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Abstract

In this paper we prove a priori and a posteriori error estimates for a multiscale numerical
method for computing equilibria of multilattices under an external force. The error estimates
are derived in a W 1,∞ norm in one space dimension. One of the features of our analysis is
that we establish an equivalent way of formulating the coarse-grained problem which greatly
simplifies derivation of the error bounds (both, a priori and a posteriori). We illustrate our
error estimates with numerical experiments.
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1 Introduction

Multiscale methods for modelling and simulation of microscopic features in crystalline materials
have been very attractive to researchers of material sciences and applied mathematics in past
two decades. In these modelling methods it is assumed that there is an underlying atomistic
model which is the “exact” description of a material associated with certain lattice structure.
Direct atomistic simulations using the “exact” model may not be feasible because of its huge
number of degree of freedoms. The quasicontinuum (QC) approximation is a popular method
to dramatically reduce the degrees of freedom of the underlying atomistic model. It was put
forward in [29] for a simple lattice system and in [30] for a complex lattice system. Besides
extensive application of the QC approximation in practical material simulations, there have
been growing interest in rigorously analyzing the convergence of the QC approximation or the
error between the “correct” and the “approximate” solutions, see, e.g., [10, 11, 13, 16, 18, 19,
21, 22, 23, 25, 26, 31, 32], as well as a number of works attemping to design more accurate
coarse-grained algorithms, see, e.g., [17, 20, 26, 27, 28]. However, most of the works, with the
exception of [13] and [32], are for crystalline materials with a simple lattice structure.

In this paper we consider a problem of equilibrium of an atomistic crystalline material with
a complex lattice structure. The essential step in reducing the degrees of freedom is to coarse-
grain the problem. The QC is one of the most efficient methods of coarse-graining the atomistic
statics. The idea behind the QC is to introduce a piecewise affine constraints for the atoms
in regions with smooth deformation and use the Cauchy-Born rule to define the energy of the
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corresponding groups of atoms. To formulate the QC method for crystals with complex lattice
(for short, complex crystals) one must account for relative shifts of simple lattices which the
complex lattice is comprised of [30]. Our approach to model complex lattices is the framework
of discrete homogenization, developed in our earlier paper [2].

We note that the idea of applying homogenization to atomistic media has appeared in the
literature [6, 7, 8, 9, 14]. We also note that the method considered in this paper is essentially
equivalent to the QC for complex crystals, being put in the framework of numerical homoge-
nization [3]. However, the rigorous discrete homogenization procedure and related numerical
method allow us to derive error estimates for the homogenized QC method, when compared to
the solution of discretely homogenized atomistic equations. It also allows, by a reconstruction
procedure, to approximate the original full atomistic solution. To the best of our knowledge,
such error estimates are new. As in many numerical homogenization techniques for PDEs, there
is no need for our numerical approximation to derive homogenized potential before-hand, since
the effective potential is computed on the fly (see, e.g., [1, 12]). In addition, we note that the
H1 error estimates in our earlier unpublished paper [2] are derived in one dimension for linear
nearest neighbour interactions. In this paper we consider fully nonlinear multi-neighbour inter-
actions which are technically much more difficult. Further, we will derive W 1,∞ error estimates,
which are more suitable for nonlinear interaction and are technically harder than those in the
H1 norm, and are rarely obtained even in the simple lattice case (the only estimates in W 1,∞

norm that we know of are [18, 24]). Also, we remark that we establish an equivalence of the
coarse-grained homogenized model and the atomistic homogenized model (Lemma 4.1), which
significantly simplifies the W 1,∞ error analysis of the QC method. Finally, we derive both a
priori and a posteriori error estimates.

The regularity results of this paper are similar to those in [13]. The main difference is
that our results do not require a very high regularity of the external forces that was assumed
in [13] (where, essentially, the highly smooth external forces were necessary for using inverse
inequalities to get a W 1,∞ convergence from an H1-stability).

Another related homogenization approach is the Γ convergence (see, e.g., [4, 5]) which is an
excellent technique of finding the effective macroscopic energy from the microscopic interaction
law, but does not yield the rates of convergence of the minimizers of the microscopic model and
the homogenized model.

The paper is organized as follows. In Section 2 we formulate the multiscale method for
multilattices and state our main assumptions. In Section 3 we prove the inf-sup condition and
regularity for the atomistic and the homogenized equations. In Section 4 we prove convergence
of the approximate solutions to the exact ones. Finally, in Section 5 we present numerical results
that support our analysis.

2 Method Formulation and Main Results

In this section after introducing the principal notations used throughout the paper, we recall
the equations for the equilibria of multilattices and describe our multiscale numerical method.
We then state our main convergence results.

2.1 Atomistic Displacement and Function Spaces

We consider an (undeformed) lattice of N atoms, L = {ε, 2ε, . . . , Nε}, repeated periodically to
occupy the entire εZ. The positions of an atom x ∈ L in the deformed configuration is x+u(x),
where u = u(x) is the displacement. We will consider only εN -periodic displacements, i.e., such
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that u(x + εN) = u(x), thus effectively reducing the system to a finite number of degrees of
freedom. For convenience we choose ε = 1

N . The space of εN -periodic functions is denoted as

U(L) =
{
u : εZ→ R : u(x) = u(x+ εN) ∀x ∈ εZ

}
.

and its subspace of functions with zero average as

U#(L) =
{
u ∈ U(L) : 〈u〉L = 0

}
,

where the discrete integration (averaging) operator 〈•〉L is defined for u ∈ U(L) by

〈u〉L :=
1

N

∑
x∈L

u(x).

We sometimes also use the notation 〈u(x)〉x∈L for 〈u〉L. Also, for u, v ∈ U(L) we define the
pointwise product, uv, by

uv(x) = u(x)v(x) ∀x ∈ εZ,

and the scalar product

〈u, v〉L := 〈uv〉L =
1

N

∑
x∈L

u(x) v(x).

We will only consider displacements u ∈ U#(L) since for more general displacements u(x) =
Fx + û(x), with F ∈ R and û ∈ U#(L), we can adsorb Fx into the reference positions as
u(x) = (x+ Fx) + û(x) and rescale the spatial coordinate as x̂ = x+ Fx.

For u = u(x) ∈ U(L) we introduce the r-step discrete derivative (r ∈ Z, r 6= 0),

Dx,ru(x) :=
u(x+ rε)− u(x)

rε
.

For r = 1 the forward discrete derivative Dx,1u we will sometimes simply be written as Dxu.
In addition to differentiation operators, we also define for u ∈ U(L), the translation operator
Txu ∈ U(L),

Txu(x) := u(x+ ε).

Then the r-step translation (r ∈ Z) can be expressed as a power of Tx, T rxu(x) = u(x + rε).
Finally, introduce an averaging operator,

Ax,r :=
1

r

r−1∑
k=0

T kx , (r ∈ Z, r > 0)

so that we can write Dx,r = Ax,rDx (r > 0).
On the function space U(L) we define the family of norms

‖u‖q :=
(
〈|u|q〉L

)1/q
(1 ≤ q <∞), and ‖u‖∞ := max

x∈L
|u(x)|,

and seminorms
|u|m,q := ‖Dmu‖q (1 ≤ q ≤ ∞, m ∈ Z, m ≥ 0).

