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EXACT BOUNDARY CONTROLLABILITY RESULTS FOR A
MULTILAYER RAO-NAKRA SANDWICH BEAM

A. ÖZKAN ÖZER ∗ AND SCOTT W. HANSEN †

Abstract. We study the boundary controllability problem for a multilayer Rao-Nakra sandwich
beam. This beam model consists of a Rayleigh beam coupled with a number of wave equations.
We consider all combinations of clamped and hinged boundary conditions with the control applied
to either the moment or the rotation angle at an end of the beam. We prove that exact control-
lability holds provided the damping parameter is sufficiently small. In the undamped case, exact
controllability holds without any restriction on the parameters in the system. In each case, optimal
control time is obtained in the space of optimal regularity for L2(0, T ) controls. A key step in the
proof of our main result is the proof of uniqueness of the zero solution of the eigensystem with the
homogeneous boundary conditions together with zero boundary observation.

Key words. Boundary control, exact controllability, multiplier method, multilayer beam, sand-
wich beam, Rayleigh beam.

1. Introduction. The classical sandwich beam is an engineering model for a
three layer beam consisting of two “face plates” and a “core” layer that is orders of
magnitude more compliant than the face plates. While most of the early models con-
sidered only transverse dynamics, e.g., [12], [20], the model due to Rao and Nakra [17]
includes rotary inertia in each layer and longitudinal inertia (in addition to transverse
inertia). The model assumes continuous, piecewise linear displacements through the
cross-sections, with the Kirchhoff hypothesis imposed on the face plates.

In this article we study the boundary controllability of the following multilayer
generalization of the Rao-Nakra beam derived in [1]:





mẅ − αẅ′′ +Kw′′′′ −NThE

(
GEψE + G̃Eψ̇E

)′
= 0 in Ω× R

+

hOpO ÿO − hOEOy′′O +BT
(
GEψE + G̃Eψ̇E

)
= 0 on Ω× R

+

where ByO = hEψE − hENw
′,

(1.1)

where Ω = (0, L), primes denote differentiation with respect to the spatial variable x
and dots denote differentiation with respect to time t.

The model (1.1) consists of 2m+ 1 alternating stiff and complaint (core) layers,
with stiff layers on outside. The stiff layers have odd indices 1, 3, . . .2m+ 1 and the
even layers have even indices 2, 4, . . . 2m. The Kirchhoff hypothesis is imposed on the
stiff layers and Timoshenko displacement assumptions are assumed in the compliant
layers. Damping proportional rate of shear is included in the compliant layers.

In the above, m,α,K are positive physical constants, w represents the transverse
displacement, ψi denotes the shear angle in the ith layer, ψE = [ψ2, ψ4, . . . , ψ2m]T,
yi denote the longitudinal displacement along the center of the ith layer, and yO =
[y1, y3, . . . , y2m+1]T, and

pO = diag (ρ1, . . . , ρ2m+1), hO = diag (h1, . . . , h2m+1), hE = diag (h2, . . . , h2m),

EO = diag (E1, . . . , E2m+1), GE = diag (G2, . . . , G2m), G̃E = diag (G̃2, . . . , G̃2m)

where hi, ρi, Ei, are positive and denote the thickness, density, and Young’s modulus,
respectively. Also Gi ≥ 0 denotes shear modulus of the ith layer, and G̃i ≥ 0 denotes
coefficient for damping in the corresponding compliant layer.
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The vector N is defined as N = h−1
E AhO~1O +~1E where A = (aij) and B = (bij)

are the m× (m+ 1) matrices

aij =

{
1/2, if j = i or j = i+ 1
0, otherwise

, bij =

{
(−1)i+j+1, if j = i or j = i+ 1
0, otherwise

and ~1O and ~1E denote the vectors with all entries 1 in R
m+1 and R

m, respectively.
Consider (1.1) with either hinged-Neumann (h-N), or clamped-Dirichlet (c-D), or

mixed-mixed (m-m) boundary conditions respectively
{
w(0, t) = w′′(0, t) = w(L, t) = 0, w′′(L, t) =M(t) on R

+

y′O(0, t) = 0, y′O(L, t) = gO(t) on R
+,

}
(h-N) (1.2)

{
w(0, t) = w′(0, t) = w(L, t) = 0, w′(L, t) =M(t) on R

+

yO(0, t) = 0, yO(L, t) = gO(t) on R
+,

}
(c-D) (1.3)

{
w(0, t) = w′(0, t) = w(L, t) = 0, w′′(L, t) =M(t) on R

+

yO(0, t) = 0, y′O(L, t) = gO(t) on R
+.

}
(m-m) (1.4)

The initial conditions for (1.1) are

w(x, 0) = w0(x), ẇ(x, 0) = w1(x), yO(x, 0) = y0O, ẏO(x, 0) = y1O on Ω. (1.5)

In this paper, through the controls M(t) and gO(t) at the right end of the beam,
we control the moment and longitudinal force of the stiff layers in (1.2) and (1.4), and
the shear angle and the longitudinal displacements of the stiff layers in (1.3).

1.1. Background. In [16], exact boundary controllability of three-layer Rao-
Nakra beam was investigated for the boundary conditions (1.3). An exact controlla-
bility result for sufficiently large control time but with size restrictions on the coupling
parameters (G̃ and G in (1.1)) was obtained by the standard multiplier method. In
[4], the moment method was applied to the three-layer Rao-Nakra system with the
boundary conditions (1.2). Under the assumption of distinct wave speeds, exact
controllability was shown up to a finite-dimensional subspace which consists of low-
frequency eigenvectors of the system. With additional restrictions on the parameters
(G̃ and G in (1.1)), and exact controllability of the vibrational states was obtained.
Exponential boundary feedback stabilization results for a related (but different) three
layer laminated beam were obtained in [18]. In [2], [3] exact controllability results
for the multilayer Rao-Nakra plate system analogous to (1.1) with locally distributed
control in a neighborhood of a portion of the boundary were obtained by the method
of Carleman estimates.

1.2. Main results. Let

C =





(H2(Ω) ∩H1
0 (Ω))× (H̃1(Ω))(m+1) ×H1

0 (Ω)× (L̃2(Ω))(m+1) (h-N)

H1
0 (Ω)× (L2(Ω))(m+1) × (L2(Ω)/M)× (H−1(Ω))(m+1) (c-D)

H2
#(Ω)× (H1

† (Ω))
(m+1) ×H1

0 (Ω)× (L2(Ω))(m+1) (m-m)

(1.6a)

(1.6b)

(1.6c)

where H̃1(Ω) and L̃2(Ω) are the quotient spaces defined by H̃1(Ω) = H1(Ω)/R and
L̃2(Ω) = L2(Ω)/R respectively, and

M= span{e−
1√
α/m

x
, e

1√
α/m

x},
H2

#(Ω)=
{
u ∈ H2(Ω) ∩H1

0 (Ω) : u′(0) = 0
}
,

H1
† (Ω)=

{
u ∈ H1(Ω) : u(0) = 0

}
. (1.7)



Submitted - ÖZER AND HANSEN 3

Proposition 1.1. Let T > 0, and (M(t),gO(t)) ∈ (L2(0, T ))(m+2). For any
(w0, y0O, w

1, y1O)
T ∈ C, there exists a unique solution (w, yO, ẇ, ẏO)T to (1.1)-(1.5)

with (w, yO, ẇ, ẏO)T ∈ C([0, T ]; C) and

‖(w, yO, ẇ, ẏO)T‖C ≤ C
{
‖(w0, y0O, w

1, y1O)
T‖C + ‖(M,gO)‖(L2(Ω))(m+2)

}
.

Our main exact controllability theorem is the following:

Theorem 1.1. Let T > τ where

τ := 2L

[
min

i=1,3,...,2m+1

(√
K

α
,

√
ρi
Ei

)]−1

. (1.8)

For sufficiently small ‖G̃E‖ and for any (w0, y0O, w
1, y1O)

T ∈ C there exists (M(t),gO(t)) ∈
(L2(0, T ))(m+2) such that (w(T ), yO(T ), ẇ(T ), ẏ(T ))T = 0.

Now consider




mz̈ − αz̈′′ +Kz′′′′ −NThE

(
GEφE + G̃Eφ̇E

)′
= 0 on Ω× R

+

hOpO v̈O − hOEOv′′O +BT
(
GEφE + G̃Eφ̇E

)
= 0 on Ω× R

+

where BvO = hEφE − hENz
′

(1.9)

with either hinged-Neumann (h-N), or clamped-Dirichlet (c-D), or mixed-mixed (m-
m) boundary conditions respectively





z(0, t) = z′′(0, t) = z(L, t) = z′′(L, t) = 0, v′O(0, t) = v′O(L, t) = 0 (h-N)

z(0, t) = z′(0, t) = z(L, t) = z′(L, t) = 0, vO(0, t) = vO(L, t) = 0 (c-D)

z(0, t) = z′(0, t) = z(L, t) = z′′(L, t) = 0, vO(0, t) = v′O(L, t) = 0. (m-m)

(1.10a)

(1.10b)

(1.10c)

The initial conditions for (1.9) are

z(x, 0) = z0(x), ż(x, 0) = z1(x), vO(x, 0) = v0O, v̇O(x, 0) = v1O. (1.11)

For convenience, let S be a set, and f, g be nonnegative functions on S. We will write
f ≍ g if there exists C > 0 such that

1

C
f(λ) ≤ g(λ) ≤ Cf(λ), ∀λ ∈ S.

