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Abstract. An instance of the (finite-)valued constraint satisfaction problem (VCSP) is given
by a finite set of variables, a finite domain of values, and a sum of (rational-valued) functions, with
each function depending on a subset of the variables. The goal is to find an assignment of values to
the variables that minimizes the sum. We study (assuming that PTIME �= NP) how the complexity
of this very general problem depends on the functions allowed in the instances. The case when the
variables can take only two values was classified by Cohen et al.: essentially, submodular functions
give rise to the only tractable case, and any non–submodular function can be used to express, in a
certain specific sense, the NP-hard Max Cut problem. We investigate the case when the variables
can take three values. We identify a new infinite family of conditions that includes bisubmodularity
as a special case and which can collectively be called skew bisubmodularity. By a recent result
of Thapper and Živný, this condition implies that the corresponding VCSP can be solved by linear
programming. We prove that submodularity, with respect to a total order, and skew bisubmodularity
give rise to the only tractable cases, and, in all other cases, again, Max Cut can be expressed. We
also show that our characterization of tractable cases is tight; that is, none of the conditions can be
omitted.
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1. Introduction. What are the classes of discrete functions that admit an effi-
cient minimization algorithm? To answer this kind of general question in a meaningful
way, one needs to fix a formal setting. One popular general setting considers classes of
set functions (also known as pseudo-Boolean functions [4]) f : {0, 1}n → R or, more
generally, classes of functions f : Dn → R with a fixed finite set D, and the efficiency
is measured in terms of n. One can consider the model in which functions are rep-
resented by a value-giving oracle, or the model where the functions are represented
explicitly but succinctly—say, as a sum of functions of small arity. Both models are
actively studied (see, e.g., [18]). For example, submodular set functions can be effi-
ciently minimized in the value-oracle model, while supermodular set functions cannot
[19, 26, 37, 44], the standard argument for the latter fact coming from the hardness
of the Max Cut problem, which can be considered as a supermodular set function
minimization problem with explicitly represented objective function—in fact, a sum of
binary supermodular functions (see Example 2). In this paper, we contribute towards
the answer to the above question for functions f : Dn → Q in the explicit repre-
sentation model by using the paradigm of the valued constraint satisfaction problem
(VCSP) [12].

The constraint satisfaction problem (CSP) provides a framework in which it is
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possible to express, in a natural way, many combinatorial problems encountered in
computer science and artificial intelligence [13, 15, 17]. An instance of the CSP consists
of a set of variables, a domain of values, and a set of constraints on combinations of
values that can be taken by certain subsets of variables. The aim is then to find an
assignment of values to the variables that satisfies the constraints. There are several
natural optimization versions of CSP: Max CSP (or Min CSP), where the goal is
to find the assignment maximizing the number of satisfied constraints (or minimizing
the number of unsatisfied constraints) [11, 15, 27, 28]; problems like Max-Ones and
Min-Hom, where the constraints must be satisfied and some additional function of
the assignment is to be optimized [15, 29, 45]; and, the most general version, VCSP,
where each combination of values for variables in a constraint has a cost and the goal
is to minimize the aggregate cost [8, 12]. Thus, an instance of the VCSP amounts to
minimizing a sum of functions, with each depending on a subset of variables. If infinite
costs are allowed, then VCSP can model both feasibility and optimization aspects and
so generalizes all the problems mentioned above [8, 12]. We will, however, allow only
finite costs to concentrate on the optimization aspect. Note that the VCSP has also
been studied in various branches of computer science under different names such as
Min-Sum, Gibbs energy minimization, and Markov random fields (see, e.g., [14, 50]).
We study the complexity of solving VCSPs to optimality.

We assume throughout the paper that PTIME �= NP. Since all of the above prob-
lems are NP-hard in full generality, a major line of research in the CSP tries to identify
the tractable cases of such problems (see [15, 16]), where the primary motivation is
the general picture rather than specific applications. The two main ingredients of a
constraint are (a) variables to which it is applied and (b) relations/functions specify-
ing the allowed combinations of values or the costs for all combinations. Therefore,
the main types of restrictions on CSP are (a) structural, where the hypergraph formed
by sets of variables appearing in individual constraints is restricted [21, 38], and (b)
language-based, where the constraint language, i.e., the set of relations/functions that
can appear in constraints, is fixed (see, e.g., [7, 13, 15, 17]). The ultimate sort of
results in these directions are dichotomy results, pioneered by [43], which characterize
the tractable restrictions and show that the rest are as hard as the corresponding
general problem (which cannot be generally taken for granted). The language-based
direction is considerably more active than the structural one (there are many partial
language-based dichotomy results; see, e.g., [5, 6, 12, 15, 27, 28, 33, 45]), but many
central questions are still open. In this paper, we study language-based restrictions
for VCSP.

Related work. Since VCSP is a very general problem and relatively new to the
CSP dichotomy research, only a couple of earlier complexity classification results were
known (at the time of submission). The following cases have been classified: when the
domain contains only two values [12], when the language contains all unary functions
[33], and when the domain is small and the language contains only 0-1-valued functions
[27, 28]. On the hardness side, simulation of Max Cut has been a predominant idea.
On the algorithmic side, most tractability results, e.g., [10, 11, 12, 28, 31, 34, 35],
are based on various submodularity-like conditions. An adaptation to VCSP of ideas
from the algebraic approach to the CSP [7, 13] resulted in submodularity-inspired,
but rather more general and abstract, algebraic properties called multimorphisms
[12] and then, even more general, fractional polymorphisms [8, 9], which are certain
families of operations of the same arity. Fractional polymorphisms are known to be
able to characterize all tractable constraint languages for VCSP [8, 9], and they have
been recently used to characterize constraint languages such that the corresponding
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1066 ANNA HUBER, ANDREI KROKHIN, AND ROBERT POWELL

VCSP can be solved by the basic LP (linear programming) relaxation [32, 46]. After
this paper was submitted, Thapper and Živný [48] proved that VCSPs that are not
solvable by the basic LP relaxation are in fact NP-hard (they can simulate Max

Cut), thus completing the classification of the complexity of finite-valued VCSPs.
For applications of the theory of VCSP to other problems in discrete optimization,
see, e.g., [22].

Our work is concerned with classifying exact solvability of VCSPs. There is
plenty of research in approximability of Max CSPs and VCSPs (e.g., [3, 15, 30, 42]),
especially since the unique games conjecture (UGC) concerns a special case of Max

CSP. In fact, it is shown in [42] how to optimally approximate any VCSP assuming
the UGC.

One of the main technical tools for identifying tractability in the VCSP, fractional
polymorphisms, is a generalization of submodularity. Submodular functions are a key
concept in combinatorial optimization [19, 37, 44], and their algorithmic aspects are
being actively studied (see, e.g., [18, 26, 39, 40]).

Contributions. We give a precise classification of the complexity of VCSPs with
a fixed constraint language in the case when the domain consists of three values (see
Theorem 8). Our classification is precise in the sense that the conditions describing
the tractable cases are very specific and none of them can be omitted. This feature
of our classification does not follow (immediately) from the general result of [48].
One interesting feature of this classification is that it is the first dichotomy result in
CSP research when infinitely many conditions are definitely necessary to characterize
tractable constraint languages in a version of CSP with a fixed domain. By contrast,
the case of a 2-element domain has only eight tractable cases [12].

Thapper and Živný [47] asked whether the VCSPs solvable by the basic LP relax-
ation can be characterized by a fixed-arity multimorphism. We answer this question
negatively (see Proposition 5).

We identify, for each 0 < α < 1, a new class of functions on {−1, 0, 1}n which we
call α-bisubmodular. The definition can be found in section 2.3, Definition 4. The
ordinary bisubmodularity [1, 40, 41] would be 1-bisubmodularity in this notation. The
new functions play a crucial role in our classification. We have been informed by Hirai
that α-bisubmodular functions can be captured in his framework of submodularity on
modular semilattices [22, 23].

