
GRAPHS ADMITTING k-NU OPERATIONS.

PART 1: THE REFLEXIVE CASE
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Abstract. We describe a generating set for the variety of reflexive graphs
that admit a compatible k-ary near-unanimity operation; we further delin-

eate a very simple subset that generates the variety of j-absolute retracts; in

particular we show that the class of reflexive graphs with a 4-NU operation
coincides with the class of 3-absolute retracts. Our results generalise and en-

compass several results on NU-graphs and absolute retracts.

1. Introduction

Let k ≥ 3 be an integer. A k-ary operation f is a near-unanimity (NU) operation
if it satisfies, for every 1 ≤ i ≤ k the identity

f(x, . . . , x, y︸︷︷︸
i

, x, . . . , x) = x.

Relational structures invariant under near-unanimity operations possess remarkable
properties; algebras and graphs admitting NU operations, and especially the better
known case of 3-ary or majority operations, have been studied extensively ([1], [2],
[3], [4], [5], [9], [10], [13], [21], [24], [25], [29], [33]).

The notion of NU operation is apparently due to Huhn (see [1]) and arises nat-
urally in the classification of 2-element algebras (see [30]). Baker and Pixley were
the first to give several conditions on equational classes of algebras equivalent to
the existence of a near-unanimity term [1]. Equational classes with an NU term are
known to be congruence-distributive, a very well-behaved and widely studied fam-
ily of varieties of algebras; it has recently been proved that for algebras stemming
from structures of finite signature, congruence-distributivity is actually equivalent
to the presence of an NU term [3]. NU operations have also been studied in the
context of algebraic dualities (see for instance [9]). Furthermore structures admit-
ting compatible NU operations (a.k.a. NU polymorphisms) are well-behaved from
a computational complexity point of view: in their seminal 1993 paper, Feder and
Vardi proved that constraint satisfaction problems (CSPs) whose constraints are
invariant under an NU operation can be solved in polynomial time via the query
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language Datalog; we now know that in fact these CSPs are describable in Linear
Datalog, and in particular are solvable in nondeterministic Logspace [4].

Parallel to the study of NU operations on algebras, the concept of absolute retract
was being developed in the framework of graphs. The graph H is an absolute retract
(with respect to isometry) if every isometric embedding of H is a coretraction,
where the metric is the usual graph distance. P. Hell showed that in the category
of bipartite graphs with edge-preserving maps, the absolute retracts are precisely
the retracts of products of paths [14]. An analogous result was proved for reflexive,
undirected graphs in [19] by viewing graphs as finite metric spaces over a Heyting
algebra (see also [28, 18]). In the same paper, Jawhari, Misane and Pouzet show
that the reflexive (di)graphs that are absolute retracts are precisely those admitting
a compatible majority operation:

Theorem 1.1. [19] Let H be a reflexive graph. Then the following conditions are
equivalent:

(1) H admits a compatible majority operation;
(2) H is an absolute retract;
(3) H is a retract of a product of paths.

The first result of this form connecting NU operations and absolute retracts is
attributed to I. Rival who had shown that posets admitting a majority operation are
the retracts of products of fences (see [19, 29]). The analog for bipartite, undirected
graphs is due to Bandelt [2]. It should be noted that for general reflexive digraphs,
the class of absolute retracts is strictly larger than that of retracts of products of
paths (but see [20] for an analogous description.)

Although some work was done in trying to generalise the classification results for
majority strutures to those admitting NU operation of higher arity (see for instance
[5], [10], [29], [31] and [32]), for a while the problem seemed quite hopeless. One
major obstacle is that the metric point of view used to prove the results in the
majority case seems impossible to adapt for arities 4 and up, and a new approach
seemed necessary. The existence of a finite duality, for any core relational structure,
implies the existence of an NU polymorphism [21], but the converse is not true in
general. The converse does hold for reflexive graphs, however, and this yields the
new approach that was needed. In the present paper we exploit the finite duality
of NU graphs to provide a family of generating graphs using tree duals [27]. The
converse also holds for strongly bipartite digraphs, and in [12], the sequel to this
paper, we use a similar approach to provide families that generate the classes of
strongly bipartite digraphs, and simple graphs, that admit NU polymorphisms.

The notion of absolute retract with respect to isometry has been generalised to
the notion of absolute retract with respect to holes (see [6], [14], [18] and [23]).
Roughly speaking, a j-hole in a graph is an empty intersection of j disks which
is minimal with respect to this property. A graph is a j-absolute retract if it is
a retract of any graph in which it embeds in such a way that its j′-holes are not
filled, for all j′ ≤ j. It is known that a j-absolute retract admits a (j + 1)-ary
NU polymorphism [23] and that the converse holds for j = 2. For j > 3 there are
graphs admitting a j + 1-ary NU operation that are not absolute retracts, but it
has been a long-standing open problem to determine the case j = 3: we settle this
here by showing that 3-absolute retracts are precisely the graphs admitting a 4-NU
polymorphism (Theorem 5.17).
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We now outline briefly the contents of the paper. We consider only reflexive,
undirected graphs; the sequel [12] gathers our results in the case of strongly bipar-
tite graphs and simple graphs. Section 2 contains preliminary results and definitions
on relational structures, graphs and polymorphisms. Section 3 describes the con-
nection between NU operations and finite duality: the main result of this section,
Theorem 3.9, shows that every graph admitting a k-ary NU polymorphism is a
retract of a product of reflexive duals of trees with at most k− 1 leaves. In Section
4 we describe the building blocks explicitly in two different ways, as subgraphs of
hypercubes (Corollaries 4.4 and 4.8.) In Section 5 we prove that absolute retracts
are precisely the graphs admitting polyad duality, where polyads are subdivisions of
stars, i.e. trees obtained by glueing several paths at a unique central vertex (The-
orem 5.7). We also show that duals of non-polyad trees are not absolute retracts,
and that the class of reflexive graphs with a 4-NU operation coincides with the class
of 3-absolute retracts. (Theorem 5.17).

We wish to thank the anonymous referees for very helpful comments.

2. Preliminaries

2.1. Structures and homomorphisms. We refer the reader to [8] for basic no-
tation and terminology. In the present paper we will use blackboard fonts such as
G, H, etc. to denote relational structures and their latin equivalent G, H, etc. to
denote their respective universes. A signature τ is a (finite) set of relation symbols
with associated arities. We say that H = 〈H;R(H)(R ∈ τ)〉 is a relational structure
of signature τ if R(H) is a relation on H of the corresponding arity, for each relation
symbol R ∈ τ ; the relations R(H) are called the basic or fundamental relations of
the structure.

Let G and H be structures of signature τ . A homomorphism from G to H is a
map f from G to H such that f(R(G)) ⊆ R(H) for each R ∈ τ . We write G→ H to
indicate there exists a homomorphism from G to H. A homomorphism r : H → R
is a retraction if there exists a homomorphism (called a coretraction) e : R → H
such that r ◦ e is the identity on R and we say that R is a retract of H and write
R E H. A structure H is called a core if every homomorphism from H to itself is
a permutation on H; note that a retract of H of minimum cardinality is a core,
and is unique up to isomorphism [17], and hence we may speak of the core of the
structure H. We denote by CSP(H) the class of all τ -structures G that admit a
homomorphism to H.

Throughout this paper we consider the usual product of τ -structures, namely if
G and H are τ -structures then their product is the τ -structure G×H with universe
G ×H such that, for every R ∈ τ of arity r, ((g1, h1), · · · , (gr, hr)) ∈ R(G × H) if
and only if ((g1, . . . , gr), (h1, . . . , hr)) ∈ R(G)×R(H). We shall consider notations
such as

∏n
i=1 Gi and Hk to be self-evident.

Let H be a τ -structure. The retraction problem for H is the following: given a
structure G containing a copy of H, decide if G retracts to H. It is in fact equivalent
under positive first-order reductions to the one-or-all list-homomorphism problem
for H (see [11], and the paragraph preceding Lemma 5.6 below): an input consists
of a τ -structure G with certain vertices coloured by a pre-assigned value from H,
and the problem is to determine if there exists a homomorphism from G to H that
extends these values. For brevity’s sake we shall still refer to the latter as the
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retraction problem. Formally, we “add constants” to structures, i.e. we add, as
basic unary relations to a given structure, each of its one-element sets:

Definition 2.1. Let H be a τ -structure. For each h ∈ H, let Sh be a unary relation
symbol. Let τH = τ ∪ {Sh : h ∈ H}, and let Hc denote the τH-structure obtained
from H by adding all relations Sh(Hc) = {h}. The problem CSP (Hc) is called the
retraction problem for H. Let G be a τH-structure. We say that a vertex x ∈ G is
coloured if it belongs to some unary relation Sh(G) and refer to h as its colour (a
vertex may have several colours). Let Gτ denote the (reduct) τ -structure obtained
from G by simply removing the relations indexed by the Sh.

