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Abstract

This paper studies near-controllability of a class of diseitime bilinear systems via a root locus approach.
A necessary and sufficient criterion for the systems to belynwemntrollable is given. In particular, by using
the root locus approach, the control inputs which achieeedtate transition for the nearly controllable systems
can be computed. Furthermore, for the non-nearly conbigllaystems, nearly-controllable subspaces are derived
and near-controllability index is defined. Accordinglyethontrollability properties of such class of discreteeim
bilinear systems are fully characterized. Finally, exassmre provided to demonstrate the results of the paper.
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I. INTRODUCTION

Given the capability of modeling a large number of processdbe real world, bilinear systems have
received considerable attention [1-4]. Furthermorenbdr systems are thought to be simpler and better
understood than most other nonlinear systems. Such sydiames particular advantages on structural
properties, optimization, identification, and control.eTtelaxed version of a linear switched system is
actually a bilinear system [5]. Owing to both the practicatlaheoretical importance, bilinear systems
have been a hot topic in the literature of nonlinear systewes decades.

Controllability is one fundamental concept in mathematozantrol theory. It was identified in the early
1960s, and then the theory of controllability for linear teyss based on the state space description was
systematically established [6,7]. During nearly the sameop, controllability of nonlinear systems also
was considered. Since the 1970s, Lie algebra methods aed mawverful tools of differentiable manifold
theory have been developed to study controllability of medr systems [8-11]. Today, controllability
has played an essential role in the development and apphcat mathematical control theory. There are
many different kinds of definitions on controllability, suas local controllability, global controllability,
approximate controllability, positive controllabilitgnd null controllability. Roughly speaking, controlla-
bility is defined as the ability of a system that the systemlmasteered from an arbitrary initial state to an
arbitrary terminal state under the action of admissibletrads It is an important as well as fundamental
property of control systems and is of great practical reieea

In bilinear system theory, controllability is one of the maesearch topics. This is particularly true
for the continuous-time case. More specifically, contialley of continuous-time bilinear systems has
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been extensively investigated profiting from the Lie algebrethods. Various Lie-algebraic criteria on
controllability of continuous-time bilinear systems weobtained in the literature, which have been
summarized and updated in a recent monograph [4] on bilsyesdaems. However, for discrete-time bilinear
systems, the controllability results are rather sparsepawed with their continuous-time counterparts.
Most of the works on controllability of discrete-time bidiar systems were done in the 1970s [12-15],
dealing with systems of the form

v(k+1)=(A+u(k)B) xz (k) 1)

wherez(k) € R", A, B € R™*", andu(k) € R. System (1) is said to be controllable if, for afyy in R?

(R? :=R™\ {0}), there exist a positive integérand a finite control sequenagk) (k =0,1,...,1—1)
such that the system can be steered ffota n at £ = [. In particular, [12] gave a sufficient condition for
controllability of system (1), which requires, at leadt,is similar to an orthogonal matrix. [13] studied
controllability of system (1) under the assumption of rBnk= 1 and presented necessary as well as
sufficient conditions; based on the work in [13], [15] impedvthese conditions by raising necessary
and sufficient ones. It can be seen that, for controllabditgliscrete-time bilinear systems, only specific
subclasses have been considered, while most cases rensailvadh Since the middle 1980s, few work
has been reported until the 2000s. One of the reasons le&lisgch a few results on controllability
of discrete-time bilinear systems is that the controliggbibroblems are quite difficult to deal with due
to the systems’ nonlinearity. Another one is that, for desertime nonlinear systems, semigroups tend
to appear so that less algebraic structure of the systemaikalale [16]. Recently, [17] continued the
study on controllability of system (1) and obtained necessand sufficient conditions for the case of
AB = BA, where it was shown that the system can be controllable dntg dimension is no greater
than two. Nevertheless, an uncontrollable system canhstié a largecontrollable regioﬁ. This has first
been proved for system (1) with = I, i.e.

2 (k+1) = (I +u(k)B)z (k) @)

which is uncontrollable with dimension greater than two][1@deed, if B has only real eigenvalues that
are nonzero and pairwise distinct, then the system (2) hasya tontrollable region, which nearly covers
the whole space, and is nearly controllable.

If we only use “uncontrollable” to describe a system whichnigt controllable according to the
general controllability definition, we may miss some valegtroperties of it. Near-controllability is thus
introduced to describe those systems that are unconti®llait have a very large controllable region.
Nearly controllable systems exist widely in nonlinear eys$. This property was first defined and was
demonstrated on system (2) in [18], and it was then genedilia system (1) withB = [ in [19] and
to both continuous-time and discrete-time nonlinear systéhat are not necessarily bilinear in [20].
The definition of near-controllability, which was first given [18], has now been updated in [2A.
continuous-time syste(t) = f (x (t),u (t)) (discrete-time system (k + 1) = f (z (k),u (k))) is said
to be nearly controllable if, for any € R*\E and anyn € R"\F, there exist a piecewise continuous
control  (t) and T" > 0 (a finite control sequence (k), k = 0,1,...,l— 1, wherel is a positive integer)
such that the system can be steered féota n at somet € (0,7) (k = [), where€ and F are two sets of
zero Lebesgue measure RY. If we let £, F = @, then the near-controllability definition degenerates to
the general controllability definition. Thus, near-cofitbility includes the notion of controllability and
may better characterize the controllability propertiesioflinear systems. However, most of the existing
works on near-controllability are reported for discraeted bilinear systems and the study on this topic is
just at the beginning.

A controllable region is a region iR™ on which the system is controllable. Namely, for ahy; in this region, there exist control inputs
that steer the system frogto 7.



