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HIGH–ORDER ASYMPTOTIC–PRESERVING METHODS
FOR

FULLY NONLINEAR RELAXATION PROBLEMS

SEBASTIANO BOSCARINO∗, PHILIPPE G. LEFLOCH† , AND GIOVANNI RUSSO⋆

Abstract. We study solutions to nonlinear hyperbolic systems with fully nonlinear relaxation
terms in the limit of, both, infinitely stiff relaxation and arbitrary late time. In this limit, the
dynamics is governed by effective systems of parabolic type, with possibly degenerate and/or fully
nonlinear diffusion terms. For this class of problems, we develop here an implicit–explicit method
based on Runge–Kutta discretization in time, and we use this method in order to investigate several
examples of interest in compressible fluid dynamics. Importantly, we impose here a realistic stability
condition on the time–step and we demonstrate that solutions in the hyperbolic–to–parabolic regime
can be computed numerically with high robustness and accuracy, even in presence of fully nonlinear
relaxation terms.

Key words. Nonlinear hyperbolic system; hyperbolic–to–parabolic regime; high–order dis-
cretization; late–time limit: stiff relaxation.

1. Introduction. We consider nonlinear hyperbolic systems containing fully
nonlinear relaxation terms when the relaxation is stiff relaxation and for arbitrary
late time. The dynamics is asymptotically governed by effective systems which are
parabolic type and may contain possibly degenerate and fully nonlinear diffusion
terms. For such problems, we introduce implicit–explicit (IMEX) methods which are
based on Runge–Kutta (R–K) discretization in time, and we apply this method to
investigate several compressible fluid models. Importantly, we impose here a real-
istic stability condition on the time–step and we demonstrate that solutions in the
hyperbolic–to–parabolic regime can be computed numerically with high robustness
and accuracy, even in presence of fully nonlinear relaxation terms.

The outline of this paper is as follows. In the rest of this introductory section,
we review several model problems with linear and nonlinear relaxation, including
Kawashima-LeFloch’s model [15]. In Section 2, we classify IMEX R–K schemes pre-
sented in literature and indicate some limitations of these schemes when applied to
hyperbolic systems with diffusive relaxation. Section 3 is devoted to an introduction
of partitioned and additive Runge-Kutta schemes for linear relaxation models [6, 8].
In Sections 4 and 5, a particular type of IMEX R–K scheme, called AGSA(3,4,2) (and
introduced first in [8]), is analyzed and applied to the Euler equations with linear
friction and to a model coupling the Euler equations with a radiative transfert equa-
tion (investigated earlier in [2] with a different numerical method). In Section 6, we
describe and analyze the nonlinear relaxation model from [15]. Concluding remarks
are finally presented in Section 7.

1.1. Models of interest. Relaxation effects are an important feature of models
arising, for instance, in compressible fluid dynamics and, specifically, we are interested
here in nonlinear hyperbolic systems with fully nonlinear relaxation terms in the limit
of, both, infinitely stiff relaxation and arbitrarily late time. In this limit, the dynamics
of the flow is governed by effective systems of parabolic type, whose diffusion might
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also be degenerate and/or fully nonlinear. Solving such equations numerically is
very challenging due to the stiffness of the problem in, both, the convection and the
relaxation parts. This problem is currently under very active study and the main
challenge is to design schemes that allow for realistic stability conditions on the time–
step while ensuring robustness and high–order accuracy. For background as well as
recent material, we refer to [2, 8, 14, 13, 18, 20].

The simplest example of interest, which we propose to refer to as the linear
relaxation model, reads

ut + vx = 0,

ǫ2 vt + b(u)x = −v + q(u),
(1.1)

in which u = u(t, x) and v = v(t, x) are the unknown functions, and b = b(u) and
q = q(u) are prescribed with b′(u) > 0. This is a nonlinear hyperbolic system with two
(distinct and real) characteristic speeds, that is, ±

√
b′(u)/ǫ. In the stiff relaxation

limit ǫ → 0, the characteristic speeds approach infinity and the behavior of solutions
to (1.1) is (formally, at least) governed by the effective system

ut + q(u)x = b(u)xx,

v = q(u)− b(u)x,
(1.2)

which can be derived by a Chapman–Enskog expansion in the parameter ǫ and turns
out to be a noninear parabolic system —since the diffusion coefficient b′(u) > 0 in
(b′u)ux)x is positive. Observe that the so-called sub–characteristic condition [23] for
system (1.2) reads ǫ |q′(u)| < (b′(u))1/2 and puts a restriction on the speed q′(u) of
the effective equation with respect to the speeds ±

√
b′(u)/ǫ of the original system:

clearly, for this model, the sub–characteristic condition is automatically satisfied (for
ǫ sufficiently small).

Fully nonlinear relaxation terms also arise (for instance in presence of nonlinear
friction) and, therefore, in this work we also numerically study the following nonlin-
ear relaxation model, first introduced by Kawashima and LeFloch [15],

ut + vx = 0,

ǫ2 vt + b(u)x = −|v|m−1 v + q(u),
(1.3)

where m > 0 is a real parameter. This, again, is a strictly hyperbolic system of
balance laws, provided b′(u) > 0. The effective system associated with this model is
found to be (with α = −1 + 1/m)

ut =
(
| − q(u) + b(u)x|

α(−q(u) + b(u)x)
)
x
,

|v|m−1 v = q(u)− b(u)x,
(1.4)

which is a fully nonlinear parabolic equation in u. It is natural to distinguish between
three rather distinct behaviors:

sub–linear : 0 < m < 1,

linear : m = 1,

super–linear : m > 1.

