
ar
X

iv
:1

21
0.

02
31

v2
  [

m
at

h.
A

P]
  3

 A
pr

 2
01

4

PLATEAU ANGLE CONDITIONS FOR THE VECTOR-VALUED

ALLEN–CAHN EQUATION

NICHOLAS D. ALIKAKOS, PANAGIOTIS ANTONOPOULOS,
AND APOSTOLOS DAMIALIS

Abstract. Under proper hypotheses, we rigorously derive the Plateau angle
conditions at triple junctions of diffused interfaces in three dimensions, starting
from the vector-valued Allen–Cahn equation with a triple-well potential. Our
derivation is based on an application of the divergence theorem using the
divergence-free form of the equation via an associated stress tensor.

1. Introduction

We consider the problem of determining contact angle conditions at triple junc-
tions of diffused interfaces in three-dimensional space via the elliptic vector-valued
Allen–Cahn equation

(1) ∆u−∇uW (u) = 0

for maps u : R3 → R
3 and a triple-well potential W : R3 → R. Equation (1) is a

vector analogue of the well-known scalar elliptic equation

(2) ∆u−W ′(u) = 0

for u : R3 → R and a bistable potential W : R → R with two minima, which was
introduced by Allen and Cahn [8] in the context of antiphase boundary motion.
Here, u is an order parameter that denotes the coexisting phases in the phenomenon
of phase separation. We note that a vector-valued order parameter is necessary
for the coexistence of three or more phases (see Bronsard and Reitich [14] and
also Rubinstein, Sternberg, and Keller [25]). Both equations are rescaled elliptic
versions of corresponding evolution problems that involve a small parameter ε,
which denotes the thickness of interfaces, and they are Euler–Lagrange equations
of energy functionals, whose minimizers are related to minimal surfaces (see Modica
and Mortola [24], Modica [23], and Baldo [11]).

For the problem of contact angles in the case of soap films in three dimensions,
the classical Plateau angle conditions state that

(i) three soap films meet smoothly at equal angles of 120 degrees along a
curve,

(ii) four such curves meet smoothly at equal angles of about 109 degrees at a
point.
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The above laws hold in the isotropic case of soap films, which corresponds to systems
of minimal surfaces (cf. Dierkes, Hildebrandt, and Sauvigny [16, §4.15.7]). The
angle of 120 degrees in the first condition is the angle whose cosine is − 1

2 , which
is exactly the angle in isotropic triple junctions in two dimensions, while the angle
of about 109 degrees in the second condition is the angle whose cosine is − 1

3 (the
so-called Maraldi angle). In the anisotropic case of mixtures of immiscible fluids,
the angles above are not always equal and depend on the surface tension coefficients
of each fluid, as in systems of constant mean curvature surfaces. In this case, the
angles at the four triods determine the angles at the point singularity.

In [14], for triple-well potentials, the authors linked at the level of formal asymp-
totics the diffused-interface problem with the associated sharp-interface problem
and they established that to leading order the inner solution (that describes the
solution near the triple junction) satisfies (1). That work is restricted on the plane.
The rigorous study of (1) for symmetric triple wells under the symmetries of the
equilateral triangle was settled by Bronsard, Gui, and Schatzman [13] in two di-
mensions, and for symmetric quadruple-well potentials under the symmetries of the
tetrahedron in three dimensions by Gui and Schatzman [20]. Finally, Alikakos and
Fusco [6, 2, 17] settled the general case of symmetric potentials under a general
reflection group in arbitrary dimensions.

Concerning the minimal surface problem, Taylor [28] showed that in three di-
mensions the only singular minimizing cones are a triod of planes meeting along
a line at 120 degree angles, and a complex of six planes meeting with tetrahedral
symmetry at a point, as in Plateau’s laws. To our knowledge, results on minimal
cones are not available in higher dimensions. Concerning the sharp-interface prob-
lem, the corresponding global geometric evolution problem in two dimensions for
a single triple junction in a convex domain has been settled by Mantegazza, No-
vaga, and Tortorelli [22] and Magni, Mantegazza, and Novaga [21]. Ilmanen, with
co-authors, has announced very general results on the plane. The local existence
for triple junctions on the plane was settled in Bronsard and Reitich [14].