The seminorms |u|m,q are extended for negative m as

|u|m,q := sup
{
〈u, v〉L : v ∈ U#(L), |v|−m,q′ = 1

}
(1 ≤ q ≤ ∞, (q′)2 + q2 = 1, m ∈ Z, m < 0).
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Note that |u|m,q are proper norms in U#(L) for all m ∈ Z. Hence we denote spaces U(L) and
U#(L), equipped with the respective norms, as U0,q(L) and Um,q# (L).

We will also work with the lattice P = {1, 2, . . . , p}. For lattice functions η = η(y) ∈ U(P)
we define the operators (Dy, Dy,r, Ty, and Ay,r) and the norms similarly to functions in U(P),
noting that the lattice spacing of P is 1 whereas the lattice spacing of L is ε.

For functions of two variables, v = v(x, y) ∈ U(L)⊗U(P), we will denote the full derivatives,
translation, and averaging, by T := TxTy, Dr := 1

rε(T
r− I), D := D1, Ar := 1

r

∑r−1
k=0 T

k. Notice
that the variables x and y are not symmetric in the definition of derivatives. If a function
does not depend on y then the full derivatives coincide with the derivatives in x (likewise for
translation and averaging). Hence, for functions of x only, we will often omit the subscript x in
the operators Dx, Tx, Ax,r.

The following lemma, whose proof is straightforward and will be omitted, collect the useful
facts about the above operators

Lemma 2.1. (a) For any v ∈ U(L), r ∈ Z, r > 0 the following estimates hold:

‖Drv‖q = ‖ArDv‖q ≤ ‖Dv‖q, (2.1)

‖Drv −Dv‖q =
ε

r

∥∥∥∥ r−1∑
k=1

kDkDv

∥∥∥∥
q

≤ 1
2ε(r − 1) ‖D2v‖q. (2.2)

(b) For any v ∈ U(L)⊗ U(P), r ∈ Z, r > 0 the following estimate holds:

‖Arv −Ay,rv‖q =
ε

r

∥∥∥∥ r−1∑
k=1

kDx,kT
k
y v

∥∥∥∥ ≤ 1
2ε(r − 1) ‖Dxv‖q. (2.3)

2.2 Atomistic Interaction and Equilibrium

The energy of interaction of two atoms, x ∈ L and x + εr ∈ L depends on three variables:
the distance u(x+ rε)− u(x) between atoms x and x+ εr, and their positions in the reference
configuration that are needed to account for different species of atoms. We denote such energy
using a family of functions Φε

r(Dx,ru(x);x), where, for a fixed r ∈ Z+, Φε
r is defined on (a subset

of) R× L. The total interaction energy of the atomistic system is thus

E(u) =

〈 R∑
r=1

Φε
r(Dru)

〉
L

=

〈 R∑
r=1

Φε
r(Dx,ru(x);x)

〉
x∈L

, (2.4)

where R is effectively the interaction radius (measured in the reference configuration).
The equations of equilibrium are thus

find u ∈ U# s.t.: 〈δE(u), v〉L :=
d

dt
E(u+ tv)

∣∣
t=0

= 〈f, v〉L ∀v ∈ U#(L), (2.5)

where f ∈ U#(L) is an external force. Here δE : U(L) → U(L) is the Gateaux derivative of
E : U(L)→ R.

2.3 Multilattice and Homogenization

The atoms L are assumed to be of p different species located periodically on L, and we assume
that N ∈ pZ. We index the atom species with P = {1, 2, . . . , p}. Note that a lattice functions
η = η(y) ∈ U(P) can be related to a lattice function ηε = η(x/ε) ∈ U(L).
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We define Φr on an open subset of R × P as Φr

(
•; y
)

:= Φε
r

(
•; εy

)
for a fixed r. Due to

periodicity of the microstructure, the dependence of Φr on y is assumed to be p-periodic, i.e.
Φr(z; •) ∈ U(P) for all z. For convenience of notations (e.g., in (2.4) or (2.6)), we further
identify, for a fixed r, the family of p scalar functions Φr(•; y), y ∈ P, with the function
Φr : U(P) ⊃ U → U(P) by identifying Φr(w(y), y) with [Φr(w)](y). (Here U(P) ⊃ U → U(P)
denotes a function from an open subset U of U(P) with values in U(P).)

We apply a homogenization to the atomistic energy to average out the microstructure; more
precisely, to average out the dependence on y ∈ P. The homogenized interaction (see [2] for
the details) is defined by

Φ0(z) :=

R∑
r=1

〈Φr(z +Dy,rχ(z; y); y)〉y∈P =

R∑
r=1

〈Φr(z +Dy,rχ(z))〉P , (2.6)

where for a fixed z ∈ R, χ(z) ∈ U#(P) solves the micro problem

R∑
r=1

〈δΦr(z +Dy,rχ(z)), Dy,rη〉P = 0 ∀η ∈ U#(P), (2.7)

and δΦr(z; y) = d
dzΦr(z; y).

The homogenized interaction energy is
∫ 1

0 Φ0( d
dxu

0)dx, whose discretized version is E0(u0) :=
〈Φ0(Dxu

0)〉L. This leads to the homogenized equilibrium equations of the form

find u0 ∈ U# s.t.: 〈δΦ0(Dxu
0), Dxv〉L = 〈f, v〉L ∀v ∈ U#(L), (2.8)

or, written in a strong form,

find u0 ∈ U# s.t.: −Dx[δΦ0(Dxu
0)] = Txf, (2.9)

where Dx := Dx,1. To derive (2.9) we should use D>x = −T−1
x Dx.

To extract the microstructure from the homogenized solution u0, define the corrector

uc(x) := I#

(
u0(x) + εχε(Dxu

0(x);x)
)
, where (2.10)

I#u := u− 〈u〉L (2.11)

and χε(z;x) := χ
(
z; xε

)
. Application of I# in the definition of uc(x) is done for convenience so

that uc ∈ U#(L).

2.4 HQC Formulation

Define a triangulation of the region (0, 1] by introducing the nodes of triangulation Nh ⊂ L and
the elements Th. Each element T ∈ Th is defined by two nodes ξ, η ∈ Nh as T = L ∩ [ξ, η), its
interior is defined as int(T ) = L∩ (ξ, η), and its size as hT = η− ξ. We also define the element
size function, h ∈ U(L), so that

h(x) = hT ∀x ∈ T. (2.12)

We consider the coarse-grained spaces Uh(L) ⊂ U(L) and Uh,#(L) ⊂ U#(L) of piecewise
affine functions. The space Uh(L) can be characterized by

u ∈ Uh(L) ⇐⇒ Du(ξ − ε) = Du(ξ) ∀ξ ∈ L \ Nh (2.13)

We denote the nodal basis function of U(L) associated with ξ ∈ L as wξ, wξ(x) := δx−ξ,
where δ is the Kronecker delta. The nodal basis function of Uh(L) associated with ξ ∈ Nh is
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denoted as whξ (x). The functions wξ, ξ ∈ L \ Nh, together with whξ , ξ ∈ Nh, form a basis of
U(L). Denote the nodal interpolant Ih : U(L)→ Uh(L).