2. Preliminaries.

2.1. Valued constraints. Let D be a finite set. Let Q>0 denote the set of all

positive rational numbers. Let F
(m)
D denote the set of all functions from Dm to Q,

and let FD =
⋃∞
m=1 F

(m)
D . A valued constraint language on D is simply a subset of

FD.
Definition 1. Let V = {x1, . . . , xn} be a set of variables. A valued constraint

over V is an expression of the form g(x), where x ∈ Vm and g ∈ F
(m)
D . The number

m is the arity of the constraint.
An instance I of the VCSP is a function

(1) fI(x1, . . . , xn) =
q∑
i=1

wi · fi(xi),

where, for each i = 1, . . . , q, fi(xi) is a valued constraint over VI = {x1, . . . , xn} and
wi ∈ Q>0 is a weight. The goal is to find a mapping ϕ : VI → D that minimizes fI .
Let Opt(I) denote the set of all optimal solutions to I.
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For a valued constraint language Γ ⊆ FD, let VCSP(Γ) denote the class of all
VCSP instances in which every valued constraint uses a function from Γ.

Note that, in some papers (especially when infinite values are allowed), functions
taking negative values are not allowed in valued constraints. It is easy to see that our
results would stay the same if we were to assume this restriction.

We assume that each fi in a VCSP instance is given by its full table of values.
As usual in this line of research, we say that a language Γ is tractable if VCSP(Γ′) is
tractable for each finite Γ′ ⊆ Γ, and it is NP-hard if VCSP(Γ′) is NP-hard for some
finite Γ′ ⊆ Γ.

Example 1 (submodularity [19, 37, 44]). A function {0, 1}n → Q is called sub-
modular if

f(a ∨ b) + f(a ∧ b) ≤ f(a) + f(b) for all a,b ∈ {0, 1}n.
Here, ∨ and ∧ denote the standard binary Boolean operations acting componentwise.
If Γ ⊆ F{0,1} consists of submodular functions, then VCSP(Γ) is tractable [12, 19, 37,
44]. A function f is called supermodular if the function −f is submodular.

Example 2 (Max Cut). In the Max Cut problem, one needs to partition the
vertices of a given edge-weighted graph into two parts so as to maximize the total
weight of edges with endpoints in different parts. This problem is well known to be
NP-hard.

Let fmc : {0, 1}2 → Q be such that fmc(0, 1) = fmc(1, 0) < fmc(0, 0) = fmc(1, 1).
Note that fmc is a supermodular set function. Let Γmc = {fmc}. One can see
that VCSP(Γmc) is equivalent to Max Cut as follows. Variables in an instance
of VCSP(Γmc) can be seen as vertices of a graph G = (V,E), while constraints
we · fmc(x, y) correspond to edges e = {x, y} ∈ E with weight we > 0. An assignment
of 0-1 values to the variables corresponds to a partition of the graph, and minimizing
the function ∑

e={x,y}∈E
we · fmc(x, y)

corresponds to maximizing the total weight of cut edges, as each constraint prefers a
pair of different values to a pair of equal values. Thus, VCSP(Γmc) is NP-hard.

The main problem in this research direction is to identify all valued constraint
languages Γ such that VCSP(Γ) is tractable and to determine the complexity for the
remaining constraint languages.

Since all constraints in this paper are valued, we often omit this word and say
simply “constraint” or “constraint language.”

2.2. Expressive power.
Definition 2. For a constraint language Γ, let 〈Γ〉 denote the set of all functions

f(x1, . . . , xm) such that, for some instance I of VCSP(Γ) with objective function
fI(x1, . . . , xm, xm+1, . . . , xn), we have

f(x1, . . . , xm) = min
xm+1,...,xn

fI(x1, . . . , xm, xm+1, . . . , xn).

We then say that Γ expresses f , and we call 〈Γ〉 the expressive power of Γ.
Definition 3. If functions f, f ′ ∈ FD are such that f can be obtained from f ′

by scaling and translating, i.e., f = a · f ′ + b for some constants a ∈ Q>0 and b ∈ Q,
then we write f ≡ f ′. For Γ ⊆ FD, let Γ≡ = {f | f ≡ f ′ for some f ′ ∈ Γ}.

Theorem 1 (see [9, 12]). Let Γ and Γ′ be constraint languages on D such that
Γ′ ⊆ 〈Γ〉≡. If VCSP(Γ) is tractable, then VCSP(Γ′) is tractable. If VCSP(Γ′) is

D
ow

nl
oa

de
d 

05
/3

0/
14

 to
 1

29
.2

34
.2

52
.6

5.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1068 ANNA HUBER, ANDREI KROKHIN, AND ROBERT POWELL

NP-hard, then VCSP(Γ) is NP-hard.
The following condition, which we will call (MC), says that Γ can express Max

Cut (see Example 2):

(MC)
There exist distinct a, b ∈ D such that 〈Γ〉 contains a unary function u
with argmin(u) = {a, b} and a binary function h
with h(a, b) = h(b, a) < h(a, a) = h(b, b).

The role of function u in (MC) is to enforce that all optimal solutions to an instance of
VCSP(Γ) take only values from {a, b}. The following lemma is effectively Lemma 5.1
of [12].

Lemma 1. If a constraint language Γ satisfies condition (MC), then VCSP(Γ) is
NP-hard.

All constraint languages Γ such that VCSP(Γ) is known to be NP-hard satisfy
(MC) [12, 27, 28, 33].

2.3. Fractional polymorphisms. Let O
(k)
D = {F | F : Dk → D} be the set of

all k-ary operations on D, and let OD =
⋃∞
k=1O

(k)
D . For F ∈ O

(k)
D and (not necessarily

distinct) tuples a1, . . . , ak ∈ Dn, let F (a1, . . . , ak) denote the tuple in Dn obtained
by applying F to a1, . . . , ak coordinatewise.

A fractional operation of arity k on D is a probability distribution μ on O
(k)
D .

For a function f ∈ F
(n)
D , μ is said to be a fractional polymorphism of f [9] if, for all

a1, . . . , ak ∈ Dn,

(2) EF∼μ(f(F (a1, . . . , ak))) ≤ avg{f(a1), . . . , f(ak)}

or, in expanded form,

(3)
∑

F∈O(k)
D

Pr
μ
[F ] · f(F (a1, . . . , ak)) ≤ 1

k
(f(a1) + · · ·+ f(ak)).

Let fPol(f) denote the set of all fractional polymorphisms of f . For a constraint
language Γ, let

fPol(Γ) =
⋂
f∈Γ

fPol(f).

A fractional polymorphism μ of arity k is a multimorphism [12] if the probability of
each operation in μ is of the form l/k for some integer l. A k-ary multimorphism μ can
be represented as a transformation F : Dk → Dk given by a k-tuple F = (F1, . . . , Fk)

of functions from O
(k)
D , where each operation F ∈ O

(k)
D with Prμ[F ] = l/k appears l

times in F. The inequality (3) can then be written as

(4)

k∑
i=1

f(Fi(a1, . . . , ak)) ≤
k∑
i=1

f(ai).

All important fractional polymorphisms identified earlier [10, 12, 28, 31] are in fact
multimorphisms.

Recall that a lattice is a partially ordered set in which each pair of elements has
a least upper bound (join, denoted ∨) and a greatest lower bound (meet, denoted ∧).
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A distributive lattice is one whose elements can be represented by subsets of a set so
that join and meet are set-theoretic union and intersection, respectively.

Example 3 (submodularity on a lattice [11, 34, 35, 49]). Let L = (D,∨,∧) be a
(not necessarily distributive) lattice. A function f : Dn → Q is called submodular on
L if

f(a ∨ b) + f(a ∧ b) ≤ f(a) + f(b) for all a,b ∈ Dn.

This inequality can be equivalently expressed by saying that f has the binary mul-
timorphism μ with Prμ[∨] = Prμ[∧] = 1/2. If L is a chain, i.e., a total order, then
∨ and ∧ are the usual max and min operations. For D = {0, 1}, submodularity on a
chain is the same as ordinary submodularity.

Example 4 (bisubmodularity [1, 19, 40, 41]). Let D = {−1, 0, 1}, and fix the
order −1 > 0 < 1 on D. Define binary operations ∨0 and ∧0 on D as follows:

1 ∨0 −1 = −1 ∨0 1 = 0 and x ∨0 y = max(x, y) if {x, y} �= {−1, 1},
1 ∧0 −1 = −1 ∧0 1 = 0 and x ∧0 y = min(x, y) if {x, y} �= {−1, 1},

where max and min are with respect to the order −1 > 0 < 1. A function f : Dn → Q

is called bisubmodular if it has the binary multimorphism μ such that Prμ[∨0] =
Prμ[∧0] = 1/2, that is, if f(a∨0 b) + f(a∧0 b) ≤ f(a) + f(b) holds for all a,b ∈ Dn.