In this note we restrict ourselves to triple-well potentials defined over R3, with
three global nondegenerate minima, and we assume the existence of an entire clas-
sical solution connecting the minima at infinity (see [6, 2, 17]). Such a solution
partitions R

3 in three regions that are separated by three interfaces which inter-
sect along a line that we call the spine of the triod. In the symmetric case, this
corresponds to one of the two singular minimizing cones for the associated Plateau
problem.

Gui [19] considered the problem of determining the contact angles at a planar
triple junction and under similar hypotheses to ours rigorously derived the so-called
Young’s law [29]

(3)
sinφ1
σ23

=
sinφ2
σ31

=
sinφ3
σ12

for the angles φ1, φ2, φ3 between interfaces, where the σ’s are surface tension
coefficients between neighboring phases. (See also the formal derivation in [14].)
We note that in three dimensions, the angles at a triod also obey Young’s law,
while the angles at a quadruple junction are a geometric consequence of the angle
conditions at the four triods that form it (see Bronsard, Garcke, and Stoth [12] for
the calculation), that is, given a quadruple-junction configuration, Plateau’s second
law follows from the first, which is the isotropic version of Young’s law.
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Our goal in the following is to extend Gui’s work to three dimensions and rigor-
ously derive Young’s law for triods of interfaces as a property of solutions satisfying
the next two hypotheses. (These will be justified and made precise in section 2.)
We note that the hypotheses below are satisfied by construction in Bronsard, Gui,
and Schatzman [13] and Gui and Schatzman [20], and are theorems in [6, 2, 17, 7].

Hypothesis 1. Along rays emanating from any point of the spine, in the interior

of regions, solutions converge exponentially to the corresponding minima of the

potential.

Hypothesis 2. Along lines parallel to interfaces and not parallel to the spine, in

the interior of regions, solutions converge to connections, that is, to maps with ar-

gument the distance to the interface and with the property of connecting the minima

of the potential at plus and minus infinity.

Our derivation makes use of the fact that (1) is a divergence-free condition for
a certain stress tensor, which appeared in Alikakos [1] in this context. For the
planar analogue, the derivation of Bronsard and Reitich [14] is based on formal
asymptotics, while the derivation of Gui [19] is closer to our spirit in terms of
assumptions and rigor but uses Pohozaev-like identities instead of the stress tensor.
(See [4] for the connection between the two.) For the three-dimensional problem,
related results appear in the theses [9] and [15].

It should be noted that the problem in three dimensions is substantially more
involved compared to the planar case, due to the fact that the singularity at a
planar triple junction is a point that can be isolated, while the spine of a triod
in three dimensions cannot, since it extends to infinity, and similar difficulties
also arise in higher dimensions. We remark that our method applies easily to the
two-dimensional case and that in higher dimensions the application is significantly
harder and will appear elsewhere [10].

The rest of the present note consists of two sections. In section 2 we set up the
problem, stating all necessary assumptions, and formulate it in divergence-free form
via the stress tensor. In section 3 we apply the divergence theorem for the stress
tensor on a ball, which is then blown up after a proper slicing. This slicing involves
a surgery around the singularity which appears at the intersection of the surface of
integration with the spine and a breaking up of the remaining part in a way that
utilizes the hypotheses on the solutions at infinity, that is, Hypothesis 1 far from
interfaces and Hypothesis 2 at fixed distances from them. This yields Young’s law
in the form of a balance of forces relation for the conormals of the three interfaces,
which is equivalent to (3).

2. Statement of the problem and preliminaries

We start with (1)

∆u−∇uW (u) = 0

for u : R3 → R
3 and W : R3 → R, where ∇uW (u) = (∂W/∂u1, ∂W/∂u2, ∂W/∂u3).

The potential W is taken to be of class C2, nonnegative, and with three nondegen-
erate global minima at points a1, a2, a3, that is, W (a1) = W (a2) = W (a3) = 0,
with W (u) > 0 otherwise. Moreover, we ask that W satisfies a mild coercivity
assumption, that is,

lim inf
|u|→+∞

W (u) > 0.
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Finally, note that we do not make any symmetry assumptions on W .
As explained in section 1, we consider solutions that partition the domain space

in three regions via a triod of diffused flat interfaces. We distinguish three regions
Ci in R

3 for i = 1, 2, 3, such that the region Ci contains the minimum ai with Γij
being the interface that separates Ci and Cj (with Γij ≡ Γji). For each region Ci
we have that if x ∈ Ci, then λx ∈ Ci for λ > 0 (cone property).