The HQC approximation to the exact atomistic problem (2.5) is

find u0
h ∈ Uh,# s.t.: 〈δE0(u0

h), vh〉L = 〈F h, vh〉h ∀vh ∈ U1,1
h,#(L), (2.14)

where 〈•, •〉h denotes the duality pairing of (U1,1
h,#(L))∗ and U1,1

h,#, and F h ∈
(
U1,1
h,#(L)

)∗
is a

numerical approximation to f ∈ U−1,∞
# (L). For convenience we extend F h on

(
U1,1
h (L)

)∗
by

requiring 〈F h, 1〉h = 0, so that 〈F h, I#vh〉h = 〈F h, vh〉h for all vh ∈ Uh (refer to (2.11) for the
definition of I#). A numerical corrector similar to (2.10) can be introduced as follows

uc
h := I#

(
u0
h + εχε(Du0

h)
)
. (2.15)

2.5 Main results

Before stating the main results, we introduce some additional notations. For a Banach space X
denote Bx(x0, ρ) = {x ∈ X : ‖x− x0‖ < ρ}—a ball centered at x0 with the radius ρ—and call
it the neighborhood of x0 with radius ρ. For a mapping f : U → Z from an open subset U ⊂ X,
δxf(x0) is its variational derivative at a point x0. When it causes no confusion, we may just write
δf(x0). If f : X → R with X being a Hilbert space with the scalar product 〈•, •〉X , we identify
δf(x0) with an element of X and write δf(x0)x = 〈δf(x0), x〉X ; likewise the second derivative
δ2f(x0) will be identified with a linear mapping X → X: (δ2f(x0)x)x′ = 〈δ2f(x0)x, x′〉X . The
space of continuous mappings f : U → Z, U being bounded, will be denoted as C(U ;Z) with
the norm ‖f‖C := supx∈U ‖f(x)‖. The space of functions whose k-th derivative is continuous
will be denoted as Ck(U ;Z) with a seminorm |f |Ck := ‖δkf‖C. A space of mappings whose
k-th derivative (k ≥ 0) is Lipschitz continuous will be denoted as Ck,1(U ;Z) and the smallest
Lipschitz constant of the k-th derivative will be denoted as | • |Ck,1 . In our analysis we will
often use the fact that if f ∈ Ck+1 then |f |Ck,1 = |f |Ck+1 . In what follows we will express
the statement “The quantity f is bounded by a constant that may depend on f1, . . . , fk” as
f ≤ Const

(
f1, . . . , fk

)
.

We make the following assumptions that will allow us to apply the framework of the implicit
function theorem (refer to Appendix A for its precise statement).

Assumptions

We assume that there exists a microstructure χ∗ = χ∗(y) ∈ U#(P) and ρΦ such that:

0. The micro-deformation y + χ∗(y) is a strictly increasing function of y ∈ Z. This simply
expresses the fact that the atoms in the reference configuration are sorted by increasing
position ε(y + χ∗(y)).

1. For each r ∈ R and y ∈ P, the interaction potential Φr(•, y) is defined in a neighborhood
U(y) ⊂ R of Dy,rχ∗(y) of radius ρΦ and Φr(•, y) ∈ C2,1(U(y);R).

2. χ∗ satisfies
R∑
r=1

〈δΦr(Dy,rχ∗), Dy,rη〉P = 0 ∀η ∈ U#(P).

This assumption ensures that εχ∗(
x
ε ) is a solution to (2.5) with f = 0.
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3. Nearest neighbor interaction dominate:

1
2 min

y
δ2Φ1(Dy,1χ∗(y); y)−

R∑
r=2

max
y
|δ2Φr(Dy,rχ∗(y); y)| > 0. (2.16)

Remark 2.1 (An alternative formulation of Assumption 1). It is useful to note the following
equivalent formulation of Assumption 1 (the equivalence can be established by a straightforward
calculation): for each r ∈ R the function Φr : U0,∞(P) ⊃ U → U0,∞(P) is defined in a
neighborhood U of χ∗ ∈ U0,∞(P)) with radius ρΦ, and Φr ∈ C2,1(U ;U0,∞(P)).

We next state our main results. We start with the a posteriori result.

Theorem 2.2 (a posteriori estimate). Assume that the Assumptions 0,1,2,3 hold. For all
F h ∈ B

(U1,1
h,#)∗(0, ρf ), the solution u0

h to (2.14) exists and is unique in BU1,∞
#

(χε∗, ρu). Moreover,

the following a posteriori estimate holds:

|uc
h − u|1,∞ ≤ Const

(
c−1

0 C
(1,1)
Φ

)
max
x∈Nh

|Du0
h(x)−Du0

h(x− ε)|

+ c−1
0 ‖(h− ε)f‖∞ + max

vh∈Uh,#(L),
|vh|1,1=1

|〈F h, vh〉h − 〈f, vh〉L|. (2.17)

Here C
(1,1)
Φ := maxy∈P

∑
r∈R |rδΦr(•, y)|C0,1.

Note that the a posteriori error estimate has a form similar to the standard FEM estimates:
there is a term based on the jumps of the solution across boundaries of elements, a term
consisting of summation of the external force in the interior of elements, and a term accounting
for an approximate summation of the external force. It is worthwhile to note that for the fully
refined mesh (i.e., where h = ε), the term ‖(h− ε)f‖∞ vanishes.

The following a priori error estimate will also be shown.

Theorem 2.3 (a priori estimate). In addition to the Assumptions 0,1,2,3, assume that exact
summation of the external force, i.e., that 〈F h, vh〉h = 〈f, vh〉L. Then, for all f ∈ BU−1,∞

#
(0, ρf ),

the solution u0
h to (2.14) with the exact summation of the external force 〈F h, vh〉h := 〈f, v〉L

exists and is unique in BU1,∞
#

(χε∗, ρu). Moreover, the following a priori estimate holds:

|uc
h − u|1,∞ ≤ Const

(
c0, C

(1,1)
Φ

)
‖hf‖∞.

3 Inf-sup conditions and regularity of for the atomistic and the
homogenized equations

In this section we start by showing that the Assumption 3 of Section 2.5 implies the inf-sup
conditions needed for the subsequent analysis. We then establish regularity results for the
atomistic solution (2.5), for the micro problem (2.7), and for the homogenized solution (2.8).
These regularity results are essential to derive the a priori and a posteriori error estimates.
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3.1 Inf-sup Conditions

Lemma 3.1. Assumption 3 implies the following assertions: there exists a coercivity constant
c0 > 0 such that the following inf-sup conditions hold

inf
η∈U#(P),
|η|1,∞=1

sup
ζ∈U#(P),
|ζ|1,1=1

R∑
r=1

〈
δ2Φr(Dy,rχ∗(y); y)Dy,rη,Dy,rζ

〉
P
≥ 2c0 (3.1)

inf
w∈U#(L),
|w|1,∞=1

sup
v∈U#(L),
|v|1,1=1

R∑
r=1

〈δ2Φε
r(Drχ

ε
∗)Drw,Drv〉L ≥ 2c0, (3.2)

inf
w∈U#(L),
|w|1,∞=1

sup
v∈U#(L),
|v|1,1=1

〈δ2Φ0(0)Dw,Dv〉L = δ2Φ0(0) ≥ 2c0, (3.3)

where χε∗(x) := χ∗
(
x
ε

)
and Φ0(0) is defined by (2.6) with χ(0; y) = χ∗(y).