In this paper, we continue the research on near-contrétialmf system (2) with B having real
eigenvalues only. We improve the sufficient condition foameontrollability of the system (2) in [18]
by giving a necessary and sufficient one. In particular, walyap new approach this time to prove near-
controllability. That is, a root locus approach is proposedhis paper. Compared with the technique
used in [18,19] which is based on the implicit function thexar by the root locus approach we can not
only improve the obtained result on near-controllabiliiyt also compute the required control inputs that
achieve the state transitfbriwe thus present a useful algorithm. Furthermore, insgisethe state space
description for linear systems, we also consider the n@ripeontrollable systems. It is well known that
if a linear time-invariant system is uncontrollable, thém tstate space can be decomposed as a direct
sum of a controllable subspace and an uncontrollable sabspar the non-nearly controllable systems,
we derive nearly-controllable subspaces and define nedradiability index by using the improved near-
controllability result, which shows that the non-nearlyntollable systems can be controllable on the
nearly-controllable subspaces. The near-controllgbilitdex is used to determine the largest nearly-
controllable subspaces that a non-nearly controllableesyfas. In summary, the controllability properties
of the system (2) are fully characterized. Finally, we pdavexamples to illustrate the conceptions and
the results of this paper.

II. AROOTLOCUSAPPROACH TONEAR-CONTROLLABILITY

In this section, we propose a root locus approach and apfypitove near-controllability of the system
(2). The idea of the root locus approach is to use the rootsldbeory to achieve the state transition,
including transferring any initial state to itself and to t@&te close to it. More importantly, the control
inputs are computable in these steps. Then, we use the ntlagaxy by establishing a transition matrix
and some algebraic techniques to prove near-controliabilne proof steps are similar to those in [18,19],
but the factor that plays the key role has changed. Thatesintiplicit function theorem has been replaced
by the root locus approach.

Lemma 1:1f B € R™*™ has only nonzero and real eigenvalues, then there existnomeal numbers
u(0),u(l),...,u(L —1),u (L) such that
I+u(l)By(I+u(L-1)B)---(I+u(l)B)(I4+u(0)B)=1 3)
if and only if the dimension of the largest Jordan block in flmedan canonical form oB is no greater
than two. Further, ifB not only satisfies the necessary and sufficient conditionalsd is cyclig, then
there exist2m + 3) nonzero real and pairwise distinct number®),u (1),...,u(2m+1),u (2m + 2)
such that (3) holds, where: is the number of the distinct eigenvalues i®f

Proof: We put the proof of necessity in Appendix and only prove sigficy here. Assume first that
B has the following cyclic form

A1

A, (4)

)\r+1

Am

2For nonlinear systems, it is, in general, hard to computectiverol inputs to achieve state transition even if conatality has been
proved. In this paper, we obtain both the controllability &nontrol computability” (the ability of computing the raged control inputs for
the transition of any given initial and terminal states).

A matrix is said to be cyclic if its characteristic polynorhia equal to its minimal polynomial. Namely, only one Jordalnck exists
for each eigenvalue in the Jordan canonical form of the matri



where B is already in Jordan canonical form since a nonsingulasstaamation toB does not affect the
proof and)y, ..., \,, are nonzero real and pairwise distinct. In addition;+ » = n. We now show that
the equation

(I+u@m+2)B)(I+ulm+1)B)---(I+u(l)B)({+u(0)B) =1 (5)
admits a solution of nonzero real(0) ,u (1),...,u(2m+ 1) ,u (2m + 2). To this end, it will be proved
that the reciprocals of (0) ,u (1),...,u(2m+ 1),u (2m + 2) are on the root loci of the characteristic

equation of a closed transfer function relatedAs eigenvalues. Multiplying both sides of equation (5)
by

2m+2 1
,no (k)
we have
2m+-2
1 1 1 1 1
— I+ B —I+B|---|—=I+B —I+B| = —1 6
s’ ) e’ 2) - G +2) (o' +) It ©
from whictf
2m+2 2m+2 u (k’)
B+ Z Bzm+2 o Z 2m+2 B=0 (7)
=0 T (i)
j=0
Writing (7) through two groups of equations yields
( 2m+2 k
)\2m+3 + Z )\2m+2 . Z 2in(2 -0
=0 [I U(J)
Jj=0
2m+2 2m+2 0
(@m+3) A" 4+ 2m+2) 3 AT 4+ E b~
k=0 =0 HO u(j)
j=
2m+2 . 2m+2
)\%m+3+ Z u(k )\2m+2+ -+ Z 2m+2 ‘ 7" =0
= IT w(@)
=0
2m+2 2m+2 k
(2m+3) X2 4 (2m 42) 3 A 4 Z —uk
k=0 [T u(d)
\ 7=0
( ot 2m+2 otz 2m+2
SRS u(k: A Y A1 =0
k=0 k=0 [1 w()
=0
(8)
ot ami2 S 2m+2 (k)
)\mer + E u(k))\ A s Z 2m+2 m =0
k= =0 ]I U(J)
\ 7=0
“Throughout this paper, such kind of expressiQ(;nﬁQ# is used to represent the summation
k=0 "1 "u()
uko)u (k)  w(koms1) w(@u(l) uw@m+1) w0 uw(2m)u(2m+2) w(l) uw@m+1)u(2m+2)

for simplicity. There is no meaning of division in the expsies.