We choose coordinates as follows. We take the origin on the spine, which we
identify with the x3 axis, and we further identify interface Γ12 with the half plane
x1 = 0, x2 ≥ 0, x3 ∈ R, such that x1 is the distance to Γ12. We also recall here the
spherical coordinates in three dimensions, that is,

x1 = r cos θ1 sin θ2, x2 = r sin θ1 sin θ2, x3 = r cos θ2,

for an azimuthal angle θ1 ∈ [0, 2π), for a polar angle θ2 ∈ [0, π], and for r ≥ 0. In
terms of the azimuthal angle θ1, the interface Γ12 lies at θ1 = π

2 .
The uniformly bounded entire solutions we consider satisfy

(4) |u(x)| < C,

globally in R
3. Using this bound and linear elliptic theory (cf. the proof of Lemma

1), we also have the uniform bound

(5) |∇u(x)| < C,

again globally in R
3.

For such solutions we have two hypotheses. The first one concerns the fact that
solutions converge exponentially to the corresponding equilibrium in the interior of
each region. This has been verified under assumptions of symmetry on the potential
by several authors (see [13, 20, 6, 2, 17]) and we postulate that it holds for general
potentials.

Hypothesis 1 (Exponential estimate). In the interior of the region Ci there holds

that

(6) |u(x)− ai| . e− dist(x,∂Ci),

where ∂Ci = ∪i6=jΓij .

(We use the notation X . Y for the estimate X ≤ CY , where C is an absolute
constant.)

The second hypothesis is that along directions parallel to interfaces solutions con-
verge to “one-dimensional” heteroclinic connections Uij : R → R

3, which connect
the equilibria ai, aj at infinity, in the sense that

lim
η→−∞

Uij(η) = ai and lim
η→+∞

Uij(η) = aj ,

where η is the distance to the interface Γij .

Hypothesis 2 (Connection hypothesis). Along directions parallel to an interface

Γij solutions converge pointwise to a one-dimensional connection Uij(η) with argu-

ment the distance to the interface, that is,

(7) lim
|x|→+∞

u(x) = Uij(η), for fixed η := dist(x,Γij).
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These limiting functions are solutions to the associated Hamiltonian ODE system

Üij −∇W (Uij) = 0

with the property of connecting the minima of W at infinity. (We refer to [27, 5, 3]
for further information on the connection problem.) We define the action of such a
connection to be the nonnegative quantity

(8) σij = σ(Uij) :=

∫ +∞

−∞

(

1

2
|U̇ij |2 +W (Uij)

)

dη,

and also note that connections satisfy the equipartition relation

(9)
1

2
|U̇ij |2 =W (Uij).

In support of the hypotheses above, we note that for potentials W symmetric
with respect to the group of symmetries of the equilateral triangle in R

3, whereW is
C2 and with three global minima placed inside the partitioning regions, and under
the coercivity assumption lim inf |u|→+∞W (u) > 0, Hypothesis 1 is a theorem (cf.
[17]). Moreover, Hypothesis 2 is also a theorem for symmetric potentials (cf. [7]),
under the additional assumption of uniqueness and hyperbolicity of connections,
which is generic by the appendix in [20]. Finally, for nonsymmetric potentials W ,
Fusco [18] has established Hypothesis 1 for local minimizers of

∫

1

2
|∇u|2 +W (u).

We note that the entire solution constructed by Alikakos and Fusco [6, 2, 17] is a
local minimizer (cf. [7]). We expect that along the lines of [18] one should also be
able to verify Hypothesis 2 for local minimizers. In conclusion, the major underlying
hypothesis in our work is the existence of an entire solution connecting in a certain
sense the minima for nonsymmetric potentials (cf. Sáez Trumper[26]).

We will now reformulate (1) via its associated stress tensor. This tensor was
introduced in Alikakos [1] in the context of (1), where further applications are also
presented. However, it is a well-known object in the physics literature (for instance,
in the Landau and Lifshitz series; see [4] for more information). We define the stress
tensor T as

(10) Tij(u) = u,i · u,j − δij

(

1

2
|∇u|2 +W (u)

