · · · (I + u (1)B) (I + u (0)B) = I (5)

admits a solution of nonzero realu (0) , u (1) , . . . , u (2m+ 1) , u (2m+ 2). To this end, it will be proved
that the reciprocals ofu (0) , u (1) , . . . , u (2m+ 1) , u (2m+ 2) are on the root loci of the characteristic
equation of a closed transfer function related toB’s eigenvalues. Multiplying both sides of equation (5)
by

2m+2
∏

k=0

1

u (k)

we have
(

1

u (2m+ 2)
I +B

)(

1

u (2m+ 1)
I +B

)

· · ·

(

1

u (1)
I +B

)(

1

u (0)
I +B

)

=
2m+2
∏

k=0

1

u (k)
I, (6)

from which4

B2m+3 +
2m+2
∑

k=0

1

u (k)
B2m+2 + · · ·+

2m+2
∑

k=0

u (k)
2m+2
∏

j=0

u (j)

B = 0. (7)

Writing (7) through two groups of equations yields










































































λ2m+3
1 +

2m+2
∑

k=0

1
u(k)

λ2m+2
1 + · · ·+

2m+2
∑

k=0

u(k)
2m+2
∏

j=0
u(j)

λ1 = 0

(2m+ 3)λ2m+2
1 + (2m+ 2)

2m+2
∑

k=0

1
u(k)

λ2m+1
1 + · · ·+

2m+2
∑

k=0

u(k)
2m+2
∏

j=0
u(j)

= 0

...

λ2m+3
r +

2m+2
∑

k=0

1
u(k)

λ2m+2
r + · · ·+

2m+2
∑

k=0

u(k)
2m+2
∏

j=0
u(j)

λr = 0

(2m+ 3)λ2m+2
r + (2m+ 2)

2m+2
∑

k=0

1
u(k)

λ2m+1
r + · · ·+

2m+2
∑

k=0

u(k)
2m+2
∏

j=0
u(j)

= 0

,



































λ2m+3
r+1 +

2m+2
∑

k=0

1
u(k)

λ2m+2
r+1 + · · ·+

2m+2
∑

k=0

u(k)
2m+2
∏

j=0
u(j)

λr+1 = 0

...

λ2m+3
m +

2m+2
∑

k=0

1
u(k)

λ2m+2
m + · · ·+

2m+2
∑

k=0

u(k)
2m+2
∏

j=0
u(j)

λm = 0

. (8)

4Throughout this paper, such kind of expression
2m+2∑
k=0

u(k)
2m+2∏

j=0

u(j)

is used to represent the summation

∑ 1

u (k0)

1

u (k1)
· · ·

1

u (k2m+1)
=

1

u (0)

1

u (1)
· · ·

1

u (2m+ 1)
+

1

u (0)
· · ·

1

u (2m)

1

u (2m+ 2)
+ · · ·+

1

u (1)
· · ·

1

u (2m+ 1)

1

u (2m+ 2)

for simplicity. There is no meaning of division in the expression.
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By adding the following(m− r) constraints

(2m+ 3) λ2m+2
r+1 + (2m+ 2)

2m+2
∑

k=0

1

u (k)
λ2m+1
r+1 + · · ·+

2m+2
∑

k=0

u (k)
2m+2
∏

j=0

u (j)

= 0,

...

(2m+ 3)λ2m+2
m + (2m+ 2)

2m+2
∑

k=0

1

u (k)
λ2m+1
m + · · ·+

2m+2
∑

k=0

u (k)
2m+2
∏

j=0

u (j)

= 0

to the second group of equations in (8) and the two constraints

λ2m+3
m+1 +

2m+2
∑

k=0

1

u (k)
λ2m+2
m+1 + · · ·+

2m+2
∑

k=0

u (k)
2m+2
∏

j=0

u (j)

λm+1 = 0,

λ2m+3
m+2 +

2m+2
∑

k=0

1

u (k)
λ2m+2
m+2 + · · ·+

2m+2
∑

k=0

u (k)
2m+2
∏

j=0

u (j)

λm+2 = 0

to all equations in (8), whereλm+1, λm+2 are chosen such that

0 < |λm+1| < min {|λ1| , . . . , |λm|} < max {|λ1| , . . . , |λm|} < −λm+2, (9)

we can put the above(m+ r) + (m− r) + 2 = 2m+ 2 equations into the matrix form




















λ2m+2
1 · · · λ1

(2m+ 2)λ2m+1
1 · · · 1

...
...

...
λ2m+2
m · · · λm

(2m+ 2)λ2m+1
m · · · 1

λ2m+2
m+1 · · · λm+1

λ2m+2
m+2 · · · λm+2







































2m+2
∑

k=0

1
u(k)

...
2m+2
∑

k=0

u(k)
2m+2
∏

j=0
u(j)



















=





















−λ2m+3
1

− (2m+ 3)λ2m+2
1

...
−λ2m+3

m

− (2m+ 3)λ2m+2
m

−λ2m+3
m+1

−λ2m+3
m+2





















.

From Lemma 15 in Appendix, we obtain

2m+2
∑

k=0

1

u (k)
= (−1)

(

2

m
∑

i=1

λi + λm+1 + λm+2

)

,

...
2m+2
∑

k=0

u (k)
2m+2
∏

j=0

u (j)

= (−1)2m+2 λm+1λm+2

m
∏

i=1

λ2
i .

If we denote
2m+2
∏

k=0

1
u(k)

by

(−1)2m+3 K,



6

then, from the Viète’s formulas,1
u(0)

, 1
u(1)

, . . . , 1
u(2m+1)

, 1
u(2m+2)

are the roots of the following(2m+ 3)th-
degree equation

s2m+3 +

(

2
m
∑

i=1

λi + λm+1 + λm+2

)

s2m+2 + · · ·+

(

λm+1λm+2

m
∏

i=1

λ2
i

)

s+K = 0

and are thus on the root loci of the characteristic equation of the closed loop transfer function

1 +KG (s) : = 1 +
K

s2m+3 +

(

2
m
∑

i=1

λi + λm+1 + λm+2

)

s2m+2 + · · ·+

(

λm+1λm+2

m
∏

i=1

λ2
i

)

s

= 1 +
K

s(s+ λ1)2 · · · (s+ λm)2(s+ λm+1)(s+ λm+2)
.