Proof. We start with the inf-sup condition (3.2). We use the following estimate

|〈δ2Φε
r(Drχ

ε
∗)Drw,Drv〉L| ≤ max

x
|δ2Φε

r(Drχ
ε
∗;x)| ‖Drw‖∞ ‖Drv‖1

≤ max
x
|δ2Φε

r(Drχ
ε
∗;x)| ‖Dw‖∞ ‖Dv‖1, (3.4)

for all r > 1. For r = 1 we use Lemma 3.2 and estimate

inf
|w|1,∞=1

sup
|v|1,1=1

〈δ2Φε
1(Drχ

ε
∗)Dw,Dv〉L

≥ 1
2 inf
|w|1,∞=1

‖δ2Φε
1(Drχ

ε
∗)Dw‖∞

≥ 1
2 min

x
|δ2Φε

1(Drχ
ε
∗;x)|. (3.5)

Thus, notice that (3.2) follows from (3.4), (3.5), the assumption (2.16), and the definition
Φε
r(•;x) = Φr(•; xε ).

Proving condition (3.1) is in all ways similar to proving (3.2), with an obvious change of
spaces U#(L) to U#(P).

Finally, notice that (3.3) follows directly from estimating

δ2Φ0(0) =
R∑
r=1

〈δ2Φr(Drχ∗(y); y)〉y∈P ≥ 2c0

using (2.16).

Remark 3.1. The condition (3.1) is the same as requiring that the Hessian of
∑R

r=1 δ
2Φr(Dy,rχ∗)

is positive definite, due to equivalence of the norms on finite-dimensional spaces.

The following Lemma has been used in the proof above.

Lemma 3.2. For u ∈ U#,
sup

v∈U#(L),
|v|1,1=1

〈u,Dv〉L ≥ 1
2‖u‖∞. (3.6)
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Proof. Let x1 := argmax|u|. We will assume that u(x1) > 0 without loss of generality (since
both parts of (3.6) are invariant w.r.t. changing u to −u). Choose x2 such that u(x2) ≤ 0 (such
x2 always exists for a function with zero mean) and define v∗ so that

Dv∗(x) =


1
2 x = x1

−1
2 x = x2

0 otherwise.

We obviously have |v∗|1,1 = 1 and

〈u,Dv∗〉L = 1
2u(x1)− 1

2u(x2) ≥ 1
2u(x1) = 1

2‖u‖∞.

In the rest of the paper we will use (3.1)–(3.3) instead of using Assumption 3 directly.
Therefore, the regularity and convergence results of this paper would hold if the U1,∞ stability
result (3.1)–(3.3) is proved using assumptions other than Assumption 3. Note, however, that
the Assumption 3 is rather standard in the case of simple lattices (i.e., no dependence on y)
and in the presence of only nearest neighbor interaction it can also be shown to be sharp.

3.2 Regularity results

In this section we prove our main regularity results for the atomistic and homogenized solutions.
Instrumental for these results is a version of the Implicit Function Theorem (IFT) that we
summarize in the Appendix (see Theorem A.1) for the convenience of the readers. For future
use, we define

CΦ := max
y∈P

∑
r∈R
|Φr(•, y)|C0,1 ,

C
(1)
Φ := max

y∈P

∑
r∈R
|δΦr(•, y)|C0,1 ,

C
(2)
Φ := max

`=1,2
max
y∈P

∑
r∈R
|δ`Φr(•, y)|C0,1 , and recall

C
(1,1)
Φ = max

y∈P

∑
r∈R
|rδΦr(•, y)|C0,1 .

Regularity of the Micro-problem

Theorem 3.3. There exist ρz > 0 and ρχ > 0 such that

(a) For all |z| < ρz, χ = χ(z) satisfying (2.7) exists in C1,1
(
(−ρz, ρz);U

)
, is unique within

the ball U = {‖χ(z)− χ∗|1,∞ < ρχ}, and

|χ|C0,1 ≤ c−1
0 C

(1)
Φ (3.7)

|χ|C1,1 ≤ Const
(
c−1

0 C
(2)
Φ

)
. (3.8)

(b) The homogenized energy density Φ0 = Φ0(z) is well-defined by (2.6), Φ0 ∈ C2,1
(
(−ρz, ρz)

)
,

and

|Φ0|C0,1 ≤ CΦ (3.9)
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|δΦ0|C0,1 ≤ C
(1)
Φ Const

(
c−1

0 C
(1)
Φ

)
(3.10)

|δ2Φ|C0,1 ≤ C
(2)
Φ Const

(
c−1

0 C
(2)
Φ

)
(3.11)

c0 ≤ inf
|z|<ρz

inf
|w|1,∞=1

sup
|v|1,1=1

〈δ2Φ0(z)Drw,Drv〉L. (3.12)

Proof. Proof of (a)
We will apply the IFT to the mapping

F : R× U1,∞
# (P)→ U−1,∞

# (P), F (z, χ) = −
∑
r∈R

Dy,−rδΦr(z +Dy,rχ).

Note that (3.1) is exactly condition (ii) of the IFT. Thus, to apply the IFT, we only need to
establish that F ∈ C1,1.

Indeed, the following shows that |δχF |C0,1 ≤ C(2)
Φ :

|δχF (z′, χ′)− δχF (z′′, χ′′)|−1,∞

= sup
|η|1,∞=1

∣∣∣∑
r∈R

Dy,−r[δ
2Φr(z

′ +Dy,rχ
′)− δ2Φr(z

′′ +Dy,rχ
′′)]Dy,rη

∣∣∣
−1,∞

≤ sup
|η|1,∞=1

∥∥∥∑
r∈R

[δ2Φr(z
′ +Dy,rχ

′)− δ2Φr(z
′′ +Dy,rχ

′′)]Dy,rη
∥∥∥
∞

≤
∥∥∥∑
r∈R

δ2Φr(z
′ +Dy,rχ

′)− δ2Φr(z
′′ +Dy,rχ

′′)
∥∥∥
∞

= max
y∈P

∣∣∣∑
r∈R

δ2Φr(z
′ +Dy,rχ

′(y); y)− δ2Φr(z
′′ +Dy,rχ

′′(y); y)
∣∣∣

≤ max
y∈P

∑
r∈R
|δ2Φr(•, y)|C0,1

∣∣(z′ − z′′) +Dy,r(χ
′ − χ′′)

∣∣
≤
(

max
y∈P

∑
r∈R
|δ2Φr(•, y)|C0,1

)(
|z′ − z′′|+ |χ′ − χ′′|1,∞

)
,

where we used (2.1) (and its consequence |Dru|−1,∞ ≤ ‖u‖∞ ∀u ∈ U(L)). The bound on
|δzF |C0,1 is obtained in the same manner.

We hence get existence, uniqueness, and (3.8). Finally, (3.7) is obtained from |F |C0,1 ≤ C(1)
Φ

which can be proved by calculations similar to the above.
Proof of (b) Compute the first derivative:

δΦ0(z) =
R∑
r=1

〈δΦr(z +Dy,rχ(z)), 1 +Dy,rδχ(z)〉P =
R∑
r=1

〈δΦr(z +Dy,rχ(z)), 1〉P ,

the last step being due to (2.7). From here we get (3.9) by taking maximum over z and recalling
that with the assumed regularity of Φ0, we have that |Φ0|C0,1 = ‖δΦ0‖C.

The second derivative is

δ2Φ0(z) =
R∑
r=1

〈δ2Φr(z +Dy,rχ(z)), 1 +Dy,rδχ(z)〉P .