By adding the following(m — r) constraints

2m+2 1 2m+2 u (k)
(2m + 3) A2 4 (2m + 2) Z@A3Tf1+m+ N =0,
=0 1T ()
j=0
2m+2 1 2m+-2 u (k‘)
(2m + 3) A2"+2 4 (2m + 2) Z—k)\ibm+1+...+ Y =0
=R =0 T u(j)
§=0
to the second group of equations in (8) and the two conssraint
2m+2 2m+2
1 u (k)
2m+3 2m+-2 —
=0 ] u ()
j=0
2m—+2 2m—+2
1 u (k)
2m+-3 2m—+2 _
)\m+2 +Zm)\m+2 —|—_|_ ZWAWHFQ - 0
=0 1T ()
j=0
to all equations in (8), wherg,,,. 1, \,,.» are chosen such that
0 < [Apaa| <min{|\|,..., [Anl} <max{|\]|,..., [ A\nl} < =Amio,

we can put the aboven + ) + (m —r) + 2 = 2m + 2 equations into the matrix form

B 2m+2 o _— i -~ ames i
Ay A1 2m+2 . A7
(Qm + 2) )\%m-i-l o 1 kz_:o ) B (2m v 3) )\%m—f—Z
)\%ln.%—l—Z .. )\;n : — B )\?'nm s
(2m +2) N2+ ] miz o _ (2m 1 3) AZmt2
)\2m+2 e A 2m+2 _)\2m+3
Btia m k=0 I u(j) el
- Amiy2 s Amge 1L =0 - i — A i
From Lemma 15 in Appendix, we obtain
2m—+2 1 m
2 u(k) (=1) <22)‘i + A+ >‘m+2> ,
k=0 i=1
2m—+2 m
u (k -
Z QWF# = (_1)2 2 >‘m+1)\m+2H>\?.
=0 I w()) i=1
j=0

2m+2
If we denote [] .45 by
k=0

(_1)2m+3 K,

(9)



then, from the Viete’s formulas—) oL (27}”1), u(2m+2) are the roots of the following2m + 3)th-
degree equation

g2m+3 + (22)\1, + Apst + )\m+2> g2m+2 4+t <)\m+1)\m+2n)\?> s+ K =0
i=1

=1
and are thus on the root loci of the characteristic equatfaie closed loop transfer function
K

g2m+3 + <22>\z + )\m—i—l + )\m+2) g2m+2 + -+ <>\m+1>\m+2H>\ZZ) S
=1 =1
K
P Y IR PR W FE I Wy CE )

G (s) has(2m + 3) real poles only and has no zero. By condition (9), in the: + 3) real poles—\,,.2
is the largest pole of (s) and is a single pole;-\4, ..., —\,, are double poles of7 (s); 0 and —\,,,41
are two single poles dff (s) between two double poles in)\, ..., —\,,. Therefore, we can see from the
root locus theory [21] that, a& increases fron) to +oo, all root loci of 1 + KG (s) = 0 that start at the
(2m + 3) real poles will first move on the real axis. That is to say, we alvays choose & such that
1+KG( )=20 has(2m + 3) nonzero reabndpairwise distinctroots. Indeed, by making” small enough,
u( L u(l) "’u(2m+1)’ wEmT) are perturbed away from\;, — A1, ..., =X, — A, —Ama1, —Amae, 0 @and
hence are not only nonzero real but also pairwise distineén] the reC|procaIs of the nonzero real and
pairwise distinct roots are the real numbers that satistyaggn (5) smcem, u(l), e u(27711+1)’ U(ZT}HZ)
satisfy the equations in (8), (7), and (6).

Finally, if B is noncyclic, we can choose the largest cyclic main submaifi3, namedB,,;,, and
there exist real numbers(0),u (1),...,u (L —1),u (L) such that

(I +u (L) Bsup) (I +u(L —1) Bsup) -+ (I +u (1) Bsup) (I +u(0) Bsup) = 1 (10)

from the above analysis. By noting the fact that

(e[ 1]) (03 1])

1+ KG(s) : =1+

= 1+

implies
A1 0 A1 0
IT+u(L)| 0 X 0 IT+u() |0 X 0]|]=1,
0 0 A 0 0 A
one can easily verify that eq. (10) still works H,,; is replaced byB. [ |

By using Lemma 1, we can transfer an arbitrary state to itsetf improve Theorem 2 obtained in
[18]. Moreover, by the root locus approach, we can compueréiguired control inputs to achieve the
state transition.

Theorem 2:Consider thai3 in (2) has only real eigenvalues. Then, the system (2) idyeantrollable
if and only if B is nonsingular, cyclic, and does not have a Jordan block eittension greater than two
in its Jordan canonical form.

Proof: The proof of necessity is put in Appendix. For sufficiency, stdl assume tha3 is of the
Jordan canonical form given in (4) without loss of geneyalitccording to Lemma 1, there exi&m + 3)
nonzero real and pairwise distinct valu@s w1, . . ., U1 1, Uzmio SUCh that



We next prove that, for almost agyin R", we can construct control inputs such tatan be transferred
to an arbitrary state which is close o We first prove the existence of such control inputs, which is
similar to what we have done in [18]. We then show how to compuich control inputs by applying the
root locus approach, which is concluded in the final step @fofithm 5 (to shorten the proof we do not
write it here).

Consider the following function

Fto,tr, . tp2,tn1,y) == (I + o1 B) (I +1p—2B) -+ (I + t1B) (I + 10 B) {—
(I 4+ tun—1B) (I +up—2B)--- (I +uwB) (I +uoB) (£ +y)

wherety, t1,...,t, 2, t,—1 € R andy € R™. Apparently,(ug, u1, ..., u, 2, u,_1,0) is a zero of . Using
Lemma 1 in [18] yields

a (F (t(]a t17 ceey tn727 tnflu y))
8 (t07 tla ceey tn—27 tn—l)
whereV is the Vandermonde determinant apddenotes the determinant of a matrix. Thus, for any

E¢{¢l | € BE -~ B B¢ | =0},

= |B|V (tn-1,tu2,... . t1,t0)| & BE -+ B"% B¢ | (12)

the Jacobian determinant (12) does not vanisluatu,, ..., u, 2, u,_1,0). According to the implicit
function theorem, there exist two open neighborhoods, dame
O ([ Ug Uy - Up—2 Up—1 ]Ta/)1>7 0(07/)2)

respectively, such that
F(to (y)7t1 (y) )y '7tn*2 (y) 7tn*1 (y)7y> =0

where [ to(y) t(y) - two(y) tai(y)]" € o([uo Wi e Upeg Unes }T,pl) andy €
O (0, ps), i.e.