Other well-known classes of discrete functions, such as L#-convex functions and
tree-submodular functions [19, 31], can be described by suitable multimorphisms.

Fractional polymorphisms not only provide a useful way of describing classes of
functions, they also characterize the expressive power of constraint languages.

Theorem 2 (see [9]). For any Γ ⊆ FD and any f ∈ FD, we have f ∈ 〈Γ〉≡ if
and only if fPol(Γ) ⊆ fPol(f).

Together with Theorem 1, this implies that tractable valued constraint languages
can be characterized by fractional polymorphisms, since any two languages with the
same set of fractional polymorphisms must have the same complexity.

We now define a new type of (binary commutative) fractional polymorphisms on
{−1, 0, 1}, which can collectively be called skew bisubmodularity. Recall the operations
from Example 4, and, for a ∈ {−1, 1}, define the binary operation ∨a so that 1∨a−1 =
−1 ∨a 1 = a and x ∨a y = x ∨0 y = max(x, y) otherwise.

Definition 4. Let α ∈ (0, 1]. A function f : {−1, 0, 1}n → Q is α-bisubmodular
(towards 1) if it has the fractional polymorphism μ with Prμ[∧0] = 1/2, Prμ[∨0] = α/2,
and Prμ[∨1] = (1− α)/2.

In other words, a function f is α-bisubmodular (towards 1) if, for all a,b in
{−1, 0, 1}n, we have

(5) f(a ∧0 b) + α · f(a ∨0 b) + (1− α) · f(a ∨1 b) ≤ f(a) + f(b).

A unary function f is α-bisubmodular if and only if (1+α)·f(0) ≤ f(−1)+α·f(1).
Note that α-bisubmodular functions towards −1 can be defined by using ∨−1

instead of ∨1. In the rest of the paper, we assume that α-bisubmodular functions
are skewed towards 1 unless explicitly stated otherwise. Notice also that the 1-
bisubmodular functions (towards 1 or −1) are the ordinary bisubmodular functions
from Example 4.
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2.4. Algorithms. Some types of fractional polymorphisms are known to guar-

antee tractability of VCSP(Γ). An operation F ∈ O
(k)
D , k ≥ 1, is called idempotent

if

F (x, . . . , x) = x

for all x ∈ D. An idempotent operation F is called cyclic if

F (x1, x2, . . . , xk) = F (x2, . . . , xk, x1)

for all x1, . . . , xk ∈ D and symmetric if

F (x1, . . . , xk) = F (xπ(1), . . . , xπ(k))

for all x1, . . . , xk ∈ D and any permutation π on {1, . . . , k}. Such operations play
an important role in the algebraic approach to the standard CSP [2, 36]. Call a
fractional operation μ idempotent, cyclic, or symmetric if each operation in suppμ =
{F | Prμ[F ] > 0} has the corresponding property.

A characterization of valued constraint languages that can be solved by the basic
LP relaxation has been obtained in [46]. For an instance I of VCSP of the form (1),
let Vi be the subset of VI involved in xi. The basic LP relaxation is the linear program
on the variables

λi,ϕi ∈ [0, 1] for each i = 1, . . . , q and ϕi : Vi → D,

μx,a ∈ [0, 1] for each x ∈ VI and a ∈ D,

given by the minimization problem

min

q∑
i=1

∑
ϕi:Vi→D

wi · fi(ϕi(xi)) · λi,ϕi

such that

for all i = 1, . . . , q, for all x ∈ VI , for all a ∈ D :
∑

ϕi:Vi→D
ϕi(x)=a

λi,ϕi = μx,a,

for all x ∈ VI :
∑
a∈D

μx,a = 1.

Since Γ is fixed, this relaxation has polynomial size (in I). The integer programming
formulation—i.e., we require the variables λi,ϕi and μx,a to be in {0, 1}—is an integer
programming formulation of I:

μx,a = 1 means variable x is assigned value a,

λi,ϕi = 1 means xi is assigned ϕi(xi).

Theorem 3 (see [46]). The basic LP relaxation solves VCSP(Γ) in polynomial
time if and only if Γ has symmetric fractional polymorphisms of all arities.

Specifically, the basic LP relaxation finds the actual optimal value for each in-
stance I [46], and then an optimal solution of I can be found by going through
variables in some order and adding constraints μx,a = 1 so that the LP optimum does
not change. Adding constraints μx,a = 1 corresponds to fixing values for some vari-
ables for functions in Γ. The use of functions obtained in that way does not affect the
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tractabililty, as we will describe in detail in section 3.1. That is why this procedure
leads indeed to an optimal solution of I.

Theorem 4 (see [32]). If Γ has a fractional polymorphism μ of some arity k > 1
such that suppμ contains a symmetric operation, then Γ has symmetric fractional
polymorphisms of all arities.

In particular, it follows from Theorem 4 that the basic LP relaxation solves
VCSP(Γ) in polynomial time if and only if Γ has a binary idempotent commutative
(i.e., symmetric) fractional polymorphism.

One can also consider a basic SDP (semidefinite programming) relaxation for
VCSPs. The following theorem is implied by results in Chapters 6 and 7 of [42].

Theorem 5. If Γ has a cyclic fractional polymorphism of some arity k > 1, then
the basic SDP relaxation solves VCSP(Γ) in polynomial time.

3. Results.

3.1. Cores. In this section, we show that each constraint language has an equiv-
alent “core” language, so it is enough to consider only cores. Results of this type play
an important role in most CSP-related complexity classifications (e.g., [7, 27]).

We say that a constraint language Γ on D is a core if, for each a ∈ D, there
is an instance Ia of VCSP(Γ) such that a appears in every optimal solution to I.
The intuition is that if Γ is not a core, then there is an element a ∈ D such that any
instance has an optimal solution not using a. In this case, we simply remove a from D,
thus reducing the problem to a similar one on a smaller domain. Therefore, without
loss of generality we can consider only cores. Note that α-bisubmodular functions
can be defined for α = 0, but it is not hard to check that the set of 0-bisubmodular
functions is not a core. A different definition of a core was used in [48], but it was
proved there to be equivalent to ours.

The following proposition further reduces the class of cores that we need to con-
sider. For a constraint language Γ, let Γc denote the constraint language obtained
from Γ by adding all functions obtained from functions in Γ by fixing values for some
variables, e.g., g(x, y) = f(x, a, b, y) ∈ Γc if f ∈ Γ and a, b ∈ D.

Proposition 1. Let Γ be a core constraint language on an arbitrary finite set
D. Then

1. 〈Γc〉 contains a set of unary functions {ua | a ∈ D} with argmin(ua) = {a}.
2. VCSP(Γ) is tractable if and only if VCSP(Γc ∪ {ua | a ∈ D}) is tractable.
3. VCSP(Γ) is NP-hard if and only if VCSP(Γc ∪ {ua | a ∈ D}) is NP-hard.

It follows from this proposition that it is sufficient to consider only cores Γ which
are closed under fixing values for a subset of variables and which, in addition, con-
tain, for each a ∈ D, a unary function ua with argmin(ua) = {a}. Note that the last
condition already implies that Γ is a core. It can easily be checked by using the defi-
nition of a fractional polymorphism that fPol(Γc) consists of the idempotent members
of fPol(Γ). This algebraic condition proved to be extremely important in the alge-
braic approach to the CSP (see, e.g., [2, 7]). Note that the fractional polymorphisms
describing submodularity and α-bisubmodularity are idempotent and commutative.

Before proving Proposition 1, we need an auxiliary lemma. For a mapping ϕ :
{xa | a ∈ D} → D, let sϕ be the unary operation on D such that sϕ(a) = ϕ(xa).