By taking C- and C0,1-norms of this expression we get (3.10) and (3.11), respectively.
The coercivity in a neighborhood of z = 0, (3.12), is a consequence of (3.3) and continuity

of δ2Φ0(z).
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Regularity of the atomistic and the homogenized problems

Define χε(z;x) := χ(z;x/ε) and χε∗(x) := χ∗(x/ε). We fix ρz and ρχ as given by the Theorem
3.3 and moreover assume that ρχ is chosen such that ρχ ≤ Const(1).

Theorem 3.4. There exist ρf > 0 and ρu > 0 such that:

(a) For all f ∈ BU−1,∞
#

(0, ρf ), the solution u of (2.5) exists and is unique in BU1,∞
#

(χε∗, ρu).

Moreover, u = u(f) ∈ C1,1(BU−1,∞
#

(0, ρf );BU1,∞
#

(χε∗, ρu)),

‖δfu‖C ≤ c−1
0 , and

|δfu|C0,1 ≤ Const
(
c0, C

(2)
Φ

)
.

(b) For all f ∈ BU−1,∞
#

(0, ρf ), the solution u0 of (2.8) exists and is unique in BU1,∞
#

(0, ρu).

Moreover, u0 = u0(f) ∈ C1,1(BU−1,∞
#

(0, ρf );BU1,∞
#

(0, ρu)) and

‖δfu‖C ≤ c−1
0 ,

|δfu0|C0,1 ≤ Const
(
c0, C

(2)
Φ

)
, and

|u0(f)|2,∞ ≤ c−1
0 ‖f‖∞ ∀f ∈ BU−1,∞

#
(0, ρf ). (3.13)

In addition, the corrected solution uc = I#(u0 + εχε(Du0)) is within BU1,∞
#

(χε∗, ρu).

(c) The following estimates hold:

2‖uc − u‖∞ ≤ |uc − u|1,∞ ≤ εConst
(
c−1

0 C
(1,1)
Φ

)
|u0|2,∞. (3.14)

‖u0 − u‖ ≤ εConst
(
c−1

0 C
(1,1)
Φ

)
|u0|2,∞ + εConst(p). (3.15)

Proof. Proof of (a) consists in a direct application of the IFT to (f, u) 7→ δE(u)−f . Assumption
(3.2) guarantees the condition (ii) of the IFT; and by doing a straightforward calculation, similar
to those in part (a) of Theorem 3.3, one can show the necessary regularity of this map. Finally,
one should notice that (0, χε∗) 7→ 0.

Proof of (b). It is a standard result (cf., e.g., [24]). The proof of all the statements except
(3.13) again consists in a direct application of the IFT to (f, u0) 7→ δE0(u0)− f and in all way
similar to the proof of (a).

To prove (3.13), we use coercivity of the homogenized problem, (3.12). For a fixed x ∈ L
choose θ ∈ conv{Du0(x), Du0(x+ε)} such that δΦ0(Du0(x+ε))−δΦ0(Du0(x)) = δ2Φ0(θ)(Du0(x+
ε)−Du0(x)). By construction ρu ≤ ρz, hence δ2Φ0(θ) ≥ c0 > 0, therefore

c0 |D2u0(x)| ≤ DδΦ0(Du0(x);x) = −Tf(x),

where we used (2.9), which upon taking maximum over x immediately yields (3.13).
The possibility of choosing ρu such that uc ∈ BU1,∞

#
(χε∗, ρu) follows from |χ(z)−χ∗|1,∞ < ρχ

for all |z| < ρz which is guaranteed by Theorem 3.3.
Proof of (3.14).
The first estimate in (3.14) is the Poincaré inequality (see, e.g., [24, Appendix A]), so we

only need to prove the second estimate. We start with using coercivity of δE and the fact that
u and u0 are solutions to (2.5) and (2.8):

c0|uc − u|1,∞ ≤ |δ2E(θ)(uc − u)|−1,∞ = |δE(uc)− δE(u)|−1,∞ = |δE(uc)− δE0(u0)|−1,∞,
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with some θ ∈ conv{uc, u} ⊂ BU1,∞
#

(χε∗, ρu). Thus we reduced the problem to estimating the

consistency error, |δE(uc)− δE0(u0)|−1,∞.
Compute δE(uc):

〈δE(uc), v〉L =
R∑
r=1

〈δΦε
r(Dru

c), Drv〉L

=
R∑
r=1

〈
δΦε

r

(
Dru

0 + εDrχ
ε(Du0)

)
, Drv

〉
L

=
R∑
r=1

〈
A>r δΦr

(
Dru

0(x) +Dy,rχ(Du0(x); y)

+ εDx,rTy,rχ(Du0(x); y) ; y
)∣∣
y=x/ε

, Dv(x)
〉
x∈L

(3.16)

and δE0(u0):

〈δE0(u0), v〉L =
〈〈 R∑

r=1

δΦr

(
Du0(x) +Dy,rχ(Du0(x); y) ; y

)〉
y∈P

, Dv(x)
〉
x∈L

. (3.17)

Notice that χ(z) satisfies the equationD>y
[∑R

r=1A
>
y,rδΦr(z+Dy,rχ(z))

]
= 0, hence

∑R
r=1A

>
y,rδΦr(z+

Dy,rχ(z)) is constant w.r.t. y, hence

R∑
r=1

A>y,rδΦr(z +Dy,rχ(z; y); y)
∣∣
y=x/ε

=
〈 R∑
r=1

A>y,rδΦr(z +Dy,rχ(z))
〉
P

=
〈 R∑
r=1

δΦr(z +Dy,rχ(z))
〉
P
. (3.18)

Thus, combining (3.16), (3.17), and (3.18) yields

〈δE(uc)− δE0(u0), v〉L

=
〈 R∑
r=1

[
A>r δΦr

(
Dru

0(x) +Dy,rχ
(
Du0(x)

)
+ εDx,rTy,rχ

(
Du0(x)

))
−A>y,rδΦr

(
Du0(x) +Dy,rχ

(
Du0(x); y

)
; y
)]
y=x/ε

, Dv(x)
〉
x∈L

=:
〈 R∑
r=1

Er, Dv
〉
L
,

and hence |δE(uc)− δE0(u0)|−1,∞ =
∥∥∑R

r=1 Er
∥∥
∞.

In what follows we omit the arguments of Du0 = Du0(x), χ(Du0) = χ(Du0(x); y), and
δΦr(•) = δΦr(•; y), and likewise we omit assigning y = x

ε before taking the U0,∞(L)–norm.
We thus estimate:

‖Er‖∞ =
∥∥A>r δΦr

(
Dru

0 +Dy,rχ
(
Du0

)
+ εDx,rTy,rχ

(
Du0

))
−A>y,rδΦr

(
Du0 +Dy,rχ

(
Du0

))∥∥
∞
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≤
∥∥A>r δΦr

(
Dru

0 +Dy,rχ
(
Du0

)
+ εDx,rTy,rχ

(
Du0

))
−A>r δΦr

(
Du0 +Dy,rχ

(
Du0

))∥∥
∞

+
∥∥A>r δΦr

(
Du0 +Dy,rχ

(
Du0

))
−A>y,rδΦr

(
Du0 +Dy,rχ

(
Du0

))∥∥
∞

=: ‖E(1)
r ‖∞ + ‖E(2)

r ‖∞,

The first term is estimated as:

‖E(1)
r ‖∞ =

∥∥A>r δΦr

(
Dru

0 +Dy,rχ
(
Du0

)
+ εDx,rTy,rχ

(
Du0

))
−A>r δΦr

(
Du0 +Dy,rχ

(
Du0

))∥∥
∞

≤
∥∥δΦr

(
Dru

0 +Dy,rχ
(
Du0

)
+ εDx,rTy,rχ

(
Du0

))
− δΦr

(
Du0 +Dy,rχ

(
Du0

))∥∥
∞

≤ |δΦr|C0,1

∥∥Dru
0 −Du0 + εDx,rTy,rχ

(
Du0

)∥∥
∞

≤ |δΦr|C0,1

(
1
2ε(r − 1)|u0|2,∞ + ε|χ|C0,1 |u0|2,∞

)
≤ εr|δΦr|C0,1 Const

(
c−1

0 C
(1)
Φ

)
|u0|2,∞,

where in the second last step we used (2.2) and ‖Ty,r‖∞ ≤ 1.