(L +tn1 (y) B) L+ tnz(y)B)--- (I +1:(y) B) (I +to (y) B)§
= (U4 up,1B)({+u,2B) - (I+u1B)(I+uB)(+y).
Then, by (11) we have
(I +ugmqoB) - (I +u,B) (I +to1(y)B)--- (L +to(y) B) ¢
= ([ +ugm2B) - (I +u,B)({ +up1B)---(I +uB)(E+y)=E+y. (13)

This means can be transferred to any state that is close enough fwom B’s structure and PBH test
[22],

{5} }g B¢ ... B¢ anlglzo}:{gz[& £y - gn}T|5254...§2r§2r+1...§n:0}

that is a hypersurface iR"” and separateR™ into 2™ open orthants (which are the same as those in (12)
in [19]). We now prove that the system (2) is controllable acleof the2™ open orthants. For any two



states¢, n in one orthant, we establish thnsition matrix

2 omo_ &n2
2 &2 &2

n2
&2

T2r Mer—1 _ Ear—172r

Tg*”? = &or Eor £§r . (14)

2r

§27'

M2r41
Eorg1

Mn
L &n

It can be seen thaf = 7;_,,¢ and all the eigenvalues df;_,, are positive sincg,n belong to the same
orthant. Furthermore,

1 n2r—1 _ €2r—1m2r

1 (7727‘ ) E 521" E%,’l,
lim T/ = lim €2 q<m)q

q—+00 Sadl q——+00

= I
1

Therefore, we can choose a positive integeuch tha ging is sufficiently close t&¢ and hence can be
reached front according to (13). That is, there exist control inpas. . ., t,_1, U, - - . , Uzm2 SUCh that

1

(I + usm2B) -+ (I +upB) (I + ity B) -+ (I +B) & =T/, &,
where [ @y @ -+ Upz TUn }T €0 ([ Ug Uy o Up—g Up_y }T,p1>. Note thatTf_m and B
commute with each other. Applying groups ofuy, ..., U,_1, Up, - - - , Uom12 Yields
[(I +ugmsaB) -+ (I +u,B) (I +tp,_1B)--- (I +uoB)|*&
= [+ tsgaB) - (I +unB) (I + iy B) -~ (I + B T €
— T (T4 tspsoB) - (I +unB) (I + 1ty 1B) -+ (I +uB)]" €

§—n

1 q
= = (Tgn) € =Tl =,



That is, controllability on each of th&™ open orthants has been proved. The rest is to “connect2’the
open orthants, i.e. to prove that the system is controllahl¢he union of the™ open orthants. One can
readily finish this by using Lemma 5 in [18] and following thegaments used in [18] (pp. 2856-2857,
from eq. (33) to eq. (37)), where the only explanation we &hawake here is that, althougfy, ..., A\, are
double eigenvalues aB, the fact does affect connecting th& open orthants. Indeed, just by replacing
the subscript. by m in equations from (33) to (37) in [18], we can complete theofro

So far, we have proved that the system (2) is controllable on

R*\{¢| | ¢ B¢ - B™%¢ B¢ |=0}. (15)
Recalling the near-controllability definition, we have ttha
E=F={¢|| ¢ BE - B¢ B¢ =0}

and the system (2) is nearly controllable sirdteF are two sets of zero Lebesgue measur®in =

Remark 3:Lemma 1 is important to obtain the stronger result on neatrobhability of the system (2).
One can see that Lemma 2 in [18] is a special case of Lemma 1 la@ordm 2 in [18] is a special case
of Theorem 2 also. In fact, [18] was focusing on the case of iBddiagonalizable, while the case dealt
with in this paper is more general. Moreover, thansition matrix 7;_,, with the root locus approach
will make it possible to compute the required control inpilitst achieve the state transition.

Remark 4:0ne can further prove thak in the proof of Theorem 2 can be. That is, for any¢ in
(15) and anyy € R™, £ can be transferred tg. See the corresponding part in the proof of Theorem 1 in
[19] (from the last equation in p. 653 to the end of the proof) feference.

By using the root locus approach, an algorithm is given to mat@ the required control inputs that
steer the nearly controllable system (2) from one state athem, which both belong to (15).

Algorithm 5: Steps on computing control inputs for given initial and terah states:

« 1. TransformB into the Jordan canonical form as given in (4) by a nonsingulatrix P. The initial
and terminal stateg, n are thus transformed int&¢, Pr, respectively.

« 2. Find the control inputs that transfét¢ to a state( which belongs to the same orthant Bg
belongs to (Lemma 5 in [18] will be helpful and its proof indks the details on how to find such
control inputs).

« 3. Get the transition matrif;_,p, for ¢, Pn from (14).

4. Choose\,,; 1, A1 o that satisfy (9).

5. Choose a positive integerand computéfg_, Pr-
6. Obtain the root loci of the characteristic equation of fibkowing closed loop transfer function

K ((_1)2m+2 ,u152m+2 + 4 (_1) HomS —+ 1)
s(s+A)" (54 An)” (5 + A1) (8 4 Aya)

1+ KG(s):=1+ (16)



10

where

ngpn (2,2) — 1
C—)Pn ( ) )
Sy 1 ,
(2m + 2) A2+ 1 TC(}Pn (2r,2r) —1
11 ; : : T, p, (2r — 1,2r)
: . o 1
S Ao A Ty (20 4+ 1,20 +1) — 1 (17)
. (2m +2) A2 ] 0
A1 A1
a Ao o Amga 1
T(ann (nv n) -1
0
0
L 0 -

1 1
with T:, p,, (i,7) denoting t_he(z’_,j)th entry of 7", p, and K increases front) to +oco. If any of the
root loci leaves the real axis directly at the pole, returthi former step and choose another mteger
q greater than the previous one. Otherwise, choose a suikaBlech that the roots af+ KG (s ) =

are all real. Then, the reciprocals of the real roots are trgral inputs that transfef to T ' P g“
g groups of such control inputs together with the control isphat transferP¢ to ¢ are the deswed
ones which steer the nearly controllable system (2) feota 7.