G (s) has(2m+ 3) real poles only and has no zero. By condition (9), in the(2m+ 3) real poles,−λm+2

is the largest pole ofG (s) and is a single pole;−λ1, . . . ,−λm are double poles ofG (s); 0 and−λm+1

are two single poles ofG (s) between two double poles in−λ1, . . . ,−λm. Therefore, we can see from the
root locus theory [21] that, asK increases from0 to +∞, all root loci of 1+KG (s) = 0 that start at the
(2m+ 3) real poles will first move on the real axis. That is to say, we can always choose aK such that
1+KG (s) = 0 has(2m+ 3) nonzero realandpairwise distinctroots. Indeed, by makingK small enough,
1

u(0)
, 1
u(1)

, . . . , 1
u(2m+1)

, 1
u(2m+2)

are perturbed away from−λ1,−λ1, . . . ,−λm,−λm,−λm+1,−λm+2, 0 and
hence are not only nonzero real but also pairwise distinct. Then, the reciprocals of the nonzero real and
pairwise distinct roots are the real numbers that satisfy equation (5) since 1

u(0)
, 1
u(1)

, . . . , 1
u(2m+1)

, 1
u(2m+2)

satisfy the equations in (8), (7), and (6).
Finally, if B is noncyclic, we can choose the largest cyclic main submatrix of B, namedBsub, and

there exist real numbersu (0) , u (1) , . . . , u (L− 1) , u (L) such that

(I + u (L)Bsub) (I + u (L− 1)Bsub) · · · (I + u (1)Bsub) (I + u (0)Bsub) = I (10)

from the above analysis. By noting the fact that
(

I + u (L)

[

λ 1
0 λ

])

· · ·

(

I + u (0)

[

λ 1
0 λ

])

= I

implies


I + u (L)





λ 1 0
0 λ 0
0 0 λ







 · · ·



I + u (0)





λ 1 0
0 λ 0
0 0 λ







 = I,

one can easily verify that eq. (10) still works ifBsub is replaced byB.

By using Lemma 1, we can transfer an arbitrary state to itselfand improve Theorem 2 obtained in
[18]. Moreover, by the root locus approach, we can compute the required control inputs to achieve the
state transition.

Theorem 2:Consider thatB in (2) has only real eigenvalues. Then, the system (2) is nearly controllable
if and only if B is nonsingular, cyclic, and does not have a Jordan block withdimension greater than two
in its Jordan canonical form.

Proof: The proof of necessity is put in Appendix. For sufficiency, westill assume thatB is of the
Jordan canonical form given in (4) without loss of generality. According to Lemma 1, there exist(2m+ 3)
nonzero real and pairwise distinct valuesu0, u1, . . . , u2m+1, u2m+2 such that

(I + u2m+2B) (I + u2m+1B) · · · (I + u1B) (I + u0B) = I. (11)
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We next prove that, for almost anyξ in R
n, we can construct control inputs such thatξ can be transferred

to an arbitrary state which is close toξ. We first prove the existence of such control inputs, which is
similar to what we have done in [18]. We then show how to compute such control inputs by applying the
root locus approach, which is concluded in the final step of Algorithm 5 (to shorten the proof we do not
write it here).

Consider the following function

F (t0, t1, . . . , tn−2, tn−1, y) := (I + tn−1B) (I + tn−2B) · · · (I + t1B) (I + t0B) ξ−

(I + un−1B) (I + un−2B) · · · (I + u1B) (I + u0B) (ξ + y)

wheret0, t1, . . . , tn−2, tn−1 ∈ R andy ∈ R
n. Apparently,(u0, u1, . . . , un−2, un−1, 0) is a zero ofF . Using

Lemma 1 in [18] yields
∣

∣

∣

∣

∂ (F (t0, t1, . . . , tn−2, tn−1, y))

∂ (t0, t1, . . . , tn−2, tn−1)

∣

∣

∣

∣

= |B| V (tn−1, tn−2, . . . , t1, t0)
∣

∣ ξ Bξ · · · Bn−2ξ Bn−1ξ
∣

∣ (12)

whereV is the Vandermonde determinant and|·| denotes the determinant of a matrix. Thus, for any

ξ /∈
{

ξ
∣

∣

∣

∣ ξ Bξ · · · Bn−2ξ Bn−1ξ
∣

∣ = 0
}

,

the Jacobian determinant (12) does not vanish at(u0, u1, . . . , un−2, un−1, 0). According to the implicit
function theorem, there exist two open neighborhoods, named

O
(

[

u0 u1 · · · un−2 un−1

]T
, ρ1

)

, O (0, ρ2)

respectively, such that
F (t0 (y) , t1 (y) , . . . , tn−2 (y) , tn−1 (y) , y) = 0

where
[

t0 (y) t1 (y) · · · tn−2 (y) tn−1 (y)
]T

∈ O
(

[

u0 u1 · · · un−2 un−1

]T
, ρ1

)

and y ∈

O (0, ρ2), i.e.

(I + tn−1 (y)B) (I + tn−2 (y)B) · · · (I + t1 (y)B) (I + t0 (y)B) ξ

= (I + un−1B) (I + un−2B) · · · (I + u1B) (I + u0B) (ξ + y) .

Then, by (11) we have

(I + u2m+2B) · · · (I + unB) (I + tn−1 (y)B) · · · (I + t0 (y)B) ξ

= (I + u2m+2B) · · · (I + unB) (I + un−1B) · · · (I + u0B) (ξ + y) = ξ + y. (13)

This meansξ can be transferred to any state that is close enough toξ. FromB’s structure and PBH test
[22],
{

ξ
∣

∣

∣

∣ ξ Bξ · · · Bn−2ξ Bn−1ξ
∣

∣ = 0
}

=
{

ξ =
[

ξ1 ξ2 · · · ξn
]T

| ξ2ξ4 · · · ξ2rξ2r+1 · · · ξn = 0
}

that is a hypersurface inRn and separatesRn into 2m open orthants (which are the same as those in (12)
in [19]). We now prove that the system (2) is controllable on each of the2m open orthants. For any two
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statesξ, η in one orthant, we establish thetransition matrix

Tξ→η =















































η2
ξ2

η1
ξ2

− ξ1η2
ξ22

η2
ξ2

. . .