Let H be a non-empty set, let θ be an m-ary relation on H and let f : Hk → H
be a k-ary operation on H. We say that f preserves θ if the following holds: if
the m × k matrix M has each column in θ, then applying f to the rows of M
yields a tuple of θ. If H is a τ -structure, and f preserves each of its basic relations
(equivalently, if f is a homomorphism from Hk to H), we say that f is compatible
with H, or that H admits f ; one also says that f is a polymorphism of H, see [8]
and [30] for instance. Recall that f is a k-ary near-unanimity (k-NU) operation if
it satisfies, for every 1 ≤ i ≤ k the identity

f(x, . . . , x, y︸︷︷︸
i

, x, . . . , x) = x.

A structure is said to be k-NU if it admits a k-NU operation.

2.2. Graphs and digraphs. A digraph is a relational structure equipped with a
single, binary relation. A graph H is a relational structure H = 〈H,E(H)〉 where
E(H) is a binary relation which is symmetric, i.e. (x, y) ∈ E(H) if and only if
(y, x) ∈ E(H). The graph H is reflexive (irreflexive) if (x, x) ∈ E(H) ((x, x) 6∈ E(H))
for all x ∈ H.

Let G be any digraph; then we let Gu denote the underlying undirected graph,
i.e. E(Gu) consists of all pairs (x, y) such that (x, y) or (y, x) is in E(G). Let
H be a digraph. We say H is connected if the graph Hu is connected; if H is not
connected, a set G of vertices of H is a connected component of H if it is a connected
component of Hu.

The next result allows us to consider only connected graphs in the sequel.

Proposition 2.2 ([5], Prop 2.1). Let H be a reflexive graph. Then H admits an
NU operation of arity k if and only if each of its subgraphs induced by a connected
component does.

3. NU operations and Finite Duality

Let H be a τ -structure. We say that CSP(H) has finite duality if there exist
finitely many τ -structures T1, . . . ,Ts such that the following holds: for every τ -
structure G, there is no homomorphism from G to H precisely if there is some Ti
that admits a homomorphism to G. The set {T1, . . . ,Ts} is called a duality for H.

Constraint satisfaction problems that have finite duality are arguably the sim-
plest from a complexity-theoretic point of view, and possess many intriguing prop-
erties [21].

The key connection we need is:
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Theorem 3.1 ([22]). Let H be a connected reflexive graph. Then the following are
equivalent:

(1) H admits an NU operation;
(2) CSP(Hc) has finite duality.

3.1. Trees and Duals. We shall require the notion of a τ -tree (see [21].) Let T
be a τ -structure. We define the incidence multigraph Inc(T) of T as the bipartite
multigraph with parts T and Block(T), where the latter consists of all pairs (R, r)
such that R ∈ τ and r ∈ R(T), and with edges ea,i,B joining a ∈ T to B =
(R, (x1, . . . , xr)) ∈ Block(T) when xi = a. Roughly speaking, one colour class
consists of all vertices of T, the other (Block(T)) consists of all tuples that appear
in the relations R(T) (with repetitions: if a tuple appears in several relations it
will appear as many times in the multigraph); a vertex t is adjacent to a tuple if it
appears in it, with an edge for each appearance. The structure T is a τ -tree if its
associated multigraph is a tree, i.e. it is connected and acyclic.

Theorem 3.2 ([26]). Let H be a τ -structure.

(1) If H has finite duality then there exists a duality for H consisting of finitely
many τ -trees;

(2) (Existence of duals) Let T be a finite family of τ -trees. Then there exists a
τ -structure D such that T is a duality for D.

We shall now give an explicit description, in the case of reflexive graphs, of the
duals whose existence is guaranteed by Theorem 3.2 (2). For the remainder of this
section and unless otherwise mentioned, the signature τ will be that of digraphs,
i.e. it consists of a single binary relation symbol. Notice that in this case, if a
τ -structure is a τ -tree then 1- and 2-cycles are forbidden, i.e. it has no loops nor
any symmetric edges.

Definition 3.3. Let H be a τ -structure and let T be a τH-tree. The τH-structure
D(T) has universe

{f : T → Block(T) : [t, f(t)] ∈ E(Inc(T)) for all t ∈ T},
and (f, g) is not an edge of D(T) if there exists an edge e = (s, t) of T such that
f(s) = e = g(t); the map f does not belong to Sh(D(T)) if there exists some t ∈ Sh
such that f(t) = (t).

Theorem 3.4 ([27]). Let H be a τ -structure and let T be a τH-tree. Then {T} is
a duality for D(T). if T1, . . . ,Ts are τH-trees, then {T1, . . . ,Ts} is a duality for∏s
i=1D(Ti).

3.2. Reflexive Duals. If D is a digraph with at least one loop, we let Dr denote
the reflexive, undirected subgraph of D whose vertices are the loops of D, and whose
edges are the pairs (u, v) such that both (u, v) and (v, u) are arcs of D.

Lemma 3.5. Let G,H be digraphs each containing at least one loop.

(1) (G×H)r = Gr ×Hr;
(2) If GEH then Gr EHr.

Proof. (1) is straightforward. For (2) notice that any edge-preserving map will take
loops into loops and symmetric edges into symmetric edges, hence the retraction
and coretraction on G and H restrict to the desired maps on Gr and Hr. �
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Figure 1. A digraph D and its graph Dr.

Figure 2. The dual Dr(T) for a path T of length 6, and the
representation of its vertices as functions fi on the vertices of T.
A red arrow indicates the value of fi on a given vertex.

Let H be a reflexive graph, and let T be a τH-tree. Notice that (Tτ )u is a tree.
We say T is elementary if either (a) it consists of a single vertex lying in two distinct
unary relations Sh and Sh′ , or (b) its coloured elements are precisely the leaves of
(Tτ )u, each lying in exactly one unary relation Sh.

Notice that if T is an elementary τH-tree then D(T) contains at least one loop:
indeed, if T has a single vertex lying in two distinct unary relations, then clearly its
dual contains two loops. Now suppose that T has at least two vertices. Choose any
non-leaf vertex of T and view it as a root, i.e. order the tree bottom up starting at
this particular vertex. Clearly we may define a map f that assigns to any non-leaf
vertex x an edge f(x) leading to a neighbour higher up in the ordering, and for any
leaf x define f(x) to be the unary relation that contains x. It is immediate that f
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is a loop. It follows that D(T)r is well-defined; for convenience, we will denote it
by Dr(T). Graphs of this form we call reflexive duals.

a

a

b

c
d

Figure 3. An elementary tree.

Theorem 3.6. Let H and K be two reflexive graphs, let S be an elementary τH-tree,
and let T be an elementary τK-tree such that (Sτ )u and (Tτ )u are isomorphic. Then
Dr(S) and Dr(T) are isomorphic reflexive graphs.

Proof. Since S and T are elementary and (Sτ )u and (Tτ )u are isomorphic, it is
clear that their incidence multigraphs are isomorphic, and this induces a one-to-
one correspondence between the universes of the duals. Since the edge structure of
the reflexive duals does not depend on the unary relations on the trees, it is clear
that this correspondence preserves edges (and in particular loops) and hence the
graphs Dr(S) and Dr(T) are isomorphic. �

The last result states that the reflexive dual of an elementary τH-tree S is de-
termined completely by the underlying graph tree (Sτ )u. We may therefore define,
without ambiguity, the reflexive dual Dr(T) of a (graph) tree T to be Dr(S) where
S is any elementary τH-tree with (Sτ )u = T for any τ -structure H. Let f be an
element of the reflexive dual Dr(T), i.e. a loop in the dual. By definition of the
dual and of elementary τ -tree, it is immediate that f may be viewed as a map from
T to E(T) ∪ T such that

(1) for every t ∈ T , f(t) is either an edge of T incident with t or f(t) = t (if t
is a leaf),

(2) there is no edge e = (s, t) such that f(s) = e = f(t).