The results in Theorem 1.1 are based upon the following observability and hidden
regularity results:

Theorem 1.2. Let T > τ. Then for sufficiently small ‖G̃E‖ solutions of the prob-
lem (1.9)- (1.11) satisfy the following observability and hidden regularity estimates:





∫ T

0

(
|z′′′(L, t)|2 + |v′′O(L, t)|2

)
dt ≍ ‖(z0, v0O, z1, v1O)T‖2H (h-N)

∫ T

0

(
|z′′(L, t)|2 + |v′O(L, t)|2

)
dt ≍ ‖(z0, v0O, z1, v1O)T‖2H (c-D)

∫ T

0

(
|z′(L, t)|2 + |vO(L, t)|2

)
dt ≍ ‖(z0, v0O, z1, v1O)T‖2H−1

(m-m)

(1.12a)

(1.12b)

(1.12c)
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where H and H−1 are later defined in (2.6) and (3.10), respectively.

Our results are improvements on earlier results [4], [16] in several regards. Here,
we consider the general multilayer system. The restriction on the size of G has been
eliminated, there are no conditions on the wave speeds, and the optimal control time
(determined by characteristics) is obtained.

Our overall methodology is to first obtain appropriate boundary observability es-
timates for the uncoupled system of equations. This part uses mainly known estimates
for the wave equation together with observability results obtained in [14]. Second, we
prove, based on carefully picked complex multipliers, a uniqueness result (Lemma 4.1)
for the over-determined eigensystem of the coupled system without damping G̃ = 0
consisting of the homogeneous boundary conditions together with zero observation.
This allows us to deduce (using Theorem 6.2 in [6]) observability of the coupled sys-
tem without damping. Finally, we are able include the possibility of small damping
by a perturbation argument.

We consider three different sets of boundary conditions. While the overall struc-
ture of the proofs are the same in each case, the spaces that arise are different and lead
to some very different technical issues. For example, in the case of (h-N) boundary
conditions, the system is well-posed with respect to a higher-order energy defined by
an extra derivative applied to each variable. This allows us to obtain (similar to [5],
[7], [8]) an observability result in a correspondingly smooth space, which is equivalent
to controllability in the natural energy space. This approach fails in the case of (m-
m) boundary conditions, where instead, we obtain an observability result for weaker
solutions in which certain orthogonality conditions arise (see Lemma 3.1). In the case
of (c-D) boundary conditions we obtain an observability result in the standard energy
space, which in turn corresponds to an exact controllability result in a weaker space
involving a quotient M in the velocity component of the transverse displacement in
(1.1). The quotient M can not be eliminated if L2(0, T ) controls are used. This is
due to orthogonality conditions on the range of the operator Lφ = mφ− αφ′′ on the
domain H2

0 (Ω) which must be imposed in the transpositional solution. (See Section
5.2 for details.) In fact, a quotient space analogous to M was found in the velocity
component of the optimal controls for boundary control of the Kirchhoff plate with
clamped boundary conditions, [9]. Related optimal controllability and observability
results for the Rayleigh beam are described in [14].

All of the controllability results in this paper are optimal in the sense that the
space of exact controllability matches the optimal regularity space for L2(0, T ) bound-
ary controls. Moreover, as mentioned above, the quotient M in (1.6b) can not be
eliminated from the control space if L2(0, T ) controls are used. On the other hand,
the quotients that occur in the second and fourth components of the control space
(1.6a) are perhaps inessential in that they arise as a consequence of orthogonality
constraints imposed for convenience in the homogeneous solutions (see (2.6a)) which
are used in the definition of transpositional solution (see Definition 5.1). In this case
solutions in (1.6a) are defined up to uniform translational motion in each layer.

This paper is organized as follows. In Section 2 we prove regularity results for
the homogeneous system using semigroup theory. In Section 3 we characterize the
weaker observability space for the case of (m-m) boundary conditions. In Section 4
we prove the key uniqueness result Lemma 4.1 and main observability result Theorem
1.2. In Section 5 we define transpositional solutions of the control problem and prove
our main controllability result Theorem 1.1.
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2. Semigroup formulation. Let

U =: (u,u)T = (z, vO)
T, V := (v,v)T = (ż, v̇O)

T, and Y := (U, V )T.

Let Lϕ = mϕ − αϕ′′. From the Lax-Milgram theorem L : H1
0 (Ω) → H−1(Ω) is an

isomorphism which remains isomorphic from H2(Ω) ∩H1
0 (Ω) to L

2(Ω).
Then (1.9)-(1.11) can be written as

dY

dt
= AY :=

(
0 I

−A1 A2

)(
U
V

)
, Y (0) = (U(0), V (0))T = (z0, v0O, z

1, v1O)
T (2.1)

where

A1U :=

(
L−1

(
Ku′′′′ −NThEGE(h

−1
E Bu′ +Nu′′)

)

h−1
O p−1

O
(
−hOEOu′′ +BTGE(h

−1
E Bu+Nu′)

)
)
, (2.2)

A2V :=


 L−1

(
NThEG̃E(h

−1
E Bv′ +Nv′′)

)

h−1
O p−1

O

(
−BTG̃E(h

−1
E Bv +Nv′)

)

 .

Let 〈u, v〉Ω =
∫
Ω
u · v dx where u and v may be scalar or vector valued. Define

the bilinear forms a and c by

c(z, vO; ẑ, v̂O) = m 〈z, ẑ〉Ω + α 〈z′, ẑ′〉Ω + 〈hOpOvO, v̂O〉Ω ,
a(z, vO; ẑ, v̂O) = K 〈z′′, ẑ′′〉Ω + 〈hOEOv

′
O, v̂

′
O〉Ω +

〈
GEhEφE , φ̂E

〉
Ω

= K 〈z′′, ẑ′′〉Ω + 〈hOEOv
′
O, v̂

′
O〉Ω

+
〈
GEh

−1
E (BvO +Nz′) , (Bv̂O +Nẑ′)

〉
Ω
. (2.3)

The “higher order” and natural energies of the beam are respectively given by

E(t) =





1

2
(a(z′, v′O) + c(ż′, v̇′O)) (h-N)

1

2
(a(z, v0) + c(ż, v̇O)) (c,D), (m-m),

(2.4a)

(2.4b)

where a(·), c(·) are the quadratic forms that agree with a(·, ·), c(·, ·) on the diagonal.
Define the energy inner products corresponding to each set of boundary conditions
by

〈
Y, Ŷ

〉
H

=

{
a(U ′; Û ′) + c(V ′; V̂ ′). (h-N)

a(U ; Û) + c(V ; V̂ ) (c-D), (m-m).

(2.5a)

(2.5b)

Corresponding to each case, define the Hilbert spaces

H =





H3
∗ (Ω)×

(
H2

⊥(Ω)
)(m+1) ×

(
H2(Ω) ∩H1

0 (Ω)
)
× (H1

⊥(Ω))
(m+1) (h-N)

H2
0 (Ω)×

(
H1

0 (Ω)
)(m+1) ×H1

0 (Ω)× (L2(Ω))(m+1) (c-D)

H2
#(Ω)×

(
H1

† (Ω)
)(m+1) ×

(
H1

0 (Ω)
)
× (L2(Ω))(m+1) (m-m)

(2.6a)

(2.6b)

(2.6c)
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where H2
#(Ω) and H

1
† (Ω) are defined in (1.7) and

H3
∗ (Ω) := {u ∈ H3(Ω) ∩H1

0 (Ω) : u′′(0) = u′′(L) = 0}

H1
⊥(Ω) := {u ∈ H1(Ω) :

∫

Ω

u dx = 0}

H2
⊥(Ω) := {u ∈ H2(Ω) ∩H1

⊥(Ω) : u′(0) = u′(L) = 0}.

Define D(A) by

D(A) =





(
H4(Ω) ∩H3

∗ (Ω)
)
×
(
H3(Ω) ∩H2

⊥(Ω)
)(m+1) ×H3

∗ (Ω)× (H2
⊥(Ω))

(m+1) (h-N)
(
H3(Ω) ∩H2

0 (Ω)
)
×
(
H2(Ω) ∩H1

0 (Ω)
)(m+1) ×H2

0 (Ω)× (H1
0 (Ω))

(m+1) (c-D)

H3
#(Ω)×

(
H2

† (Ω)
)(m+1) ×H2

#(Ω)× (H1
† (Ω))

(m+1) (m-m)

where

H3
#(Ω) := {u ∈ H2

#(Ω) : u′′(L) = 0},
H2

† (Ω) := {u ∈ H2(Ω) ∩H1
† (Ω) : u′(L) = 0}.

Lemma 2.1. The operator A : D(A) ⊂ H → H is densely defined.

Proof: The density is obvious. However, in the case of hinged-Neumann bound-
ary conditions (h-N), it is not obvious that the orthogonality constraint in the defi-
nition of H is invariant with respect to A, i.e., that Y ∈ D(A) implies AY ∈ H. To
verify this, let Y = (u,u, v,v)T ∈ D(A). Then

(u,u, v,v)T ∈
(
H4(Ω) ∩H3

∗ (Ω)
)
×
(
H3(Ω) ∩H2

⊥(Ω)
)(m+1) ×H3

∗ (Ω)× (H2
⊥(Ω))

(m+1).