η2r
ξ2r

η2r−1

ξ2r
− ξ2r−1η2r

ξ22r

η2r
ξ2r

η2r+1

ξ2r+1

. . .
ηn
ξn















































. (14)

It can be seen thatη = Tξ→ηξ and all the eigenvalues ofTξ→η are positive sinceξ, η belong to the same
orthant. Furthermore,

lim
q→+∞

T
1
q

ξ→η = lim
q→+∞





















































(

η2
ξ2

) 1
q

η1
ξ2

−
ξ1η2
ξ22

q
(

η2
ξ2

)

q−1
q

(

η2
ξ2

)
1
q

. . .
(

η2r
ξ2r

)
1
q

η2r−1
ξ2r

−
ξ2r−1η2r

ξ2
2r

q
(

η2r
ξ2r

)

q−1
q

(

η2r
ξ2r

) 1
q

(

η2r+1

ξ2r+1

)
1
q

. . .
(

ηn
ξn

)
1
q





















































= I.

Therefore, we can choose a positive integerq such thatT
1
q

ξ→ηξ is sufficiently close toξ and hence can be
reached fromξ according to (13). That is, there exist control inputsū0, . . . , ūn−1, un, . . . , u2m+2 such that

(I + u2m+2B) · · · (I + unB) (I + ūn−1B) · · · (I + ū0B) ξ = T
1
q

ξ→ηξ,

where
[

ū0 ū1 · · · ūn−2 ūn−1

]T
∈ O

(

[

u0 u1 · · · un−2 un−1

]T
, ρ1

)

. Note thatT
1
q

ξ→η andB

commute with each other. Applyingq groups ofū0, . . . , ūn−1, un, . . . , u2m+2 yields

[(I + u2m+2B) · · · (I + unB) (I + ūn−1B) · · · (I + ū0B)]q ξ

= [(I + u2m+2B) · · · (I + unB) (I + ūn−1B) · · · (I + ū0B)]q−1 T
1
q

ξ→ηξ

= T
1
q

ξ→η [(I + u2m+2B) · · · (I + unB) (I + ūn−1B) · · · (I + ū0B)]q−1 ξ

= · · · =

(

T
1
q

ξ→η

)q

ξ = Tξ→ηξ = η.
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That is, controllability on each of the2m open orthants has been proved. The rest is to “connect” the2m

open orthants, i.e. to prove that the system is controllableon the union of the2m open orthants. One can
readily finish this by using Lemma 5 in [18] and following the arguments used in [18] (pp. 2856-2857,
from eq. (33) to eq. (37)), where the only explanation we should make here is that, althoughλ1, . . . , λr are
double eigenvalues ofB, the fact does affect connecting the2m open orthants. Indeed, just by replacing
the subscriptn by m in equations from (33) to (37) in [18], we can complete the proof.

So far, we have proved that the system (2) is controllable on

R
n \
{

ξ
∣

∣

∣

∣ ξ Bξ · · · Bn−2ξ Bn−1ξ
∣

∣ = 0
}

. (15)

Recalling the near-controllability definition, we have that

E = F =
{

ξ
∣

∣

∣

∣ ξ Bξ · · · Bn−2ξ Bn−1ξ
∣

∣ = 0
}

and the system (2) is nearly controllable sinceE ,F are two sets of zero Lebesgue measure inR
n.

Remark 3:Lemma 1 is important to obtain the stronger result on near-controllability of the system (2).
One can see that Lemma 2 in [18] is a special case of Lemma 1 and Theorem 2 in [18] is a special case
of Theorem 2 also. In fact, [18] was focusing on the case of B being diagonalizable, while the case dealt
with in this paper is more general. Moreover, thetransition matrix Tξ→η with the root locus approach
will make it possible to compute the required control inputsthat achieve the state transition.

Remark 4:One can further prove thatF in the proof of Theorem 2 can be∅. That is, for anyξ in
(15) and anyη ∈ R

n, ξ can be transferred toη. See the corresponding part in the proof of Theorem 1 in
[19] (from the last equation in p. 653 to the end of the proof) for reference.

By using the root locus approach, an algorithm is given to compute the required control inputs that
steer the nearly controllable system (2) from one state to another, which both belong to (15).

Algorithm 5: Steps on computing control inputs for given initial and terminal states:
• 1. TransformB into the Jordan canonical form as given in (4) by a nonsingular matrixP . The initial

and terminal statesξ, η are thus transformed intoPξ, Pη, respectively.
• 2. Find the control inputs that transferPξ to a stateζ which belongs to the same orthant asPη

belongs to (Lemma 5 in [18] will be helpful and its proof includes the details on how to find such
control inputs).

• 3. Get the transition matrixTζ→Pη for ζ, Pη from (14).
• 4. Chooseλm+1, λm+2 that satisfy (9).

• 5. Choose a positive integerq and computeT
1
q

ζ→Pη.
• 6. Obtain the root loci of the characteristic equation of thefollowing closed loop transfer function

1 +KG (s) := 1 +
K
(

(−1)2m+2 µ1s
2m+2 + · · ·+ (−1)µ2ms+ 1

)

s (s+ λ1)
2 · · · (s+ λm)

2 (s+ λm+1) (s+ λm+2)
(16)
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where





µ1
...

µ2m



 :=





















λ2m+2
1 · · · λ1

(2m+ 2)λ2m+1
1 · · · 1

...
...

...
λ2m+2
m · · · λm

(2m+ 2)λ2m+1
m · · · 1

λ2m+2
m+1 · · · λm+1

λ2m+2
m+2 · · · λm+2





















−1





















































T
1
q

ζ→Pη (2, 2)− 1

T
1
q

ζ→Pη (1, 2)
...