)

for maps u : Rn → R
m, where u,i = ∂u/∂xi and where the dot denotes the Eu-

clidean inner product in R
m. In three dimensions (that is, for n = 3) it is a 3 × 3

symmetric matrix

T (u) =
1

2





|u,1|2 − |u,2|2 − |u,3|2 − 2W (u) 2u,1 · u,2 2u,1 · u,3
2u,2 · u,1 |u,2|2 − |u,1|2 − |u,3|2 − 2W (u) 2u,2 · u,3
2u,3 · u,1 2u,3 · u,2 |u,3|2 − |u,1|2 − |u,2|2 − 2W (u)





with the property

(11) div T = (∇u)⊤(∆u −∇uW (u)),

that is, T is divergence-free when applied to solutions of (1).
We also note that T is invariant under rotations of the coordinate system, that

is, it transforms as a tensorial quantity. To see this, consider an orthogonal trans-
formation Q and a new coordinate system x′ = Qx. Letting u′ be the map acting
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on the new coordinates with u′(x′) = u(x), the chain rule gives that its gradient
is transformed via ∇′u′ = Q∇u, where the prime denotes that the derivatives are
taken with respect to the new coordinate system. Then, for the transformed tensor
T ′, which is given by the similarity transformation

T ′ = QTQ⊤,

due to the form of the components in (10) and the continuity of W there holds

T ′
ij(u

′) = u′,i · u′,j − δij

(

1

2
|∇′u′|2 +W (u′)

)

,

where again the prime denotes that the tensor is calculated in the new coordinate
system. That is, the transformed tensor has exactly the same expression as the
original one, except for the fact that it acts in the transformed coordinates.

Finally, we prove two lemmas that will be used in the following. The first is
a consequence of Hypothesis 1 and linear elliptic theory, while the second follows
from Hypothesis 2 and the Arzelà–Ascoli theorem.

Lemma 1. Solutions of (1) satisfy the gradient estimate

(12) |∇u(x)| . e− dist(x,∂Ci) for x ∈ Ci.

Moreover, a similar estimate holds for the potential W (u), that is,

(13) |W (u(x))| . e− dist(x,∂Ci) for x ∈ Ci.

Proof. Let Ω be an open and bounded subset of the region Ci. We have that u
is a classical solution of (1), so from the uniform bound (4) it follows that u ∈
H1(Ω)∩L∞(Ω), and also W (u) ∈ H1(Ω)∩L∞(Ω) and ∇uW (u) ∈ H1(Ω)∩L∞(Ω),
due to the continuity of W and ∇uW (u). Then, from the mean value theorem in
Ω and Hypothesis 1, we have

(14) |∇uW (u)| = |∇uW (u)−∇uW (ai)| ≤ |∂2W (û)||u(x) − ai| . e− dist(x,∂Ci)

for some û in Ω, and also,

W (u) =W (u)−W (ai) = |∇uW (û)||u(x)− ai| . e− dist(x,∂Ci) .

Now let Ω′′ ⊂⊂ Ω′ ⊂⊂ Ω be open and bounded subsets of Ω. From the definition
of the H1-norm and interior elliptic regularity, we have that

(15) ‖u,i‖L2(Ω′) ≤ ‖u−ai‖H1(Ω′) . ‖u−ai‖L2(Ω)+‖∇uW (u)‖L2(Ω) . e− dist(x,∂Ci),

using (14) and Hypothesis 1.
Differentiating (1) gives ∆u,i = ∂2W (u) · u,i, and since from higher interior

regularity we get u ∈ H3
loc(Ω), we have the estimate

‖u,i‖H2(Ω′′) . ‖u,i‖L2(Ω′) + ‖∂2W (u) · u,i‖L2(Ω′) . e− dist(x,∂Ci),

using (15) and the continuity of the Hessian ∂2W (u). Finally, from the Sobolev
imbedding of H2 in L∞ in R

3, we get that

‖u,i‖L∞(Ω′′) . e− dist(x,∂Ci),

from which the statement of the lemma follows. �
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Lemma 2. For solutions of equation (1), the following pointwise limits hold:

limu,1(x) = U̇(x1), as x2 → +∞, x3 → +∞,(16)

limu,i(x) = 0, as x2 → +∞, x3 → +∞, for i = 2, 3,(17)

where without loss of generality1 we considered a coordinate system such that x1 is

the distance to an interface Γ, with U its corresponding connection.

Proof. We choose an interface and an appropriately rotated coordinate system such
that the x1 axis is normal to the interface and measures the signed distance from
it, and let Ω be an interval of x1 that is compact and symmetric with respect to
the origin.