Lemma 2. Assume that Γ is a core. There exists an instance Ip of VCSP(Γ)
with variables V = {xa | a ∈ D} such that, for each optimal solution ϕ ∈ Opt(Ip),
the following hold:

1. The operation sϕ is injective (i.e., a permutation).
2. For every instance I ′ of VCSP(Γ) and every ϕ′ ∈ Opt(I ′), the mapping

sϕ ◦ ϕ′ is also in Opt(I ′).
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Proof. Since Γ is a core, for every element a ∈ D, there exists an instance Ia of
VCSP(Γ) such that a is in the image of all optimal solutions to Ia. Assume without
loss of generality that the sets of variables VIa in these instances are pairwise disjoint.
Let fa be the objective function in Ia, and consider the instance I1 of VCSP(Γ)
whose objective function is

∑
a∈D fa. The image of every optimal solution to I1 must

be equal to D. Arbitrarily choose one optimal solution to I1 and, for each a ∈ D,
identify with xa all variables in VI1 that are mapped to a in the chosen solution. We
get a new instance I2 of VCSP(Γ) with variables V = {xa | a ∈ D}. Notice that the
image of each optimal solution ϕ to I2 is still all of D because any optimal solution
to I2 gives rise to an optimal solution to I1 with the same image. Hence, I2 satisfies
condition 1 of the lemma, and the mapping ϕid defined by ϕid(xa) = a is an optimal
solution to I2. Let f2 denote the objective function of I2.

Let ϕ ∈ Opt(I2) be such that sϕ falsifies condition 2 of the lemma. That is, there
is an instance I3 of VCSP(Γ) and ϕ3 ∈ Opt(I3) such that sϕ ◦ ϕ3 is not optimal for
I3. Clearly, ϕ �= ϕid. For each a ∈ D, identify with xa all variables x in VI3 with
ϕ3(x) = a. The obtained instance I4 has the following properties: VI4 ⊆ {xa | a ∈ D},
the mapping ϕ4 defined as the restriction of ϕid to VI4 , is an optimal solution to I4,
while sϕ ◦ ϕ4 is not. Let f4 denote the objective function of I4, and consider the
instance I5 with variables VI5 = {xa | a ∈ D} and objective function W · f2 + f4,
whereW is large enough to ensure that each optimal solution to I5 must be an optimal
solution to I2. Furthermore, notice that ϕid is an optimal solution of I5, while ϕ is
not. Thus, we will replace I2 with I5 and repeat this procedure until we remove from
the set of optimal solutions all mappings ϕ such that sϕ falsifies condition 2 of the
lemma. Since there are finitely many such mappings, we eventually obtain the desired
instance Ip.

Proof of Proposition 1. To prove item 1, take the instance Ip from Lemma 2. Let
fp be the objective function of Ip. For any a ∈ D, consider the unary function ua
obtained from fp by fixing each xb with b �= a to b. Since ϕid is an optimal solution
to Ip, a ∈ argmin(ua). On the other hand, by Lemma 2(1), ua(a) < ua(b) for each
b �= a. It is easy to see that ua ∈ 〈Γc〉.

By Theorem 1, the problems VCSP(Γc) and VCSP(Γc ∪ {ua | a ∈ D}) have the
same complexity. Therefore, to prove items 2 and 3, it suffices to show that problems
VCSP(Γ) and VCSP(Γc) have the same complexity. Fix an arbitrary finite subset
Δc ⊆ Γc. For each function fc in Δc, fix a function f in Γ such that fc is obtained
from f by fixing values for some variables, and let Δ be the union of the set of all
such functions f and the set of all functions from Γ that appear in the instance Ip.
Clearly, Δ is a finite subset of Γ. We claim that VCSP(Δc) reduces to VCSP(Δ) in
polynomial time. Take an arbitrary instance I of VCSP(Δc) and assume without loss
of generality that the sets of variables of I and Ip are disjoint. Replace each fc in I by
the corresponding f with constants, and then replace each constant a by the variable
xa. The new instance I1 is an instance of VCSP(Δ); denote its objective function
by f1. Consider the instance I2 of VCSP(Δ) with objective function f1 + W · fp,
where W is a large enough number to ensure that each optimal solution to I2, when
restricted to VIp = {xa | a ∈ D}, is an optimal solution to Ip. Since ϕid is an optimal
solution to Ip, the optimal solutions to I are precisely restrictions to VI of those
optimal solutions to I2 whose restriction on VIp is ϕid.

Each optimal solution ϕ to I gives rise to an optimal solution to I2 which coincides
with ϕ on VI and with ϕid on VIp . In the other direction, let ϕ2 be an optimal solution
to I2. Its restriction to VIp is an optimal solution ϕ′

2 to Ip. By Lemma 2(1), the
operation sϕ′

2
is a permutation on D. By applying Lemma 2 to I ′ = Ip, it follows
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that each mapping ψt such that sψt = stϕ′
2
, t ≥ 1, is an optimal solution to Ip. Choose

t so that stϕ′
2
= s−1

ϕ′
2
. Now apply Lemma 2(2) to ψt and ϕ2 ∈ Opt(I2). It follows that

ϕ′′
2 = s−1

ϕ′
2
◦ ϕ2 is an optimal solution to I2, and by construction, ϕ′′

2 (xa) = a for each

a ∈ D. Hence, the restriction of ϕ′′
2 to VI is an optimal solution to I.

3.2. A characterization of α-bisubmodularity. In this section, we give a
characterization of α-bisubmodularity which enables us to check for α-bisubmodularity
by just verifying it on certain easy-to-check subsets.

Let ≤ denote the partial order on {−1, 0, 1} such that 0 ≤ t for all t ∈ {−1, 0, 1}
and −1, 1 are incomparable. Let ≤ also denote the componentwise partial order on
{−1, 0, 1}n. For every c ∈ {−1, 1}n, let

c↓ = {x ∈ {−1, 0, 1}n | x ≤ c}.
This set is called the orthant of c.

Definition 5. For every c ∈ {−1, 1}n, a function f : {−1, 0, 1}n → Q is called
submodular in the orthant of c if the α-bisubmodularity inequality (5) holds for all
a,b ∈ c↓.

Note that, in any fixed orthant, only one of −1 and 1 can appear in each coordi-
nate, and so α-bisubmodularity becomes the ordinary submodularity inequality (with
0 < 1 and 0 < −1). Recall that a unary function f is α-bisubmodular if and only if
(1 + α) · f(0) ≤ f(−1) + α · f(1).

Proposition 2. Let α ∈ (0, 1]. A function f : {−1, 0, 1}n → Q is α-bisubmodular
if and only if the following two conditions hold:

1. f is submodular in every orthant.
2. Every unary function obtained from f by fixing values for all but one variable

is α-bisubmodular.
This proposition for the case α = 1 was the main result of [1]. For the proof we

will need the following lemma.
Lemma 3. Assume that f : {−1, 0, 1}n → Q is submodular in every orthant and

that every unary function obtained from f by fixing values for all but one variable is
α-bisubmodular. Then every unary function obtained from f by fixing values for and
identifying variables is α-bisubmodular.

Proof. Assume that f : {−1, 0, 1}n → Q satisfies the conditions of the lemma. Let
1 ≤ m ≤ n, and let g : {−1, 0, 1}m → Q be obtained from f by fixing values for some
of (possibly none of) the variables. Note that g is also submodular in each orthant.
Let h : {−1, 0, 1} → Q be obtained from g by identifying all remaining variables, i.e.,
h(x) = g(x, . . . , x). We have to show that (1 + α) · h(0) ≤ h(−1) + α · h(1).

We use induction on m. The case m = 1 holds by the assumptions of the lemma.
Assume the result holds for m− 1.

The induction hypothesis, applied to g(x, . . . , x, 1), gives

g(−1, . . . ,−1, 1) + αg(1, . . . , 1, 1) ≥ (1 + α)g(0, . . . , 0, 1).

Submodularity in the orthant of (−1, . . . ,−1, 1) gives

g(−1, . . . ,−1, 0) + g(0, . . . , 0, 1) ≥ g(0, . . . , 0, 0) + g(−1, . . . ,−1, 1),

and the assumption on unary functions, applied to g(−1, . . . ,−1, x), gives

g(−1, . . . ,−1,−1) + αg(−1, . . . ,−1, 1) ≥ (1 + α)g(−1, . . . ,−1, 0).