To estimate the term with E(2)
r we use (2.3):

‖E(2)
r ‖∞ =

∥∥A>r δΦr

(
Du0 +Dy,rχ

(
Du0

))
−A>y,rδΦr

(
Du0 +Dy,rχ

(
Du0

))∥∥
∞

≤ 1
2ε(r − 1)

∥∥DxδΦr

(
Du0 +Dy,rχ

(
Du0

))∥∥
∞

≤ 1
2ε(r − 1)|δΦr|C0,1

∥∥Dx(Du0 +Dy,rχ(Du0))
∥∥
∞

≤ 1
2ε(r − 1)|δΦr|C0,1

(
|u0|2,∞ +

∥∥DxDy,rχ(Du0)
∥∥
∞
)

≤ 1
2ε(r − 1)|δΦr|C0,1

(
|u0|2,∞ + 2|χ|C0,1 |u0|2,∞

)
≤ εr|δΦr|C0,1 Const

(
c−1

0 C
(1)
Φ

)
|u0|2,∞.

Summing the estimates for E(1)
r and E(2)

r will yield the stated result; it only remains to notice

that C
(1)
Φ ≤ C(1,1)

Φ which implies that C
(1)
Φ can be absorbed into C

(1,1)
Φ .

Proof of (3.15) reduces to showing ‖χε(Du0)‖∞ ≤ Const(p), since u0 − u = (uc − u) −
εχε(Du0) and ‖uc − u‖∞ has been estimated in (3.14). We have

‖χε(z)‖∞ = ‖χ(z)‖∞ ≤ ‖χ(z)− χ∗‖∞ + ‖χ∗‖∞,

where the first term can be estimated with the help of the Poincaré inequality and Theorem
3.3: ‖χ− χ∗‖∞ ≤ p

2 |χ− χ∗|1,∞ < p
2ρχ.

To estimate the second term, recall that due to Assumption 0, y+χ∗(y) is strictly increasing,
hence Dχ∗(y) ≥ −1 for all y ∈ Z, hence using Lemma 3.5 we estimate ‖χ∗‖∞ ≤ p−1

2 . The
estimate (3.15) is thus proved.

Lemma 3.5. Let w ∈ U#(P) be such that Dw(y) ≥ −1 for all y ∈ Z. Then ‖w‖∞ ≤ p−1
2 .

Proof. We use the following representation of w:

w(y) =

p∑
k=1

(
c− k

p

)
Dw(y − k),
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which is valid for all c ∈ R. Choose c = 1 and estimate

w(y) ≥
p∑

k=1

(
1− k

p

)
(−1) = −p−1

2 .

Likewise choose c = 1
p and obtain the upper bound w(y) ≤ p−1

2 .

4 Proof of the main results

In this section we prove the a posteriori and a priori error estimates.

4.1 A Posteriori Analysis

In order to apply our regularity results to the coarse-grained equations, we will make use of the
following conjugate operator I∗h : U → U as

〈I∗hw, v〉L := 〈w, Ihv〉h ∀v, w ∈ U . (4.1)

Note that I∗hw is supported on the nodes of the triangulation Nh for all w ∈ U , and the action
of I∗h on w ∈ U can be described as distributing values of w from the interior of the intervals
T ∈ Th to their endpoints.

Lemma 4.1 (The formulation equivalent to coarse-graining). The coarse-grained problem (2.14)
is equivalent to the following (fully atomistic) problem

find u ∈ U# s.t.: 〈δE0(u), v〉L = 〈I∗hF h, v〉L ∀v ∈ U1,1
# (L). (4.2)

Proof. Using the fact that the functions wξ for ξ ∈ L \ Nh, together with whξ for ξ ∈ Nh, form
a basis of U(L), rewrite (2.14) and (4.2) as, respectively,

find u ∈ U s.t.: u ∈ Uh (4.3a)

〈δE0(u), whξ 〉L = 〈F h, whξ 〉h ∀ξ ∈ Nh (4.3b)

〈u〉L = 0, (4.3c)

and

find u ∈ U s.t.: 〈δE0(u), wξ〉L = 〈I∗hF h, wξ〉L ∀ξ ∈ L \ Nh (4.4a)

〈δE0(u), whξ 〉L = 〈I∗hF h, whξ 〉L ∀ξ ∈ Nh (4.4b)

〈u〉L = 0. (4.4c)

The equations (4.3c) and (4.4c) are identical. The equations (4.3b) and (4.4b) are also equivalent
since 〈I∗hF h, whξ 〉L = 〈F h, Ihwhξ 〉h = 〈F h, whξ 〉h. It thus remains to prove equivalence of (4.3a)
and (4.4a).

Fix ξ ∈ L \ Nh. The right-hand side of (4.4a) is zero, since Ihwξ = 0 and hence

〈I∗hF h, wξ〉L = 〈F h, Ihwξ〉h = 0.

Evaluate the left-hand side of (4.4a):

0 = 〈δE0(u), wξ〉L = 〈δΦ0(Du), Dwξ〉L,

which in coordinate notation reads

δΦ0
(
Du(ξ − ε)

)
= δΦ0

(
Du(ξ)

)
. (4.5)

Since Φ0 is convex (cf. (3.3)), (4.5) is equivalent to Du(ξ − ε) = Du(ξ). Since ξ ∈ L \ Nh was
arbitrary, it is further equivalent to u ∈ Uh (cf. (2.13)).
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Lemma 4.1 motivates us to introduce the following auxiliary problem

find uaux ∈ U# s.t.: 〈δE(uaux), v〉L = 〈I∗hF h, v〉L ∀v ∈ U1,1
# (L). (4.6)

We can then apply Theorem 3.4 to (2.14) and (4.6) and immediately obtain the following
intermediate result:

Proposition 4.2. For all I∗hF h ∈ BU−1,∞
#

(0, ρf ), the solution uaux to (4.6) and the solution u0
h

to (2.14) both exist and are unique in BU1,∞
#

(χε∗, ρu) and BU1,∞
#

(0, ρu), respectively. Moreover,

the respective Lipschitz bounds uaux = uaux(I∗hF h) ∈ C1,1 and u0
h = u0

h(I∗hF h) ∈ C1,1, and the
estimates

|uaux − u|1,∞ ≤ c−1
0 |I

∗
hF

h − f |−1,∞, (4.7)

|u0
h|2,∞ ≤ c−1

0 ‖I
∗
hF

h‖∞, (4.8)

|uc
h − uaux|1,∞ ≤ εConst

(
c−1

0 C
(1,1)
Φ

)
|u0
h|2,∞, (4.9)

hold where uc
h is defined in (2.15).