(1.5)

The equation (1.4), although parabolic in nature, need not regularize initially discon-
tinuous initial data, and we may expect jump singularities (in the first–order derivative
ux) to remain in the late–time limit.
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Further models arising in compressible fluid dynamics will also be described later,
but (1.1) and (1.3) provide us two prototypes of particular importance in order to
develop efficient numerical tools for relaxation problems.

2. Implicit-Explicit (IMEX) Runge-Kutta schemes. This section is de-
voted to a brief introduction on IMEX-Runge-Kutta schemes. More detailed descrip-
tion will be found in several papers on the topic, such as [1, 9, 21].

Let us consider a Cauchy problem for a system of ordinary differential equations
of the form

y′ = f(y) + g(y), y(0) = y0, t ∈ [0, T ] (2.1)

with y(t) ∈ R
N , and f , g two Lipschitz continuous functions RN → R

N .
Since Runge-Kutta schemes are one-step methods, it is enough to show how to

compute the solution after one time step, say from time 0 to time ∆t = h. An
Implicit-Explicit (MEX) Runge-Kutta scheme has the form

Yi = y0 + h

i−1∑

j=1

ãijf(t0 + c̃jh, Yj) + h

i∑

j=1

aij
1

ε
g(t0 + cjh, Yj),

y1 = y0 + h

s∑

i=1

b̃if(t0 + c̃ih, Yi) + h

s∑

i=1

bi
1

ε
g(t0 + cih, Yi).

where Ã = (ãij), ãij = 0, j ≥ i and A = (aij): s × s are lower triangular matrices,

while c̃, b̃, c, b ∈ R
s are s-dimensional vectors. IMEX-RK schemes schemes are usually

represented by a Double Butcher tableau:

c̃ Ã

b̃T

c A

bT

The fact that the implicit scheme is diagonally implicit (DIRK) makes the imple-
mentation of IMEX simpler, and ensures f is effectively explicitly computed. Order
conditions for IMEX schemes can be derived by matching Taylor expansion of ex-
act and numerical solution up to a given order p, just as in the case of standard
Runge-Kutta schemes.

In addition to standard order conditions on the two schemes, additional coupling
conditions may appear, whose number increases very quickly with the order of the
scheme. However, if c̃ = c and b̃ = b, then there are no additional conditions for
IMEX-RK up to order p = 3. For more details on the order conditions consult [9].

2.1. Classification of IMEX R–K schemes. IMEX R–K schemes present in
the literature can be classified in three different types characterized by the structure
of the matrix A = (aij)

s
i,j=1 of the implicit scheme. Following [3], we will rely on the

following notions.
Definition 2.1. An IMEX R–K method is said to be of type A (cf. [21]) if

the matrix A ∈ Rs×s is invertible. It is said to be of type CK (cf. [9]) if the matrix
A ∈ Rs×s can be written in the form

A =

(
0 0

a Â

)
,
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in which the matrix Â ∈ R(s−1)×(s−1) invertible. Finally, it is said to be of type
ARS (cf. [1]) if it is a special case of the type CK with the vector a = 0.

The schemes CK are very attractive since they allow some simplifying assump-
tions, that make order conditions easier to treat, therefore permitting the construction
of higher order IMEX R–K schemes. On the other hand, schemes of type A are more
amenable to a theoretical analysis, since the matrix A of the implicit scheme is in-
vertible.

2.2. A Simple Example of first IMEX R–K schemes. The simplest IMEX-
RK are obtained combining explicit and implicit Euler method. Two versions are
possible applied to system (2.1), namely

SP(1,1,1), [21]:
Y1 = y0 + h g(Y1)
y1 = y0 + h (f(y0) + g(Y1)),

(2.2)

ARS(1,1,1), [1]: y1 = y0 + h (f(y0) + g(y1)). (2.3)

The corresponding Butcher tables are reported below:

SP(1,1,1) :
0 0

1
1 1

1
ARS(1,1,1) :

0 0 0
1 1 0

1 0

0 0 0
1 0 1

0 1

2.3. Limitations of IMEX Runge–Kutta schemes. In general, Implicit–
Explicit (IMEX) Runge–Kutta (R–K) schemes [1, 3, 4, 9, 21] represent a powerful tool
for the time discretization of stiff systems. However, in the hyperbolic–to–parabolic
limit under consideration here, the characteristic speeds of the hyperbolic part is
of order 1/ǫ and standard IMEX Runge–Kutta schemes developed for hyperbolic
problems with stiff relaxation [21, 7] are not very efficient, since the standard CFL
condition requires the relation ∆t = O(ǫ∆x) between the time mesh–size and the
space mesh–size. Clearly, in the diffusive regime ǫ << ∆x, and we are led to a too
restrictive condition, since it is expected that, for an explicit method, a parabolic–type
stability condition ∆t = O(∆x2) should suffice.