In order to establish the limit (16), we consider test functions φ ∈ C∞
c (Ω) and

integrate by parts to get
∫ +∞

−∞

u,1φ(x1) dx1 =

∫ +∞

−∞

uφ′(x1) dx1,

and also

lim
x2→+∞
x3→+∞

∫ +∞

−∞

uφ′(x1) dx1 =

∫ +∞

−∞

U(x1)φ
′(x1) dx1 = −

∫ +∞

−∞

U̇(x1)φ(x1) dx1,

utilizing Hypothesis 2. Combining the last two equations, we have that

(18) lim
x2→+∞
x3→+∞

∫ +∞

−∞

u,1φ(x1) dx1 =

∫ +∞

−∞

U̇(x1)φ(x1) dx1.

Now define the sequence

{u,1}k := u,1(x1, x2 + k, x3 + k),

which is uniformly bounded from (5) and also equicontinuous in Ω, since its de-
rivative {u,11}k is continuous and Ω is compact. Then, the Arzelà–Ascoli theo-
rem and (18) yield that there exists a subsequence which converges uniformly to

U̇(x1). Assuming that another subsequence converges to a different limit, we reach
a contradiction from the uniqueness of the weak limit in (18), thus concluding the
argument.

For the limit (17), consider the sequence

{u}k := u(x1, x2 + k, x3 + k),

which is again uniformly bounded and equicontinuous in Ω from (4), (5). Then, the
Arzelà–Ascoli theorem gives that there exists a subsequence {u}kl which converges
uniformly over compact subsets of Ω×R

2 to a solution v of (1). Using now Hypoth-
esis 2, we have that v = U(x1), and as a result, for i = 2, 3, applying Arzelà–Ascoli
to the sequence of the derivative gives

lim
x2→+∞
x3→+∞

u,i(x) = v,i(x) = U,i(x1) = 0. �

1This is due to the invariance of the Laplacian under rotations and the continuity of W and
∇uW .
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3. Derivation of Young’s law

In this section we will prove the following theorem.

Theorem. For the contact angles at the spine of a triod of intersecting interfaces

Γ12, Γ23, Γ31, Young’s law holds in the form of a balance of forces relation, that is,

(19) σ12ν12 + σ23ν23 + σ31ν31 = 0,

where σij is the action of the connection Uij of each interface Γij and νij the

corresponding unit conormal, that is, a unit vector that is tangent to Γij and normal

to the spine.

Proof. Since the solutions of (1) which we consider are constructed as minimizers
over balls (see [6, 2, 17] for the variational setup of the problem), we take a ball
BR centered at (0, 0, 2R) in order to apply the divergence theorem on it using (11),
that is, the fact that the stress tensor T is divergence-free. This gives

(20) 0 =
1

R

∫

BR

div T dx =
1

R

∫

∂BR

Tν dS,

where ν is the outer unit normal to the boundary ∂BR. In what follows we will
study the limit

lim
R→+∞

1

R

∫

∂BR

Tν dS

in order to utilize the hypotheses on the solutions at infinity. Note that we chose
the center of BR in such a way that for (x1, x2, x3) ∈ ∂BR, we have x3 6= 0 and
x3 → +∞, as R→ +∞.

The complication in applying the divergence theorem in our problem is that
the surface of integration intersects with the spine at two points, where we have
no information on the behavior of solutions. In our setup these are the two poles
of ∂BR, at (0, 0, R) and (0, 0, 3R). To circumvent this, we perform a surgery by
choosing two appropriately sized spherical caps around the north and south poles of
the sphere. To this end, let ψ2(R) be a small polar angle that defines the spherical
caps C (see Figure 1), where by C we denote the union of both caps at the two
poles. We require that there holds

(21) R sinψ2(R) → +∞, as R → +∞,

such that the distance of the boundary of the caps to the spine grows as R → +∞,
which also yields that the geodesic radius Rψ2(R) of the caps grows as R → +∞.
Moreover, we require that

(22) Rψ2(R)
2 → 0, as R → +∞,

such that the renormalized area of the caps (in the sense below) shrinks asR → +∞.
To see this, first note that condition (22) also yields that

(23) ψ2(R) → 0, as R→ +∞.