3.3. Colours, Leaves and Arity of NU polymorphisms. Let τ be any sig-
nature and let G and H be τ -structures. We say that G is a substructure of H if
G ⊆ H and R(G) ⊆ R(H) for all R ∈ τ ; if furthermore G 6= H we say G is a proper
substructure of H. Let U and H be τ -structures. We say that U is an obstruction
of H if there is no homomorphism from U to H; furthermore if every proper sub-
structure of U admits a homomorphism to H we say U is a critical obstruction of
H. The following useful characterisation of NU structures is a slight adaptation of
a result of Zádori [32] (see also [13]).

Lemma 3.7. Let H be a τ -structure. Then the following are equivalent:

(1) H is a k-NU structure;
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(2) Hc is a k-NU structure;
(3) every critical obstruction of Hc has at most k − 1 coloured elements.

Proof. (1) ⇔ (2): immediate since NU operations are idempotent, i.e. they satisfy
f(x, . . . , x) = x for all x, and hence preserve every one-element unary relation.

(2) ⇒ (3): suppose that Hc admits an NU operation f of arity k; then it admits
NU operations of every arity larger than k (just add fictitious variables). Hence it
will suffice to prove that Hc has no critical obstruction with k coloured elements.
If U were such an obstruction, with vertices ti ∈ Shi

(U) for 1 ≤ i ≤ k, let Ui
be the substructure obtained from U by removing the vertex ti from the relation
Shi(U). Since U is critical we have homomorphisms fi : Ui −→ Hc for all 1 ≤ i ≤ k.
Define a map φ : U −→ H by φ(x) = f(f1(x), . . . , fk(x)). Obviously f preserves
all relations, including the Sh since if x = ti, then fj(x) = hi for all j 6= i and since
f is an NU operation it follows that φ(ti) = hi.

(3)⇒ (2): suppose that every critical obstruction of Hc has at most k−1 coloured
elements. Consider the τH-structure G where Gτ = (Hc)k and for each h ∈ H, the
unary relation Sh(G) consists of all tuples (x1, . . . , xk) where at least k − 1 of the
entries are equal to h. Obviously there exists a homomorphism from G to Hc if and
only if Hc admits a k-ary NU; if it does not then there exists a critical obstruction
U admitting a homomorphism to G, and by hypothesis it has only k − 1 coloured
vertices. But if xi ∈ Shi for 1 ≤ i ≤ k − 1 are any k − 1 coloured vertices in G
then there exists a coordinate j such that the j-th coordinate of xi is equal to hi
for every 1 ≤ i ≤ k − 1; hence the j-th projection would be a homomorphism from
U to Hc, a contradiction. �

The next result states that the reflexive dual of a tree with k − 1 leaves admits
a k-ary NU operation: we defer the details of its proof to section 4 where we give
an explicit description of such an operation.

Lemma 3.8. Let k ≥ 3 and let T be a tree with k−1 leaves. Then Dr(T) is k-NU.

Proof. Immediate by Lemma 4.2 (2) and Lemma 4.3, once we notice the following
easy fact: if R is a retract of G and G is k-NU then R is k-NU. Indeed, if f is a
k-NU operation on G and r is a retraction of G onto R then the restriction of r ◦ f
to Rk satisfies the desired properties. �

3.4. Representation of k-NU Graphs by Reflexive Duals.

Theorem 3.9. Let k ≥ 3 and let H be a connected reflexive graph. Then the
following conditions are equivalent:

(1) H is k-NU;
(2) there exist trees T1, . . . ,Ts, each with at most k − 1 leaves, such that

HE
s∏
i=1

Dr(Ti).

Proof. (2)⇒ (1): if Ti is a tree with at most k−1 leaves, then by Lemma 3.8 D(Ti)
admits a k-NU polymorphism. Since each of its factors is k-NU the product of the
D(Ti) is k-NU: just define the operation coordinatewise in the obvious fashion.
Finally, as H is a retract of a k-NU graph, it is itself k-NU as noted above in the
proof of Lemma 3.8.
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(1) ⇒ (2): if H is k-NU then CSP (Hc) has finite duality by Theorem 3.1,
and hence Hc has a duality {T1, . . . ,Ts} that consists of finitely many τH-trees
by Theorem 3.2. Notice that we may assume that each tree is in fact a critical
obstruction: indeed, for each i we may find an induced substructure T′i of Ti which
is minimal with the property that T′i 6→ Hc; in particular each T′i is a critical
obstruction. It is also easy to see that each T′i is a τH-tree: since Inc(T′i) is contained
in Inc(Ti) it is acyclic, and it must also be connected because of the minimality
condition. It is immediate that {T′1, . . . ,T′s} is also a finite duality for CSP (Hc).
So we now assume that each Ti is critical. By Lemma 3.7 each Ti has at most k−1
coloured elements. By Theorem 3.4 we have that

Hc →
s∏
i=1

D(Ti) and

s∏
i=1

D(Ti)→ Hc.

Since Hc has every one-element subset as a basic relation, it is trivially a core,
and hence it is the core of the product of the D(Ti), and in particular a retract of
this product. Thus

Hc E
s∏
i=1

D(Ti)

from which we get

HE

[
s∏
i=1

D(Ti)

]τ
.

By Lemma 3.5 and the obvious fact that taking reducts commutes with the product,
we conclude that

H = Hr E

([
s∏
i=1

D(Ti)

]τ)
r

=

s∏
i=1

Dr(Ti).

The last thing to show is that the τH-trees Ti are elementary. Let T be some Ti.
Recall that (Tτ )u is a tree. Suppose that T has at least two vertices; since it is a
critical obstruction it is obvious that any vertex lying in some Sh can only belong
to one of them. Next, suppose that (Tτ )u has a leaf which is not coloured. Remove
this vertex from T to obtain T′. Since T is a critical obstruction there exists some
homomorphism from T′ to Hc, and since H is reflexive we can clearly extend this
homomorphism to T, a contradiction. Finally suppose that T has some vertex x
lying in Sh but is not a leaf of (Tτ )u. Choose an edge e incident with x, and
consider the substructure S of T which is induced by all vertices reachable from x
via e (including x), and let U denote the substructure induced by all other vertices
together with x. Since T is a critical obstruction there exist homomorphisms from S
and U to Hc; since both must have value h on x, their union defines a homomorphism
from T to Hc, a contradiction. Thus the coloured vertices of T are precisely the
leaves of (Tτ )u and they each receive exactly one colour.

�

4. Coordinatisations

We describe two different coordinatisations of reflexive duals.
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4.1. Coordinatisation in the 3-hypercube. We describe a simple coordinati-
sation. Downside: the case of paths and polyads is not transparent.

Definition 4.1. Let T be a tree with colour classes U and D and edges e1, . . . , em.
Define a graph K(T) as follows: its vertices are the tuples (x1, . . . , xm) such that

(1) xi ∈ {0, 1, 2} for every 1 ≤ i ≤ m;
(2) for each u ∈ U of degree greater than 1, xi = 2 for exactly one edge ei

incident with u;
(3) for each d ∈ D of degree greater than 1, xi = 0 for exactly one edge ei

incident with d.

Tuples (x1, . . . , xm) and (y1, . . . , ym) are adjacent if |xi − yi| ≤ 1 for all i.
The graph K0(T) in defined in the same manner, except we replace “exactly one”

by “at least one” in conditions (2) and (3) above.

Figure 4. A tree T, the graph K(T) and K0(T) (K(T) plus the
blue vertices)

Lemma 4.2. Let T be a tree with k − 1 leaves and m edges.

(1) K(T)EK0(T);
(2) the graph K0(T) admits a k-ary NU polymorphism.