Most existing works [13, 14, 20] on asymptotic preserving schemes for nonlinear
hyperbolic system with diffusive relaxation are based on a (micro–macro) decompo-

sition of the hyperbolic flux into stiff and non–stiff components: the stiff hyperbolic
component is added to the relaxation term, which is treated implicitly; in the limit
of infinite stiffness, such schemes become consistent and explicit schemes for the dif-
fusive limit equation [14, 16, 17, 19, 20] and, therefore, suffer from the usual stability
restriction ∆t = O(∆x2).

Schemes that do avoid the parabolic time–step restriction and provide fully im-

plicit solvers (in the case of transport equations) have been analyzed in [6], where
a new formulation of the problem (1.1) in the case b(u) = u and q(u) = 0, was
introduced, which was based on the addition of two opposite diffusive terms in the
stiff limit. One term is added to the hyperbolic component and makes it non–stiff
(therefore allowing for an explicit treatment), while the other term must be treated
implicitly. The remaining component of the hyperbolic term is formally treated im-
plicitly. The resulting scheme is consistent and relaxes to an implicit scheme for
underlying diffusion limit, therefore avoiding the typical parabolic restriction of pre-
vious methods.
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The drawback of the above strategy is that its requires an implicit treatment of
some components of the hyperbolic flux. Even if such implicit term can be computed
by closed formula in most cases, this procedure requires a reformulation of the dis-
cretization of the whole system. It is thus desirable to construct IMEX R–K schemes
in which the whole hyperbolic part is treated explicitly. At a first sight this seems an
impossible task since the characteristic speeds are unbounded. Yet, in [8], the authors
showed that, provided suitable conditions are imposed on the IMEX R–K coefficients,
then one can indeed construct schemes which are

• fully explicit in the hyperbolic part, and
• converge to an implicit high–order scheme in the diffusion limit.

This is this direction that we follow in the present work and further develop in the
context of, both, the linear relaxation model (1.1), the fully nonlinear model (1.3), and
several models arising in fluid dynamics. We exhibit new decompositions that lead us
to high–order asymptotic preserving methods covering the hyperbolic–to–parabolic
regime under consideration. A key ingredient is to keep the implicit feature of the
scheme with respect to certain components that “degenerate”; for instance, (1.3) when
m > 1 has a degenerate diffusion when −q(u) + b(u)x is small or even vanishes.

3. Partitioned and Additive Runge–Kutta schemes for the linear re-
laxation model. In developing new IMEX R–K schemes in [8, 6], the system (1.1)
was considered and written in the form

ut = −vx, (3.1)
ε2vt = −(b(u)x + v − q(u)).

A very simple scheme for the numerical treatment of such a problem is based on the
observation that the first equation does not contain any stiffness, so the first variable
can be updated in time, and the new value can be replaced in the second equation.

By using a method of lines approach (MOL), we discretize system (3.1) in space

by a uniform mesh {xi}
N
i=1 and Ui(t) ≈ u(xi, t), Vi(t) ≈ v(xi, t). We obtain a large

system of ODE’s

Ut = F (U, V ), ε2Vt = G(U)− V,

where, in this case, F (U, V ) = −DhV , G(U) = q(U)−Dhb(U), Dh denoting a discrete
space derivative operator. In the limit ε → 0 the system becomes

Ut = F̂ (U), where F̂ (U) = F (U,G(U)).

The IMEX Euler scheme (/refAfirst) applied to the system becomes

Un+1 = Un +∆tF (Un, V n),
V n+1 = V n +∆tG(Un+1)−∆tV n+1,

(3.2)

and the second equation can be explicitly solved for V n+1

V n+1 =
ε2V n +∆tG(Un+1)

ε2 +∆t
.

where we have discretized the interval of integration by a time mesh {tn}
N

n=1 and

Un ≈ U(tn). As ε → 0, V n+1 = G(Un+1) and therefore Un+1 = Un + ∆t
ˆ̂
F (Un),

i.e. the scheme automatically become an explicit Euler method applied to the space
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discretized limit equation. Note that in system (3.2), since the variable U is updated
in the first equation, it is explicitly computed, although it is formally implicit.

In the case b(u) = u and q(u) = 0, the method would relax to explicit Euler scheme
applied to the diffusion equation, thus suffering the usual parabolic CFL stability
condition ∆t 6 ∆x2/2. This approach will be denoted as partitioned approach and
we will denote the corresponding IMEX R–K schemes, IMEX-I R–K schemes .

The simplest scheme outlined above is only first order accurate in time. However,
higher order extensions are possible, by adopting IMEX type time discretization. In
the previous approach there may be a subtle difficulty when it comes to applications,
namely it is not clear how to identify the hyperbolic part of the system, i.e. what is
the term that should be included in the numerical flux.

For practical applications, it would be very nice to treat the whole term containing
the flux explicitly, while reserving the implicit treatment only to the source, according
the following scheme:

ut

vt

=
=

−vx
−ux/ε

2

[Explicit]

− v/ε2

[Implicit]

(Additive)

We call such an approach additive and the corresponding schemes are denoted IMEX-
E. Such schemes should be easier to apply, since the fluxes retain their original inter-
pretation. However, this approach seems to be hopeless, due to diverging speeds.

Let us consider the simple relaxation system with b(u) = u, and q = 0. By
applying the Implicit-Explicit Euler scheme ARS(1,1,1), (2.3) we obtain

un+1 = un +∆tvnx ,

vn+1 = vn −∆t un
x/ε

2 −∆t vn+1/ε2.