T
1
q

ζ→Pη (2r, 2r)− 1

T
1
q

ζ→Pη (2r − 1, 2r)

T
1
q

ζ→Pη (2r + 1, 2r + 1)− 1
0
...

T
1
q

ζ→Pη (n, n)− 1
0
0
0





















































(17)

with T
1
q

ζ→Pη (i, j) denoting the(i, j)th entry ofT
1
q

ζ→Pη andK increases from0 to +∞. If any of the
root loci leaves the real axis directly at the pole, return tothe former step and choose another integer
q greater than the previous one. Otherwise, choose a suitableK such that the roots of1+KG (s) = 0

are all real. Then, the reciprocals of the real roots are the control inputs that transferζ to T
1
q

ζ→Pηζ .
q groups of such control inputs together with the control inputs that transferPξ to ζ are the desired
ones which steer the nearly controllable system (2) fromξ to η.

An Explanation to Step 6 of Algorithm 5.Consider the equation

(I + v2m+2B) (I + v2m+1B) · · · (I + v1B) (I + v0B) ζ = T
1
q

ζ→Pηζ. (18)

From the proof of Theorem 2, we know that ifq is large enough, then eq. (18) admits a real solution of
v0, v1, . . . , v2m+1, v2m+2. Eq. (18) is equivalent to the matrix equation

(I + v2m+2B) (I + v2m+1B) · · · (I + v1B) (I + v0B) = T
1
q

ζ→Pη.

Let
2m+2
∏

k=0

1

vk
= (−1)2m+3 K. (19)

As shown for deriving eq. (7) in the proof of Lemma 1, we can obtain

B2m+3 +

2m+2
∑

k=0

1

vk
B2m+2 + · · ·+

2m+2
∑

k=0

vk
2m+2
∏

j=0

vj

B = (−1)2m+3 K

(

T
1
q

ζ→Pη − I

)

which can be written via equations as those in (8). Usingλm+1, λm+2 chosen in Step 4 and introducing
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the same constraints as those for (8), we can deduce




















λ2m+2
1 · · · λ1

(2m+ 2)λ2m+1
1 · · · 1

...
...

...
λ2m+2
m · · · λm

(2m+ 2)λ2m+1
m · · · 1

λ2m+2
m+1 · · · λm+1

λ2m+2
m+2 · · · λm+2







































2m+2
∑

k=0

1
vk

...
2m+2
∑

k=0

vk
2m+2
∏

j=0
vj



















=





















−λ2m+3
1

− (2m+ 3)λ2m+2
1

...
−λ2m+3

m

− (2m+ 3)λ2m+2
m

−λ2m+3
m+1

−λ2m+3
m+2





















+ (−1)2m+3 K





















































T
1
q

ζ→Pη (2, 2)− 1

T
1
q

ζ→Pη (1, 2)
...

T
1
q

ζ→Pη (2r, 2r)− 1

T
1
q

ζ→Pη (2r − 1, 2r)

T
1
q

ζ→Pη (2r + 1, 2r + 1)− 1
0
...

T
1
q

ζ→Pη (n, n)− 1
0
0
0





















































.

By Lemma 15,


















2m+2
∑

k=0

1
vk

...
2m+2
∑

k=0

vk
2m+2
∏

j=0
vj



















=















(−1)

(

2
m
∑

i=1

λi + λm+1 + λm+2

)

...

(−1)2m+2 λm+1λm+2

m
∏

i=1

λ2
i















+ (−1)2m+3K





µ1
...

µ2m





whereµ1, . . . , µ2m are given in (17). Then, with (19) we have that1
v0
, 1
v1
, . . . , 1

v2m+1
, 1
v2m+2

are the roots
of the following (2m+ 3)th-degree equation

s2m+3 +

(

2

m
∑

i=1

λi + λm+1 + λm+2 + (−1)2m+2 Kµ1

)

s2m+2 + · · ·+

(

λm+1λm+2

m
∏

i=1

λ2
i + (−1)Kµ2m

)

s+K = 0

which is equivalent to

s (s+ λ1)
2 · · · (s+ λm)

2 (s + λm+1) (s+ λm+2) +

K
(

(−1)2m+2 µ1s
2m+2 + · · ·+ (−1)µ2ms+ 1

)

= 0.

Thus, 1
v0
, 1
v1
, . . . , 1

v2m+1
, 1
v2m+2

are on the root loci of the characteristic equation of the closed loop transfer
function given in (16).
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An example will be provided in Section 4 to show the effectiveness of Algorithm 5.

Remark 6:By using the similar idea, one can try to derive an algorithm for computing the control inputs
to achieve the state transition for the nearly controllablebilinear systems studied in [19]. Furthermore,
although the result obtained in [19], namely Theorem 1 in [19], seems similar to Theorem 2, it cannot
yield Theorem 2 (vice versa). To see this, forξ, η of the system (2) that belong to (15), from Theorem 1
in [19] we can haveu(0), u(1), . . . , u(L1 − 1), u (L1) such that

(

B−1 + u (L1) I
) (

B−1 + u (L1 − 1) I
)

· · ·
(

B−1 + u (1) I
) (

B−1 + u (0) I
)

ξ = B−L2−1η

whereB satisfies the conditions in Theorem 2 andξ, B−L2−1η are the corresponding initial and terminal
states, respectively. This implies

(I + u (L1)B) (I + u (L1 − 1)B) · · · (I + u (1)B) (I + u (0)B) ξ = BL1−L2η.

Unfortunately, we can transferξ to BL1−L2η but not toη since we do not haveL1 = L2 either from
Theorem 1 in [19] or from Theorem 2.

Remark 7:Note that the opposite numbers ofB’s eigenvalues are poles ofG (s) given in (16), which
are all real so that it is possible for the root loci of1 + KG (s) = 0 to first move on the real axis.
However, ifB has complex eigenvalues, thenG (s) may have complex poles and some of the root loci
of 1 + KG (s) = 0 will not start at the real axis. In such a case, it is rather difficult to ensure that all
the root loci can have the same moment moving on the real axis,then the real control inputs that achieve
the state transition cannot be obtained. Therefore, for near-controllability of system (2) withB having
complex eigenvalues, we need to develop the proposed root locus approach or to find a new method.