D
ow

nl
oa

de
d 

05
/3

0/
14

 to
 1

29
.2

34
.2

52
.6

5.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1074 ANNA HUBER, ANDREI KROKHIN, AND ROBERT POWELL

If we multiply the second inequality by (1+α) and add all three inequalities, then
we get the required h(−1) + α · h(1) ≥ (1 + α) · h(0).

For a, b ∈ {−1, 0, 1}, define binary operations ∨a,b on {−1, 0, 1} as follows:

x ∨a,b y = x ∨0 y if {x, y} �= {−1, 1}, −1 ∨a,b 1 = a and 1 ∨a,b −1 = b.

Proof of Proposition 2. The “only if” direction follows easily from the definitions,
so let us prove the other one. Let f satisfy conditions 1 and 2 from the proposition.
By Lemma 3 we can assume that every unary function obtained from f by fixing and
identifying variables is α-bisubmodular.

Let x,y ∈ {−1, 0, 1}n. For any x, y ∈ D, we have x ∧0 y ≤ x ≤ (x ∨0 y) ∨0 x and
(x ∨0 y) ∧0 y ≤ (x ∨0 y) ∨0 x, and thus x ∧0 y, x, (x ∨0 y) ∧0 y and (x ∨0 y) ∨0 x are
all in the orthant of (x ∨0 y) ∨0 x. This gives

f(x) + f((x ∨0 y) ∧0 y) ≥ f(x ∧0 y) + f((x ∨0 y) ∨0 x).(6)

For any x, y ∈ D, we have (x∨0 y)∧0 y ≤ y ≤ (x∨0 y)∨0 y and x∨0 y ≤ (x∨0 y)∨0 y,
and thus (x∨0y)∧0y, y, x∨0y, and (x∨0y)∨0y are all in the orthant of (x∨0y)∨0y.
This gives

f(y) + f(x ∨0 y) ≥ f((x ∨0 y) ∧0 y) + f((x ∨0 y) ∨0 y).(7)

For any x, y ∈ D, we have x ∨0 y ≤ x ∨0,1 y ≤ x ∨1 y, and x ∨1,0 y ≤ x ∨1 y, and thus
x ∨0 y, x ∨0,1 y, x ∨1,0 y, and x ∨1 y are all in the orthant of x ∨1 y. This gives

f(x ∨0,1 y) + f(x ∨1,0 y) ≥ f(x ∨0 y) + f(x ∨1 y).(8)

Applying α-bisubmodularity of the unary function obtained from f by identifying all
those variables with indices i such that xi = −1 and yi = 1 (i.e., the coordinates
where (x ∨0 y) ∨0 x, x ∨1 y, and x ∨0,1 y differ) and fixing all other variables gives

f((x ∨0 y) ∨0 x) + αf(x ∨1 y) ≥ (1 + α)f(x ∨0,1 y).(9)

The same argument with identifying all those variables with indices i ∈ [n] such that
xi = 1 and yi = −1 (i.e., the coordinates where (x ∨0 y) ∨0 y, x ∨1 y, and x ∨1,0 y
differ) and fixing all other variables gives

f((x ∨0 y) ∨0 y) + αf(x ∨1 y) ≥ (1 + α)f(x ∨1,0 y).(10)

We then have the following chain of inequalities:

f(x) + f(y) + f(x ∨0 y) + 2αf(x ∨1 y)

≥ f(x ∧0 y) + f((x ∨0 y) ∨0 x) + f((x ∨0 y) ∨0 y) + 2αf(x ∨1 y)

≥ f(x ∧0 y) + (1 + α) (f(x ∨0,1 y) + f(x ∨1,0 y))

≥ f(x ∧0 y) + (1 + α) (f(x ∨0 y) + f(x ∨1 y)) ,

where the first inequality follows from (6) and (7), the second from (9) and (10), and
the last from (8). By comparing the first and last expressions in the above chain, we
get the required inequality

f(x) + f(y) ≥ f(x ∧0 y) + αf(x ∨0 y) + (1− α)f(x ∨1 y).
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3.3. A dichotomy theorem. In this section we state and discuss our main
theorem, Theorem 8, which is the classification of the complexity of VCSPs with a
fixed constraint language in the case of a 3-element domain. The proof will be given
in the next section. Theorem 8 generalizes the following two theorems, which are the
classification for the Boolean case [12] and the complexity classification for the case
of a 3-element domain and 0-1-valued functions [27].

Theorem 6 (see [12]). Let Γ be a core constraint language on {0, 1}. Either Γ
consists of submodular functions and VCSP(Γ) is tractable, or Γc satisfies condition
(MC) and VCSP(Γ) is NP-hard.

Theorem 7 (see [27]). Let |D| = 3, and let Γ be a core constraint language on
D consisting of 0-1-valued functions. If the elements of D can be renamed −1, 0, 1
in such a way that each function in Γ is submodular on the chain −1 < 0 < 1,
then VCSP(Γ) is tractable. Otherwise, Γc satisfies condition (MC) and VCSP(Γ) is
NP-hard.

The following theorem is the main result of our paper.
Theorem 8. Let |D| = 3 and let Γ be a core constraint language on D. If the

elements of D can be renamed −1, 0, 1 in such a way that
(i) each function in Γ is submodular on the chain −1 < 0 < 1, or
(ii) there is 0 < α ≤ 1 such that each function in Γ is α-bisubmodular,

then VCSP(Γ) is tractable. Otherwise, Γc satisfies condition (MC) and VCSP(Γ) is
NP-hard.

The tractability part immediately follows from Theorems 3 and 4. (It can also be
derived directly from Theorem 4.1 of [46].) For the hardness part, by Lemma 1 and
Proposition 1, it suffices to show that Γc satisfies (MC), which we do in section 3.4.

We now show that the tractable cases from Theorem 8 are pairwise distinct,
except that submodularity on the chain a < b < c is the same as submodularity on
c < b < a, where D = {a, b, c}. It is easy to check that the function f such that
f(a, a) = f(c, c) = 0 and f(x, y) = 1 otherwise is submodular on a < b < c and
c < b < a, but not on any other chain. The constraint language consisting of f and
all 0-1-valued unary functions is submodular on a < b < c and c < b < a, but not on
any other chain, and it cannot be α-bisubmodular under any renaming into −1, 0, 1.
We will often represent a unary function f from {−1, 0, 1} to Q by its vector of values
[f(−1), f(0), f(1)]. It remains to prove the following statement.

Proposition 3. For every rational α ∈ (0, 1], there is a core constraint language
Γα on D = {−1, 0, 1} satisfying all of the following conditions:

1. Γα is α-bisubmodular, but not α′-bisubmodular for any α′ �= α.
2. For any permutation of the names of −1, 0, 1 and any α′ ∈ (0, 1], Γα is not

α′-bisubmodular under that renaming, with the only exception being when α = α′ = 1
and the renaming swaps 1 and −1.

3. Γα is not submodular on any chain on D.
Proof. Let α = p/q, where 0 < p ≤ q are positive integers. Consider the following

functions:
(i) unary e = [1, 0, 1], uα = [p+ q, q, 0], and vα = [0, p, p+ q].
(ii) binary fα such that fα(1,−1) = fα(−1, 1) = 1, fα(0,−1) = fα(−1, 0) =

1 + q, fα(−1,−1) = 1 + p+ q, and f(x, y) = 0 on the remaining pairs (x, y).
Let Γα = {e, uα, vα, fα}. It can be directly checked that all functions in Γα are

α-bisubmodular (Proposition 2 can also be used for checking fα) and that the unary
functions in Γα make it a core.

Notice that fα is not submodular when restricted to {−1, 1}. Therefore Γα is
not submodular on any chain on {−1, 0, 1}. It is easy to check that uα is not α′-
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bisubmodular for any α′ > α, and vα is not α′-bisubmodular for any α′ < α. It is also
easy to check that the unary operations guarantee that any permutation of the names
of elements −1, 0, 1 cannot make Γα α

′-bisubmodular for any α′, except swapping −1
and 1 when α = α′ = 1.

The problem of deciding whether a given finite constraint language Γ on a fixed
set D has a binary idempotent commutative fractional polymorphism can be solved
by LP; see [32]. However, our characterization of α-bisubmodular functions leads to
a simple algorithm for recognizing tractable cases.