Now, as ε → 0, one has vn+1 → −un
x. Replacing this expression in the first equation

gives

un+1 = un +∆tun−1
xx ,

which provides a consistent discretization of the limit equation.
Performing Fourier stability analysis on this scheme, one obtains a stability con-

dition that depends on ε. As ε → 0 one obtains

∆tξ2 ≤ 1

continuous in space
or

∆t ≤ ∆x2

central difference.

Unfortunately, when trying this approach with other IMEX schemes available in the
literature, even with the first order SP(1,1,1), one observes a lack of consistency (for
details, see[8]).

In this paper, the authors concentrated on developing IMEX R–K schemes of
type A, since they are easier to analyze with respect to the other types. They started
the analysis by introducing a property which is important in order to guarantee the
asymptotic preserving property. IMEX R–K schemes that satisfy this property are
called globally stiffly accurate, that is the last row of matrices Ã andA are, respectively,
equal to b̃T and bT .

Definition 3.1. An IMEX R–K scheme is said to be globally stiffly accurate
if

bT = eTs A, b̃T = eTs Ã with es = (0, ..., 0, 1)T , cs = c̃s = 1,
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i.e. the numerical solution coincides with the solution obtained in the last internal
step of the Runge–Kutta scheme.

Note that this condition is satisfied by ARS(1,1,1), (2.3), but not by SP(1,1,1),
(2.2). An IMEX-E R–K scheme applied to this approach will relaxes to an explicit
scheme for the limit parabolic equation, thus suffering from the classical parabolic
CFL stability restriction on the time step.

3.1. Removing parabolic stiffness. The schemes constructed with the ap-
proachs outlined above will converge to an explicit scheme for the limit diffusion
equation, and therefore they are subject to the classical parabolic CFL restriction
∆t ≤ C∆x2. In order to overcome such a restriction we adopt a penalization tech-
nique, based on adding two opposite terms to the first equation, and treating one
explicitly and one implicitly.

Let us consider system (1.1) and adding and subtracting the same term µ(ε)b(u)xx
on the right hand side we obtain:

ut = −(v + µ(ε)b(u)x)x + µ(ε)b(u)xx,

vt = −
1

ε2
(b(u)x + v − q(u)).

(3.3)

Here µ = µ(ε) ∈ [0, 1] is a free parameter such that µ(0) = 1. The idea is that, since
the quantity v + b(u)x is close to q(u) as ε → 0, the first term on the right hand side
can be treated explicitly in the first equation, while the term p(u)xx will be treated
implicitly. This can be done naturally by using an IMEX R–K approach.

However, if we want the scheme to be accurate also in the cases in which ε is not
too small, then we need to add two main ingredients:

1. no term should be added when not needed, i.e. for large enough values of
ε, since in such cases the additional terms degrade the accuracy; this can
be achieved by letting µ(ε) decrease as ε increases. A possible choice, for
example, is

µ(ε) = exp(−ε2/∆x).

2. when the stabilizing effect of the dissipation vanishes, i.e. as µ → 0, then cen-
tral differencing is no longer suitable, and one should adopt some upwinding;
this can be obtained for example by blending central differencing and upwind
differencing as

Dx = (1− µ)Dupw
x + µDcen

x .

Now from a numerical point of view, we may treat system (3.3) in two different
approaches according to whether the hyperbolic term b(u)x in the second equation
is treated implicitly or explicitly. The first one, called the BPR approach (For more
details as well as some rigorous analysis, see [6].) is

ut = −(v + µ(ǫ)b(u)x)x
Explicit

+ µ(ǫ)b(u)xx
Implicit (3.4)

ǫ2vt = −(b(u)x + v − q(u))
Implicit

and the corresponding IMEX R–K schemes are IMEX-I R–K ones in order to remind
that the term containing b(u)x in the second equation is implicit, in the sense that it
appears at the new time level. Observe that the term b(u)x + v − q(u) appearing in
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the second equation is formally treated implicitly, but in practice the term b(u)x is
computed at the new time from the first equation, so it can in fact explicitly computed.

The second approach (cf. [8] for further details) is given by

ut = −(v + µ(ǫ)b(u)x)x
Explicit

+ µ(ǫ)b(u)xx
Implicit (3.5)

ǫ2vt = −b(u)x
Explicit

− (v − q(u))
Implicit

,

which is refered to as the BR approach; he corresponding schemes are IMEX-E.
Observe that when q(u) 6= 0, the system relaxes to a convection–diffusion equa-

tion. The terms on the left hand side are treated explicitly, while the terms on the
right–hand side are treated implicitly. In fact as ǫ → 0, the scheme becomes an IMEX
R–K scheme for the limit convection-diffusion equation, in which the convection term
is treated explicitly and the diffusion one is treated implicitly [6, 8].

3.2. Additional order conditions. In [6, 8] additional order conditions, called
algebraic conditions are derived by studying the behavior of IMEX R–K schemes
applied to the relaxation system (3.3) when ǫ → 0, in particular when ǫ = 0. These
algebraic conditions guarantee the correct behavior of the numerical solution in the
limit ε → 0 and maintain the accuracy in time of the scheme. We obtained such
algebraic order conditions using the same technique adopted in [4], i.e. by comparing
the Taylor series of the numerical solution with that of the exact solution.