An Explanation to Step 6 of Algorithm Bonsider the equation

1

(I + vomi2B) (I + vama1 B) - - - (I + v1B) (I +voB) ¢ = T, p, ¢ (18)
From the proof of Theorem 2, we know thatgifis large enough, then eq. (18) admits a real solution of
Vg, U1, - - -, Vama1, Vama2- EQ. (18) is equivalent to the matrix equation

1

(I + U2m+QB) (I + Ugm+1B) .. (I + UlB) (I + UQB) TC—)PT]

Let
2m—+2

[+ ="K (19)

v
k=0 K

As shown for deriving eq. (7) in the proof of Lemma 1, we canaabt

2m+2 2m+2

1 ) 1
2m+3 2m+2 k _ 2m+3 q
B +ka3 ---+Z?B—(—1) K(TC_,PU—I>
k=0 k=0 ny
j=0

which can be written via equations as those in (8). Usingi, A\...2 chosen in Step 4 and introducing



11

the same constraints as those for (8), we can deduce

- )\2m+2 L )\ T -
1 1 2mt2
(2m +2) A2+t Lo > o
. . . k=0
(2m 4+ 2) A2t o] a2
)\th2 .. )\erl 2m+2
)\Q”JH o R0 I
L m+2 m+2 1 = -
_ A i}
T py(2:2) -1
TCan (17 2)
B _)\%m+3 ] 1 :
_ (2m 1 3) 22 TZ p (2r,20) ~ 1
: s 1 TS p, (2r —1,2r)
) - (Qn;)fﬁ;;i\?mm + =0 K TCE—>PU 2r+1,2r+1)—1
_)\2m+3 " 0
L m+2 m 1
TCq—>Pn (’I’L, ’I’L) -1
0
0
. 0 —
By Lemma 15,
2m+2 . T _ m _
P (—1) <22Ai 4 A + )\m+2)
i=1 J251
: = : +(-D)TTE |
2m—+2
v m m Hom
k=0 2mH+k2Uj L (_1)2 " )\m+1)\m+2il;[1)\? J
L Jj=0 4
where i, . . ., i, are given in (17). Then, with (19) we have th%i; R Wlb“, W{H are the roots

of the following (2m + 3)th-degree equation

§ (22)‘1' + A1 Amgz + (=) KM) R

i=1
<>\m+1)\m+2n)\? -+ (—1) K,uzm> S + K=0
=1

which is equivalent to

s(s+ M) (54 Am)” (5 + Ag1) (54 Apnsa) +
K ((_1)2m+2 H152m+2 + . 4 (_]_) UomS + 1) — 0

Thus, =+, 1 L L_ are on the root loci of the characteristic equation of theetbloop transfer

vo? V17" T vt ) Vam42

function given in (16).
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An example will be provided in Section 4 to show the effeatiees of Algorithm 5.

Remark 6:By using the similar idea, one can try to derive an algoritmcbmputing the control inputs
to achieve the state transition for the nearly controlldillmear systems studied in [19]. Furthermore,
although the result obtained in [19], namely Theorem 1 in,[$8ems similar to Theorem 2, it cannot
yield Theorem 2 (vice versa). To see this, for) of the system (2) that belong to (15), from Theorem 1
in [19] we can have:(0),u(1),...,u(L; — 1),u (L) such that

(B +u (L)1) (B +u(Ly— 1)) (B +u(1)]) (B +u(0)I) & =B

where B satisfies the conditions in Theorem 2 andB—%2~!1 are the corresponding initial and terminal
states, respectively. This implies

(I+u(L)B)(I+u(Ly—1)B)---(I+u(l)B)(I+u(0)B)¢ = BT,

Unfortunately, we can transfef to B*1~12y but not ton since we do not havé,, = L, either from
Theorem 1 in [19] or from Theorem 2.

Remark 7:Note that the opposite numbers Bfs eigenvalues are poles 6f (s) given in (16), which
are all real so that it is possible for the root loci bf+ KG (s) = 0 to first move on the real axis.
However, if B has complex eigenvalues, théh(s) may have complex poles and some of the root loci
of 1 + KG (s) = 0 will not start at the real axis. In such a case, it is rathefialift to ensure that all
the root loci can have the same moment moving on the real @érdn, the real control inputs that achieve
the state transition cannot be obtained. Therefore, for-o@atrollability of system (2) withB having
complex eigenvalues, we need to develop the proposed roos lapproach or to find a new method.

[11. NEARLY-CONTROLLABLE SUBSPACES ANDNEAR-CONTROLLABILITY INDEX

Consider the system

A1 0
0 A1
0 0 A

z(k+1)=U+u(k)B)x (k)= | I+ u(k) x (k) (20)

wherez (k) € R?, u (k) € R, and X # 0. Since B has a Jordan block with dimension greater than two,
system (20) is non-nearly controllable according to Theo& Nevertheless, consider system (20) on
region

{fz [& & O]T}- (21)
It can be seen that the system is invariant on (21), i.e.
.TLQ(k' + 1) = ([ +u (]{I) Bl,2) ZCLQ(]{Z> = ([ +u (k) |: g\ }\ :|) .TLQ(]{I), (22)

wherezy (k) = [ 21(k) 22(k) ]T and B, , is the main submatrix of3 by taking the entries oB in both
rows 1,2 and columnsl, 2. From Theorem 2, subsystem (22) is nearly controllable.dvipecifically, it
is controllable on

R\ {612 ] | G2 Buokia | =0} ={e2=[& &]"1&#0}. (23)
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Therefore, system (20) is controllable on

{go=Ta &)ler0}eia=-00={e=[a & 0] &+0} (24)

which is a two-dimensional region iR*. Similarly, one can deduce that the one-dimensional region

{e=Ta 0 0] a0}

is also a region on which system (20) is controllable.