From (2.1), AY =

(
V
0

)
+

(
0

−A1U +A2V

)
. Since v ∈ H3

∗ (Ω) and v ∈ (H2
⊥(Ω))

(m+1),
(
V
0

)
∈ H. Explicitly, −A1U +A2V is


 L−1

(
−Ku′′′′ +NThE

[
GE(h

−1
E Bu′ +Nu′′) + G̃E(h

−1
E Bv′ +Nv′′)

])

h−1
O p−1

O

(
hOEOu′′ −BT

[
GE(h

−1
E Bu+Nu′)− G̃E(h

−1
E Bv +Nv′)

])

 .(2.8)

The first entry of (2.8) is in
(
H2(Ω) ∩H1

0 (Ω)
)
since L−1 maps L2(Ω) to(

H2(Ω) ∩H1
0 (Ω)

)
. Lastly, the second entry of (2.8) is in (H1

⊥(Ω))
(m+1) since the

application of the (h-N) boundary conditions implies
∫
Ω
u′ dx =

∫
Ω
u′′ dx = 0. Fur-

thermore, since Y ∈ D(A),
∫
Ω u dx =

∫
Ω v dx = 0, it follows that

∫

Ω

h−1
O p−1

O BTGEh
−1
E Bu dx =

∫

Ω

h−1
O p−1

O BTG̃Eh
−1
E Bv dx = 0. �

Lemma 2.2. The infinitesimal generator A for each set of boundary conditions
is dissipative, and moreover it satisfies

Re 〈AY, Y 〉H =





−
〈
G̃EΘ

′,h−1
E Θ′

〉
Ω
≤ 0, (h-N)

−
〈
G̃EΘ,h

−1
E Θ

〉
Ω
≤ 0, (c-D), (m-m)

(2.9a)

(2.9b)
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for all Y = (u,u, v,v)T ∈ D(A) where Θ = (Bv + hENv
′) .

Proof: It is easy to show that A is dissipative on H for each set of boundary
conditions. For example, consider the (h-N) boundary conditions:

〈AY, Y 〉H = {−K 〈u′′′, v′′′〉Ω +K 〈v′′′, u′′′〉Ω}+ {− 〈hOEOu
′′,v′′〉Ω + 〈hOEOv

′′,u′′〉Ω}
+
{
−
〈
GE (Bu′ + hENu

′′) ,h−1
E

(
Bv′ + h−1

E Nv′′
)〉

Ω

+
〈
GE(Bv′ + hENv

′′),h−1
E (Bu′ + hENu

′′)
〉
Ω

}

−
〈
G̃E (Bv′ + hENv̄

′′) ,h−1
E (Bv′ + hENv

′′)
〉
Ω

= −2i Im (K 〈u′′′, v′′′〉Ω)− 2i Im (〈hOEOu
′′,v′′〉Ω)

−2i Im
〈
GE (Bu′ + hENu

′′) ,h−1
E

(
Bv′ + h−1

E Nv′′
)〉

Ω
−
〈
G̃EΘ

′,h−1
E Θ′

〉
Ω
.

Therefore (2.9) follows. �

Lemma 2.3. I −A : D(A) → H is surjective.

Proof: We prove the lemma for only (h-N) boundary conditions since the proofs
for other boundary conditions are similar. Let C denote a generic constant in the
following calculations, and define |u|s = ‖u‖Hs(Ω), |u|s = ‖u‖(Hs(Ω))(m+1) . Let Y1 =

(u1,u1, v1,v1)
T. For given Y2 = (u2,u2, v2,v2)

T ∈ H we want to prove the solvability
of the system (I −A)Y1 = Y2 in D(A) :

Ku′′′′1 −NThE

(
GE(h

−1
E Bu1

′ +Nu′′1) + G̃E(h
−1
E Bv1

′ +Nv′′1 )
)
= Lv2 − Lv1

−hOEOu
′′
1 +BT

(
GE(h

−1
E Bu1 +Nu′1) + G̃E(h

−1
E Bv1 +Nv′1)

)
= pOhO (v2 − v1)

u1 − v1= u2

u1 − v1= u2. (2.10)

Differentiating the second equation in (2.10) yields

Ku′′′′1 −NThE

(
GE(h

−1
E Bu1

′ +Nu′′1) + G̃E(h
−1
E Bv1

′ +Nv′′1 )
)
= Lv2 − Lv1

−hOEOu
′′′
1 +BT

(
GE(h

−1
E Bu′

1
+Nu′′1) + G̃E(h

−1
E Bv′

1
+Nv′′1 )

)
= pOhO (v′

2
− v′

1
)

u1 − v1= u2

u1 − v1= u2. (2.11)

We eliminate the functions v1,v1 from the last two equations in (2.11). Then, we
multiply the first equation u′′′′1 and the second by u1

′′′, and integrate by parts on Ω,
using boundary conditions for D(A), and then we eventually use Holder’s inequality
to obtain the following estimate:

|u1|4 ≤ C (|u1|2 + |u1|1 + |u2|2 + |v2|2 + |u2|1)
|u1|3 ≤ C (|u1|2 + |u1|1 + |u2|2 + |u2|2 + |v2|1)
|v1|3 ≤ C (|u1|3 + |u2|3)
|v1|2 ≤ C (|u1|2 + |u2|2) . (2.12)

The next step is to absorb the lower order terms in (2.12) to get

|u1|4 + |u1|3 + |v1|3 + |v1|2 ≤ C (|u2|3 + |u2|2 + |v2|2 + |v2|1) . (2.13)
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We apply a standard compactness-uniqueness argument: now suppose contrarily
that the inequality (2.13) does not hold. Then there exists a sequence Y2n :=
{(u2n,u2n, v2n,v2n)

T}∞n=1 such that

‖Y2n‖H→ 0, and |u1n|4 + |u1n|3 + |v1n|3 + |v1n|2 = 1. (2.14)

and From (2.14) we can extract a subsequence, still denoted
Y1n := {[u1n,u1n, v1n,v1n]

T}∞n=1 such that Y1n converges to Y1 := (u1,u1, v1,v1)

weakly in H4(Ω)×
(
H3(Ω)

)(m+1) ×H3(Ω)× (H2(Ω))(m+1) := W . If we consider the
solution of (2.10) with Y1n = Y1n(Y2n), then it follows from (2.12) that

|u1n − u1m|4 ≤ C (|u1n − u1m|2 + |u1n − u1m|1 + |u2n − u2m|2
+|v2n − v2m|2 + |u2n − u2m|1)

|u1n − u1m|3 ≤ C (|u1n − u1m|2 + |u1n − u1m|1 + |u2n − u2m|2
+|u2n − u2m|2 + |v2n − v2m|1)

|v1n − v1m|3 ≤ C (|u1n − u1m|3 + |u2n − u2m|3)
|v1n − v1m|2 ≤ C (|u1n − u1m|2 + |u2n − u2m|2) .

Thus, by the Sobolev’s compact embedding theorem we get

|u1n − u1m|4, |u1n − u1m|3, |v1n − v1m|3, |v1n − v1m|2 → 0,

as n,m → ∞. This implies that Y1n actually converges to Y1 strongly in W . On the
other hand, the system (2.10) with Y2 = (0,0, 0,0)T, see (2.14), has only a trivial
solution since the system (2.1) is dissipative by (2.9). This contradicts with (2.14)
and therefore (2.13) holds. Hence Y1 ∈ D(A) and the claim of the theorem is proved.

Theorem 2.1. A : D(A) → H is the infinitesimal generator of a C0−semigroup
of contractions. Moreover, the spectrum of A only consists of isolated non-zero eigen-
values {γn}∞n=1, and |γ±n | → ∞ as n→ ∞.

Proof: The proof of the first part follows from the Lümer-Phillips theorem [15]
using Lemma 2.1, 2.2 and 2.3. Since (I − A)−1 is compact, the spectrum of A only
consists of eigenvalues. A simple proof that 0 ∈ ρ(A) for the (h-N) case (m = 1) is
given in [4]. The same proof applies for any positive integer m and also the boundary
conditions (c-D) and (m-m). Hence the claim of the theorem follows. �

Corollary 2.1. The operator A∗ : D(A) = D(A∗) → H is the generator of a
C0−contraction semigroup. Moreover,

[
A(G̃E)

]∗
= −A(−G̃E)), on D(A) = D(A∗)

where A(G̃E)) denotes the dependence of A on the parameter G̃E .

Proof: A straightforward (but lengthy) calculation shows that
[
A(G̃E)

]∗
=

−A(−G̃E) on D(A) for each of the sets of boundary conditions considered. Moreover
−A(−G̃E) is dissipative by (2.9). Thus the proof of Lemma 2.3 remains valid with
−A(−G̃E) in place of A. Since I +A(−G̃E) : D(A) → H is bijective, D(A∗) can be
no larger than D(A). Thus, D(A∗) = D(A). It follows from the corollary of Lümer-
Phillips theorem ([15], Chap I) that A∗ generates a contraction semigroup. �
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Let H−1 be the dual space of H1 := D(A) pivoted with respect to H. Then we
have the following dense and compact embeddings

H1 ⊂ H ⊂ H−1.

By Proposition 2.10.3 in [19], the operator A : H1 → H has a unique extension
Ã : H → H−1 defined by

〈
ÃY, Z

〉
:= 〈Y,A∗Z〉H , ∀ Z ∈ H1, Y ∈ H. (2.15)

By Proposition 2.10.4 in [19], Ã is the generator of a C0−semigroup {eÃt}t≥0 on
H−1,which is similar to {eAt}t≥0. Thus we have the following.

Corollary 2.2. The semigroup {eAt}t≥0 with the generator A : H1 → H has

a unique extension to a contraction semigroup {eÃt}t≥0 on H−1 with the generator

Ã : H → H−1.