Proposition 4. Let |D| = 3. There is a cubic-time algorithm which, given a
finite core constraint language Γ on D, decides whether VCSP(Γ) is tractable.

Proof. Note that if Γ contains functions of arities n1, . . . , nk and M is the value
taken by functions in Γ that has the largest representation (as a rational number p/q
with gcd(p, q) = 1), then the size of Γ is (3n1 + · · ·+3nk) · logM . For every renaming
of the elements of D into −1, 0, 1 (there are six of them), we do the following. First,
we check whether each function in Γ is submodular on the chain −1 < 0 < 1. This
can be done in quadratic time by simply verifying the submodularity inequality for all
pairs of tuples. If the above check succeeds, then we stop and conclude that VCSP(Γ)
is tractable. Otherwise, we use Proposition 2 to check whether there is α ∈ (0, 1] such
that Γ is α-bisubmodular. First, we check whether each function in Γ is submodular
in all orthants. The number of different orthants is linear in the size of Γ (since a
function of arity ni has 2ni orthants), and the direct checking for each orthant is
quadratic, as above. If some function fails the check, then we conclude that VCSP(Γ)

is not tractable and stop. Otherwise, we generate the set Γ
(1)
c of unary functions in

Γc. It is clear that it contains at most a quadratic number of functions. Each function

f ∈ Γ
(1)
c gives the inequality (1+α) ·f(0) ≤ f(−1)+α ·f(1) that restricts the possible

values for α. One can go through this list of inequalities (just once), updating the
possible values for α. At the end, we know whether the system of inequalities has a
solution. If it does, then Γ is α-bisubmodular and VCSP(Γ) is tractable; if it does
not, for any renaming, then VCSP(Γ) is not tractable.

3.4. Proof of Theorem 8. In this section, we will prove our main result, The-
orem 8. Assume that |D| = 3 and that we have a constraint language Γ which is a
core. By Proposition 1 and Theorem 1, we can assume that Γ = 〈Γc〉≡. In particular,
for each a ∈ D, Γ contains a unary function ua with argmin(ua) = {a}.

In the next two proofs, when we add unary functions, we always assume that they
depend on the same variable.

Lemma 4. For at least two distinct 2-element subsets X ⊆ D, Γ contains func-
tions uX with argmin(uX) = X.

Proof. Let D = {a, b, c}. For convenience, we will write a unary function f as a
vector [f(a), f(b), f(c)]. By translating and scaling, we can assume that ua = [0, 1, β],
ub = [γ, 0, 1], and uc = [1, δ, 0], where β, γ, δ > 0. Consider the following:

[1, δ, 0] + (1− δ)[0, 1, β] = [1, 1, (1− δ)β],

β − 1

δ
[1, δ, 0] + [0, 1, β] =

[
β − 1

δ
, β, β

]
.

If (1− δ)β > 1, then 1− δ > 0 and β−1
δ > β, and the functions above are u{a,b} and

u{b,c}, respectively.
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Now consider

[1, δ, 0] +
δ − 1

γ
[γ, 0, 1] =

[
δ, δ,

δ − 1

γ

]
,

(1− γ)[1, δ, 0] + [γ, 0, 1] = [1, (1− γ)δ, 1].

If (1 − γ)δ > 1, then, similarly, the coefficients are positive and the above functions
are u{a,b} and u{a,c}.

Finally, consider

[0, 1, β] + (1− β)[γ, 0, 1] = [(1 − β)γ, 1, 1],

γ − 1

β
[0, 1, β] + [γ, 0, 1] =

[
γ,
γ − 1

β
, γ

]
.

If (1− β)γ > 1, then, again, the coefficients are positive and the above functions are
u{b,c} and u{a,c}.

Thus we can assume that (1 − δ)β ≤ 1, (1 − γ)δ ≤ 1, and (1 − β)γ ≤ 1. It is
impossible for more than one of these inequalities to be an equality when δ, β, γ > 0.
For example, if the first two are equalities, then 1− δ > 0, so δ < 1, so 1− γ > 1, and
γ < 0. Hence, at least two of these inequalities are strict, and then we can generate
two required functions as follows:

β[1, δ, 0] + [0, 1, β] = [β, 1 + δβ, β],

δ[γ, 0, 1] + [1, δ, 0] = [1 + δγ, δ, δ],

γ[0, 1, β] + [γ, 0, 1] = [γ, γ, γβ + 1].

Let us rename the elements of D into −1, 0, 1 so that the two 2-element subsets
guaranteed by Lemma 4 are {−1, 0} and {0, 1}. From now on we assume that D =
{−1, 0, 1} and that Γ contains uX for each nonempty subset X ⊆ D, except possibly
u{−1,1}. By translating and scaling, we can assume that u{−1,0} = [0, 0, 1] and u{0,1} =
[1, 0, 0].

Lemma 5. One of the following holds:
1. Γ contains a function u{−1,1} such that argmin(u{−1,1}) = {−1, 1}.
2. For some α ∈ (0, 1], every unary function in Γ is α-bisubmodular towards 1.
3. For some α ∈ (0, 1], every unary function in Γ is α-bisubmodular towards −1.

Proof. Recall that we assume that Γ = 〈Γc〉≡. If Γ contains a unary function
h with h(−1) ≤ h(0) ≥ h(1), where at least one inequality is strict, then one gets
u{−1,1} as follows. If only one inequality is strict, then, by adding h and one of u−1,
u1 with a suitable coefficient, one gets a function where both inequalities are strict.
If both inequalities are strict, then, by adding h and one of u{−1,0}, u{0,1} (with a
suitable coefficient), one gets a function u′ with argmin(u′) = {−1, 1}, which can be
taken as u{−1,1}.

So, assuming that condition 1 from the lemma does not hold, we can now make
the following assumption:

(*)
No unary function h ∈ Γ satisfies h(−1) ≤ h(0) ≥ h(1) unless
h(−1) = h(0) = h(1).

We need to show that there exists α ∈ (0, 1] such that the unary functions in Γ
are α-bisubmodular, all towards 1 or all towards −1. Let Λ be the set of all unary
functions from D to Q obtained by translating and scaling each function in Γ so
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that each function g ∈ Λ satisfies g(0) = 0 and g(−1) ∈ {−1, 0, 1}. Notice that
the property of being α-bisubmodular is not affected when scaling and translating.
Therefore, it suffices to show that there is an α ∈ (0, 1] such that all functions g ∈ Λ
are α-bisubmodular, all towards 1 or all towards −1. That is, we need to show that
there is an α ∈ (0, 1] such that all g ∈ Λ satisfy 0 ≤ α · g(1) + g(−1) or all g ∈ Λ
satisfy 0 ≤ α · g(−1) + g(1).

Assume that each function uX is scaled to be in Λ. In particular, u1(−1) ∈ {0, 1}
and u1(1) < 0. Also, we have u−1(−1) = −1 and u−1(1) > 0.

If all of the unary functions in Λ satisfy f(−1) + f(1) ≥ 0, then all of them are
1-bisubmodular.

Let f be a unary function in Λ with f(−1) + f(1) < 0. We do a case analysis on
the three possible values for f(−1).

First case: f(−1) = 0. Then f(1) < 0, which contradicts assumption (*).
Second case: f(−1) = 1. Let Z1 be the set of all unary functions g in Λ with

g(−1) + g(1) < 0 and g(−1) = 1. Then g(1) < −1 for all g ∈ Z1. Note that f ∈ Z1,
so Z1 is nonempty.