Proof. Let K = K(T) and K0 = K0(T); let U and D denote the colour classes of T.
(1) If (x1, . . . , xm) is a vertex of K0 let r(x1, . . . , xm) = (y1, . . . , ym) be defined

as follows: if xi = 0, and ei is incident with a vertex d ∈ D such that there exists
an edge ej incident with d with j < i and xj = 0, or if xi = 2, and ei is incident
with a vertex u ∈ U such that there exists an edge ej incident with u with j < i
and xj = 2, then let yi = 1; otherwise let yi = xi. It is clear that r fixes every
vertex in K. Next we show that (y1, . . . , ym) is a vertex of K: if yi = 0, then xi = 0;
suppose ei is incident with d ∈ D of degree larger than 1, and let ej be incident
with d. Suppose first that j < i: since yi 6= 1, xj 6= 0, hence yj 6= 0. Now suppose
that j > i: Since xi = 0, if xj = 0 then yj = 1, otherwise yj 6= 0. The argument
if yi = 2 is similar. Finally we show that r is edge-preserving. Suppose that
r(x1, . . . , xm) = (y1, . . . , ym) and r(x′1, . . . , x

′
m) = (y′1, . . . , y

′
m) are not adjacent,

and hence there exists some 1 ≤ i ≤ m such that |yi − y′i| ≥ 2; then without loss of
generality yi = 0 and y′i = 2, which implies xi = 0 and x′i = 2 and we’re done.
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(2) Let e1, . . . , em denote the edges of T. For each 1 ≤ i ≤ m define an integer ci
as follows: remove the edge ei from T to obtain two connected components, exactly
one of which contains a vertex u ∈ U incident with ei. Let ci denote the number of
leaves of T that are in this component. Clearly 1 ≤ ci ≤ k − 2. Viewing elements
of K0 as columns for convenience of notation, define f : (K0)k → K0 by

f


 x1,1

...
xm,1

 · · ·

 x1,k
...

xm,k


 =

 f1(x1,1, . . . , x1,k)
...

fm(xm,1, . . . , xm,k)


where fi returns the (ci + 1)-th smallest entry in row i, i.e. if {xi,1, . . . , xi,k} =
{u1, . . . , uk} where ui ≤ uj when i ≤ j then fi(xi,1, . . . , xi,k) = uci+1. We must
show that f is a well-defined, edge-preserving NU operation.

(a) f is well-defined, i.e. maps to K0(T): indeed, let d ∈ D of degree greater
than 1 and let ei1 , . . . , eis be the edges incident with d. Suppose for a contradiction
that fj(xj,1, . . . , xj,k) 6= 0 for all j ∈ {i1, . . . , is}; in particular each row xj,1, . . . , xj,k
with j ∈ {i1, . . . , is} contains at most cj 0’s. But ci1 +· · ·+cis = k−1, contradicting
the fact that each of the k columns of the matrix contains at least one entry of 0
in the relevant rows. The argument for u ∈ U is identical, if we notice that (i)
the (ci + 1)-th smallest entry in row i equals the (c′i + 1)-th largest entry in row
i where c′i = k − 1 − ci, and (ii) c′i is the number of leaves of T that lie in the
component obtained by removing ei and which contains the vertex d ∈ D incident
with ei. (b) f is an NU operation: indeed if k−1 of the columns are identical, then
2 ≤ ci+1 ≤ k−1 implies that the (ci+1)-th smallest entry in row i is the repeated
coordinate. (c) f is edge-preserving: it is easy to see that this is equivalent to the
following statement:
Claim. Let 2 ≤ c ≤ k− 1. If |xi− yi| ≤ 1 for all 1 ≤ i ≤ k and xi ≤ xj when i ≤ j,
then the c-th smallest entry s of {y1, . . . , yk} satisfies |s− xc| ≤ 1.

To prove the claim, notice first that yi ≤ xi + 1 ≤ xc + 1 for all i ≤ c, hence at
least c of the yi’s are at most xc + 1 so we conclude that s ≤ xc + 1. Secondly, if
i ≥ c we have that yi ≥ xi − 1 ≥ xc − 1. Hence at least k − c+ 1 of the yi’s are at
least xc − 1 so xc − 1 ≤ s. This concludes the proof of the claim.

�

Lemma 4.3. Let T be a tree. Then Dr(T) is isomorphic to K(T).

Proof. Let f be a vertex of Dr(T), i.e. a loop in D(T). Recall that f may be viewed
as a map from T to E(T) ∪ T such that

(1) for every t ∈ T , f(t) is either an edge of T incident with t or f(t) = t (if t
is a leaf),

(2) there is no edge e = (s, t) such that f(s) = e = f(t).

We assign to f a tuple α(f) = (x1, . . . , xm) as follows. Let ei = [d, u] be an edge
of T with d ∈ D and u ∈ U . Let

xi =

 0, if f(d) = ei,
2, if f(u) = ei,
1, otherwise.

It is immediate that α(f) is a vertex of K(T). Let f, g be vertices of Dr(T) where
α(f) = (x1, . . . , xm) and α(g) = (y1, . . . , ym): we prove that f is adjacent to g if
and only if α(f) is adjacent to α(g). Indeed if |xi− yi| ≥ 2 for some i then without
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loss of generality yi = 2 and xi = 0; if ei = [d, u] this means that f(d) = ei = g(u).
Conversely if f(a) = e = g(b) for some edge ei = [a, b] then |xi − yi| = 2. Now
let (x1, . . . , xm) be a vertex of K(T), and define a map f by the following rules: if
d ∈ D then f(d) = ei if xi = 0 and ei is incident with d, otherwise f(d) = (d); and
if u ∈ U then f(u) = ei if xi = 2 and and ei is incident with u otherwise f(u) = (u).
It is clear that f is well-defined, is a loop of D(T) and that α(f) = (x1, . . . , xm).
Thus the map α is a graph isomorphism and we are done. �

Corollary 4.4. Let k ≥ 3, and let H be a connected reflexive graph. Then the
following are equivalent:

(1) H is a k-NU graph;
(2) H is a retract of a product of finitely many graphs K(T) where T is a tree

with at most k − 1 leaves;
(3) H is a retract of a product of finitely many graphs K0(T) where T is a tree

with at most k − 1 leaves.

Proof. Immediate by Lemmas 4.2, 4.3 and Theorem 3.9. �

4.2. Coordinatisation by minors.

Call a tree reduced if it has no vertex of degree 2.

Definition 4.5. Let S be a reduced tree with colour classes U and D and edges
e1, . . . , em. Let l1, . . . , lm be positive integers. Define a graph G(S; l1, . . . , lm) as
follows: its vertices are the tuples (x1, . . . , xm) such that

(1) 0 ≤ xi ≤ li + 1 for every 1 ≤ i ≤ m;
(2) for each u ∈ U of degree greater than 1, xi = li + 1 for exactly one edge i

incident with u;
(3) for each d ∈ D of degree greater than 1, xi = 0 for exactly one edge i

incident with d.

Tuples (x1, . . . , xm) and (y1, . . . , ym) are adjacent if |xi − yi| ≤ 1 for all i.
The graph G0(S; l1, . . . , lm) in defined in the same manner, except we replace

“exactly one” by “at least one” in conditions (2) and (3) above.

Notice that if S is an edge, then G(S; l) = G0(S; l) is a path of length l + 1.

Figure 5. The graphs G0(S; 4, 3, 3) and G(S; 4, 3, 3) for polyad S,
the star with three edges.
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Lemma 4.6. Let S be a reduced tree with k − 1 leaves, m edges and let l1, . . . , lm
be positive integers.

(1) G(S; l1, . . . , lm)EG0(S; l1, . . . , lm);
(2) the graph G0(S; l1, . . . , lm) admits a k-ary NU polymorphism.

Proof. Let G = G(S; l1, . . . , lm) and G0 = G0(S; l1, . . . , lm); let U and D denote the
colour classes of S.

(1) This is a very slight variation on the proof of Lemma 4.2 (1). If (x1, . . . , xm)
is a vertex of G0 let r(x1, . . . , xm) = (y1, . . . , ym) where yi is defined as follows: (a)
if xi = 0, and ei is incident with a vertex d ∈ D such that there exists an edge
ej incident with d with j < i and xj = 0, let yi = 1; (b) if xi = li + 1, and ei is
incident with a vertex u ∈ U such that there exists an edge ej incident with u with
j < i and xj = lj + 1, let yi = li; (c) otherwise let yi = xi. The rest of the proof is
identical to Lemma 4.2 (1).

(2) The proof is identical to the proof of Lemma 4.2 (2).
�

Lemma 4.7. Let T be a tree. There exists a reduced tree S and positive integers
l1, . . . , lm such that Dr(T) is isomorphic to G(S; l1, . . . , lm).

Proof. Let S denote the minor obtained from T by contracting subdivisions. Let D
and U denote the colour classes of S, and let e1, . . . , em denote the edges of S. Let
li be the number of edges needed to subdivide edge ei of S to obtain T.

Figure 6. A tree T, its minor S, and S viewed as a bipartite graph.