In [6] these order conditions are derived for IMEX-I R–K schemes and in [8] for
IMEX-E R–K ones. Due to the number of these order conditions, it is necessary to
use several internal levels for IMEX R–K schemes in order to obtain a given order.
Several results and a rigorous analysis about that can be found in [6, 8]. Most nu-
merical tests are reported in [6] for the BPR approach and in [8] for the BR approach
and the results are compared with those obtained by other methods available in the
literature.

Here we report, as an example, the application of the second order IMEX-E R–K
scheme developed in [8] and called AGSA(3,4,2). We note that this scheme satisfy all
the algebraic order conditions derived in [8]. Now we perform several numerical tests,
considered earlier in [2] with a different numerical strategy.

4. Euler equation with linear friction. The Euler model with friction reads

ǫρt + (ρw)x = 0,

ǫ(ρw)t + (ρw2 + p(ρ))x = −
1

ǫ
ρw,

(4.1)

where ρ > 0 denotes the density and w ∈ R the velocity of a compressible fluid. The
pressure function p : R+ → R

+ is assumed sufficiently regular and satisfies p′(ρ) > 0
so that the first-order homogeneus system associated with (4.1) is strictly hyperbolic.

Now using the new variable v = w/ǫ the system becomes

ρt + (ρv)x = 0,

(ρv)t + (ρv2 +
p(ρ)

ǫ2
)x = −

1

ǫ2
ρv.

(4.2)

In this case the diffusive regime associated to the Euler model with friction is described
when ǫ → 0 by the equation

ρt = (p(ρ))xx. (4.3)
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Now, from a numerical point of view in order to test our examples we adopt a
technique similar to the one illustrated in [6, 8]. Indeed, the more classical techniques
for instance proposed in [10, 14, 2] provide in the asympotic diffusive limit a scheme
that converges to an explicit scheme for the parabolic equation. But such schemes
suffer from the standard CFL restriction ∆t = O(∆x2) when ǫ → 0. Then, in order
to remove such restriction as suggested in [6, 8], this technique consists in adding and
subtracting the same term to the first equation of system (4.2):

ρt = −
(
ρv + µ(ǫ)(p(ρ)x

)
x
− µ(ǫ) p(ρ)xx,

(ρv)t = −
(
ρv2 +

p(ρ)

ǫ2

)
x
−

1

ǫ2
ρv.

(4.4)

Here µ is such that µ(ǫ) : R+ → [0, 1] and µ(0) = 1. When ǫ is not small there is no
reason to add and subtract the term (p(ρ))xx, therefore µ(ǫ) will be small in such a
regime, i.e. µ(ǫ) = 0. A possible choice for µ(ǫ) can be

µ(ǫ) =

{
1, ǫ < ∆x,

0, ǫ ≥ ∆x.
(4.5)

With this approach, the idea is that as ǫ → 0, the quantity (ρv) + µ(ǫ)p(ρ)x → 0.
Therefore such a term can be treated explicitly, while the other term p(ρ)xx will
be treated implicitly in the first equation, i.e. we will treat the hyperbolic part of

the system (((ρv) + µ(ǫ)p(ρ)x)x, (ρv
2 + p(ρ)

ǫ2 )x)
T explicitly, while the relaxation one

((p(ρ))xx,−
1
ǫ2 ρv)

T implicitly, respectively.

We performed our scheme AGSA(3,4,2) introduced in the previous section for the
numerical experiment considering a parabolic ∆t, i.e. ∆t ∝ ∆x2 by solving system
(4.2) and hyperbolic ∆t, i.e. ∆t ∝ CFL∆t by solving (4.4). We show only the last
case since we obtained similar results with the first one.

We now solve the (4.2) with the inital data

(ρ, ρv)T =

{
(2, 0)T , x ∈ [1.2, 1.8],

(1, 0)T , otherwise.
(4.6)

Furthermore we choose the simple pressure law p(ρ) = ρ2 and ǫ = 10−3. In Figure 5,
the numerical solution on a 300 cells grid with ∆x = 10−2 obtained by the proposed
scheme, is compared at time tfinal = 2.104ǫ, with a numerical approximation of (4.3),
(or see (4.3) in [2]) computed with 600 cells.

5. Coupled Euler–radiative transfert model. The second example proposed
here is a system that degenerates into a system of diffusion equation of dimension
n > 1 and in order to do this we couple the Euler model (4.1) with the M1 model
proposed in [2] as follows

ǫρt + (ρw)x = 0,

ǫ(ρw)t + (ρw2 + p(ρ))x = −
κ

ǫ
ρw +

σ

ǫ
f̄ ,

ǫet + (ρf̄)x = 0,

ǫf̄t + (χ

(
f̄

e

)
e)x = −

σ

ǫ
f̄ .

(5.1)
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Now introducing the new variables v = w/ǫ and f = f̄ /ǫ we get the system

ρt + (ρv)x = 0,

(ρv)t + (ρv2 +
p(ρ)

ǫ2
)x = −

κ

ǫ2
ρv +

σ

ǫ2
f,

et + (ρf)x = 0,

ft +
1

ǫ2
(χ

(
ǫf

e

)
e)x = −

σ

ǫ2
f.