3. Characterization of the space H−1 in undamped case. In particular,
we are interested in a characterization of the space H−1 for the (m-m) boundary
conditions. Define spaces X2, X1, X by

X2 =





(
H4(Ω) ∩H3

∗ (Ω)
)
× (H3(Ω) ∩H2

⊥(Ω))
(m+1) (h-N)

(
H3(Ω) ∩H2

0 (Ω)
)
× (H2(Ω) ∩H1

0 (Ω))
(m+1) (c-D)

H3
#(Ω)× (H2

† (Ω))
(m+1) (m-m)

X1 =





H3
∗ (Ω)× (H2

⊥(Ω))
(m+1) (h-N)

H2
0 (Ω)× (H1

0 (Ω))
(m+1) (c-D)

H2
#(Ω)× (H1

† (Ω))
(m+1) (m-m)

X =

{(
H2(Ω) ∩H1

0 (Ω)
)
× (H1

⊥(Ω))
(m+1) (h-N)

H1
0 (Ω)× (L2(Ω))(m+1) (c-D), (m-m).

Also define the inner products

〈U, V 〉X1
=

{
a(U ′;V ′) (h-N)

a(U ;V ) (c-D), (m-m),

where U = (u,u)T, V = (v,v)T and the bilinear form a is defined in (2.3);

〈U, V 〉X =





c(U ′;V ′) = m 〈u′, v′〉Ω + α 〈u′′, v′′〉Ω + 〈hOpOu′,v′〉Ω
= −〈Lu, v′′〉Ω + 〈hOpOu′,v′〉Ω , (h-N)

c(U ;V ) = m 〈u, v〉Ω + α 〈u′, v′〉Ω + 〈hOpOu,v〉Ω
= −〈Lu, v〉Ω + 〈hOpOu,v〉Ω , (c-D), (m-m).

(3.3)

Then

D(A) = X2 ×X1, H = X1 ×X
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and the inner product for H can be written

〈
Y, Ŷ

〉
H

=
〈
(U, V )T , (Û , V̂ )T

〉
H

=
〈
U, Û

〉
X1

+
〈
V, V̂

〉
X
.

Let A1 be the operator on X1 defined by (2.2). For each of the sets of bound-
ary conditions (h-N), (m-m) or (c-D), a simple calculation establishes the following
identity:

〈A1U, V 〉X = 〈U, V 〉X1
∀U, V ∈ X2. (3.4)

For instance, in the (h-N) case,

〈A1U, V 〉X=

〈(
L−1

(
Ku′′′′ −NThEGEφ

′
E

)

h−1
O p−1

O
(
−hOEOu′′ +BTGEφE

)
)
, V

〉

X

=
〈
−Ku′′′′ +NThEGEφ

′
E , v

′′〉
Ω
+
〈
−hOEOu

′′′ +BTGEφ
′
E ,v

′〉
Ω

= K 〈u′′′, v′′′〉Ω + 〈hOEOu
′′,v′′〉Ω + 〈GEφ

′
E ,hENv

′′ +Bv′〉Ω
= K 〈u′′′, v′′′〉Ω + 〈hOEOu

′′,v′′〉Ω + 〈hEGEφ
′
E , ψ

′
E〉Ω = 〈U, V 〉X1

.

Let X−1 denote the dual of X1 with respect to X . By the Lax-Milgram theorem, A1

extends to an isomorphism between X1 and X−1. Therefore, the inner product on X
extends continuously to the duality pairing 〈·, ·〉X−1,X1

which satisfies (for U, V ∈ X1)

〈A1U, V 〉X−1,X1
= a(U ′;V ′) = K 〈u′′′, v′′′〉Ω + 〈hOEOu

′′,v′′〉Ω + 〈GEhEφ
′
E , ψ

′
E〉Ω

for the (h-N) boundary conditions and

〈A1U, V 〉X−1,X1
= a(U ;V ) = K 〈u′′, v′′〉Ω + 〈hOEOu

′,v′〉Ω + 〈GEhEφE , ψE〉Ω

for the (c-D) and (m-m) boundary conditions. Furthermore, we have dense compact
embeddings X1 →֒ X →֒ X−1.

From (3.4), A1 is a positive and self-adjoint operator. Therefore there exists a
sequence of orthogonal eigenvectors {Ek,l} ∈ X1, k ≥ 1, 1 ≤ l ≤ mk corresponding to
the eigenvalues λk and

A1Ek,l = λkEk,l, 1 ≤ l ≤ mk

λk > 0, λk → ∞, 1 ≤ l ≤ mk as k → ∞, Ek,l ⊥ Em,n if k 6= m. (3.5)

By (3.4), we have

〈A1Ek,l, Ek,l〉X = 〈λkEk,l, Ek,l〉X = λk‖Ek,l‖2X = ‖Ek,l‖2X1
.

Every U ∈ X1 has a unique orthogonal expansion
∑

k≥1,1≤l≤mk
ck,lEk,l and it follows

from (3.4) that we have

‖U‖2X1
=

∑

k≥1,1≤l≤mk

‖ck,lEk,l‖2X1
=

∑

k≥1,1≤l≤mk

λkc
2
k,l‖Ek,l‖2X . (3.6)

The inner product on X−1 is defined by

〈U, V 〉X−1
=
〈
A−1

1 U,A−1
1 V

〉
X1
. (3.7)
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Note that the eigenfunctions {Ek,l}k≥1,1≤l≤mk
preserves their orthogonality in X and

X−1. Therefore, every U ∈ X (or X−1) has a unique orthogonal expansion of the form∑
k≥1,1≤l≤mk

ck,lEk,l converging in X (or X−1), and we have

‖U‖2X =
∑

k≥1,1≤l≤mk

c2k,l‖Ek,l‖2X ,

and respectively

‖U‖2X−1
=

∑

k≥1,1≤l≤mk

c2k,l‖Ek,l‖2X−1
=

∑

k≥1,1≤l≤mk

c2k,l‖A−1
1 Ek,l‖2X1

=
∑

k≥1,1≤l≤mk

λ−2
k c2k,l‖Ek,l‖2X1

=
∑

k≥1,1≤l≤mk

λ−1
k c2k,l‖Ek,l‖2X . (3.8)

Eq. (3.8) provides one characterization of X−1. However, we would like a function
space characterization, particularly in the case of (m-m) boundary conditions.

We will need to refer Lemmata 3.1 and 3.2 below, which are proved in [14], and
are adaptations of similar results in [9].

Lemma 3.1. Let H = span

{
sinh x−L√

α/m

}
⊂ L2(Ω). Let L be the operator

mI − αD2
x on the domain H2(Ω) ∩ H1

0 (Ω). Then the restriction of L to H2
#(Ω) is

an isomorphism from H2
#(Ω) to H⊥ in L2(Ω).

Lemma 3.2. H⊥ = (L2(Ω)/H)′, where the duality is with respect to the L2(Ω)
inner product.

Now consider specifically the (m-m) boundary conditions. For V = (v,v) ∈ X1 =
H2

#(Ω)× (H1
† (Ω))

(m+1), U = (u,u) ∈ X = H1
0 (Ω)× (L2(Ω))(m+1), an integration by

parts of (3.3) results in

c(U, V ) = −〈u,Lv〉Ω + 〈hOpOu,v〉Ω .
The second term remains bounded for all u ∈ (H1

† (Ω))
(m+1))′ (with duality relative

to L2(Ω)). In the first term, however, by Lemma 3.1, the range of L is H⊥ in L2(Ω).
Hence for the first term to remain bounded, by Lemma 3.2, u ∈ L2(Ω)/H. Therefore,
in the case of (m-m) boundary conditions,

X−1 = L2(Ω)/H× (H1
† (Ω))

(m+1))′ (3.9)

It is easiest to characterize H−1 in the undamped case. (Later we will show that
the same characterization holds in the damped case.) Write the operator A as follows:

A = A0 + B =

(
0 I

−A1 0

)
+

(
0 0
0 A2

)

Then D(A) = D(A0) and hence A0 : H = X1 × X → H−1 is an isomorphism by
Theorem 2.1 and Corollary 2.2. It follows that an inner product on H−1 can be
defined by 〈Y, Z〉H−1

=
〈
A0

−1Y,A0
−1Z

〉
H. Hence, in the undamped case,

〈Y, Z〉H−1
=
〈
A0

−1Y,A0
−1Z

〉
H

= c(Y1, Z1) + a(−A−1
1 Y2,−A−1

1 Z2)

= 〈Y1, Z1〉X +
〈
A−1

1 Y2, A
−1
1 Z2

〉
X1

= 〈Y1, Z1〉X + 〈Y2, Z2〉X−1
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where we used (2.5) and (3.7). By (3.9), we have in the undamped case with (m-m)
boundary conditions,

H−1 = X × X−1 = H1
0 (Ω)× (L2(Ω))(m+1) × (L2(Ω)/H)× (H1

† (Ω)
′)(m+1). (3.10)

4. Observability results and the Proof of Theorem 1.2. We prove our
main observability results in this section. We begin with some preliminary results for
the decoupled system.

4.1. Observability results for decoupled system. Consider (1.9) without
the coupling terms, i.e., with GE = G̃E = 0. What remains is a Rayleigh beam
equation and (m+ 1) wave equations:

{
mz̈ − αz̈′′ +Kz′′′′ = 0 on Ω× R

+

v̈O − p−1
O EOv′′O = 0 on Ω× R

+,
(4.1)

with the boundary conditions (1.10) and the initial conditions (1.11). Let

U =: (u,u) = (z, vO)
T, V := (v,v)T = (ż, v̇O)

T, and Y := (U, V )T.