It remains to further estimate the respective quantities in Proposition 4.2.
First, we notice that ε|u0

h|2,∞ is nothing but the standard error indicator with jumps over
elements. Indeed, for an arbitrary uh ∈ Uh,#, we have

|uh|2,∞ = max
x∈L
|D2uh(x)| = max

x∈Nh
|D2uh(x− ε)| = 1

ε max
x∈Nh

|Duh(x)−Duh(x− ε)|. (4.10)

Second, we split

|I∗hF h − f |−1,∞ ≤ |I∗hF h − I∗hfh|−1,∞ + |I∗hfh − f |−1,∞

= max
|vh|1,1=1

|〈F h, vh〉h − 〈f, vh〉L|+ |I∗hfh − f |−1,∞. (4.11)

Here the first term indicates how well F h approximates the action of exact force f on the finite
element space Uh,#. We estimate the second term using Lemma 4.3:

〈I∗hf, v〉L − 〈f, v〉L = 〈f, Ihv〉L − 〈f, v〉L = 〈f, Ihv − v〉L ≤ ‖(h− ε)f‖∞|v|1,∞. (4.12)

Lemma 4.3.
〈f, v − Ihv〉L ≤ ‖(h− ε)f‖∞|v|1,∞ ∀f ∈ U#, ∀v ∈ U .

where h = h(x) is defined by (2.12).

Proof. We have

〈f, v − Ihv〉L = ε
∑
T∈Th

∑
x∈T

f(x)[v − Ihv](x)

≤ ε
∑
T∈Th

max
x∈T
|f(x)|

∑
x∈T

∣∣[v − Ihv](x)
∣∣.

Fix T ∈ Th, let ξ and η (ξ < η) be the two endpoints of T , and estimate, for ξ < x < η,∣∣[v − Ihv](x)
∣∣ =

∣∣v(x)− η−x
η−ξ v(ξ)− x−ξ

η−ξ v(η)
∣∣

=
∣∣η−x
η−ξ (v(x)− v(ξ))− x−ξ

η−ξ (v(η)− v(x))
∣∣
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≤ |v(x)− v(ξ)|+ |v(η)− v(x)|

≤
∑

x′∈L∩[ξ,x)

|εDv(x′)|+
∑

x′∈L∩[x,η)

|εDv(x′)| = ε
∑
x′∈T
|Dv(x′)|.

If x = ξ then obviously [v − Ihv](x) = 0.
Thus,

〈f, v − Ihv〉L ≤ ε
∑
T∈Th

max
x∈T
|f(x)|

∑
x∈int(T )

ε
∑
x′∈T
|Dv(x′)|

= ε
∑
T∈Th

max
x∈T
|f(x)|(hT − ε)

∑
x′∈T
|Dv(x′)|

≤ ‖(h− ε)f‖∞ ε
∑
T∈Th

∑
x′∈T
|Dv(x′)|.

Proof of Theorem 2.2. Using (4.9) and (4.7) we can estimate

|uc
h − u|1,∞ ≤ |uc

h − uaux|1,∞ + |uaux − u|1,∞
≤ c−1

0 |I
∗
hF

h − f |−1,∞ + εConst
(
c−1

0 C
(1,1)
Φ

)
|u0
h|2,∞.

The proof is then completed using relations (4.10), (4.11), (4.12).

4.2 A Priori Estimate

Recall that for the a priori error estimate we assume the exact summation of the external force,
i.e., that 〈F h, vh〉h = 〈f, vh〉L. The a priori error estimate can essentially be obtained from the
a posteriori estimate (2.17) using (4.10) and (4.8). We only need to estimate |I∗hfh|−1,∞ and
‖I∗hfh‖∞ (the former is needed to quantify the condition I∗hfh ∈ BU−1,∞

#
(0, ρf )) in terms of f .

This is done in the following lemma.

Lemma 4.4.

|I∗hfh|−1,∞ ≤ |f |−1,∞.

‖I∗hfh‖∞ ≤ 1
ε‖hf‖∞.

Proof. To prove the first estimate, we need to prove the U1,1 stability of Ih:

|Ihv|1,1 ≤ |v|1,1. (4.13)

To prove it, start with expressing

|Ihv|1,1 = ε
∑
T∈Th

∑
x∈T
|DIhv(x)|.

Then fix T ∈ Th, let ξ and η (ξ < η) be the two endpoints of T , and estimate∑
x∈T
|DIhv(x)| =

∑
x∈T

|v(η)− v(ξ)|
η − ξ

= |v(η)− v(ξ)| =
∣∣∣∣∑
x∈T

Dv(x)

∣∣∣∣ ≤∑
x∈T
|Dv(x)|.

Hence (4.13) follows.
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Now we can easily estimate |I∗hfh|−1,∞:

〈I∗hfh, v〉L = 〈f, Ihv〉L ≤ |f |−1,∞|Ihv|1,1 ≤ |f |−1,∞|v|1,1,

hence |I∗hfh|−1,∞ ≤ |f |−1,∞.
To derive the second estimate, we test I∗hfh with an arbitrary v ∈ U :

〈I∗hfh, v〉L = 〈f, Ihv〉L = ε
∑
T∈Th

∑
x∈T

f(x)[Ihv](x) ≤ ε
∑
T∈Th

max
x∈T
|f(x)|

∑
x∈T
|Ihv|(x)

Fix T ∈ Th, let ξ and η (ξ < η) be the two endpoints of T , and estimate

ε
∑
x∈T
|Ihv|(x) ≤ ε

∑
x∈T

(η−x
η−ξ |v(ξ)|+ x−ξ

η−ξ |v(η)|
)
≤ hT

(
1
2 |v(ξ)|+ 1

2 |v(η)|
)
.

Thus,

〈I∗hfh, v〉L ≤
∑
T∈Th

max
x∈T
|f(x)|hT

(
1
2 |f(ξ)|+ 1

2 |v(η)|
)

≤ ‖hf‖∞
∑
T∈Th

(
1
2 |f(ξ)|+ 1

2 |v(η)|
)

= ‖hf‖∞
∑
x∈Nh

|v(x)| ≤ ‖hf‖∞
∑
x∈L
|v(x)| = 1

ε‖hf‖∞‖v‖1.

The first estimate of the above lemma means that f ∈ BU−1,∞
#

(0, ρf ) implies I∗hfh ∈
BU−1,∞

#
(0, ρf ).

Proof of Theorem 2.3. Follows from (2.17) using (4.10), (4.8), and Lemma 4.4.

5 Numerical Examples

We solve numerically several model problems to illustrate the performance of HQC. We consider
a nonlinear one-dimensional model problem (Section 5.1), followed by a two-dimensional linear
problem (Section 5.2).

The aim of the numerical experiments is twofold. First, we verify numerically the sharpness
of the obtained error for the 1D case. Second, we confirm that the HQC convergence result
obtained for 1D is valid in higher dimensions.