(5.2)

Here κ and σ denote positive constants. Furthermore the following pressure law:
p(ρ) = Cpρ

η with Cp ≪ 1 and η > 1. The asymptotic diffusive regime (i.e. ǫ → 0) of
the system (5.2) is given by

ρt =
p(ρ)xx

κ
+

exx
3κ

,

et =
exx
3σ

.
(5.3)

Now similarly as made for the previous example here in order to remove time step
parabolic restriction we adding and subtract the same term to the first and third
equation

ρt = −

(
(ρv) +

1

κ

(
p(ρ)x +

1

3
ex

))

x

+
1

κ

(
p(ρ)xx +

1

3
exx

)
,

(ρv)t + (ρv2 +
p(ρ)

ǫ2
)x = −

κ

ǫ2
ρv +

σ

ǫ2
f,

et = −((ρf) +
ex
3σ

)x +
exx
3σ

,

ft −
1

ǫ2
(χ

(
ǫf

e

)
e)x = −

σ

ǫ2
f,

(5.4)

Similarly for this system (5.4) we perform our scheme considering the hyperbolic ∆t,
i.e. ∆t ∝ CFL∆t. We choose initial data given by

ρ = 0.2, v = 0, f = 0, e =

{
1.5, x ∈ [0.45, 0.55],

1, otherwise.
(5.5)

The parameters of the model are κ = 2, σ = 1, ǫ = 10−3, Tfinal = 0.029, Cp = 10−3

and η = 2. The numerical solution is computed with 100 cells (∆x = 10−2) and
compared to Figure 5 with a reference solution obtained solving (5.3)

In Figures 5.1 and 5.2, we observe that the second–order scheme AGSA(3,4,2)
developed in [8] captures well the correct behavior of the solutions in the diffusive
regime where the numerical solutions match the reference solution very well.

6. Kawashima-LeFloch’s nonlinear relaxation model.

6.1. Objective. We are now in a position to tackle the nonlinear relaxation
model (1.3) which is of central interest in the present paper. Without genuine loss
of generality in the design of the numerical method, we assume that b(u) = u and
q(u) = 0 and, therefore, we study

ut + vx = 0,

ǫ2 vt + ux = −|v|m−1 v,
(6.1)
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Fig. 5.1. Comparison between reference solution (full line) obtained by the numerical solution
or (4.3) of (4.3) in [2] computed with 600 cells ∆x = 10−2and ∆t ∝ ∆x2 ∼= 5.10−5 versus proposed
scheme solution (dashed line) ASA(3,4,2) computed with 300 cells and ∆t = 0.1∆x ∼= 1.10−3.
The solutions are compared at time Tf = 2.104ǫ with ǫ = 10−3.
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Reference Solution N = 600
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Fig. 5.2. Comparison between reference solution (full line) obtained by (5.3) or the numerical
solution of (4.6) in [2] computed with 600 cells, ∆x = 10−2 and ∆t ∝ ∆x2 ∼= 5.10−5 versus
proposed scheme solution ASA(3,4,2) computed with 100 cells and ∆t = 0.1∆x ∼= 1.10−3. The
solutions are compared at time Tf = 0.029 with ǫ = 10−3.

together with the associated effective equation (ε → 0)

ut =
(
|ux|

αux

)
x
, |v|m−1 v = −ux, (6.2)

with α = −1 + 1/m.
The order of convergence of the IMEX scheme applied to the semilinear system

(6.1) for small ε will be determined by comparing the numerical solutions to a (the-
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oretical) limiting solution obtained by solving the effective equations (6.2) on a very
fine mesh.

We are going to treat the nonlinear relaxation term implicitly, which requires to
solve a nonlinear algebraic equation. An efficient approach is obtained by solving it
iteratively with the Newton method. Specifically, the nonlinear equation to be solved
at each s–stage has the form

F (V ) = ε2 V + C1 V
m − ε2 C2 = 0,

where C1 and C2 constants. As ε → 0, we can neglect the term V ε2 and, therefore,
we propose the initial approximation

V0 =
(ε2C2

C1

)1/m
,

as a good choice in order to reduce the number of iterations. This is a relevant choice
in both cases m < 1 and m ≥ 1.

6.2. Computation of the limit solution. Equation (6.2) is a nonlinear dif-
fusion equation. Let us introduce a very efficient method for the numerical solution
of such an equation. The scheme we propose is stable, linearly implicit, and can
be designed up to any order of accuracy. We propose to use a technique similar to
the additive semi-implicit Runge-Kutta methods of Zhong [24]. The idea is to write
equation as a system

u′ = F (u, u), (6.3)

where the first argument is treated explicitly, while the second one is treated implicitly.
Then the semi-implicit R–K method is implemented as follows. First compute the
stage fluxes for i = 1, . . . , s

U∗
i = un +∆t

j−1∑

j=1

ãijKj , Ūi = un +∆t

j−1∑

j=1

aijKj , (6.4)

solve the equation

Ki = F (U∗
i , Ūi +∆taiiKi),

and, finally update the numerical solution

un+1 = un +∆t

s∑

i=1

biKi. (6.5)

In our case F (u∗, u) is given by

F (u∗, u) = (|u∗
x|

αux)x.

It can be shown that such semi-implicit R–K scheme is indeed a particular case of
IMEX R–K scheme [22].