Let f be a vertex of Dr(T), i.e. a loop in D(T). Recall that f may be viewed as
a map from T to E(T) ∪ T such that
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(1) for every t ∈ T , f(t) is either an edge of T incident with t or f(t) = t (if t
is a leaf),

(2) there is no edge e = (s, t) such that f(s) = e = f(t).

We assign to f a tuple α(f) = (x1, . . . , xm), where xi is defined as follows. Let
ei = [d, u] be an edge of S with d ∈ D and u ∈ U , and denote the corresponding
path in T by d = v0, v1, . . . , vli = u. For every 0 ≤ j ≤ li define β(f, i, j) = 1 if
(a) j = 0 and f(v0) 6= [v0, v1] or (b) j > 0 and f(vj) = [vj−1, vj ]; otherwise let
β(f, i, j) = 0. Notice that property (2) of f implies that

(*) β(f, i, j) ≥ β(f, i, j′) whenever j ≤ j′.

Define xi =
∑li
j=0 β(f, i, j). Roughly speaking, xi counts the number of vertices vi

that f “maps to the left” along the path corresponding to edge ei. It is clear that
0 ≤ xi ≤ li + 1. If d has degree greater than 1, then f(d) is some edge incident
to d and hence β(f, n, 0) = 1 for all but one value of n; in particular there is at
most one index n such that xn = 0 with en incident to d. If β(f, i, 0) = 0 then by
(*) β(f, i, j) = 0 for all j so xi = 0. If u has degree greater than 1, then f(u) is
some edge incident to u and hence β(f, n, ln) = 1 for at most one value of n; in
particular there is at most one index n such that xn = ln + 1 with en incident to
u. If β(f, i, li) = li + 1 then by (*) β(f, i, j) = 1 for all j so xi = li + 1.

Let f, g be vertices of Dr(T) and let α(f) = (x1, . . . , xm) and let α(g) =
(y1, . . . , ym): we prove that f is adjacent to g if and only if α(f) is adjacent to
α(g). Suppose first that α(f) and α(g) are not adjacent. Then |yi − xi| ≥ 2 for
some i, and suppose without loss of generality that yi > xi. Let j0 be the largest
index such that β(g, i, j0) = 1. Since yi− xi > 1 there exists some j < j0 such that
β(f, i, j) = 0, which means we can find an edge e = (a, b) on the path corresponding
to edge ei such that f(a) = e = g(b) and we’re done. Conversely, suppose that f
and g are not adjacent in Dr(T); then there exists an edge e = (a, b) such that
f(a) = e = f(b). Edge e lies on the path corresponding to some edge ei of S, so
that a = vj and b = vj+1 with the notation as above. Then β(f, i, j) = 0 and
β(g, i, j+1) = 1, which by (*) implies that xi ≤ j−1 and yi ≥ j+1 so |yi−xi| ≥ 2.

It remains to show that α is a bijection. Let (x1, . . . , xm) be a vertex of
G(S; l1, . . . , lm). We construct a map f such that α(f) = (x1, . . . , xm). Let v ∈ T .
Suppose first that v ∈ S is of degree 1 in S. Then there exists a unique edge ei
incident to v; let v0, . . . , vli be the path in T that corresponds to ei. If v ∈ D and
xi = 0 let f(v) = [v0, v1], and if xi > 0 let f(v) = (v). If v ∈ U and xi = li + 1
then let f(v) = [vli−1, vli ] and if xi < li let f(v) = (v). Now suppose that v ∈ S
has degree greater than 1. Then there exists a unique edge ei incident to v such
that xi = 0 if v ∈ D and xi = li + 1 if v ∈ U . Let v0, . . . , vli be the path in T that
corresponds to ei. If v ∈ D let f(v) = [v0, v1], and if v ∈ U let f(v) = [vli−1, vli ].
Finally suppose that v 6∈ S, so there exists an index 0 < j < li such that v = vj lies
on the path v0, . . . , vli that corresponds to some edge ei of S. If xi ≥ j + 1 then let
f(v) = [vj−1, vj ], otherwise let f(v) = [vj , vj+1]. It is easy to verify that the result-
ing map f satisfies conditions (1) and (2) above, and that α(f) = (x1, . . . , xm). �

Corollary 4.8. Let k ≥ 3, and let H be a connected reflexive graph. Then the
following are equivalent:

(1) H is a k-NU graph;
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(2) H is a retract of a product of finitely many graphs of the form G(S; l1, . . . , lm)
where S has at most k − 1 leaves;

(3) H is a retract of a product of finitely many graphs of the form G0(S; l1, . . . , lm)
where S has at most k − 1 leaves.

Proof. Immediate by Lemmas 4.6, 4.7 and Theorem 3.9. �

Remark. Notice that if the tree T is a path then the minor S obtained by con-
tracting subdivisions is an edge, and hence the 3-ary NU operation we defined in
Lemma 4.6 (2) is the standard majority operation that returns the middle element.
More generally, if T is a polyad, then S is a star and the NU operation we defined
returns the second smallest element in each row, a natural generalisation of the
path case.

5. Absolute Retracts

Let H be a digraph and let u, v ∈ H. We let dH(u, v) denote the usual graph
distance between u and v in Hu, i.e. the length of a shortest path between u and
v. If f : G→ H is a homomorphism then dH(f(u), f(v)) ≤ dG(u, v) for all u, v ∈ G,
i.e. f is a non-expansive map. A distance-preserving map is called an isometry. If
e : G ↪→ H is a one-to-one isometry from the graph G to the graph H, we say that G
is isometrically embedded in H. A graph H is an absolute retract (for isometry) if it
is a retract of every graph into which it isometrically embeds (see [14],[18],[15],[16]).

We begin by stating the basic definitions we need.

5.1. Absolute Retracts and Polyad Duality.

Definition 5.1. [14, 18] Let H be a graph and let k ≥ 2. A k-hole in H is a pair
(L, f) where L ⊆ H is a k-element set of vertices of H and f : L→ Z+ such that

(1) no vertex x ∈ H satisfies d(x, l) ≤ f(l) for all l ∈ L,
(2) for every proper subset L′ ⊂ L, there exists x ∈ H that satisfies

d(x, l) ≤ f(l) for all l ∈ L′.

Definition 5.2. [14, 18] Suppose G is an induced subgraph of H and let (L, f) be a
k-hole of G. We say that (L, f) is filled in H if there exists some v ∈ H such that
d(v, l) ≤ f(l) for all l ∈ L. We say that (L, f) is separated in H if it is not filled
in H. Let j ≥ 2. The graph G is a j-absolute retract if it is a retract of any graph
H into which it embeds such that every j′-hole is separated, for all j′ ≤ j. For each
j ≥ 2 let A Rj denote the class of j-absolute retracts, and let

A R =
⋃
k≥2

A Rk

denote the class of absolute retracts (see Definition 5.11 and Lemma 5.13 below for
concrete examples).

In this section we use our results to describe very simple generating sets for
the varieties A Rk (k ≥ 2). The overall strategy is to interpret notions such as
holes and absolute retracts in terms of very special trees called polyads, and their
duals. We will deduce immediately that the variety A R3 coincides with the class
of reflexive graphs admitting a 4-ary NU, answering a long-standing open question
(it is stated in [6] but certainly it is much older).
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Figure 7. A non-degenerate 3-coloured polyad.

Definition 5.3. Let H be a graph, let T be an elementary τH-tree and let k ≥ 1.
We say that T is a k-coloured τH-polyad if it is of one of the following forms:

(1) (k = 1) a single vertex with two distinct labels;
(2) (k = 2) an edge with both ends coloured; or
(3) (k ≥ 2) T has one non-coloured vertex of degree k called its central vertex,

all other non-coloured vertices are of degree 2, and its k coloured vertices
are of degree 1. Each path connecting the central vertex to a coloured vertex
is called a branch.

The polyads of form (1) or (2) we shall call degenerate while those of form (3) will
be called non-degenerate. Notice that the 2-coloured polyads are exactly the paths
with coloured extremities, and that the non-degenerate ones are those of length at
least 2.

Our first goal is to prove that the members of A Rk are precisely those graphs H
such that the structure Hc admits a (finite) duality consisting only of m-coloured
polyads with m ≤ k.

Let H be a graph, let k ≥ 2 and let L = (L, f) be such that L = {c1, . . . , ck} ⊆ H
is a k-element set of vertices of H and f : L → Z+. Construct the k-coloured τH-
polyad TL as follows: for each 1 ≤ i ≤ k let TL have a branch of length f(ci) with
endpoint coloured by ci.