III. N EARLY-CONTROLLABLE SUBSPACES ANDNEAR-CONTROLLABILITY INDEX

Consider the system

x (k + 1) = (I + u (k)B) x (k) =



I + u (k)





λ 1 0
0 λ 1
0 0 λ







 x (k) (20)

wherex (k) ∈ R
3, u (k) ∈ R, andλ 6= 0. SinceB has a Jordan block with dimension greater than two,

system (20) is non-nearly controllable according to Theorem 2. Nevertheless, consider system (20) on
region

{

ξ =
[

ξ1 ξ2 0
]T
}

. (21)

It can be seen that the system is invariant on (21), i.e.

x1,2(k + 1) = (I + u (k)B1,2) x1,2(k) =

(

I + u (k)

[

λ 1
0 λ

])

x1,2(k), (22)

x3(k + 1) = 0

wherex1,2(k) =
[

x1(k) x2(k)
]T

andB1,2 is the main submatrix ofB by taking the entries ofB in both
rows 1, 2 and columns1, 2. From Theorem 2, subsystem (22) is nearly controllable. More specifically, it
is controllable on

R
2 \
{

ξ1,2
∣

∣

∣

∣ ξ1,2 B1,2ξ1,2
∣

∣ = 0
}

=
{

ξ1,2 =
[

ξ1 ξ2
]T

| ξ2 6= 0
}

. (23)
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Therefore, system (20) is controllable on
{

ξ1,2 =
[

ξ1 ξ2
]T

| ξ2 6= 0
}

⊗ {ξ3 = 0} =
{

ξ =
[

ξ1 ξ2 0
]T

| ξ2 6= 0
}

(24)

which is a two-dimensional region inR3. Similarly, one can deduce that the one-dimensional region
{

ξ =
[

ξ1 0 0
]T

| ξ1 6= 0
}

is also a region on which system (20) is controllable.

In this section, we study the non-nearly controllable systems. It is well known that if a linear time-
invariant system is uncontrollable, then the state space can be decomposed as a direct sum of a controllable
subspace and an uncontrollable subspace. On the controllable subspace the linear system is controllable.
Furthermore, the controllable subspace corresponds to a controllable linear subsystem. Inspired by these
facts, we will derive nearly-controllable subspaces of thesystem (2) by using Theorem 2. Actually, the
regions in (23) and (24) are nearly-controllable subspacesof system (20). We do not use “controllable
subspace” here since a subspace is in general a linear space,while a nearly-controllable subspace does
not contain the zero element (the origin is an isolated stateof system (1) that once it is reached, then the
system cannot be steered away).

Definition 8: A nearly-controllable subspace of the system (2) is a controllable region of the system
(2) that is derived from the corresponding nearly controllable subsystem of the system (2) on the region.

By the following Lemma, we will show how to obtain a nearly-controllable subspace.

Lemma 9:Consider the system

x (k + 1) = (I + u (k)B)x (k) =











I + u (k)











λ 1

λ
. . .
. . . 1

λ





















x (k) (25)

wherex (k) ∈ R
n, n ≥ 3, u (k) ∈ R, andλ 6= 0. Then, any state in a controllable region of system (25),

which contains more than one state, has the property that only the first two entries can be nonzero.

The proof of this lemma can be found in Appendix.

Theorem 10:Consider the system (2) withB in Jordan canonical form




J (λ1)
. . .

J (λm)





without loss of generality, whereλi 6= λj if i 6= j and J (λi) is the Jordan matrix associated with
eigenvalueλi for i = 1, . . . , m. Let h be the dimension ofB’s largest main submatrix that is nonsingular,
cyclic, and does not have a Jordan block with dimension greater than two. Then, the system (2) has an
e-dimensional nearly-controllable subspace fore = 1, . . . , h.

Proof: Choose any main submatrixBi1,...,ie of B that is nonsingular, cyclic, and does not have a
Jordan block with dimension greater than two, whereij is required to correspond to the first or the
second row (and column) of a Jordan block inB in view of Lemma 9 forj = 1, . . . , e and if someij
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corresponds to the second row (and column) of a Jordan block,thenij−1 corresponds to the first row (and
column) of the same one. Consider the system (2) on

{

ξ =
[

0 · · · 0 ξi1 0 · · · 0 ξie 0 · · · 0
]T
}

.

Then, the system can be rewritten as

xi1,...,ie(k + 1) = (I + u (k)Bi1,...,ie)xi1,...,ie(k), (26)

x1,...,i1−1,i1+1,...,ie−1,ie+1,...,n(k + 1) = 0

where
xi1,...,ie(k) =

[

xi1(k) xi2(k) · · · xie(k)
]T

and

x1,...,i1−1,i1+1,...,ie−1,ie+1,...,n(k)

=
[

x1(k) · · · xi1−1(k) xi1+1(k) · · · xie−1(k) xie+1(k) · · · xn(k)
]T

.

Due to the chosenBi1,...,ie, subsystem (26) is nearly controllable by Theorem 2. Thus, the system (2) is
controllable on thee-dimensional region

{

ξ =
[

0 · · · 0 ξi1 0 · · · 0 ξie 0 · · · 0
]T
}

\H (27)

where

H =
{

ξ =
[

0 · · · 0 ξi1 0 · · · 0 ξie 0 · · · 0
]T
∣

∣

∣

∣

∣ ξi1,...,ie Bi1,...,ieξi1,...,ie · · · Be−1
i1,...,ie

ξi1,...,ie
∣

∣ = 0, ξi1,...,ie =
[

ξi1 · · · ξie
]T
}

.

That is, region (27) is ane-dimensional nearly-controllable subspace of the system (2).