The renormalized area of the caps can be easily calculated as a surface integral
using spherical coordinates, that is,

1

R

∫

C

dS =
2

R

∫ 2π

0

∫ ψ2

0

R2 sin θ2 dθ2 dθ1 = 4πR(1− cosψ2).
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x1

x2

x3

Γ12

Γ23

Γ31

ψ1

ψ2

Figure 1. The sphere ∂BR centered at the spine, with two caps of
polar angle ψ2(R) and a strip at geodesic distance Rψ1(R) around
the intersection of the interface Γ12 with ∂BR.

Using (23) we have that (1− cosψ2(R)) = O(ψ2(R)
2), which via (22) gives

(24) lim
R→+∞

1

R

∫

C

dS = 0.

To sum up, we choose the size of the caps to be small enough so as not to matter in
the integration, but at the same time large enough so that we always stay away from
the singularity. Then, for the integral of Tν on the caps C, we have the estimate

∣

∣

∣

∣

1

R

∫

C

Tν dS

∣

∣

∣

∣

≤ 1

R

∫

C

|T ||ν| dS .
1

R

∫

C

dS,

where we used the bounds (4), (5), and estimate (13) of Lemma 1 for bounding the
Frobenius norm |T | by a constant. Using now (24), we finally have

lim
R→+∞

1

R

∫

C

Tν dS = 0.

For the remaining part of the sphere, we will work separately for each interface
that intersects it. For the interface Γ12, which lies at azimuthal angle θ1 = π

2 , we
work with the slice

S =
{

(θ1, θ2, r)
∣

∣

∣

π

2
− δ ≤ θ1 ≤ π

2
+ δ

}

for a fixed angle δ, such that no other interface intersects with the slice. To study
the limit

lim
R→+∞

1

R

∫

S\(S∩C)

Tν dS,

we distinguish two parts in S \ (S ∩ C), a neighborhood around the meridian at
the intersection of the interface with the sphere and the rest. We take the set
N ⊂ S \ (S ∩ C), such that N is the strip that is contained between two planes
parallel to Γ12, one in the region C1 and one in C2, and at equal distance R sinψ1(R)
from it (see Figure 1). For the angle ψ1(R), we require that it satisfies

(25) ψ1(R) < ψ2(R), with
√
2 sinψ1(R) < sinψ2(R),



10 N. D. ALIKAKOS, P. ANTONOPOULOS, AND A. DAMIALIS

such that the azimuthal angle ψ1 that defines the width of the strip N at the
equator of ∂BR is strictly smaller than the polar angle ψ2 that defines the caps.
This condition forces N to be a subset of S \ (S ∩ C). Moreover, we require that

(26) R sinψ1(R) → +∞, as R → +∞,

such that the distance of the interface to the two planes that define N grows as
R→ +∞. From conditions (25) and (23) we also have that

(27) ψ1(R) → 0, as R→ +∞.

An example of angles ψ1, ψ2 that satisfy all the above requirements is

ψ1(R) = R−4/5 and ψ2(R) = R−3/4

with condition (25) holding true for R > 1025 for this particular choice.
Given the following decomposition of the set S \ (S ∩ C),

S \ (S ∩ C) = N ∪ ((S \ (S ∩ C)) \ N ) ,

we have the estimate
∣

∣

∣

∣

1

R

∫

(S\(S∩C))\N

Tν dS

∣

∣

∣

∣

≤ 1

R

∫

(S\(S∩C))\N

|T ||ν| dS

.
1

R

∫

(S\(S∩C))\N

e− dist(x,Γ12) dS

. R e−R sinψ1(R),

(28)

using estimates (12), (13) from Lemma 1 for estimating |T | by the exponential
and since the domain of integration is of order O(R2). Finally, taking the limit as
R→ +∞ and using condition (26), we have that

lim
R→+∞

1

R

∫

(S\(S∩C))\N

Tν dS = 0.

We turn now to the last part, which is the integral on the strip N . We parame-
trize N as the graph of

fR(x1, x3) =
√

R2 − x21 − (x3 − 2R)2

for x1 ∈ (−R sinψ1, R sinψ1), x2 ∈ (R
√

sin2 ψ2 − sin2 ψ1, R), x3 ∈ (2R−R cosψ2,
2R+R cosψ2), where x1 = x2 = x3 = 0 is the origin, which is not the center of the
sphere. We set y1 = x1, y2 = x2, and y3 = x3 − 2R, such that (y1, y2, y3) ∈ ∂BR
with y21 + y22 + y23 = R2. Then, N is the graph of

fR(y1, y3) =
√

R2 − y21 − y23

for

(29)















y1 ∈ (−R sinψ1, R sinψ1),

y2 ∈ (R
√

sin2 ψ2 − sin2 ψ1, R),

y3 ∈ (−R cosψ2, R cosψ2).