In this section, we study the non-nearly controllable systelt is well known that if a linear time-
invariant system is uncontrollable, then the state spacdealecomposed as a direct sum of a controllable
subspace and an uncontrollable subspace. On the conteoflabspace the linear system is controllable.
Furthermore, the controllable subspace corresponds tomtaotlable linear subsystem. Inspired by these
facts, we will derive nearly-controllable subspaces of sggtem (2) by using Theorem 2. Actually, the
regions in (23) and (24) are nearly-controllable subspades/stem (20). We do not use “controllable
subspace” here since a subspace is in general a linear splibe,a nearly-controllable subspace does
not contain the zero element (the origin is an isolated sthtystem (1) that once it is reached, then the
system cannot be steered away).

Definition 8: A nearly-controllable subspace of the system (2) is a ctiable region of the system
(2) that is derived from the corresponding nearly contlm#asubsystem of the system (2) on the region.

By the following Lemma, we will show how to obtain a nearlyrtwllable subspace.

Lemma 9:Consider the system
Al

c(k+1) = (T +u(k)B)z(k) = | T+uk) Ew (25)
A

wherez (k) € R", n > 3, u (k) € R, and\ # 0. Then, any state in a controllable region of system (25),
which contains more than one state, has the property thgttbalfirst two entries can be nonzero.

The proof of this lemma can be found in Appendix.

Theorem 10:Consider the system (2) witB in Jordan canonical form
J (A1)

S (Am)

without loss of generality, where; # A; if ¢ # j and J()\;) is the Jordan matrix associated with
eigenvalue); for i = 1,..., m. Let h be the dimension oB’s largest main submatrix that is nonsingular,
cyclic, and does not have a Jordan block with dimension graaan two. Then, the system (2) has an
e-dimensional nearly-controllable subspace dot 1,.. ., h.

Proof: Choose any main submatri&;, , of B that is nonsingular, cyclic, and does not have a
Jordan block with dimension greater than two, whérds required to correspond to the first or the
second row (and column) of a Jordan blockhin view of Lemma 9 forj = 1,...,e and if somei;
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corresponds to the second row (and column) of a Jordan bileek;;_, corresponds to the first row (and
column) of the same one. Consider the system (2) on

{52[0 00 & 0 - 0 & 0 - O]T}_

Then, the system can be rewritten as

T k+1) = (I4+u(k)Bi.. i)Ti. (k) (26)
L1, i1 t1,ie—1et1,..n(k+1) = 0
where
T B) = [ 2 (k) (k) - (k) ]
and
L1, 0114141, 5e—1ie+1,..., n(k)
T

=[z(k) - mya(k) @ak) - zia(k) ziga(k) - aa(k) ]

Due to the chosem;, ., subsystem (26) is nearly controllable by Theorem 2. Thus,slystem (2) is
controllable on the=-dimensional region

{e=[0 0 & 0 0 g 0 0] \H (27)
where
H:{gz[o e 0 & 0 e 0 & O - O}T’
} Siryoie Bin,icin,ie e Bf;__l_’ie&l ..... i | =0, & =[8& - & ]T}
That is, region (27) is am-dimensional nearly-controllable subspace of the sys@&m ( [ |

Remark 11:From the proof of Theorem 10, in order to obtain a nearly-elable subspace of the
system (2), the main submatr, ; of B that the nearly-controllable subspace corresponds to baust
chosen to be nonsingular, cyclic, and have no Jordan blotk @imension greater than two, whereis
required to correspond to the first or the second row (andmojwf a Jordan block iB for j =1,... ¢
and if somei; corresponds to the second row (and column) of a Jordan btbek,i;_, corresponds to
the first row (and column) of the same one.

Definition 12: h in Theorem 10 is called the near-controllability index oé thystem (2).

If h = n, then the system (2) is nearly controllable. Otherwise, ae kave the nearly-controllable
subspaces with dimension fromto h. In particular, the state transition on every nearly-coltable
subspace can also be achieved through Algorithm 5. Addiligreven for the nearly controllable system
(2), it has nearly-controllable subspaces in the removgmneof (15) (i.e.£) and (15) can be regarded
as ann-dimensional nearly-controllable subspace. An examplgvsn in the next section.
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V. EXAMPLES
Example 13:Consider the system
(k+1)={T+u(k)B)xz(k)= <I+u { })x(k) (28)
~11",n =127 21 12]". Find the control
Px (k) where

wherez (k) € R* andu (k) € R. Given¢ = [ 0
inputs such that is transferred to;.
We now apply Algorithm 5 to compute the required control itgp&tep 1: let z (k)
-1 0 }

(29)

Then,
(k+1)= (I +u(k)PBP ")z (k) = (I+u(k) {
From Theorem 2, system (29) is nearly controllable (so

ToPp=[6 9 12]

andP{=[0 1 -1
is system (28)) and is controllable on
R*\{¢| | ¢ PBP'¢ (PBP )¢ |=0}
= R3\{§— [ & & 53] |§2§3=0}
= {{1&£>0,6>0U{f] & <0,6>0U{]&<0,6<0U{l]&>0,4<0}
that consists of four open orthanStep 2: since P¢, Pn belong to different orthants, let(0) = 1. It
(I+u(@©PBP ) Pe=[1 3 1]"2¢

03 0

0 0 12

follows
which is in the orthant thaPn belongs to.Step 3: obtain from (14) the transition matrix
31 0
TC—)PT] — .