Then the semigroup corresponding to (4.1) is given by

dY

dt
= AdY :=

(
0 I

−Ad 0

)(
U
V

)
,

Y (0) = (U(0), V (0))T = (z0, v0O, z
1, v1O)

T

where AdU :=

(
KL−1u′′′′

−p−1
O EOu′′

)
. Define the quadratic forms ad and cd by

cd(z, vO) = m 〈z, z〉Ω + α 〈z′, z′〉Ω + 〈hOpOvO, vO〉Ω
ad(z, vO) = K 〈z′′, z′′〉Ω + 〈hOEOv

′
O, v

′
O〉Ω .

The natural and “higher order” energies of the decoupled system are given by

Ed(t) =





1

2
(ad(z

′, v′O) + cd(ż
′, v̇′O)) (h-N)

1

2
(ad(z, vO) + cd(ż, v̇O)) . (c-D), (m-m).

The energy inner products corresponding to each set of boundary conditions are de-
fined by

〈
Y, Ŷ

〉
H

=

{
ad(U

′; Û ′) + cd(V
′; V̂ ′). (h-N)

ad(U ; Û) + cd(V ; V̂ ) (c-D), (m-m).

In the above Ad is densely defined by Ad : D(Ad) ⊂ H → H and note that
D(Ad) = D(A).

Remark 4.1. (i) It is easy to verify that E(t) ≍ Ed(t), ∀t > 0. Indeed, for the
hinged-Neumann (h-N) boundary conditions

|〈GEhEφ
′
E , φ

′
E〉Ω| =

∣∣〈GEh
−1
E (Bv′O + hENz

′′) , (Bv′O + hENz
′′〉

Ω

∣∣

≤ C
(
‖v′′O‖2(L2(Ω))(m+1) + ‖z′′′‖2L2(Ω)

)
≤ CEd,
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and for the clamped-Dirichlet (c-D) and mixed-mixed (m-m) boundary conditions

|〈GEhEφE , φE〉Ω| =
∣∣〈GEh

−1
E (BvO + hENz

′) , (BvO + hENz
′〉

Ω

∣∣

≤ C
(
‖v′O‖2(L2(Ω))(m+1) + ‖z′′‖2L2(Ω)

)
≤ CEd

where C denotes a generic constant. Therefore,

Ed ≤ E ≤ CEd. (4.4)

(ii) In the case of (m-m) boundary conditions, we define the solutions of (4.1),(1.10)
and (1.11) on the extended space H−1 (defined by (3.10)) in exactly the same way as
we did for the undamped coupled system, i.e., by applying Corollary 2.2, Lemma 3.1,
and Lemma 3.2 to the decoupled system. Therefore we define the energy of the weak
solutions by

E−1(t) =
1

2
‖(z, ż, vO, v̇O)‖2H−1

≈ 1

2

(
‖z‖2H1

0(Ω) + ‖ż‖2(L2(Ω))(m+1) + ‖vO‖2L2(Ω)/H + ‖v̇O‖2((H1
†
(Ω))′)(m+1)

)
. (4.5)

The following results for the interior regularity, hidden regularity, and observabil-
ity of the decoupled system (4.1) follow from the standard semigroup theory, standard
results for the wave equation, e.g. see [6], [10], and observability results obtained in
[14].

Theorem 4.1.

(a) Consider

{
mz̈ − αz̈′′ +Kz′′′′ + f(x, t) = 0 in Ω× R

+

v̈O − p−1
O EOv′′O + fO(x, t) = 0 in Ω× R

+ (4.6)

with the boundary conditions (1.10) and the initial conditions

z(x, 0) = ż(x, 0) = 0, vO(x, 0) = v̇O(x, 0) = 0 on Ω.

Assume




f ∈ L1(0, T ;L2(Ω)), fO ∈ L1(0, T ; (H1(Ω))(m+1)) (h-N)

f ∈ L1(0, T ;H−1(Ω)), fO ∈ L1(0, T ; (L2(Ω))(m+1)) (c-D)

f ∈ L1(0, T ;L2(Ω)/H)), fO ∈ L1(0, T ; ((H1
† (Ω))

′)(m+1)) (m-m).

Then (z, ż, vO, v̇O) ∈ C ([0, T ];H) and the solution of (4.6) satisfy for every T > 0
the direct inequality

∫ T

0

(
|z′′′(L, t)|2 + |v′′O(L, t)|2

)
dt ≤ C‖(f, f ′

O)‖2L1(0,T ;L2(Ω)×(L2(Ω))(m+1))
∫ T

0

(
|z′′(L, t)|2 + |v′O(L, t)|2

)
dt ≤ C‖(f, fO)‖2L1(0,T ;H−1(Ω)×(L2(Ω))(m+1))

∫ T

0

(
|z′(L, t)|2 + |vO(L, t)|2

)
dt ≤ C‖(f, fO)‖2L1(0,T ;L2(Ω)/H)×((H1

†
(Ω))′)(m+1))
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for (h-N), (c-D), and (m-m) respectively. In the above C = C(T ) is a generic constant.

(b) Consider

{
mz̈ − αz̈′′ +Kz′′′′ = 0 in Ω× R

+

v̈O − p−1
O EOv′′O = 0 in Ω× R

+ (4.8)

with the boundary conditions (1.10) and the initial conditions (1.11). Assume that
the initial conditions satisfy (z0, z1, v

0
O, v

1
O) ∈ H. Then (z, ż, vO, v̇O) ∈ C ([0, T ];H)

and the solution of (4.8) satisfies for every T > τ (τ is defined by (1.8)) the following
observability and hidden regularity results

∫ T

0

(
|z′′′(L, t)|2 + |v′′O(L, t)|2

)
dt ≍ Ed(0) (h-N)

∫ T

0

(
|z′′(L, t)|2 + |v′O(L, t)|2

)
dt ≍ Ed(0) (c-D)

∫ T

0

(
|z′(L, t)|2 + |vO(L, t)|2

)
dt ≍ E−1(0) (m-m)

where E−1 is defined by (4.5).

4.2. Observability results for coupled, undamped system. We now con-
sider the coupled, undamped system , i.e. GE 6= 0, G̃E = 0. Consider (1.9) without
the damping terms, i.e., G̃E = 0:





mz̈ − αz̈′′ +Kz′′′′ −NThEGEφ
′
E = 0 on Ω× R

+

v̈O − p−1
O EOv′′O + p−1

O h−1
O BTGEφE = 0 on Ω× R

+

where (BvO = hEφE − hENz
′)

(4.9)

with the boundary conditions (1.10) and the initial conditions (1.11). Since the gener-
ator A0 is skew-adjoint, the energy E in (2.4) is conserved along solution trajectories.

Now consider the eigenvalue problem corresponding to (4.9)

A0

(
U
V

)
= λ

(
U
V

)
⇒ V = λU and A1U = λV. (4.10)

Explicitly, (4.10) can be written as

{
−Ku′′′′ +NThEGEφ

′
E = λ2Lu

hOEOu
′′ −BTGEφE = λ2pOhOu.

(4.11a)

(4.11b)

The following is the key uniqueness result of this paper.

Lemma 4.1. The eigenvalue problem (4.11) together with any of the following
sets of boundary conditions the boundary conditions
{
u(0, t) = u′′(0, t) = u(L, t) = u′′(L, t) = u′′′(L, t) = 0
u′(0, t) = u′(L, t) = u′′(L, t) = 0,

}
(h-N) (4.12)

{
u(0, t) = u′(0, t) = u(L, t) = u′(L, t) = u′′(L, t) = 0
u(0, t) = u(L, t) = u′(L, t) = 0,

}
(c-D), (m-m) (4.13)
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has only the trivial solution.

Proof: We first consider the case of (h-N) boundary conditions. Note that if
(u,u) satisfies (4.11)-(4.12), then (z, z) = (u′′,u′′) satisfies (4.11) with the boundary
conditions

{
z(0, t) = z′′(0, t) = z(L, t) = z′(L, t) = z′′(L, t) = 0

z′(0, t) = z(L, t) = z′(L, t) = 0.

(4.14a)

(4.14b)

If (z, z) ≡ 0, then (u′′,u′′) ≡ 0 by using the boundary conditions (4.12). Thus in any
of the cases, it is enough to show that (4.11),(4.12) and (4.11),(4.13) have only the
trivial solutions.

Now multiply (4.11a) by xū′−3ū and multiply (dot product) (4.11b) by xū′−2ū
respectively and add to each other. Then integrating by parts on Ω with the use of
boundary conditions (4.14) yields :

0 =

∫

Ω

(
−4λ2|u|2 − 2αλ2|u′|2 − 3λ2hOpOu · ū− hOEOu

′ · ū′) dx

+

∫

Ω

(
−xλ2ūu′ + αxλ2u′ū′′ −Kxū′′′′xu′ − λ2hOpOu

′ · xū
)
dx

+

∫

Ω

(
hOEOu

′ · xū′′ − 3GEφE · hEφ̄E −GEφ
′
E · xhEφ̄E

)
dx. (4.15)

Now we look at the solution (ū, ū) of the eigenvalue problem (4.11) corresponding to
the eigenvalue λ̄ :

{
λ̄2ū− αλ̄2ū′′ +Kū′′′′ −NThEGEφ̄

′
E = 0

λ̄2hOpOū− hOEOū
′′ +BTGEφ̄E = 0.