Let T be a non-degenerate k-coloured τH-polyad, and assume that its coloured
elements carry labels c1, . . . , ck that are all distinct. Define LT = (L, f) where L =
{c1, . . . , ck} and f(ci) is equal to the (undirected) distance of the vertex coloured
ci to the polyad’s central vertex.

Definition 5.4. Let H be an induced subgraph of K. Let KH denote the τH-structure
that consists of the graph K with every vertex h ∈ H coloured by {h}.
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Lemma 5.5. Let H be a graph, let k ≥ 2. Let T be a non-degenerate k-coloured
τH-polyad and let L = (L, f) where L ⊆ H and f : L→ Z+. Then

(1) L(TL) = L; if T has k distinct colours then T(LT) = T;
(2) if H is an induced subgraph of K and L is a k-hole in H then K fills the

hole L if and only if TL → KH;
(3) L is a k-hole of H if and only if TL is a critical obstruction of Hc;
(4) if T is a critical obstruction of Hc, then LT is well-defined and is a k-hole

of H;
(5) if LT is a k-hole of H then T is a critical obstruction of Hc.

Proof. (1): Straightforward.
(2): (⇐) Let φ : TL → KH and let x denote the central vertex of TL. It is

immediate that d(φ(x), ci) ≤ f(ci) for all i, and hence L is filled in K.
(⇒) Suppose that u ∈ K satisfies d(u, ci) ≤ f(ci) for all i. Because the target

graph is reflexive, each branch of TL can be mapped to KH sending the central
vertex to u and the other endpoint to ci, hence TL → KH.

(3): (⇒) If L is a k-hole of H then by (2) there cannot be a homomorphism
from TL to Hc = HH. Now if we remove any edge or colour of TL, say it is on the
branch Pj with endpoint coloured cj , then we can find a homomorphism from the
resulting structure T′ to Hc. Indeed, by minimality property of a k-hole we can
find a vertex y ∈ H such that d(y, ci) ≤ f(ci) for all i 6= j. This defines an obvious
homomorphism (use the fact that the graph H is reflexive.)

(⇐) Suppose that TL is a critical obstruction of Hc. Since TL 6→ Hc, there can
obviously not be any y ∈ H such that d(y, ci) ≤ f(ci) for all i. If L′ is a proper
subset of L, say without loss of generality L′ = {c1, . . . , cm}, then remove from TL
all colours cj with j > m; we can map the resulting structure to Hc and the value
y on the central vertex will satisfy d(v, ci) ≤ f(ci) for all i ≤ m.

(4): If T is a critical obstruction then it has k distinct colours, for otherwise we
could erase a repeated colour c (choosing the longest path labelled with it), and
map to Hc; now simply use the values on the shorter path to a colour c to redefine
the map on the unlabelled path to obtain a map from T to Hc, a contradiction.
Thus LT is well-defined. Now by (1) we have that T = T(LT); hence by (3) LT is a
k-hole of H.

(5): By (1) we have that T = T(LT); so if LT is a k-hole of H, then by (3) T is a
critical obstruction of Hc.

�

To prove the main result of this section, we also require a well-known (folklore)
construction which is used to show the equivalence of the retraction problem on
the structure H to CSP (Hc). Let H be a graph and let K be a τH-structure. We
construct (in a straightforward manner) a graph K′ that contains H as an induced
subgraph such that K′ retracts onto H if and only if K→ H. The trick is essentially
to adjoin a disjoint copy of H to the underlying graph of K, and then to identify
each vertex h ∈ H with the vertices of K coloured by {h}. Notice first that if some
vertex of K is coloured by more than one colour then K 6→ H so we may assume
this does not occur. Similarly, we may assume that if u and v are adjacent coloured
vertices in K then their colours are adjacent in H. Hence we may assume that the
colouring of K is a partial graph homomorphism f defined on some subset C of K
(the coloured elements of K) to H. Construct a new graph K′ as follows: let X be
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the disjoint union of H and the underlying graph of K. Extend the map f to a self-
map F (it is NOT a homomorphism !) on X by defining F (x) = x for all x ∈ X \C.
Let θ denote the kernel of F , i.e. (x, y) ∈ θ if and only if F (x) = F (y). Clearly
θ is an equivalence relation, which decomposes the set X into disjoint blocks. The
vertices of K′ are these blocks, and blocks A and B are adjacent if there exist a ∈ A
and b ∈ B that are adjacent in X. If x ∈ X let [x] denote its block. It is clear that
K′ contains a copy H′ of the graph H (since f is a graph homomorphism no new
edges are created) that consists of the [h] with h ∈ H.

Lemma 5.6. Let H be a graph and let K be a τH-structure. Then H′ E K′ if and
only if K→ Hc.

Proof. (⇐) Let φ : K→ Hc. Since φ preserves colours it is clear that it is constant
on blocks of θ so we may define r : K′ → H′ by r([x]) = [φ(x)]. It is easy to see
that this is a homomorphism and a retraction.

(⇒) Let r : K′ → H′ be a retraction. Define φ : K → Hc by setting φ(x) = h
where [h] = r([x]). If f(x) = h then r([x]) = r([h]) = [h] since r is a retraction so
φ preserves colours, and clearly φ preserves edges. �

Theorem 5.7. Let H be a connected graph and let k ≥ 2. Then H ∈ A Rk if and
only if Hc has a (finite) duality consisting of m-coloured τH-polyads, m ≤ k.

Proof. (⇐) Suppose that Hc has a (finite) duality D consisting of m-coloured τH-
polyads, m ≤ k. Suppose that one of these polyads is not a critical obstruction: it is
easy to see that it then must contain a critical obstruction which is itself a polyad.
Indeed, notice first that a non-critical polyad must be non-degenerate. If removing
a colour or an edge along some branch leaves an obstruction, then deletion of the
whole branch leaves a smaller polyad obstruction. Hence we may suppose without
loss of generality that every polyad in the duality is in fact critical. Suppose that
H is an induced subgraph of K and that H is not a retract of K. Then KH 6→ Hc,
so there exists a T ∈ D such that T → KH. By definition of KH it is clear that
T is non-degenerate. Since T is a critical obstruction, by Lemma 5.5 (4) LT is an
m-hole for H with m ≤ k, so by Lemma 5.5 (1) and (2) LT is filled in K.

(⇒) Suppose now that H ∈ A Rk. Let D = {T1, . . . ,Ts} be the set of all critical
obstructions of Hc that are m-coloured polyads with m ≤ k; notice that there are
indeed finitely many of these, since H is connected we can find a vertex which is
at finite distance from any given set of vertices and hence the number of critical
polyad obstructions of H is finite. We want to show that D is a duality for Hc. So
let K be a τH-structure that does not admit a homomorphism to Hc; we must show
there exists some T ∈ D such that T→ K.

If a degenerate polyad in D maps to K we are done. Otherwise, we have that
that (i) no coloured vertex of K receives more than one colour, and (ii) the partial
map sending a coloured vertex to its colour is a partial homomorphism. Thus we
may construct the graph K′ as described above; by Lemma 5.6 K′ does not admit
a retraction to its subgraph H′ isomorphic to H. Since H ∈ A Rk there exists
some m-hole L (m ≤ k) of H that is filled in K′; By Lemma 5.5 (2) the associated
m-coloured polyad T = TL admits a homomorphism φ to K′H. We may suppose
that, of all critical m-coloured (m ≤ k) polyad obstructions of H that admit a
homomorphism to K′H, T has the smallest set of vertices. We show that T→ K.
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Claim. φ(u) is non-coloured for every non-coloured vertex u of T.

Proof of Claim. Indeed, suppose that some non-coloured vertex u of T is mapped
via φ to some coloured vertex of K′H, say of colour c. If u is the central vertex of the
polyad, then certainly one branch cannot be mapped to H sending u to c (otherwise
we could map T to H). Hence this defines a smaller critical polyad obstruction which
maps to K′H via φ, contradicting the minimality of T. Otherwise u is of degree 2
and its removal creates two components. Define two new polyads T1 and T2 in the
obvious way from these components (with u added) by colouring vertex u by colour
c.

u

u

u

Figure 8. The polyads T, T1 and T2.