N

31
4
0
12

N

X
3

Step 4: choosels = 1, \; = —4 in view of (9). Step 5: chooseg = 4. Then
L 0
1
TC4—>P77 = 0 .
0 0

—0.0648, pus ~ 0.293, pug ~ 0.314

—0.0393, pq ~

Step 6: by (17)
w1~ 0.000742, ps = —0.00511, pusg ~
Consider 6 .
K ((—1 44 (—1 +1
1+KG(S):1+ (( ) ,Léls _ ( )/"LGS )
s(s+2)7(s—2)"(s+1)(s—4)
By Matlab the root loci ofl + KG (s) = 0 are shown in the following figure, wherex* and “o”
respectively denote the poles and zeros:@f) and the colored curves are the root locilef KG (s) =0
starting at the poles and ending at the zeros. From Fig. Irathteloci of 1 + K G (s) = 0 first move on
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Root Locus

10

Imaginary Axis (seconds 1)
o
0]
OXO

-10 +

1 1 1 1 1 1
=25 -20 -15 -10 -5 0 5 10
Real Axis (seconds’l)

Fig. 1. Root loci ofl + KG (s) =0

the real axis. Choos& = 10 and obtain the roots of + KG (s) = 0. Computing the reciprocals of the
roots yields

vy & —0.770, vy ~ —0.643, vy ~ —0.452, vy ~ 0.250, vs ~ 0.439, v ~ 0.612, v; ~ 6.650.

One can now verify that, by groups of the above control inputs with(0) = 1, system (28) is steered
from ¢ to .

Example 14:Consider the system

A 1 0 0
ekt 1) = (I +u®) Ba®)=|T+u®) | § All O e (30)
0 0 0 X

where z (k) € R*, u(k) € R, and \;, A\, are nonzero real and distinct. Find its nearly-controdabl
subspaces.

According to Theorem 2, system (30) is non-nearly contobdaThe dimension of3’s largest main
submatrix, which is nonsingular, cyclic, and does not havlmman block with dimension greater than
two, is three, so the near-controllability index of systeB®)(~2 = 3. More specifically, B 5 4, B2 34
are such main submatrices &. From the proof of Theorem 1®, ., corresponds to the following
three-dimensional nearly-controllable subspace of syg&0)

{f = [ &1 & 0 & ]T} \ {f‘ ’ §124 Bi1248124 B%,2,4§1,2,4 ’ = 0}
- {e=la & 0 &)l a0} (31)
where&ou=[ & & & }T. However, the region

fe=[0 & & a1 aa+0}
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that B, 5, corresponds to is not a nearly-controllable subspace in sfeLemma 9. Besides (31), system
(30) has the two-dimensional nearly-controllable subspac

{e=la @ 0 0] |e+0}, {e=[a 00 &]" |aar0}

that B, », By 4 respectively correspond to and the one-dimensional neartyrollable subspaces

{e=la 00 0] Jaro}, {e=[0 00 &) |&aro}

that By, B, respectively corresponds to. In all, system (30) has fivelyeantrollable subspaces from
Theorem 10.

V. CONCLUSIONS

In this paper, near-controllability of a class of discrétee bilinear systems is studied by proposing
a root locus approach. A necessary and sufficient criteroorttfe systems to be nearly controllable is
obtained. In particular, the control inputs which achielie state transition for the nearly controllable
systems are computed and an algorithm is presented. Fmdher the nearly-controllable subspaces are
derived and the near-controllability index is defined. Twaraples are provided to demonstrate the results
of the paper. Future work should consider the near-coatity and controllability problems of general
bilinear systems and develop the proposed root locus approa
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VI. APPENDIX

Lemma 15:Let

B )\%er? . )\1 1 B _)\%m+3 7
(2m +2) A3t ] — (2m + 3) A3 +2
C = )\gnr;wﬂ . _. . )\m , d= _)\72;1m+3
(2m +2) \2mHt ] — (2m + 3) A2m+2
v R Ry
L >\m+2 T )‘m+2 . L _)‘m+2
where )y, ..., \,,.2 are nonzero real and pairwise distinct. Then, the lineantop
Cz=d (32)

has a unique solution

(—1) (22)‘1‘ + Amg1 + )\m+2)

i=1

(_1)2m+2 >‘m+1>‘m+2 H )‘12
L i=1

Proof: Note that the transpose 6f is a general Vandermonde matriX.is nonsingular since, . . .,
Amio a@re nonzero and pairwise distinct. Therefore, linear equg32) has a unique solution. Assume
thatz = [ z1 22 -+ Zomgo ]T is the solution. From (32) we have

NS NP2 o o = 0
fori=1,...,m+ 2 and
(2m +3) N2 4 2 2m A 2) N e 200 =0
fori=1,...,m. Since); are nonzero, it follows
)\sz+2 + Z1>\?m+1 + ot 29y =0
fori=1,...,m+ 2 and hence
2m 4+ 3) X 4 2 (2m +2) AT+ zamge — (AP 2N e 2og0)
= Cm+2)N"T2 L Cm+ DA 4 2 A =0
= Cm+2)ANT L 2m A DA b 2y =0

fori =1,...,m. We can thus conclude thai, ..., A, are all the roots of the following2m + 2)th-
degree equation
s 4 28?20 = 0,

in which A\, ..., \,, are double roots. By the Viete's formulas,

2 = (=1) <2Z>\i + A1 + )\m+2> )

i=1

2o9m+2 = (_1)2m+2 >\m+1)\m+2H>\?-

i=1
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Proof of Necessity of Lemma MVe only need to show that there do not exist nonzero real ntsnbe
for (3) when

B = € RVN
-
A

where N > 3 and A # 0. Reduction to absurdity: assume that such nonzero real ewsrdxist for (3)
with the above give3. From (3),