Remark 11:From the proof of Theorem 10, in order to obtain a nearly-controllable subspace of the
system (2), the main submatrixBi1,...,ie of B that the nearly-controllable subspace corresponds to mustbe
chosen to be nonsingular, cyclic, and have no Jordan block with dimension greater than two, whereij is
required to correspond to the first or the second row (and column) of a Jordan block inB for j = 1, . . . , e
and if someij corresponds to the second row (and column) of a Jordan block,then ij−1 corresponds to
the first row (and column) of the same one.

Definition 12: h in Theorem 10 is called the near-controllability index of the system (2).

If h = n, then the system (2) is nearly controllable. Otherwise, we can have the nearly-controllable
subspaces with dimension from1 to h. In particular, the state transition on every nearly-controllable
subspace can also be achieved through Algorithm 5. Additionally, even for the nearly controllable system
(2), it has nearly-controllable subspaces in the removed region of (15) (i.e.E) and (15) can be regarded
as ann-dimensional nearly-controllable subspace. An example isgiven in the next section.
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IV. EXAMPLES

Example 13:Consider the system

x (k + 1) = (I + u (k)B)x (k) =



I + u (k)





2 1 −5
0 2 −4
0 0 −2







 x (k) (28)

wherex (k) ∈ R
3 and u (k) ∈ R. Given ξ =

[

0 0 −1
]T

, η =
[

27 21 12
]T

. Find the control
inputs such thatξ is transferred toη.

We now apply Algorithm 5 to compute the required control inputs. Step 1: let x̄ (k) = Px (k) where

P =





1 −1 0
0 1 −1
0 0 1



 .

Then,

x̄ (k + 1) =
(

I + u (k)PBP−1
)

x̄ (k) =



I + u (k)





2 1 0
0 2 0
0 0 −2







 x̄ (k) (29)

andPξ =
[

0 1 −1
]T

, P η =
[

6 9 12
]T

. From Theorem 2, system (29) is nearly controllable (so
is system (28)) and is controllable on

R
3 \
{

ξ
∣

∣

∣

∣ ξ PBP−1ξ (PBP−1)
2
ξ
∣

∣ = 0
}

= R
3 \
{

ξ =
[

ξ1 ξ2 ξ3
]T

| ξ2ξ3 = 0
}

= {ξ | ξ2 > 0, ξ3 > 0} ∪ {ξ | ξ2 < 0, ξ3 > 0} ∪ {ξ | ξ2 < 0, ξ3 < 0} ∪ {ξ | ξ2 > 0, ξ3 < 0}

that consists of four open orthants.Step 2: sincePξ, Pη belong to different orthants, letu (0) = 1. It
follows

(

I + u (0)PBP−1
)

Pξ =
[

1 3 1
]T

, ζ

which is in the orthant thatPη belongs to.Step 3: obtain from (14) the transition matrix

Tζ→Pη =





3 1 0
0 3 0
0 0 12



 .

Step 4: chooseλ3 = 1, λ4 = −4 in view of (9). Step 5: chooseq = 4. Then,

T
1
4
ζ→Pη =







3
1
4

1

4×3
3
4

0

0 3
1
4 0

0 0 12
1
4






.

Step 6: by (17)

µ1 ≈ 0.000742, µ2 ≈ −0.00511, µ3 ≈ −0.0393, µ4 ≈ −0.0648, µ5 ≈ 0.293, µ6 ≈ 0.314.

Consider

1 +KG (s) = 1 +
K
(

(−1)6 µ1s
6 + · · ·+ (−1)µ6s + 1

)

s (s+ 2)2 (s− 2)2 (s+ 1) (s− 4)
.

By Matlab the root loci of1 + KG (s) = 0 are shown in the following figure, where “×” and “◦”
respectively denote the poles and zeros ofG (s) and the colored curves are the root loci of1+KG (s) = 0
starting at the poles and ending at the zeros. From Fig. 1, theroot loci of 1 +KG (s) = 0 first move on
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Fig. 1. Root loci of1 +KG (s) = 0

the real axis. ChooseK = 10 and obtain the roots of1 +KG (s) = 0. Computing the reciprocals of the
roots yields

v1 ≈ −0.770, v2 ≈ −0.643, v3 ≈ −0.452, v4 ≈ 0.250, v5 ≈ 0.439, v6 ≈ 0.612, v7 ≈ 6.650.

One can now verify that, by4 groups of the above control inputs withu (0) = 1, system (28) is steered
from ξ to η.

Example 14:Consider the system

x (k + 1) = (I + u (k)B) x (k) =









I + u (k)









λ1 1 0 0
0 λ1 1 0
0 0 λ1 0
0 0 0 λ2

















x (k) (30)

where x (k) ∈ R
4, u(k) ∈ R, and λ1, λ2 are nonzero real and distinct. Find its nearly-controllable

subspaces.

According to Theorem 2, system (30) is non-nearly controllable. The dimension ofB’s largest main
submatrix, which is nonsingular, cyclic, and does not have aJordan block with dimension greater than
two, is three, so the near-controllability index of system (30) h = 3. More specifically,B1,2,4, B2,3,4

are such main submatrices ofB. From the proof of Theorem 10B1,2,4 corresponds to the following
three-dimensional nearly-controllable subspace of system (30)

{

ξ =
[

ξ1 ξ2 0 ξ4
]T
}

\
{

ξ
∣

∣

∣

∣ ξ1,2,4 B1,2,4ξ1,2,4 B2
1,2,4ξ1,2,4

∣

∣ = 0
}

=
{

ξ =
[

ξ1 ξ2 0 ξ4
]T

| ξ2ξ4 6= 0
}

(31)

whereξ1,2,4 =
[

ξ1 ξ2 ξ4
]T

. However, the region
{

ξ =
[

0 ξ2 ξ3 ξ4
]T

| ξ3ξ4 6= 0
}
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thatB2,3,4 corresponds to is not a nearly-controllable subspace in view of Lemma 9. Besides (31), system
(30) has the two-dimensional nearly-controllable subspaces

{

ξ =
[

ξ1 ξ2 0 0
]T

| ξ2 6= 0
}

,
{

ξ =
[

ξ1 0 0 ξ4
]T

| ξ1ξ4 6= 0
}

thatB1,2, B1,4 respectively correspond to and the one-dimensional nearly-controllable subspaces
{

ξ =
[

ξ1 0 0 0
]T

| ξ1 6= 0
}

,
{

ξ =
[

0 0 0 ξ4
]T

| ξ4 6= 0
}

that B1, B4 respectively corresponds to. In all, system (30) has five nearly-controllable subspaces from
Theorem 10.