For the surface element we calculate

dS =

√

1 +

(

∂fR
∂y1

)2

+

(

∂fR
∂y3

)2

dy3 dy1 =
R

y2
dy3 dy1,
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where y2 =
√

R2 − y21 − y23 , while the outer unit normal is

ν =
y

R
.

Using this parametrization, the integral on N is written as

(30)
1

R

∫

N

Tν dS =
1

R

∫ R sinψ1

−R sinψ1

∫ R cosψ2

−R cosψ2

T (v)
y

y2
dy3 dy1,

where

u(x1, x2, x3) = u(y1, y2, y3 + 2R) =: v(y1, y2, y3),

and v,i(y) = u,i(x) for i = 1, 2, 3, so T (v(y)) = T (u(x)).
To take the limit as R → +∞ in (30) and apply Hypotheses 1 and 2, we use

Lebesgue’s dominated convergence theorem. The components of the vector quantity
to be integrated on the right-hand side of (30) are given by

(31)

(

T (v)
y

y2

)

i

= Tij(v)
yj
y2

for i = 1, 2, 3,

using the summation convention. To check whether dominated convergence applies
for each component, we write the corresponding integral as

∫ +∞

−∞

(

1

R
χ[−R sinψ1,R sinψ1]

∫ R cosψ2

−R cosψ2

Tij(v)
yj
y2

dy3

)

dy1,

where χ is the characteristic function, and we would like to show that the quantity
in parentheses is dominated by some integrable function of y1. Using the estimates
(12) and (13) of Lemma 1, in N there holds |Tij(v)| . e−|y1|, which gives the
estimate

∣

∣

∣

∣

1

R
χ[−R sinψ1,R sinψ1]

∫ R cosψ2

−R cosψ2

Tij(v)
yj
y2

dy3

∣

∣

∣

∣

≤ 1

R

∫ R cosψ2

−R cosψ2

|Tij(v)|
|yj |
y2

dy3

.
1

R

∫ R cosψ2

−R cosψ2

e−|y1| |yj |
y2

dy3

= e−|y1|

(

1

R

∫ R cosψ2

−R cosψ2

|yj |
y2

dy3

)

.

Setting

Ij =
1

R

∫ R cosψ2

−R cosψ2

|yj |
y2

dy3 for j = 1, 2, 3,

we argue that Ij ≤ 2, for j = 1, 2, 3, and, as a consequence, dominated convergence
applies in the limit R → +∞.

For j = 1, using the extremum values of y1, y2 in the intervals (29) and condition
(25), we have

I1 =
1

R

∫ R cosψ2

−R cosψ2

|y1|
y2

dy3 ≤ 1

R

∫ R cosψ2

−R cosψ2

R sinψ1

R
√

sin2 ψ2 − sin2 ψ1

dy3

<
1

R

∫ R cosψ2

−R cosψ2

sinψ1

sinψ1
dy3 =

1

R

∫ R cosψ2

−R cosψ2

dy3 = 2 cosψ2 ≤ 2,

since sinψ1 <
√

sin2 ψ2 − sin2 ψ1 from (25).
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For j = 2, we have

I2 =
1

R

∫ R cosψ2

−R cosψ2

|y2|
y2

dy3 =
1

R

∫ R cosψ2

−R cosψ2

dy3 = 2 cosψ2 ≤ 2,

since y2 > 0 in N .
Finally, for j = 3, we change variables to

ỹ3 =
1

R
y3 with dỹ3 =

1

R
dy3,

and, using the extremum values of y1 from (29), we estimate

I3 =
1

R

∫ R cosψ2

−R cosψ2

|y3|
y2

dy3 =

∫ cosψ2

− cosψ2

R|ỹ3|
y2

dỹ3 =

∫ cosψ2

− cosψ2

R|ỹ3|
√

R2 − y21 −R2ỹ23
dỹ3

≤
∫ cosψ2

− cosψ2

|ỹ3|
√

1− sin2 ψ1 − ỹ23

dỹ3 = 2

∫ cosψ2

0

ỹ3
√

1− sin2 ψ1 − ỹ23

dỹ3,

since the function |ỹ3|
/

√

1− sin2 ψ1 − ỹ23 is even. We explicitly calculate the last

integral to get

2

∫ cosψ2

0

ỹ3
√

1− sin2 ψ1 − ỹ23

dỹ3 = −2

∫ cosψ2

0

(

√

1− sin2 ψ1 − ỹ23

)′

dỹ3

= −2

√

1− sin2 ψ1 − cos2 ψ2 + 2

√

1− sin2 ψ1

= −2

√

sin2 ψ2 − sin2 ψ1 + 2 cosψ1 ≤ 2 cosψ1 ≤ 2.