<u(1L)I+B> <ﬁ1+3) (ﬁHB) (ﬁI+B) :f[oﬁj_ (33)

It follows
L L
1 u (k)
L+1 2 : L E _
=0T u ()
j=0
L L
1 _ Z u (k)
L 2 : L—1 _
=0 ] u ()
j=0

which implies L. > N. Otherwise the(1, L + 1)th entry in the sum of the left side of matrix equation
(34), which is determined by, does not vanish. Next, let (k) = ﬁk) +\fork=0,1,..., L. From
(33),

(w(L)I+B) (w(L—1)I+B)-- (w@)I+B) (w(0)I+B) =[] (w(k) -NI

k=0
where
0 1
B 0
1
0
We have
L L ﬁw(j) L
B" 4y “w (k) BY + +Zj;)<k) B+ [Jwk) 1
k=0 k=0 k=0
=Y w(ko)w (k) w (kp-n) BY 4+ w (ko) w (kr) - w (kr-ns2) BN+
L Low(j) B L
+kzzo o B+£[Ow(k;)[
—T[wk) =M1 (35)
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since B/ = 0 for j > N. Therefore, from (35)

> wko)w (ky) - w(kp-ns1) = 0,

L ()
S O
k=0
[Tw®) = JJ@®-N. (36)

Let

> wko)w(ky)-wlkn) = (=) gy (37)

For the last equation in (36), by noting the other equationé6) and the equations in (37) we have

L L L 11
[Tw®=x = Tlwtk)+ 35T A+t 2w ) (N + ()"
k=0 k=0 k=0 k=0
L
= [Jw®) + 0" epna (0T o+ (=D e (N 4 (=)
k=0
= JJw®) + (D" (coonadY + -+ e X+ M) = TJw (k).
k=0 k=0
Hence,
v AN AN = 0=
croni1 = — (AT o NN e ). (38)
Now, let B
[[w®) =D e (39)
k=0

Combining (37), (36), (39) and noting (38), one can see frbm Yiete's formulas thatv (0),w (1),
.,w(L—=1),w (L) are all the roots of the followingL + 1)th-degree equation

st 4 eist 4+ g sV — ()\L_N+1 e NN 44 cL_N)\) sV +e=0. (40)

However, according to Lemma 5 in [19], eqg. (40) must have dempoots. This contradicts the fact that

w(0),u(l),...,u(L—1),u (L) are all real. Therefore, if there exist nonzero real numbesatisfy eq.

(3), then B does not have a Jordan block with dimension greater than nwts iJordan canonical form.
[ |
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Proof of Necessity of Theorem 2For necessity, we show that i is singular, or noncyclic, or
has a Jordan block with dimension greater than two in itsalohnonical form, then the system (2) is
non-nearly controllable. Firstly, if3 is singular, we can write

o[

without loss of generality. Theny(k) loses the ability in controlling:,, (k) and the system is non-nearly
controllable.

Secondly, if B is not cyclic, it has an eigenvalue that corresponds to &t leeo Jordan blocks in its
Jordan canonical form and can be simply written as

A
[ 3
A
without loss of generality. Then, for any initial stage= [ --- & --- ¢ }T it follows
L
H([+u(k)3)[... & o & }T
k=0
% 5 * — -
1T (1+u (k) A) ‘
k=0
L
I (14w (k) ) &
k=0 :
- L L ) TA -
= kl;[o(1+u(k)/\)& kl;lo(1+u(k)/\)§j :[ Moo ] ’

from which we can se€;n; = ¢;7;. This implies that some of the state variables in the terhsteates
are linearly dependent. Thus, the system does not have a tangtrollable region and is non-nearly
controllable.

Finally, if B has a Jordan block with dimension greater than two in itsalo@anonical form, then the
system is non-nearly controllable by Lemma 9. [ |

Proof of Lemma 9: From the analysis on system (20), we can see that systemgZ®ntrollable

on {&Z[& 0 --- O}T‘&#O}’ {f:[fl & 0 - O}T\&#O}

respectively. Now, if system (25) has a controllable regiuat contains more than one state and contains

such a state .

gz[gl e &0 0]

where¢; # 0 andj > 3, then, for another state (1 # ) in this region, there exist nonzero real control

inputs «(0), u(1),...,u(L, — 1),u (L) such that¢ is transferred ta; and nonzero real control inputs
v(0),v(1),...,v(Ly — 1),v (Ly) such thaty is transferred tg. As a result, we have
Lyi+La+1 Lyi+L2+1 La

[[ GtuwyBé= [[ G+ubBn=[[U+vk)Bn=¢

k=0 k=L1+1 k=0



22

whereu (Ly + 1) = v(0),u (L1 +2) = v(1),...,u (L1 + Ls) = v(Lo — 1),u (L1 + Lo+ 1) = v (Ls), i.e.

Li+La+1

H (I+uk)B)[& -+ & 0 - Q}T:[& e 50 - Q}T_
k=0
This implies
Im > - X
Li+Lo+1 T . ! . ]_ ! gl 51
H I+u(k)Bi. j)[& - & = o : =1 (41)
k=0 2
- I gj gj
where
Li+4-Lo+1
Li+Lo+1 1 d' kHO (1+u(k)y)
H: ]_ kf)\ Zi:._ — - f :]_,,—1
kHQ ( +u( ) )7 Z! dyz y:)\ OI' ? j
From (41)

& + X8 + -+ 348 = &,

&1+ 3218 = &,
Ig; = &
Using the last equation in the above equations, we can deduce
H: 1, 21 :07...,2]',1 :0

Then, it results in
Li+La+1

H (I+u(k)B,. ;) =1 (42)
k=0
However, sincei > 3, there do not exist such nonzero control inputs to satis®y étcording to Lemma
1. Therefore, system (25) can only have the states of whieHattter (n — 2) entries are all zero in its
controllable regions that contain more than one state. [ |
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