V. CONCLUSIONS

In this paper, near-controllability of a class of discrete-time bilinear systems is studied by proposing
a root locus approach. A necessary and sufficient criterion for the systems to be nearly controllable is
obtained. In particular, the control inputs which achieve the state transition for the nearly controllable
systems are computed and an algorithm is presented. Furthermore, the nearly-controllable subspaces are
derived and the near-controllability index is defined. Two examples are provided to demonstrate the results
of the paper. Future work should consider the near-controllability and controllability problems of general
bilinear systems and develop the proposed root locus approach.
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VI. A PPENDIX

Lemma 15:Let

C =





















λ2m+2
1 · · · λ1

(2m+ 2) λ2m+1
1 · · · 1

...
...

...
λ2m+2
m · · · λm

(2m+ 2) λ2m+1
m · · · 1

λ2m+2
m+1 · · · λm+1

λ2m+2
m+2 · · · λm+2





















, d =





















−λ2m+3
1

− (2m+ 3) λ2m+2
1

...
−λ2m+3

m

− (2m+ 3) λ2m+2
m

−λ2m+3
m+1

−λ2m+3
m+2





















whereλ1, . . . , λm+2 are nonzero real and pairwise distinct. Then, the linear equation

Cz = d (32)

has a unique solution

z = C−1d =















(−1)

(

2
m
∑

i=1

λi + λm+1 + λm+2

)

...

(−1)2m+2 λm+1λm+2

m
∏

i=1

λ2
i















.

Proof: Note that the transpose ofC is a general Vandermonde matrix.C is nonsingular sinceλ1, . . . ,
λm+2 are nonzero and pairwise distinct. Therefore, linear equation (32) has a unique solution. Assume
that z =

[

z1 z2 · · · z2m+2

]T
is the solution. From (32) we have

λ2m+3
i + z1λ

2m+2
i + · · ·+ z2m+2λi = 0

for i = 1, . . . , m+ 2 and

(2m+ 3) λ2m+2
i + z1 (2m+ 2) λ2m+1

i + · · ·+ z2m+2 = 0

for i = 1, . . . , m. Sinceλi are nonzero, it follows

λ2m+2
i + z1λ

2m+1
i + · · ·+ z2m+2 = 0

for i = 1, . . . , m+ 2 and hence

(2m+ 3)λ2m+2
i + z1 (2m+ 2)λ2m+1

i + · · ·+ z2m+2 −
(

λ2m+2
i + z1λ

2m+1
i + · · ·+ z2m+2

)

= (2m+ 2)λ2m+2
i + z1 (2m+ 1)λ2m+1

i + · · ·+ z2m+1λi = 0

⇒ (2m+ 2)λ2m+1
i + z1 (2m+ 1)λ2m

i + · · ·+ z2m+1 = 0

for i = 1, . . . , m. We can thus conclude thatλ1, . . . , λm+2 are all the roots of the following(2m+ 2)th-
degree equation

s2m+2 + z1s
2m+1 + · · ·+ z2m+2 = 0,

in which λ1, . . . , λm are double roots. By the Viète’s formulas,

z1 = (−1)

(

2

m
∑

i=1

λi + λm+1 + λm+2

)

,

...

z2m+2 = (−1)2m+2 λm+1λm+2

m
∏

i=1

λ2
i .
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Proof of Necessity of Lemma 1:We only need to show that there do not exist nonzero real numbers
for (3) when

B =











λ 1

λ
. . .
. . . 1

λ











∈ R
N×N

whereN ≥ 3 andλ 6= 0. Reduction to absurdity: assume that such nonzero real numbers exist for (3)
with the above givenB. From (3),

(

1

u (L)
I +B

)(

1

u (L− 1)
I +B

)

· · ·

(

1

u (1)
I +B

)(

1

u (0)
I +B

)

=

L
∏

k=0

1

u (k)
I. (33)

It follows

BL+1 +

L
∑

k=0

1

u (k)
BL + · · ·+

L
∑

k=0

u (k)
2m+2
∏

j=0

u (j)

B = 0 ⇒

BL +
L
∑

k=0

1

u (k)
BL−1 + · · ·+

L
∑

k=0

u (k)
2m+2
∏

j=0

u (j)

I = 0, (34)

which impliesL ≥ N . Otherwise the(1, L+ 1)th entry in the sum of the left side of matrix equation
(34), which is determined byBL, does not vanish. Next, letw (k) = 1

u(k)
+ λ for k = 0, 1, . . . , L. From

(33),
(

w (L) I + B̄
) (

w (L− 1) I + B̄
)

· · ·
(

w (1) I + B̄
) (

w (0) I + B̄
)

=

L
∏

k=0

(w (k)− λ) I

where

B̄ =











0 1

0
. . .
. . . 1

0











.

We have

B̄L+1 +
L
∑

k=0

w (k) B̄L + · · ·+
L
∑

k=0

L
∏

j=0

w (j)

w (k)
B̄ +

L
∏

k=0

w (k) I

=
∑

w (k0)w (k1) · · ·w (kL−N+1) B̄
N−1 +

∑

w (k0)w (k1) · · ·w (kL−N+2) B̄
N−2+

· · ·+

L
∑

k=0

L
∏

j=0

w (j)

w (k)
B̄ +

L
∏

k=0

w (k) I

=
L
∏

k=0

(w (k)− λ) I (35)
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sinceB̄j = 0 for j ≥ N . Therefore, from (35)
∑

w (k0)w (k1) · · ·w (kL−N+1) = 0,

...