To conclude with the calculation of the limit as R→ +∞ in (30), we distinguish
the following limits in N , as consequences of Hypothesis 2 and Lemma 2:

(32)































limR→+∞ v(y) = limx2→+∞
x3→+∞

u(x) = U12(x1),

limR→+∞ v,1(y) = limx2→+∞
x3→+∞

u,1(x) = U̇12(x1),

limR→+∞ v,2(y) = limx2→+∞
x3→+∞

u,2(x) = 0,

limR→+∞ v,3(y) = limx2→+∞
x3→+∞

u,3(x) = 0.

Using the extremum values of the intervals in (29) and condition (25), we also have
that in N there holds

(33)
1

R

∣

∣

∣

∣

y1
y2

∣

∣

∣

∣

≤ 1

R

R sinψ1

R
√

sin2 ψ2 − sin2 ψ1

<
1

R

sinψ1

sinψ1
→ 0, as R → +∞,

(34)
1

R

∣

∣

∣

∣

y3
y2

∣

∣

∣

∣

≤ 1

R

R cosψ2

R
√

sin2 ψ2 − sin2 ψ1

<
1

R

cosψ2

sinψ1
→ 0, as R → +∞,

where in the last limit we also used condition (26) for the limit of the denominator.
Using now (33), (34) and since the elements of T are bounded by a constant from
(4), (5), and estimate (13) of Lemma 1, we have

lim
R→+∞

1

R
T (v)

y

y2
= lim
R→+∞

1

R
(T12, T22, T32)

⊤,
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that is, only the components for j = 2 in (31) do not vanish in the limit. But, using
(32), we further have that

lim
R→+∞

1

R
T12 = lim

R→+∞

1

R
v,1 · v,2 = 0 and lim

R→+∞

1

R
T32 = lim

R→+∞

1

R
v,3 · v,2 = 0.

Finally,

lim
R→+∞

1

R

∫

N

Tν dS =

(

lim
R→+∞

1

R

∫ R sinψ1

−R sinψ1

∫ R cosψ2

−R cosψ2

T22(v) dy3 dy1

)

(0, 1, 0)⊤.

Plugging in the component T22 into the last integral, we calculate the limit

lim
R→+∞

1

R

∫ R sinψ1

−R sinψ1

∫ R cosψ2

−R cosψ2

1

2

(

|v,2|2 − |v,1|2 − |v,3|2 − 2W (v)
)

dy3 dy1

via the change of variables y3 = Rỹ3, which gives

lim
R→+∞

∫ R sinψ1

−R sinψ1

∫ cosψ2

− cosψ2

1

2

(

|v,2|2 − |v,1|2 −
1

R2
|v,3|2 − 2W (v)

)

dỹ3 dy1

with a slight abuse of notation for v,3. Passing the limit inside the last integral and
using conditions (23) and (26), the limits in (32) give

∫ +∞

−∞

∫ 1

−1

−
(

1

2
|U̇12(y1)|2 +W (U12(y1))

)

dỹ3 dy1

= −2

∫ +∞

−∞

(

1

2
|U̇12(y1)|2 +W (U12(y1))

)

dy1

= −2σ12.

Thus, we have shown that for the slice S around the interface Γ12 there holds

lim
R→+∞

1

R

∫

S

Tν dS = −2σ12ν12,

where ν12 = (0, 1, 0)⊤.
Since the stress tensor T is invariant under rotations, we can apply the same

procedure for the other two interfaces for appropriately rotated coordinate systems
and appropriate slices (in order to cover the whole sphere) to get

σ12ν12 + σ23ν23 + σ31ν31 = 0,

using (20), where the νij ’s are the conormals of the corresponding interfaces Γij .
This concludes the proof. �

We remark that the balance of forces relation (19) is equivalent to Young’s law
(3). This can be easily deduced by multiplying (19) with the unit normal of each
interface.
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