(4.16a)

(4.16b)

with the conjugate boundary conditions

{
ū(0, t) = ū′′(0, t) = ū(L, t) = ū′(L, t) = ū′′(L, t) = 0

ū′(0, t) = ū(L, t) = ū′(L, t) = 0

(4.17a)

(4.17b)

Now multiply (4.16a) by xu′ + 2u and multiply (dot product) (4.16b) by xu′ + 3u
respectively and add to each other. Then integrating by parts on Ω with the use of
(4.17) yields

0 =

∫

Ω

(
λ̄2ūxu′ − αλ̄2ū′′xu′ +Kū′′′′xu′ + λ̄2hOpOū · xu′ − hOEOū

′′ · xu′) dx

+

∫

Ω

(
2λ̄2|u|2 + 2αλ̄2|u′|2 + 2K|u′′|2 + 3λ̄2hOpOū · u+ 3hOEOū

′ · u′) dx

+

∫

Ω

(
3GEφ̄E · hEφEdx +GEφ̄E · (xhEφ′E)

)
dx. (4.18)
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Eventually, adding (4.15) and (4.18) gives

0 =

∫

Ω

(
−2(2λ2 − λ̄2)|u|2 − 2α(λ2 − λ̄2)|u′|2 + 2K|u′′|2

)
dx

+

∫

Ω

(
−3(λ2 − λ̄2)hOpOū · u+ 2hOEOu

′ · ū′) dx

+

∫

Ω

(
x(−λ2 + λ̄2)ūu′ + αx(λ2 − λ̄2)u′ū′′ + (−λ2 + λ̄2)hOpOu

′ · xū
)
dx

+

∫

Ω

(
(GEφ̄E) · (xhEφ′E)− (GEφE) · (xhE φ̄′E)

)
dx. (4.19)

Note that energy of the undamped system is conserved. Therefore, all eigenvalues are
located on the imaginary axis. Now let λ = ∓is, s ∈ R

+. Then λ2 and λ̄2 have the
same sign. Then (4.19) reduces to

∫

Ω

2s2|u|2 + 2K|u′′|2 + 2hOEOu
′ · ū′ dx

+

∫

Ω

(
(GEφ̄E) · (xhEφ′E)− (GEφE) · (xhE φ̄′E)

)
dx = 0. (4.20)

Note that the last two terms in (4.20) are conjugates of each other. Therefore the
second integral term is pure imaginary. Hence we have u′′ = 0 and u′ = 0. Using
boundary conditions (4.14) we get (u,u) ≡ 0. This completes the proof for the (h-N)
boundary conditions.

In (c-D) and (m-m) cases, similar calculations again lead to (4.20). Hence using
boundary conditions (4.13), we obtain (u,u) ≡ 0. �

The following result is Theorem 6.2 in (Chap VI, [6]), as it applies to our problem.

Theorem 4.2. Let Y = [z, vO, ż, v̇O]T and Y0 = [z0, v0O, z
1, v1O]

T. Assume the
following two conditions.

(i) There exists a sufficiently large k′ ∈ N such that for T > τ (τ is defined by (1.8))
we have





∫ T

0

(
|z′′′(L, t)|2 + |v′′O(L, t)|2

)
dt ≍ ‖Y0‖2H (h-N)

∫ T

0

(
|z′′(L, t)|2 + |v′O(L, t)|2

)
dt ≍ ‖Y0‖2H (c-D)

∫ T

0

(
|z′(L, t)|2 + |vO(L, t)|2

)
dt ≍ ‖Y0‖2H−1

(m-m)

(4.21a)

(4.21b)

(4.21c)

for all solutions of (4.9) with Y0 ∈H⊥
k′

where Hk′ = span{Ek,l, 1 ≤ k ≤ k′, 1 ≤ l ≤
mk}.

(ii) There exists T̄ > 0 such that for all T > T̄ the estimates (4.21) hold for all
solutions of (4.9) with Y0 such that AY0 = λY0.

Then for any T > τ the estimates (4.21) hold for all solutions Y0 ∈ H for the
(h-N) and (c-D) cases, and Y0 ∈ H−1 for the (m-m) case.
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We are now able to prove our main observability result (Theorem 1.2) for the
undamped system (with G̃E ≡ 0):

Lemma 4.2. Let T > τ , where τ is given by (1.8) and assume that G̃E ≡ 0. Then
solutions of (4.9) satisfy the observability and hidden regularity estimates (1.12).

Proof: This will follow from Theorem 4.2 once we verify the conditions (i) and
(ii) of the hypothesis are satisfied.

First we consider the case of (h-N) boundary conditions. Let us write the solution
of (4.9) in the form

(z, vO)
T = (zf , vOf )

T + (ẑ, v̂O)
T.

where [zf , vOf ]
T solves (4.6) with

(f, fO)
T = [−NThEGEφ

′
E ,p

−1
O h−1

O BTGEφE ]
T

and zero initial conditions, and (ẑ, v̂O)
T solves (4.8) with the initial data (z0, v0O, z

1, v1O)
T

where BvO = hEφE − hENz
′. For T > τ, we apply part (a) of Theorem 4.1 for

(zf , vOf
)T, and obtain

∫ T

0

(
|z′′′f (L, t)|2 + |v′′Of

(L, t)|2
)
dt

≤
∫ T

0

(
‖NThEGEBv

′
O‖2L2(Ω) + ‖NThEGEhENz

′′‖2L2(Ω)

+ ‖p−1
O h−1

O BTGEh
−1
E Bv′O‖2(L2(Ω))m+1 + ‖p−1

O h−1
O BTGENz

′′‖2(L2(Ω))m+1

)
dt

and therefore
∫ T

0

(
|z′′′f (L, t)|2 + |v′′Of

(L, t)|2
)
dt ≤ C1(GE)

∫ T

0

(
‖v′O‖2(L2(Ω))m+1 + ‖z′′‖2L2(Ω)

)
dt

where C1 is a function of GE . It follows from (3.6) that

‖(z, vO)T‖2X1
≥ λ1‖(z, vO)T‖2X , (4.22)

where {λk}∞k=1 are the eigenvalues of the operator A1. By equivalence of the energy
(see Remark 4.1) and (4.22) it follows that

∫ T

0

(
|z′′′f (L, t)|2 + |v′′Of

(L, t)|2
)
dt

≤ C2(GE)

∫ T

0

(
1√
λ1

‖v′′O‖2(L2(Ω))m+1 +
1√
λ1

‖z′′′‖2L2(Ω)

)
dt ≤ C3(GE)√

λ1
Ed(0). (4.23)

Now if we use the assumption Y0 ⊥ {Ek,l, 1 ≤ k ≤ k′, 1 ≤ l ≤ mk}, in part (i) of the
theorem, then we have

‖(z, vO)T‖2X1
≥ λ′k‖(z, vO)T‖2X (4.24)

and therefore (4.23) can be written as

∫ T

0

|z′′′f (L, t)|2 + |v′′Of
(L, t)|2dt ≤ C3(GE)√

λk′

Ed(0). (4.25)



18

Next, for T > τ we apply part (b) of Theorem 4.1 together with (4.8) for (ẑ, ŷO)T

respectively, for c1, c2 > 0 we get

c1Ed(0) ≤
∫ T

0

|ẑ′′′(L, t)|2 + |v̂′′O(L, t)|2dt ≤ c2Ed(0). (4.26)

Since

|z′′′|2 ≤ 2|ẑ′′′|2 + 2|z′′′f |2, |v′′O|2 ≤ 2|v̂′′O|2 + 2|v′′Of
|2 (4.27)

By combining (4.25),(4.26), and (4.27) we get

∫ T

0

|z′′′(L, t)|2 + |v′′O(L, t)|2dt ≤ 2

(
c2 +

C3(GE)√
λk′

)
Ed(0). (4.28)

Now if we use

|ẑ′′′|2 ≤ 2|z′′′|2 + 2|z′′′f |2, |v̂′′O|2 ≤ 2|v′′O|2 + 2|vOf
|2 (4.29)

together with (4.25) and (4.26), we obtain

∫ T

0

(
|z′′′(L, t)|2 + |v′′O(L, t)|2

)
dt ≥

(
c1
2

− C3(GE)

2
√
λk′

)
Ed(0). (4.30)

Therefore for T > τ inequalities (4.28) and (4.30) give

(
c1
2

− C3(GE)

2
√
λk′

)
Ed(0) ≤

∫ T

0

(
|z′′′(L, t)|2 + |v′′O(L, t)|2

)
dt ≤ 2

(
c2 +

C3(GE)√
λk′

)
Ed(0)

By choosing k′ large enough as in the assumption together with using (4.4), we obtain

c1
2
E(0) ≤

(∫ T

0

|z′′′(L, t)|2 + |v′′O(L, t)|2
)
dt ≤ 2c2CE(0).

Hence, condition (i) of Theorem 4.2 is fulfilled. Condition (ii) follows from Lemma
4.1.

In the case of (c-D) boundary conditions, (4.24) takes of the following form

‖(z, vO)T‖2X1
≥ λk′‖(z, vO)T‖2X

which means

‖(z, vO)T‖2H2
0 (Ω)×(H1

0 (Ω))(m+1) ≥ λk′‖(z, vO)T‖2H1
0 (Ω)×(L2(Ω)(m+1)).