Observe that, for the spatial discretization of the limiting equation (6.2), we can
use a centered scheme, such as

(
|ux|

αux)
)
x
≈ ∆x

(
|δU |αj+ 1

2

Uj+1(t)− Uj(t)

∆x
− |δU |αj− 1

2

Uj(t)− Uj−1(t)

∆x

)
,
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where |δU |α
j+ 1

2

=
∣∣∣Uj+1(t)−Uj(t)

∆x

∣∣∣
α

. Observe that for the final numerical solution,

we require, in particular, that u∗
n+1

= un+1, which is guaranteed by imposing the
condition bi = b̃i for all i.

Here, as an example, we propose to choose a classical second–order IMEX R–K
scheme that satisfies the condition bi = b̃i for all i, e.g. the implicit–explicit midpoint

method of type ARS introduced in [1] (to which we refer for further details). Applying
such a method, we thus obtain the following (rather simple) scheme which requires
only two function evaluations

U∗
2 = un +

∆t

2
F (un, un),

U2 = un +
∆t

2
F (U∗

2 , U2),

un+1 = 2U2 − un.

(6.6)

Observe that U∗
1 = U1 = un.

Similar examples is possible to propose for other types of IMEX R–K schemes
presented in the literature. Then, we consider the numerical solution (6.6) as a ref-
erence solution for the limiting equation, and we compare it with the numerical one
computed from the system (6.1).

6.3. Comparison with the limit solution. Here we apply first order scheme
to system (6.1) with simple second order central differencing for the discretization
of the space derivative. We choose the first order implicit-explicit Euler scheme of
type ARS (2.3). For our numerical test we integrate the system up to the final time
T = 1 and use periodic boundary conditions in x ∈ [−π, π] with initial conditions
u(x, 0) = cosx, v(x, 0) = sinx and ε = 10−4.

Numerical convergence rate is calculated by the formula

p = log2(E∆t1/E∆t1),

where E∆t1 and E∆t2 are the global errors computed with step ∆t1 = O(∆x2
1) where

∆x1 = 2π/N and ∆t2 = O(∆x2
2) with ∆x2 = π/N .

The nonlinear parabolic equation (6.2) has regular solutions if m > 1, i.e. α 6 0,
while it develops singularities in the derivatives if 0 < m < 1, i.e. α > 0. Two value
of m are considered here, namely m = 1/2 (α = 1) and m = 2 (α = −1). The profile
of the solution computed with N = 96 points is reported in Fig. 6.3. The time step
has been chosen to satisfy ∆t = C∆x2, with C = 0.025 (right panel with m = 2) and
C = 1 (left panel with m = 1/2). The scheme seems to converge in both cases.

Using N = 12 · 2p with p = 0, 1, ..., 5, one obtains the convergence table 6.1. The
L∞ convergence is second order for m = 2, and less for m = 0.5, as expected from the
lack of regularity of the solution. Convergence rate in the latter case improves when
measured in slightly weaker norms, i.e. L1 and L2 norm. Observe that second–order
is observed even if the scheme is first–order in time, which is due to the parabolic
scaling of the time step.

Let us take a closer look at the case m = 2. By integrating for a longer time,
some instabilities appear (see Fig. 6.3). The reason of such instabilities is that the
following equation (6.2) may be written in the form

ut = ((α+ 1)|ux|
α)uxx. (6.7)
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where the low order term (α+ 1)|ux|
α plays the role of the diffusive coefficient.

It can be shown [8] that the first order Implicit-Explicit Euler scheme applied to
the linear system (6.1) suffers from the following stability restriction, independently
of ε

∆t

∆x2
6 1,

which suggests the following condition in the nonlinear case

(α+ 1)|ux|
α ∆t

∆x2
6 1.

This condition is used to determine the optimal time step for m 6 1, while it shows
that no time step can guarantee stability near local extrema if m > 1. For this reason,
it is strictly necessary to use implicit schemes when m > 1.

(a) m = 0.5

N Error Order
12 1.2942e-01 –
24 5.7400e-02 1.17
48 2.2568e-02 1.34
96 7.8081e-03 1.53
192 2.6057e-03 1.58
384 8.2321e-04 1.66

(b) m = 2

N Error Order
12 7.9684e-01 –
24 1.5843e-01 2.33
48 3.8728e-02 2.03
96 9.3970e-03 2.04
192 2.3082e-03 2.02
384 5.4599e-04 2.07

Table 6.1

L∞-norms of the relative error and convergence rates of u with C = 1 for case m = 0.5 and
C = 0.025 for m = 2.

(a) L2-norm

N Error Order
12 1.8038e-01 –
24 4.6859e-02 1.94
48 1.3354e-02 1.81
96 3.575e-03 1.90
192 9.3110e-03 1.94
384 2.3020e-04 2.01

(b) L1-norm

N Error Order
12 1.9626e-01 –
24 4.0244e-02 2.28
48 1.0851e-02 1.89
96 2.7977e-03 1.95
192 7.0519e-04 1.98
384 1.6909e-04 2.06

Table 6.2

L1 and L2-norms of the relative error and convergence rates of u for m = 0.5 with C = 1.

6.4. Removing parabolic stiffness for Kawashima-LeFloch model. As
we have seen, the previous numerical example outlined above converges to an ex-
plicit scheme for the limit diffusion equation, and therefore subjected to the classical
parabolic CFL restriction ∆t 6 C∆x2. Furthermore in some cases such restriction
does not allow the computation of the solution, due to the unboundedness of the
diffusion coefficient.