L
∑

k=0

L
∏

j=0

w (j)

w (k)
= 0,

L
∏

k=0

w (k) =

L
∏

k=0

(w (k)− λ) . (36)

Let
L
∑

k=0

w (k) = (−1) c1,

...
∑

w (k0)w (k1) · · ·w (kL−N) = (−1)L−N+1 cL−N+1. (37)

For the last equation in (36), by noting the other equations in (36) and the equations in (37) we have

L
∏

k=0

(w (k)− λ) =

L
∏

k=0

w (k) +

L
∑

k=0

L
∏

j=0

w (j)

w (k)
(−λ) + · · ·+

L
∑

k=0

w (k) (−λ)L + (−λ)L+1

=

L
∏

k=0

w (k) + (−1)L−N+1 cL−N+1 (−λ)N + · · ·+ (−1) c1 (−λ)L + (−λ)L+1

=
L
∏

k=0

w (k) + (−1)L+1 (cL−N+1λ
N + · · ·+ c1λ

L + λL+1
)

=
L
∏

k=0

w (k) .

Hence,

cL−N+1λ
N + · · ·+ c1λ

L + λL+1 = 0 ⇒

cL−N+1 = −
(

λL−N+1 + c1λ
L−N + · · ·+ cL−Nλ

)

. (38)

Now, let
L
∏

k=0

w (k) = (−1)L+1 c. (39)

Combining (37), (36), (39) and noting (38), one can see from the Viète’s formulas thatw (0) , w (1) ,
. . . , w (L− 1) , w (L) are all the roots of the following(L+ 1)th-degree equation

sL+1 + c1s
L + · · ·+ cL−Ns

N+1 −
(

λL−N+1 + c1λ
L−N + · · ·+ cL−Nλ

)

sN + c = 0. (40)

However, according to Lemma 5 in [19], eq. (40) must have complex roots. This contradicts the fact that
u (0) , u (1) , . . . , u (L− 1) , u (L) are all real. Therefore, if there exist nonzero real numbersto satisfy eq.
(3), thenB does not have a Jordan block with dimension greater than two in its Jordan canonical form.
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Proof of Necessity of Theorem 2:For necessity, we show that ifB is singular, or noncyclic, or
has a Jordan block with dimension greater than two in its Jordan canonical form, then the system (2) is
non-nearly controllable. Firstly, ifB is singular, we can write

B =

[

∗ ∗
0 0

]

without loss of generality. Then,u(k) loses the ability in controllingxn(k) and the system is non-nearly
controllable.

Secondly, ifB is not cyclic, it has an eigenvalue that corresponds to at least two Jordan blocks in its
Jordan canonical form and can be simply written as











∗ ∗
λ

∗ ∗
λ

∗











without loss of generality. Then, for any initial stateξ =
[

· · · ξi · · · ξj · · ·
]T

, it follows

L
∏

k=0

(I + u (k)B)
[

· · · ξi · · · ξj · · ·
]T

=





















∗ ∗
L
∏

k=0

(1 + u (k) λ)

∗ ∗
L
∏

k=0

(1 + u (k)λ)

∗





































...
ξi
...
ξj
...

















=

[

· · ·
L
∏

k=0

(1 + u (k) λ) ξi · · ·
L
∏

k=0

(1 + u (k) λ) ξj · · ·

]T

,
[

· · · ηi · · · ηj · · ·
]T

,

from which we can seeξiηj = ξjηi. This implies that some of the state variables in the terminal states
are linearly dependent. Thus, the system does not have a large controllable region and is non-nearly
controllable.

Finally, if B has a Jordan block with dimension greater than two in its Jordan canonical form, then the
system is non-nearly controllable by Lemma 9.

Proof of Lemma 9: From the analysis on system (20), we can see that system (25) is controllable
on

{

ξ =
[

ξ1 0 · · · 0
]T

| ξ1 6= 0
}

,
{

ξ =
[

ξ1 ξ2 0 · · · 0
]T

| ξ2 6= 0
}

respectively. Now, if system (25) has a controllable regionthat contains more than one state and contains
such a state

ξ̄ =
[

ξ1 · · · ξj 0 · · · 0
]T

whereξj 6= 0 and j ≥ 3, then, for another stateη (η 6= ξ̄) in this region, there exist nonzero real control
inputs u(0), u(1), . . . , u(L1 − 1), u (L1) such thatξ̄ is transferred toη and nonzero real control inputs
v(0), v(1), . . . , v(L2 − 1), v (L2) such thatη is transferred tōξ. As a result, we have

L1+L2+1
∏

k=0

(I + u (k)B) ξ̄ =

L1+L2+1
∏

k=L1+1

(I + u (k)B) η =

L2
∏

k=0

(I + v (k)B) η = ξ̄
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whereu (L1 + 1) = v(0), u (L1 + 2) = v(1), . . . , u (L1 + L2) = v(L2 − 1), u (L1 + L2 + 1) = v (L2), i.e.

L1+L2+1
∏

k=0

(I + u (k)B)
[

ξ1 · · · ξj 0 · · · 0
]T

=
[

ξ1 · · · ξj 0 · · · 0
]T

.

This implies

L1+L2+1
∏

k=0

(I + u (k)B1,...,j)
[

ξ1 · · · ξj
]T

=









Π Σ1 · · · Σj−1

. . . . . .
...

Π Σ1

Π













ξ1
...
ξj



 =





ξ1
...
ξj



 (41)

where

Π =

L1+L2+1
∏

k=0

(1 + u (k) λ) , Σi =
1

i!

di
L1+L2+1
∏

k=0

(1 + u (k) y)

dyi

∣

∣

∣

∣

y=λ
for i = 1, . . . , j − 1.

From (41)

Πξ1 + Σ1ξ2 + · · ·+ Σj−1ξj = ξ1,
...

Πξj−1 + Σ1ξj = ξj−1,

Πξj = ξj.

Using the last equation in the above equations, we can deduce

Π = 1, Σ1 = 0, . . . ,Σj−1 = 0.

Then, it results in
L1+L2+1
∏

k=0

(I + u (k)B1,...,j) = I. (42)

However, sincej ≥ 3, there do not exist such nonzero control inputs to satisfy (42) according to Lemma
1. Therefore, system (25) can only have the states of which the latter(n− 2) entries are all zero in its
controllable regions that contain more than one state.
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