Let α = infg∈Z1 − 1
g(1) . Note that 0 ≤ α < 1. If α = 0, then there exists a g′ ∈ Z1

with g′(1) < −u−1(1), but then the function g′+u−1 ∈ Γ contradicts assumption (*).
If α > 0, all unary functions g in Λ with g(−1) = 1 are α-bisubmodular towards 1.
So either all unary functions in Λ are α-bisubmodular towards 1 and we are done, or
there is a unary function h in Λ with h(−1) ∈ {−1, 0} and α · h(1) + h(−1) < 0. If
h(−1) = 0, then h(1) < 0, which contradicts assumption (*). Let h(−1) = −1. Then
we have h(1) > 0 by assumption (*), and so α · h(1) + h(−1) < 0 yields α < 1

h(1) . By

the definition of α, there is a g′ ∈ Z1 with − 1
g′(1) <

1
h(1) . The function g′ + h ∈ Γ

contradicts assumption (*).
Third case: f(−1) = −1. Let Z−1 be the set of all unary functions g in Λ with

g(−1) = −1. By assumption (*), we have g(1) > 0 for all g ∈ Z−1.
Let α := infg∈Z−1 g(1). Since f ∈ Z−1 and f(1) < 1, we have 0 ≤ α < 1. If

α = 0, that means that there is a g ∈ Z−1 with g(1) < −u1(1), but then the function
g + u1 ∈ Γ contradicts assumption (*). So we can assume α > 0. All elements of
Z−1 are α-bisubmodular towards −1. Similarly to the second case above, one can
show that all functions in Λ must be α-bisubmodular towards −1, or one gets a
contradiction with assumption (*) again.

Let us consider first the case when u{−1,1} ∈ Γ. Again, we can assume that

u{−1,1} = [0, 1, 0]. Clearly, any function from F
(1)
D can be obtained as a positive linear

combination of u{−1,0}, u{0,1}, and u{−1,1}. This means that Γ contains all unary
functions. Such constraint languages are called conservative, and their complexity is
classified in [33]. Theorem 3.6 in [33] states (referring to [32] for a formal proof) that
either Γ is submodular on a chain or Γ is NP-hard. The hardness is shown, again, by
satisfying (MC). Thus, in this case, the assertion of Theorem 8 holds.

Let us assume for the rest of this section that u{−1,1} �∈ Γ. By Lemma 5, we have
that, for some α ∈ (0, 1], the unary functions in Γ are α-bisubmodular, all towards
1 or all towards −1. Let us assume that they are all α-bisubmodular towards 1;
the other case is identical. If every function in Γ is α-bisubmodular, then we are
done. Otherwise, by Proposition 2, Γ contains a function which is not submodular
in some orthant. The following lemma is well known; see, e.g., [49]. The notion of
submodularity from Example 3 can be naturally extended to the direct product of
lattices by defining the operations componentwise.

Lemma 6. Let D1, . . . , Dn be finite chains. If a function f : D1 × · · · ×Dn → Q
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is not submodular, then some binary function obtained from f by fixing all but two
coordinates is not submodular.

Since Γ = Γc, by Lemma 6 we can assume that Γ contains a binary function
which is not submodular in some orthant. If Γ contains a binary function which is
not submodular in the orthant of (1, 1) or (−1,−1), then, by Lemma 7.8 of [12], Γ
satisfies (MC), with u{0,1} or u{−1,0}, respectively, and then we are done. So let us
assume that Γ contains a binary function f that is not submodular in the orthant of
(−1, 1).

If every function in Γ is submodular on the chain −1 < 0 < 1, then we are done.
Otherwise, by Lemma 6, Γ contains a binary function g, which is not submodular on
this chain. We can assume that the function g is submodular both in the orthant
of (1, 1) and in the orthant of (−1,−1); we are done otherwise. If g satisfies both
g(1, 0)+ g(0,−1) ≤ g(0, 0)+ g(1,−1) and g(0, 1)+ g(−1, 0) ≤ g(0, 0)+ g(−1, 1), then
it can easily be checked that g is submodular on −1 < 0 < 1. Since this is not the
case, at least one of the inequalities fails. We can assume, permuting the variables of
g if necessary, that g(1, 0) + g(0,−1) > g(0, 0) + g(1,−1).

The following lemma finishes the proof of Theorem 8.
Lemma 7. If Γ contains binary functions f and g as above, then Γ contains a

binary function which is not submodular in the orthant of (−1,−1).
Proof. By translating, we can assume that f(0, 0) = 0 = g(0, 0), so we have

f(0, 1) + f(−1, 0) < f(−1, 1) and g(1,−1) < g(1, 0) + g(0,−1). We define the binary
function f ′ as follows:

f ′(x, y) =

⎧⎨
⎩

f(x, y) + (f(−1, 0)− f(0, 1))u{−1,0}(y) if f(0, 1) < f(−1, 0),
f(x, y) + (f(0, 1)− f(−1, 0))u{0,1}(x) if f(0, 1) > f(−1, 0),
f(x, y) if f(0, 1) = f(−1, 0).

We have f ′ ∈ Γ, f ′(0, 1) = f ′(−1, 0), and f ′(0, 1) + f ′(−1, 0) < f ′(−1, 1). Now we
can obtain, by scaling f ′, a binary function f ′′ in Γ with f ′′(0, 0) = 0, f ′′(0, 1) =
f ′′(−1, 0) = 1, and f ′′(−1, 1) > 2. We can assume that f = f ′′ from the beginning.

We define the binary function g′ through

g′(x, y) =

⎧⎨
⎩

g(x, y) + (g(0,−1)− g(1, 0))u{−1,0}(x) if g(1, 0) < g(0,−1),
g(x, y) + (g(1, 0)− g(0,−1))u{0,1}(y) if g(1, 0) > g(0,−1),
g(x, y) if g(1, 0) = g(0,−1).

We have g′ ∈ Γ, g′(1, 0) = g′(0,−1), and also g′(1,−1) < g′(1, 0) + g′(0,−1). If
g′(1,−1) ≤ 0, let C > −g′(1,−1), and define the binary function g′′ through

g′′(x, y) = g′(x, y) + C
(
u{−1,0}(x) + u{0,1}(y)

)
for all x, y ∈ D; otherwise we keep g′′ = g′. We have g′′ ∈ Γ, g′′(1, 0) = g′′(0,−1),
and 0 < g′′(1,−1) < g′′(1, 0) + g′′(0,−1). Now we can obtain, by scaling, a binary
function g′′′ in Γ with g′′′(0, 0) = 0, g′′′(0,−1) = g′′′(1, 0) = 1, and 0 < g′′′(1,−1) < 2.
We can assume that g = g′′′ from the beginning.

Note that f(−1, 1)− 2 > 0 and g(1,−1) > 0. By scaling the unary function u1,
we can obtain a unary function u′1 in Γ such that

g(1,−1) < u′1(0) < min{2, f(−1, 1) + g(1,−1)− 2} and u′1(1) = 0.

By adding u{0,1} with a large enough coefficient, we can obtain a unary function v in
Γ, which still fulfills

g(1,−1) < v(0) < min{2, f(−1, 1) + g(1,−1)− 2} and v(1) = 0,
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but where the value v(−1) is as large as we want, and for our purposes

v(−1) ≥ max{2− f(0,−1)− g(−1, 0), 3− f(−1,−1)− g(−1, 0),

3− f(0,−1)− g(−1,−1), 4− f(−1,−1)− g(−1,−1)}

is enough. Now, Γ also contains the binary function s defined by

s(x, z) := min
y∈D

{f(x, y) + v(y) + g(y, z)}

for all x, z ∈ D. We have

s(−1, 0) = min {f(−1, 0) + v(0) + g(0, 0), f(−1, 1) + v(1) + g(1, 0)}
= min {1 + v(0), f(−1, 1) + 1} = 1 + v(0),

s(0,−1) = min {f(0, 0) + v(0) + g(0,−1), f(0, 1) + v(1) + g(1,−1)}
= min {v(0) + 1, 1 + g(1,−1)} = 1 + g(1,−1),

s(0, 0) = min {f(0, 0) + v(0) + g(0, 0), f(0, 1) + v(1) + g(1, 0)}
= min {v(0), 2} = v(0), and

s(−1,−1) = min {f(−1, 0) + v(0) + g(0,−1), f(−1, 1) + v(1) + g(1,−1)}
= min {2 + v(0), f(−1, 1) + g(1,−1)} = 2 + v(0).

Since g(1,−1) < v(0), it is easy to see that s is not submodular in the orthant of
(−1,−1).

3.5. Multimorphisms versus fractional polymorphisms. While it has been
known that fractional polymorphisms characterize expressive power [9], it was open
whether tractability of valued constraint languages could be characterized by multi-
morphisms. We show that this is not the case because the set of 1/2-bisubmodular
functions cannot be defined by multimorphisms. Clearly, not every unary function is
1/2-bisubmodular, so it suffices to prove the following.