5.1 1D

In the first numerical example we solve the problem (2.5) with the period of spatial oscillation
p = 2 and number of interacting neighbors R = 3. The interaction potential is chosen as the
Lennard-Jones potential

Φε
r(z;x) = −2

(
z
lx/ε

)−6
+
(

z
lx/ε

)−12
(1 ≤ r ≤ R)

with the varying equilibrium distance

ly =

{
1 y is even
9/8 y is odd.
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Figure 1: Strain Du(x) of the solution of the 1D linear problem: the schematically shown
complete solution (left) and the closeup of the micro-structure for 31 atoms (right).
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Figure 2: Results for the 1D problem: error of the post-processed HQC solution uc
h. The error

behaves in accordance with Theorem 2.3.

The number of atoms is N = 214 = 16384, and the external force is taken as

f(x) = 50 sin (1 + 2πx) .

The (microscopic) strain Du(x) for such problem is shown in Fig. 1.
Figure 2 is aimed to illustrate that the estimate in Theorem 2.3 is sharp. Indeed, it can be

seen that the corrected homogenized HQC solution uc
h converges to the exact solution with the

first order in h.

5.2 2D

To illustrate the 2D discrete homogenization, we apply it to the following model problem. The
atomistic lattice is L = (0, 1]2 ∩ εZ2 with ε = 1/N , the atomistic energy is

E(u) = ε2
∑
x∈L

∑
r∈R

ψr,x
ε

1
2

(u(x+εr)−u(x)
ε

)2
,

where the set of neighbors is defined by R = {(1, 0), (1, 1), (0, 1), (−1, 1)} (we omit the neighbors
that can be obtained by reflection around (0, 0)) and the interaction coefficients as

ψ(1,1),y = ψ(1,−1),y = k3, ψ(1,0),y = ψ(0,1),y =

{
k1 y1 + y2 is even
k2 y1 + y2 is odd.

Such material is illustrated in Fig. 3.
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k3

k2

k1

Figure 3: Illustration of a 2D model problem with heterogeneous interaction.
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Figure 4: Atomic equilibrium configuration for N1 = N2 = 64 for the 2D test case. Deformation
of the whole material (left) and a close-up (right).

This example was motivated by the study of Friesecke and Theil [15], where a similar model
was considered. Friesecke and Theil considered the model with springs similar to the one
illustrated in Fig. 3, which however was nonlinear due to nonzero equilibrium distances of
the springs (so that the energy of the spring between masses x1 and x2 is proportional to
|x1 − x2|2 − l20, where l0 is the equilibrium distance). They found that with certain values of
parameters the lattice looses stability to non-Cauchy-Born disturbances and the lattice period
doubles (thus the lattice ceases to be a Bravais lattice).

The results, given with no details of actual derivation, are the following: The period of spatial
oscillations in this case is (2, 2). The function χ has the form χ = χ(Yj) = (−1)j1+j2 k1−k2

4(k1+k2)I

(here I is the 2× 2 identity matrix).
We set the values of parameters ε = 2−11, N1 = N2 = 211, k1 = 1, k2 = 2, k3 = 0.25, and

the external force

f(x) = 10e− cos(πx1)2−cos(πx2)2
(

sin(2πx1)
sin(2πx2)

)
− f̄ ,

where f̄ is determined so that the average of f(x) is zero. The total number of degrees of
freedom of such system is approximately 8 · 106. The solution for such test case is shown in fig.
4 (the illustration is for N1 = N2 = 64).

The atomistic domain is triangulated using t2 nodes and K = 2t2 triangles (t = 2, 4, . . . , 210).
In each triangle Sk a sampling domain Ik is chosen, each sampling domain contains four atoms
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Figure 5: Illustration of a 2D triangulation.
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Figure 6: Results for the 2D test case: error depending on the mesh size h. The error behaves
in accordance with the 1D analysis (Theorem 2.3).

(see illustration in fig. 5). The number of degrees of freedom of the discretized problem is 2t2.
The error of the solution for different mesh size h (h = 0.5, 0.25, . . . , 2−10) is shown in Fig.

6. The results are essentially the same as in 1D case: the method convergences with the first
order of mesh size in the U1,∞-norm.

Acknowledgements. The work of A. Abdulle and A. V. Shapeev was supported in part by
the Swiss National Science Foundation under Grant 200021 134716/1. The work of P. Lin was
partially supported by the Leverhulme Trust Research Fellowship (No RF/9/RFG/2009/0507).

A Implicit Function Theorem

The following modification of the implicit function theorem (IFT) of Hildebrandt and Graves
(1927), (cf. Zeidler 1986, p. 150) is used repeatedly in our analysis.

Theorem A.1. Let X, Y , and Z be Banach spaces. Suppose that:

(i) F ∈ C1,1(U ;Z) for a neighborhood U ⊂ X × Y of (x0, y0) and F (x0, y0) = 0.

(ii) δyF (x0, y0)−1 exists and is bounded.
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Then there exist ρx > 0 and ρy > 0, such that

(a) For each x ∈ Bx(x0, ρx) there exists a unique solution y = y(x) ∈ By(y0, ρy) of F (x, y) =
0.

(b) y = y(x) is Lipschitz with the constant

|y|C0,1 ≤ b0‖δxF‖C ≤ b0|F |C0,1 ,

where b0 := 2‖δyF (x0, y0)−1‖. Note that ‖δxF‖C ≤ |F |C0,1 due to the fact that F is
continuously differentiable.

(c) The derivative δxy exists and is Lipschitz with the constant

|δxy|C0,1 ≤ Const
(
b0‖δxF‖C, b0|δxF |C0,1 , b0|δyF |C0,1

)
.

Proof of estimates in (b) and (c). We assume the existence and smoothness of y(x) is proved.
Denote b0 := 2‖(δyF (x0, y0))−1‖. Since δyF (x0, y0) is continuous in the neighborhood of

(x0, y0)), we can assume that ρx and ρy are chosen small enough so that ‖(δyF (x, y))−1‖ ≤ b0
in Bx(x0, ρx)×By(y0, ρy).

Denote Fx := δxF , Fy := δyF , yx := δxy. We then have Fx(x, y(x)) + Fy(x, y(x))yx(x) = 0
for all x ∈ Bx(x0, ρx), or yx(x) = −Fy(x, y(x))−1Fx(x, y(x)).

To prove (b), estimate

‖yx(x)‖ ≤ ‖Fy(x, y)−1‖‖Fx(x, y)‖ ≤ b0‖Fx‖C.

To show that yx(x) is Lipschitz, fix arbitrary x1, x2 ∈ Bx(x0, ρx), denote y1 = y(x1) and
y2 = y(x2), and estimate

‖yx(x2)− yx(x1)‖ = ‖ − Fy(x2, y2)−1Fx(x2, y2) + Fy(x1, y1)−1Fx(x1, y1)‖
≤ ‖Fy(x2, y2)−1[Fx(x2, y2)− Fx(x1, y1)]‖

+ ‖[Fy(x2, y2)−1 − Fy(x1, y1)−1]Fx(x1, y1)‖
≤ ‖Fy(x2, y2)−1‖‖Fx(x2, y2)− Fx(x1, y1)]‖

+ ‖Fy(x2, y2)−1[Fy(x1, y1)− Fy(x2, y2)]Fy(x1, y1)−1‖‖Fx(x1, y1)‖
≤ b0|Fx|C0,1(‖x2 − x1‖+ ‖y2 − y1‖)

+ b20|Fy|C0,1(‖x2 − x1‖+ ‖y2 − y1‖)‖Fx‖C.

It remains to notice that ‖y2 − y1‖ ≤ b0‖Fx‖C ‖x2 − x1‖ due to part (b).
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