In the case of (m-m) boundary conditions, we use (3.8) so that (4.24) takes of the
following form

‖(z, vO)T‖2H1
0 (Ω)×L2(Ω) ≥ λk′‖(z, vO)T‖2(L2(Ω)/H)×((H1

†
(Ω))′)(m+1) .

The rest of the proof for (c-D) and (m-m) boundary conditions works the same way
modulo the obvious modifications. �
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4.3. Proof of main observability result. In this subsection we prove our
main observability result Theorem 1.2. We show that the general damped system
is a bounded perturbation of the undamped system (with G̃E = 0) and if ‖G̃E‖ is
sufficiently small, the observability inequalities (Lemma 4.2) for the undamped case
remain valid.

We will need the the following lemma.

Lemma 4.3. Let T > 0. For all ‖G̃E‖ sufficiently small there exists a constant
C(G̃E) > 0 such that for all t ∈ (0, T ]

{
C(G̃E) E(0) ≤ E(T ) ≤ E(t) ≤ E(0) (h-N), (c-D)

C(G̃E) E−1(0) ≤ E−1(T ) ≤ E−1(t) ≤ E−1(0) (m-m),

(4.31a)

(4.31b)

where E and E−1 are defined by (2.4) and (4.5), respectively.

Proof: For the (h-N) case, we multiply the first equation in (1.9) by ż′′ and the
second equation in (1.9) by v̇′′O, and integrate by parts in space and time. For the
(c-D) and (m-m) cases, we multiply the first equation in (1.9) by ż, and the second
equation in (1.9) by v̇O, and integrate by parts in space and time. We obtain the
following energy identities





E(T ) = E(0)−
∫ T

0

〈
G̃Eφ̇

′,h−1
E φ̇′

〉
Ω
dt (h-N)

E(T ) = E(0)−
∫ T

0

〈
G̃E φ̇,h

−1
E φ̇

〉
Ω
dt (c-D),(m-m).

Since the dissipation term is bounded in the natural energy space, there exists a
constant C1 such that





∣∣∣∣∣−
∫ T

0

〈
G̃Eφ̇

′,h−1
E φ̇′

〉
Ω
dt

∣∣∣∣∣ ≤ C1‖G̃E‖TE(0) (h-N)

∣∣∣∣∣−
∫ T

0

〈
G̃Eφ̇,h

−1
E φ̇

〉
Ω
dt

∣∣∣∣∣ ≤ C1‖G̃E‖TE(0), (c-D),(m-m).

Therefore, if ‖G̃E‖ is sufficiently small so that C(G̃E) := 1 − C1‖G̃E‖T > 0, i.e.
‖G̃E‖ < 1

C1T
, then for each set of boundary conditions

C(G̃E) E(0) ≤ E(T ) ≤ E(t) ≤ E(0). (4.34)

In particular, (4.31a) holds.
Note that (4.34) implies that if ‖G̃E‖ is chosen sufficiently small so that C(G̃E) >

0, the semigroup {eAt}t≥0 extends to a C0-group on R for each set of boundary
conditions by Proposition 2.7.4 in [19]. This remains true of the semigroup extension
defined on H−1. In particular, for the case of (m-m) boundary conditions, (4.31b),
and hence also the characterization of H−1 in (3.10) remain valid. �

Now we can prove our main observability result Theorem 1.2.
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Proof of Theorem 1.2:
Consider the (h-N) case. We write the solution of (1.9) in the form

[z, vO]
T = [zf , vOf ]

T + [ẑ, v̂O]
T,

where [zf , vOf ]
T solves

{
mz̈ − αz̈′′ +Kz′′′′ −NThEGEφ

′
E + f(x, t) = 0 in Ω× R

+,
v̈O − p−1

O EOv′′O + p−1
O h−1

O BTGEφE + fO(x, t) = 0 on Ω× R
+,

(4.35)

with zero initial data and,

[f, fO]
T = [−NThEG̃E φ̇

′
E ,p

−1
O h−1

O BTG̃Eφ̇E ]
T, (4.36)

where [ẑ, v̂O]T solves (4.9) with the initial data [z0, v0O, z
1, v1O]

T. Since (4.36) is a
bounded coupling term in H, by equivalence of energy Ed ≍ E (see Remark 4.1), the
estimates in part (a) of Theorem 4.1 (which apply to the decoupled system) remain
valid for (4.35). Thus for any T > 0 we have

∫ T

0

(
|z′′′f (L, t)|2 + |v′′Of

(L, t)|2
)
dt

≤
∫ T

0

(
‖NThEG̃EBv̇

′
O‖2L2(Ω) + ‖NThEG̃EhENż

′′‖2L2(Ω)

+‖p−1
O h−1

O BTG̃Eh
−1
E Bv̇′O‖2(L2(Ω))m+1 + ‖p−1

O h−1
O BTG̃ENż

′′‖2(L2(Ω))m+1

)
dt

≤ C4(G̃E)

∫ T

0

(
‖ż′′‖2L2(Ω) + ‖v̇′O‖2(L2(Ω))m+1

)
dt (4.37)

where C4(G̃E) → 0 as ‖G̃E‖ → 0.

Next, for T > τ if we apply part (b) of Theorem 4.1 to (ẑ, ŷO)
T. Hence there

exist c1, c2 > 0 for which

c1E(0) ≤
∫ T

0

(
|ẑ′′′(L, t)|2 + |v̂′′O(L, t)|2

)
dt ≤ c2E(0). (4.38)

By using (4.27) together with (4.4), (4.31a), (4.37), (4.38) we get

∫ T

0

(
|z′′′(L, t)|2 + |v′′O(L, t)|2

)
dt ≤ 2

(
c2 + C4(G̃E)

)
E(0).

Now by using (4.29) together with (4.31a), (4.37) and (4.38) we get

∫ T

0

(
|z′′′(L, t)|2 + |v′′O(L, t)|2

)
dt ≥

(c1
2

− C(G̃E)C4(G̃E)
)
E(0).

For any fixed T > τ, the constant C(G̃E) is bounded for all sufficiently small ‖G̃E‖
(See proof of Lemma 4.3). Hence, for sufficiently small ‖G̃E‖, we get the desired
observability result (1.12a).

The rest of the proof for (c-D) and (m-m) boundary conditions works the same
way modulo the obvious modifications. �
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5. Exact controllability results. Once continuous observability is established
on an appropriate function space, exact controllability will also hold on an appropri-
ately defined dual space to the observability space. Here we sketch the procedure for
the (h-N) case and indicate the modifications for the (c-D) and (m-m) cases.

5.1. Proof of Proposition 1.1 and Theorem 1.1 for the (h-N) case. We
first define the transpositional solution of (1.1), (1.2) and (1.5).

By Lemma 2.1, A∗ = −A(−G̃E). Hence the dual backward problem correspond-
ing to (1.1), (1.2) and (1.5) is given by





m¨̂z − α¨̂z′′ +Kẑ′′′′ −NThE

(
GEφ̂E − G̃E

˙̂
φE

)′
= 0 on Ω× R

+

hOpO ¨̂vO − hOEOv̂′′O +BT
(
GEφ̂E − G̃E

˙̂
φE

)
= 0 on Ω× R

+

where Bv̂O = hEφ̂E − hENẑ
′

(5.1)

with the boundary and terminal conditions

ẑ(0, t) = ẑ′′(0, t) = ẑ(L, t) = 0, ẑ′′(L, t) = 0, v̂′O(0, t) = v̂′O(L, t) = 0 (5.2)

ẑ(x, T1) = ẑ0(x), ˙̂z(x, T1) = ẑ1(x), v̂O(x, T1) = v̂0O,
˙̂vO(x, T1) = v̂1O. (5.3)

Now we multiply the first and second equations in (5.1) by w′′ and y′′O respectively
where (w, yO)T is the solution of non-homogenous equation (1.1)-(1.5), and then inte-
grate by parts using the boundary conditions (1.2) and (5.2). Combining these (and

using the definitions of ψE and φ̂E) yield

0 =

[∫

Ω

(
˙̂z′′Lw − ẑ′′Lẇ + hOpO ˙̂v

′′
O · yO − hOpOv̂

′′
O · ẏO + G̃Eφ̂

′
E · hEψ

′
E

)
dx

]T1

0

+

∫ T1

0

(Kẑ′′′(L, t)M(t) + hOEOv̂
′′
O(L, t) · gO(t)) dt. (5.4)

Now let Ŷ := (ẑ, v̂O, ˙̂z, ˙̂vO)T with Ŷ (0) = Ŷ0 = (ẑ0, v̂0O, ẑ
1, v̂1O)

T ∈ H, and let

S = H1
0 (Ω)× (L2

⊥(Ω))
(m+1) × L2(Ω)× ((H̃1(Ω))′)(m+1). (5.5)

where L2
⊥(Ω) = {ϕ ∈ L2(Ω) :

∫
Ω ϕ dx = 0} = (L̃2(Ω))′. One can easily prove that the

map d2

dx2 : H2
⊥(Ω) → L2

⊥(Ω) is an isomorphism. Moreover, this extends to isomorphism
d2

dx2 : H1
⊥(Ω) → (H̃1(Ω))′. Consequently, d2

dx2 : H → S is an isomorphism.
Define FT1 to be the linear functional on H by

FT1(Ŷ0) =
〈(

−Lw1,−hOpOy
1
O,Lw0,hOpOy

0
O
)
, Ŷ ′′

0 )
〉
S′,S

−
∫ T1

0

(Kẑ′′′(L, t)M(t) + hOEOv̂
′′
O(L, t) · gO(t)) dt

+
〈(
NTG̃E(hENw

0′′ +By0
′

O),−BTG̃E(Nw
0′ + h−1

E By0O), 0, 0
)
, Ŷ ′′

0

〉
S′,S

.(5.6)

Then (5.4) becomes

FT1(Ŷ0) =
〈
(−Lẇ,−hOpOẏO,Lw,hOpOyO) , Ŷ

′′
〉
S′,S

∣∣∣∣
t=T1

(5.7)

+
〈(
NTG̃E(hENw

′′ +By′O),−BTG̃E(Nw
′ + h−1

E ByO), 0, 0
)
, Ŷ ′′

〉
S′,S

∣∣∣∣
t=T1

.
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This identity defines a weak solution of (1.1)-(1.5); more precisely:

Definition 5.1. We say that (w, yO, ẇ, ẏO)T is a solution of (1.1)-(1.5) on [0, T ]
if (w, yO, ẇ, ẏO)T ∈ C([0, T ], C) and (5.7) is satisfied for all T1 ∈ [0, T ] and for all
Ŷ0 ∈ H where C is defined by (1.6).