Proposition 5. There is a finite set Γ of 1/2-bisubmodular functions such that
each multimorphism of Γ is a multimorphism of every unary function on {−1, 0, 1}.

Let μ be a multimorphism of a function f . Then there are operations F1, . . . , Fk ∈
O

(k)
D such that

(11)

k∑
i=1

f(Fi(x1, . . . ,xk)) ≤
k∑
i=1

f(xi)

for all x1, . . . ,xk ∈ Dn. We define the function F : Dk → Dk by F = (F1, . . . , Fk)
and identify μ with F. For the proof of Proposition 5 we will use the following 1/2-
bisubmodular functions:

(i) unary functions u{−1,0} = [0, 0, 1] and u{0,1} = [1, 0, 0],
(ii) unary functions v1 = [−1, 0, 2] and v−1 = [1, 0,−2], and
(iii) binary commutative function b such that b(−1,−1) = 4, b(−1, 0) = 2,

b(−1, 1) = −1, b(0, 0) = 0, b(0, 1) = −2, and b(1, 1) = −4.
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Let Γ = {u{−1,0}, u{0,1}, v1, v−1, b}. It is easy to check (by using Definition 4) that
these functions are indeed 1/2-bisubmodular.

If F preserves each tuple in Dk as a multiset, we say that F preserves multisets.
It is easy to see that in this case inequality (11) holds with equality for every unary
function. So the following lemma finishes the proof of Proposition 5.

Lemma 8. If F is a multimorphism of Γ, then F preserves multisets.
Proof. We first show, using the unary functions from Γ, that if a multiset is not

preserved by F, then F modifies it in the following way: The number of 1’s is reduced
by some number x ∈ N, and the number of −1’s is reduced by 2x.

Let d = (d1, . . . , dk) ∈ Dk, let 
 be the number of 1’s in d, and let m be the
number of −1’s. Let 
′ be the number of 1’s in F(d), and let m′ be the number of
−1’s. Applying (11) with u{−1,0} and u{0,1} gives 
′ ≤ 
 and m′ ≤ m, and applying
(11) with v1 and v−1 gives

2
′ −m′ = 2
−m.

Now we will show, using the binary function b ∈ Γ, that any multiset has to be
preserved by F. Without loss of generality, let d1 = · · · = d� = 1 and F1(d) = · · · =
F�′(d) = 1. We have 
′ = 
− x and m′ = m− 2x for some nonnegative integer x.

For every p ∈ [
], let x(p) ∈ (D2)k be defined as follows: x
(p)
p := (dp,−1) = (1,−1)

and x
(p)
i := (di, 1) for every i ∈ [k] \ {p}.

For every p ∈ [
], let e(p) ∈ Dk be defined as follows: e
(p)
p := −1 and e

(p)
i := 1 for

every i ∈ [k] \ {p}. We have

k∑
i=1

b(x
(p)
i ) = −1− 4(
− 1)−m− 2(k − 
−m)

= −2k − 2
+m+ 3.

The multiset (−1, 1, . . . , 1) has to be preserved by F, so for every p ∈ [
] there is
exactly one j(p) ∈ {1, . . . , k} with Fj(p) (e

(p)) = −1.
If Fj(p)(d) = −1, we have

k∑
i=1

b(Fi(x
(p)
1 , . . . ,x

(p)
k )) = −4
′ + 4− (m′ − 1)− 2(k − 
′ −m′)

= −2k − 2
′ +m′ + 5

= −2k − 2(
− x) + (m− 2x) + 5

= −2k − 2
+m+ 5,

which is a contradiction to (11).
If Fj(p)(d) = 0, we have

k∑
i=1

b(Fi(x
(p)
1 , . . . ,x

(p)
k )) = −4
′ −m′ + 2− 2(k − 
′ −m′ − 1)

= −2k − 2
′ +m′ + 4

= −2k − 2(
− x) + (m− 2x) + 4

= −2k − 2
+m+ 4,

which also is a contradiction to (11). So for every p ∈ [
] we have Fj(p)(d) = 1. This

yields {j(p) | p ∈ [
]} = [
′], and, if 
′ < 
, there must be two different indices p, q ∈ [
]
such that j(p) = j(q).
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Let x ∈ (D2)k be defined as follows: xp := (1,−1), xq := (−1, 1), and xi := (1, 1)
for every i ∈ [k] \ {p, q}. Then we have

k∑
i=1

b(xi) = −1− 1− 4(k − 2) = −4k + 6 and

k∑
i=1

b(Fi(x1, . . . ,xk)) = 4− 4(k − 1) = −4k + 8,

contradicting to (11). So we cannot have 
′ < 
, and thus we have 
′ = 
 and
m′ = m.

4. Conclusion and discussion. We have classified the complexity of VCSPs
(with finite costs) on a 3-element domain. The tractable cases are described by simple
fractional polymorphisms. After the submission of this paper, Thapper and Živný
proved in [48] that, for a core constraint language Γ, VCSP(Γ) is NP-hard unless Γ
has a binary idempotent commutative fractional polymorphism (in which case the
problem is tractable by [32, 46]). It would be interesting to refine this result by
being more specific about which fractional polymorphisms one needs to take there.
As a possible first step, one might try to derive our classification from the general
classification of Thapper and Živný.

Many efficient algorithms exist for minimizing submodular functions (see, e.g.,
[19, 26, 39, 44]). Lovász asked in [37] whether there is a generalization of submodular-
ity that preserves the nice properties such as efficient minimization, and this question
led to the discovery of bisubmodularity in [41] (where it is called directed submod-
ularity) and subsequent efficient minimization algorithms for it (see, e.g., [40, 41]).
The following interesting problem was mentioned in [28, 46].

Problem 1. Which fractional operations μ guarantee an efficient minimization
algorithm, in the value-oracle model, for the class of all functions f with μ ∈ fPol(f)?

Some initial results in this direction can be found in [24, 34, 35]. At the time of
submission it was open whether α-bisubmodular functions can be efficiently minimized
in the value-oracle model, but this question was recently answered in the positive in
[20, 25]. One possible first step to approaching Problem 1 is to consider specific
fractional polymorphisms, e.g., those from Example 3 or k-submodularity from [24].
Once some efficient algorithms are discovered (if they exist), one could naturally try
to design strongly polynomial or (fully) combinatorial algorithms.
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REFERENCES

[1] K. Ando, S. Fujishige, and T. Naitoh, A characterization of bisubmodular functions, Discrete
Math., 148 (1996), pp. 299–303.

[2] L. Barto and M. Kozik, Absorbing subalgebras, cyclic terms and the constraint satisfaction
problem, Log. Methods Comput. Sci., 8 (2012), 1:07.

[3] L. Barto and M. Kozik, Robust satisfiability of constraint satisfaction problems, in Proceed-
ings of the 44th ACM Symposium on Theory of Computing (STOC’12), ACM, New York,
2012, pp. 931–940.

D
ow

nl
oa

de
d 

05
/3

0/
14

 to
 1

29
.2

34
.2

52
.6

5.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SKEW BISUBMODULARITY AND VALUED CSPs 1083

[4] E. Boros and P. L. Hammer, Pseudo-Boolean optimization, Discrete Appl. Math., 123 (2002),
pp. 155–225.

[5] A. Bulatov, A dichotomy theorem for constraint satisfaction problems on a 3-element set, J.
ACM, 53 (2006), pp. 66–120.

[6] A. Bulatov, Complexity of conservative constraint satisfaction problems, ACM Trans. Com-
put. Logic, 12 (2011), 24.

[7] A. Bulatov, P. Jeavons, and A. Krokhin, Classifying the complexity of constraints using
finite algebras, SIAM J. Comput., 34 (2005), pp. 720–742.

[8] D. A. Cohen, M. C. Cooper, P. Creed, P. G. Jeavons, and S. Živný, An algebraic theory
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[46] J. Thapper and S. Živný, The power of linear programming for valued CSPs, in Proceedings
of the 53rd IEEE Symposium on Foundations of Computer Science (FOCS’12), IEEE,
Piscataway, NJ, 2012, pp. 669–678.
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