Now, in order to remove the parabolic CFL restriction we adopt a similar tech-
nique proposed for the linear relaxation model that consists in adding and subtract-
ing the same term to the first equation. In the nonlinear model equation (1.3), with



15

−3 −2 −1 0 1 2 3

−0.4

−0.2

0

0.2

0.4

0.6

x

 

 reference limit solution
numerical solution

−3 −2 −1 0 1 2 3

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

x

 

 numerical solution
reference limit solution

Fig. 6.1. ◦ numerical solution with N = 96 cells and solid line the reference limit solution with
N = 384 cells at time T = 1. The numerical solutions are compared with ε = 10−4 and ∆t = C∆x2.
On the left-hand side, case m = 0.5 and C = 1. On the right-hand side, case m = 2 and C = 0.025.
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Fig. 6.2. On the left-hand side: numerical solution with N = 96 cells at time T = 1.77 for
m = 2, ε = 10−4 and C = 0.025. On the right-hand side: zoom of the region where the instability
appears.

q(u) = 0, b(u) = u, the system becomes

ut = −(v + µ(ǫ)|ux|
αux)x + µ(ǫ)(|ux|

αux)x, (6.8)
ǫ2vt = −ux − |v|m−1v.

Here, µ(ǫ) is such that µ : R+ → [0, 1] and µ(0) = 1. When ǫ is not small there is no
reason to add and subtract the term µ(ǫ)uxx, therefore µ(ǫ) will be small in such a
regime, i.e. µ(ǫ) = 0.

We note that in both the BR and BPR approach the term (|ux|
αux)x is treated

implicitly. In the case of a fully implicit treatment of such term, both approaches can
be used. Of course the BR approach requires that the Runge-Kutta IMEX is globally
stiffly accurate [6, 8].

If, on the other hand, we want to use the treatment of the implicit term by the
technique outlined in section 6.2, then we are forced to use BPR approach, since
the requirement that b = b̃ cannot reconcile with global stiff accuracy. To be more
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Fig. 6.3. Numerical solution with N = 96 cells at time T = 1.77 for m = 2, ε = 10−4 and
∆t = C∆x, with C = 0.25.

specific, in our case F (y∗, y) is given by y =

(
u
v

)
, y∗ =

(
u∗

v∗

)
, and

F (y∗, y) =

(
−(v∗x + µ(ε)(|u∗

x|
αu∗

x)x) + µ(ε)(|u∗
x|

αux)x
−ux + |v|m−1v

)
.

It can be shown that such semi-implicit R–K scheme is indeed a particular case of
IMEX R–K scheme (Pareschi, Russo, private communication). Furthermore, if c̃ =
Ãe = c = Ae, the classical order conditions on the two schemes

c̃ Ã

b̃T

c A,

bT

for order p = 1, 2, 3, will guarantee that the semi-implicit R–K has the same order p
(cf. [5]). In order to show the validity of this technique for the computation of the
solution for the system (6.8), we consider again the convergence test proposed before.
Here we use a classical second order IMEX R–K scheme of type A with bi = b̃i, i.e.
SSP(3,3,2) [21], for the computation of the numerical solution of the system (6.8).

As a reference solution we propose again the numerical solution of the limiting
equation (6.3) and we compare it with the numerical one computed from the system
(6.8). The L∞-convergence is second order for m = 2 (cf. Table 6.3) and a CFL
hyperbolic condition is used for the time step.

The following remarks are in order:
• In the evaluation of the numerical solution for the case m = 2, i.e. α = −1,
we set a tolerance TOL for computing the derivative (|ux|+ TOL)α in order
to avoid that the derivatives goes to infinity. We chose in our numerical test
TOL = 10−12.

• Observe that by integrating for a longer time with a hyperbolic CFL for the
case m = 2 the numerical solution decreases rapidity to zero without any
instabilities (cf. Fig. 6.3).

7. Concluding remarks. In this paper, we have presented a new asymptotic-
preserving method in order to construct new IMEX Runge-Kutta schemes which are
especially adaoted to deal with a class of nonlinear hyperbolic systems containing
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N Error Order
12 1.6921e-01 –
24 4.2166e-02 2.004
48 1.0328e-02 2.029
96 2.5371e-03 2.025
192 6.0394e-04 2.070
384 1.2064e-04 2.323

Table 6.3

L∞-norms of the relative error and convergence rates of u with ∆t = C∆x and C = 0.06 for
case m = 2.

nonlinear diffusive relaxation. As a by-product, effective semi-implicit schemes for the
limiting (nonlinear) diffusion equations have been proposed. These schemes are able
to solve the hyperbolic systems without any restriction on the time step which would
classically be imposed by the stiff source or by the unboundedness of the characteristic
speeds. In the limit as the relaxation parameter vanishes, the proposed schemes
relax to implicit schemes for the limit nonlinear convection-diffusion equation, thus
overcoming the classical parabolic CFL condition in the time step. Although a time
discretization up to third-order is available [6], we used here second–order schemes,
since space discretization is limited to second–order accuracy. The construction of
third–order accurate schemes in space is not a trivial matter in view of the nonlinearity
and is by itself an interesting field of investigation.
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