To see that Def. 5.1 is fulfilled, first note that by Theorem 1.2, (ẑ′′′(L, ·), v̂′′O(L, ·)) ∈
(L2(0, T ))(m+2). Furthermore, since Ŷ0 ∈ H, by Theorem 2.1, Ŷ ′′(·, T1) ∈ S for all T1 ∈
[0, T ]. Therefore, for every T1 ∈ [0, T ] the linear form FT1 is continuous on H. Conse-
quently the duality pairing in (5.7) uniquely defines the (−Lẇ,−hOpOẏO,Lw,hOpOyO)

T ∈
S ′ where

S ′ = H−1(Ω)× (L̃2(Ω))(m+1) × L2(Ω)× (H̃1(Ω))(m+1).

But since

L : H2(Ω) ∩H1
0 (Ω) → L2(Ω) and L : H1

0 (Ω) → H−1(Ω)

are isomorphisms it follows that (w(·, t), yO(·, t), ẇ(·, t), ẏO(·, t))T ∈ C for all t ∈
R. One can prove the continuity in time, i.e., (w(·, t), yO(·, t), ẇ(·, t), ẏO(·, t))T ∈
C([0, T ], C) through a standard argument; see e.g., [5, Theorem 2.5]. This proves
Proposition 1.1.

Now we prove Theorem 1.1 by the HUM method (i.e. see [11, Chapter 4]). To
apply HUM we seek the controls of the form (M(t),gO) = (ẑ′′′(L, t), v̂′′O(L, t)) where
(ẑ, v̂O) is the solution of (5.1)-(5.3) for T1 = T. By the previous discussion, the
backward problem





mẅ − αẅ′′ +Kw′′′′ −NThE

(
GEψE + G̃Eψ̇E

)′
= 0 on Ω× R

+

hOpOÿO − hOEOy′′O +BT
(
GEψE + G̃Eψ̇E

)
= 0 on Ω× R

+

where ByO = hEψE − hENw
′

with boundary and terminal conditions




w(0, t) = w′′(0, t) = w(1, t) = 0, w′′(L, t) = ẑ′′′(L, t)
y′O(0, t) = 0, y′O(L, t) = v̂′′O(L, t)
w(x, T ) = 0, ẇ(x, T ) = 0, yO(x, T ) = 0, ẏO(x, T ) = 0

has a unique solution satisfying

(−Lẇ(·, 0),−hOpO ẏO(·, 0),Lw(·, 0),hOpOyO(·, 0))T

+
(
NTG̃E(hENw

′′(·, 0) +By′O(·, 0)),−BTG̃E(Nw
′(·, 0) + h−1

E ByO(·, 0)), 0, 0
)T

∈ S ′.

Hence, the controllability map Λ : S → S ′ defined by

Λ(Ŷ ′′
0 ) = (−Lẇ(·, 0),−hOpO ẏO(·, 0),Lw(·, 0),hOpOyO(·, 0))T

+
(
NTG̃E(hENw

′′(·, 0) +By′O(·, 0)),−BTG̃E(Nw
′(·, 0) + h−1

E ByO(·, 0)), 0, 0
)T

is continuous from S into S ′. Furthermore, if Y0 such that

(w(·, 0), yO(·, 0), ẇ(·, 0), ẏO(·, 0))T = (w0, v0O, w
1, v1O)

T,
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then the control (M(t),gO) = (ẑ′′′(L, t), v̂′′O(L, t)) drives the system (1.1) to rest in
time T. Therefore, Theorem 1.1 is proved if the surjectivity of the map Λ is shown.

Now we choose (M(t),gO(t)) = (ẑ′′′(L, t), v̂′′O(L, t)) in (5.6). Then for T > τ and

for all Ŷ0 ∈ H, we have

〈
Λ(Ŷ ′′

0 ), Ŷ ′′
0

〉
S′,S

=

∫ T

0

(
K|ẑ′′′(L, t)|2 + hOEO|v̂′′O(L, t)|2

)
dt

≥ c2E(0) ≥ c2‖Ŷ ′′
0 ‖2S

where we used (1.12a) with the same constant c2. Since Λ is a bounded and coercive,
by the Lax-Milgram theorem Λ is surjective. This completes the proof for we complete
the proof of Theorem 1.1 for the (h-N) case.

5.2. Proofs of Proposition 1.1 and Theorem 1.1 for (c-D) and (m-m)
cases. The proofs for (c-D) and (m-m) cases are similar to the proofs for the (h-N)
case with several modifications. For example, we multiply the first equation in (5.1)
by w and the second equation in (5.1) by yO where (w, yO)T is the solution of non-
homogenous equation (1.1)-(1.5), and then integrate by parts using the appropriate
boundary conditions. Then, the definition of transpositional solution changes as the
following

FT (Ŷ0) =
〈
(−Lẇ,−hOpO ẏO,Lw,hOpOyO) , Ŷ

〉
S′,S

∣∣∣∣
t=T

(5.8)

+
〈(
NTG̃E(hENw

′′ +By′O),−BTG̃E(Nw
′ + h−1

E ByO), 0, 0
)
, Ŷ
〉
S′,S

∣∣∣∣
t=T

.

where the space S is defined as the following

S =







H = H2
0 (Ω)×

(

H1
0 (Ω)

)(m+1)
×H1

0 (Ω)× (L2(Ω))(m+1) (c-D)

H−1 = H1
0 (Ω)×

(

L2(Ω)
)(m+1)

×
(

L2(Ω)/H
)

× ((H1
† (Ω))

′)(m+1) (m-m).

(5.9a)

(5.9b)

In the above the dual of the space L2(Ω)/H is defined in Lemma 3.2.
Note that (5.8) has Ŷ in the right hand side of the duality pairing whereas Ŷ ′′

appeared in (5.7) for the case of (h-N) boundary conditions. However, the duality
pairing between S and S ′ is the same. This leads to control spaces C defined in (1.6a)
and (1.6c) of the same Sobolev order in the cases of (h-N) and (m-m) boundary
conditions, as one would expect.

We indicate below other minor modifications needed for (c-D) and (m-m) cases.

(i) (c-D) case: In this case the observability result holds on the concrete space

H = H2
0 (Ω) ×

(
H1

0 (Ω)
)(m+1) × H1

0 (Ω) × (L2(Ω))(m+1). However, as a consequence
of the definition of transpositional solution, the controllability is obtained up to an
additive two dimensional space in the velocity component defined in (1.7). To explain
this we need the following lemma which is analogous to Lemmata 3.1, 3.2. Proofs can
be found in [13] and [14].

Lemma 5.1. (i) The operator L is an isomorphism from H2
0 (Ω) to M⊥ where M

is defined by (1.7), (ii) (L2(Ω)/M)′ = M⊥, where the duality is with respect to the
L2(Ω) inner product.

By (5.9a) we have S ′ = H−2(Ω)×
(
H−1(Ω)

)(m+1)×H−1(Ω)× (L2(Ω))(m+1). We
see that Lẇ is well-defined at any time as an element ofH−2(Ω) by (5.8). Equivalently,
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〈ẇ,Lψ〉L2(Ω) is defined for each ψ ∈ H2
0 (0, l). However, the range of L on the restricted

space H2
0 (Ω) is M

⊥ where M is defined by (1.7). Thus by Lemma 5.1, ẇ is well-defined
on the quotient space L2(Ω)/M.

(ii) (m-m) case: We find a similar phenomenon in (m-m) case but in the reverse
sense: the observability result holds on a factor space H−1 = H1

0 (Ω)×(L2(Ω))(m+1)×
(L2(Ω)/H)× (H1

† (Ω)
′)(m+1), while the controllability is obtained on a concrete space

defined in (1.6).

By (5.9b) and Lemma 3.2, we have S ′ = H−1(Ω) ×
(
L2(Ω)

)(m+1) × H⊥ ×
(H1

† (Ω))
(m+1). Therefore, Lẇ is well-defined since L : H1

0 (Ω) → H−1(Ω) is an iso-

morphism. Equivalently, ẇ ∈ H1
0 (Ω) for all T ∈ R. For the well-posedness of w we

investigate the well-posedness of the following term

〈Lw(x, T ), ẑ(x, T )〉L2(Ω) . (5.10)

By Lemma 3.2, when (5.10) is defined for all ẑ ∈ (L2(Ω)/H), the term Lw(x, T ) is
uniquely defined in H⊥. Therefore, w is uniquely determined as an element in H2

#(Ω)
by Lemma 3.1. �
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