Obviously one of these cannot map to H, say T1, hence it contains a critical
obstruction of H which is an m-coloured polyad, m ≤ k which maps to K′H via φ,
another contradiction, which concludes the proof of the claim.

Recall that the non-coloured elements of K′H are one-element blocks containing
a non-coloured vertex of K, so by the claim φ defines naturally a homomorphism
φ′ from the set of non-coloured vertices of T to K. Now let v be a coloured vertex
of T, with colour c: it is adjacent to a unique non-coloured vertex u of T. Since
φ(u) = {z} being adjacent to c in K′H means that z is adjacent in K to some vertex
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w which is coloured by c, let φ′(v) = w. Then φ′ is the desired homomorphism
from T to K. �

5.2. A generating set for A Rk. Following the remark we made before Theorem
3.6, we shall call a tree T a (non-degenerate) polyad if there exists a reflexive graph
H and a (non-degenerate) τH-polyad S such that (Sτ )u is isomorphic to T, and use
Dr(T) to denote Dr(S).

Definition 5.8. Let k ≥ 2 and λ ≥ 1 be integers. Let Dk(λ) denote the graph
whose vertices are all k-tuples (x1, . . . , xk) with 0 ≤ xi ≤ λ+1 for all i that contain
exactly one entry equal to 0; two tuples (x1, . . . , xk) and (y1, . . . , yk) are adjacent
precisely if |xi − yi| ≤ 1 for all 1 ≤ i ≤ k.

We shall show that the graphs Dk(λ) with λ ≥ 1 generate the variety A Rk.

Lemma 5.9. Let T be a path of length l, let λ be a positive integer, and let 2 ≤
m ≤ k.

(1) Dr(T) is a path of length l + 1;
(2) D2(λ) is a path of length 2λ+ 1;
(3) Dm(λ)E Dk(λ).

Proof. (1) If T is a path, it follows from the proof of Lemma 4.7 that Dr(T) is
isomorphic to G(S; l) where S is an edge, and this graph is obviously a path of
length l + 1. (2) This is a straightforward verification. (3) It clearly suffices to
prove the result for k = m + 1. Define a map e : Dm(λ) → Dm+1(λ) as follows:
e(x1, . . . , xm) = (x1, . . . , xm, y) where

y =

{
xm, if xm 6= 0,
1, otherwise.

It is easy to verify that e is an edge-preserving embedding of Dm(λ) into Dm+1(λ).
Next define r : Dm+1(λ) → Dm(λ) as follows: r(y1, . . . , ym+1) = (x1, . . . , xm)

where

xi =

{
min(ym, ym+1), if i = m,
yi, otherwise.

It is not difficult to verify that r is a well-defined edge-preserving map from Dm+1(λ)
to Dm(λ) and that r ◦ e is the identity map on Dm(λ). �

Lemma 5.10. Let k ≥ 2 and let H ∈ A Rk. Then there exists λ, s ≥ 1 such that
HE (Dk(λ))s.

Proof. Claim 1. There exist non-degenerate polyads T1, . . . ,Ts with at most k
leaves such that

HE
s∏
i=1

Dr(Ti).

Proof of Claim 1. By Theorem 5.7, if H ∈ A Rk then it has a duality {T1, . . . ,Ts}
where each Ti is an m-coloured τH-polyad with m ≤ k. Since subtrees of polyads
are polyads, by the proof of Theorem 3.9 we can express H as a retract of a product
of graphs Dr(Ti) where the Ti are m-coloured τH-polyads, m ≤ k. It is easy to see
that if T is a degenerate polyad then its reflexive dual is a path of length 2 or 3; by
Lemma 5.9 (1) the reflexive dual of a non-degenerate polyad with 2 leaves is a path
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of length at least 3, and since shorter paths are retracts of it we may do without
them in the representation.

Claim 2. Let m ≥ 2, let l1, . . . , lm be positive integers, let λ = max{l1, . . . , lm},
and let T be a (non-degenerate) polyad with m branches of lengths l1, . . . , lm re-
spectively. Then Dr(T)E Dm(λ).

Proof of Claim 2. Suppose that m = 2: then T is a path of length l1 + l2. By
Lemma 5.9, Dr(T) is a path of length l1 + l2 + 1 and D2(λ) is a path of length
2λ+ 1 ≥ l1 + l2 + 1 hence Dr(T)E D2(λ) and the result follows.

Now suppose that m ≥ 3. Let S be the star with m branches, i.e. the polyad
with m branches of length 1. By the proof of Lemma 4.7 Dr(T) is isomorphic to
G(S; l1, . . . , lm) which consists of all tuples (x1, . . . , xm) with 0 ≤ xi ≤ li + 1 with
a unique j such that xj = 0 (choose D to be the central vertex and U the leaves of
S). Obviously G = G(S; l1, . . . , lm) is an induced subgraph of M = Dm(λ); define a
map r : M→ G by

r(x1, . . . , xm) = (y1, . . . , ym)

where yi = min(xi, li). It is easy to verify that this is a homomorphism (it clearly
is a retraction.) This completes the proof of the claim.

Notice that the last argument also shows that Dk(λ) E Dk(λ′) if λ ≤ λ′. The
result now follows easily from this observation and Claims 1 and 2. �

The next three lemmas are devoted to the proof that the graphs Dk(λ) are
themselves absolute retracts.

Definition 5.11. Let λ ≥ 1 and let k ≥ 2 and consider the following graph Rk(λ):
its vertices are the tuples (x1, . . . , xk) that satisfy the following conditions:

(1) 0 ≤ xi ≤ 3λ+ 3 for all i;
(2) xi + xj ≥ 2λ+ 2 for all i < j;
(3) there exists some j such that xj ≥ 2λ+ 2.

Tuples (x1, . . . , xk) and (y1, . . . , yk) are adjacent precisely if |xi − yi| ≤ 1 for all
1 ≤ i ≤ k.

Lemma 5.12. For every λ ≥ 1 and k ≥ 2, Dk(λ)E Rk(λ).

Proof. One verifies immediately that the map e : Dk(λ) → Rk(λ) defined by
e(x1, . . . , xk) = (2λ + 2 − x1, . . . , 2λ + 2 − xk) is a graph embedding and that
its image S consists of all tuples (y1, . . . , yk) that satisfy (i) λ+ 1 ≤ yi ≤ 2λ+ 2 for
all i and (ii) there exists a unique j such that yj = 2λ+2. Thus Dk(λ) is isomorphic
to the subgraph of Rk(λ) induced by S.

We define our retraction r onto S as follows: if (x1, . . . , xk) is a vertex of Rk(λ),
let xi1 , . . . , xip (where i1 ≤ · · · ≤ ip) denote its coordinates that are at least 2λ+ 2
(so that p ≥ 1), and let xj1 , . . . , xjq (where j1 ≤ · · · ≤ jq) denote its coordinates
that are at most λ (so that q ≤ 1). Define r(x1, . . . , xk) as the tuple obtained from
(x1, . . . , xk) by replacing

• each of xi1 , . . . , xip−1
by 2λ+ 1 (if p ≥ 2),

• xip by 2λ+ 2, and
• each of xj1 , . . . , xjq by λ+ 1 (if q ≥ 1).

Suppose that (x1, . . . , xk) ∈ S: then it is clear that r fixes it. It is also clear that
r maps any tuple of Rk(λ) into S. It remains to show that r is a graph homomor-
phism. Let (x1, . . . , xk) and (y1, . . . , yk) be adjacent in Rk(λ) and let (x′1, . . . , x

′
k)
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and (y′1, . . . , y
′
k) be their respective images under r. Fix some coordinate i such

that, without loss of generality, xi 6= x′i. There are several cases:

(1) Case 1: xi ≥ 2λ+2 and x′i = 2λ+1. Then yi ≥ 2λ+1 so y′i ∈ {2λ+1, 2λ+2}.
(2) Case 2: xi > 2λ+2 and x′i = 2λ+2. Then yi ≥ 2λ+2 so y′i ∈ {2λ+1, 2λ+2}.
(3) Case 3: xi ≤ λ, x′i = λ+ 1. Then yi ≤ λ+ 1 so y′i = λ+ 1.

�

Lemma 5.13. For every λ ≥ 1 and k ≥ 2, Rk(λ) ∈ A Rk.

Proof. All previously undefined terms and terminology in this proof are from [6].
We show that the graph Rk(λ) is a k-separator, and hence by Lemma 2.7 [6] is in
A Rk. Let D = [dij ] be the k×k matrix with entries dij = 2λ+2 if i 6= j and dij = 0
otherwise. It is clearly a distance matrix. Let L = {l1, . . . , lk} be a set of size k,
and let f(li) = 2λ+1 for all 1 ≤ i ≤ k. It is easy to verify that (i) (f(l1), . . . , f(lk))
does not dominate any member of L(K,L), and that (ii) M(K,L) = 3λ+ 3. Hence
a tuple (x1, . . . , xk) is admissible if and only if (a) xi + xj ≥ dij = 2λ+ 2 for i 6= j,
and (b) it is not dominated by (2λ + 1, . . . , 2λ + 1), i.e. it has at least one entry
xj ≥ 2λ+ 2, and (c) it is dominated by (3λ+ 3, . . . , 3λ+ 3), i.e. xi ≤ 3λ+ 3 for all
i. Hence Rk(λ) = R(D,L, f) ∈ A Rk.

�

Lemma 5.14. Let k ≥ 2. The class A Rk is closed under products and retracts.

Proof. This was first proved in [14] (see also [18]) but we can give a simple proof
using Theorem 5.7. Suppose that R is a retract of H and let D be a duality for Hc
that consists of polyads. It is immediate that a τR-structure G maps to R if and only
if it maps to G when viewed as a τH-structure. Hence the set of polyads in D that
have only colours from R is a duality for Rc. Now suppose that H1

c and H2
c both

have polyad duality, say with sets of polyads D1 and D2 respectively. Construct a
set of τH1×H2

-polyads D as follows: for each k-coloured polyad T in D1, with vertices
x1, . . . , xk coloured by c1, . . . , ck, and for each sequence α = (a1, . . . , ak) ∈ (H2)k,
construct the polyad T(α) with same underlying graph as T but now xi is coloured
by (ci, ai). Proceed similarly with the polyads from D2. It is easy to verify that D
is a duality for (H1 ×H2)c. �

Theorem 5.15. Let H be a connected reflexive graph and let k ≥ 2. Then the
following are equivalent:

(1) H ∈ A Rk;
(2) there exist λ, s ≥ 1 such that HE (Dk(λ))s.

Proof. Immediate by Lemmas 5.10, 5.12, 5.13 and 5.14. �

The next slightly technical lemma essentially states that reflexive duals of non-
polyad trees do not have polyad duality.

Lemma 5.16. Let T be a tree which is not a polyad and let K = Dr(T). There
exists a τK-tree S such that

(1) (Sτ )u is isomorphic to T;
(2) S is a critical obstruction of Kc;
(3) if P is a τK-polyad and P→ S then P→ Kc.
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Proof. By the remark following Theorem 3.6 and because it is not a polyad, we may
assume that T is an elementary τH-tree for some graph H1; we may also assume
that the unary relations on its leaves are all distinct, i.e. if u and v are distinct
leaves of T with colours h and h′ respectively then h 6= h′. For each non-leaf v of
T, define a τH-polyad Pv as follows: it has a central vertex v′, and for each leaf u
of T coloured by h it has a leaf u′ coloured by h, connected to v′ by a branch of
length dT(u, v), isomorphic to the unique path in T from u to v. For every leaf u of
T, let Tu be the structure obtained from T by deleting the colour on the vertex u.

Build a τH-structure Y as follows: it is obtained from the disjoint union of all
the polyads Pv and the trees Tu by identifying vertices carrying the same colour;
furthermore add all loops, and make every edge symmetric.

Tu

x y

T

u

Px

Py

Figure 9. Some parts of the structure Y built from the smallest
non-polyad tree T, before glueing.

Claim 1. Let v and w be coloured vertices of T and let v′ and w′ be coloured
vertices of Y such that v and v′ have the same colour and w and w′ have the same
colour. Then dY(v′, w′) = dTu(v, w); furthermore, if a path from v′ to w′ has length
dY(v′, w′) then v′ and w′ are the only coloured vertices on it.
Proof of Claim 1. Consider any path in Y from v′ to w′ that passes through no other
coloured element: it must lie entirely in some Tu or some Pz. In the first case it is
clear that the path will have length at least dT(v, w) since Tu is an induced subtree
of T; in the second case we get the same result by noticing that the distance from
v′ to w′ in Pz is at least as large as dT(v, w). Since this must hold for all pairs of
coloured vertices, if we have a path from v′ to w′ that contains some coloured vertex
z′ where z is a leaf of T, then this path will have length at least dTu(v, z)+dTu(v, z).

1In fact the orientation of the edges of T plays no real role in the proof.
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Since z is a leaf of T it cannot lie on a shortest path from v to w so this is in fact
strictly greater than dT(v, w), proving the second statement of our claim. Repeating
the argument for an arbitrary number of coloured vertices on the path and using
the triangle inequality shows that dY(v′, w′) ≥ dT(v, w). For the reverse inequality,
notice that T has more than 2 leaves since it is not a polyad. Let u be a leaf of T
distinct from v and w and let u′ denote the vertex of Y with the same colour as u.
Then there is a path of length dT(v, w) from v′ to w′ in Y passing through Tu.
Claim 2. There exists a homomorphism φ : Y→ Dr(T).
Proof of Claim 2. Since Y is reflexive and symmetric, it suffices to prove that Y
admits a homomorphism to D(T), in other words, that T 6→ Y. Suppose for a
contradiction that there is a homomorphism f : T → Y. Let v and w be distinct
leaves of T, and let L denote the unique path from v to w in T; this path has length
at least 2 because T is not a polyad. By Claim 1 and because f is non-expanding,
f(L) is a path of the same length in Y from f(v) = v′ to f(w) = w′, and hence
it lies entirely in some Tu or some Pz, call it X. Let α be the unique neighbour
of u in T. The unique path from u to any other leaf of T passes through α, and
hence its image must lie entirely in X. It follows that f(T) ⊆ X. Since Tu has no
vertex with u’s colour, we must have X = Pz for some z; it is clear that there is a
homomorphism g : Pz → T, and that g ◦ f : T → T is the identity (since it fixes
every leaf of T), hence T = Pz, contradicting the fact that T is not a polyad.

We can now define the τK-tree S as follows: its underlying graph is Tτ ; if u is a
leaf of T coloured h, let vh be the unique vertex in Y coloured h; we let the vertex u
of S have colour φ(vh). Property (1) is immediate by construction of S. We proceed
to prove properties (2) and (3).
Claim 3. (i) Let P be a non-degenerate τH-polyad such that P→ T. Then there ex-
ists a vertex v of T such that P→ Pv. (ii) Let T′ be a proper connected substructure
of T. Then there exists a leaf u of T such that T′ → Tu.
Proof of Claim 3. (i) Let f : P→ T and let c denote the center of P. If f(c) = v is
not a leaf of T it is easy to see that P admits a homomorphism to Pv. Now suppose
that f(c) = u where u is a leaf of T. Then all neighbours of c in P are mapped to
the unique neighbour of u in T, call it v. It follows that P admits a homomorphism
to Sv. (ii) Since T′ is connected and different from T it means that some colour h
appearing in T does not appear in T′, so T′ → Tu where u is the vertex of T with
colour h.

To prove (2), suppose for a contradiction that there exists a homomorphism
ψ : S → Dr(T). Let u be a leaf of T which has colour h, so that u has colour
φ(vh) in S. Then ψ(u) = φ(vh) since ψ preserves colours, and since φ(u) has
colour h, ψ actually defines a homomorphism from T to Dr(T) (as τH-structures),
a contradiction, hence S is an obstruction. To see that it is critical, let S′ be a
proper substructure of S. Consider the τH-structure T′ obtained from S′ in the
obvious way, namely, its underlying digraph is (S′)τ and vertices that are coloured
in S′ get the colour they have in T. Obviously T′ is a proper substructure of T. By
Claim 3, for each connected component C of T′ there exists a leaf u of T such that
C → Tu, and hence there exists a homomorphism γ : T′ → Y. It is clear that this
map induces a homomorphism (of τK-structures) from S′ to Dr(T).

Finally we prove (3): let P be a τK-polyad such that δ : P → S. Notice that (i)
the only colours that can appear on vertices of P have to be colours in S, namely, of
the form φ(vh) for some colour h appearing in T, and (ii) P must be non-degenerate,
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since S is not a polyad. Let P′ be the (non-degenerate) τH-polyad obtained from
P as follows: the underlying digraph is the same as P’s, and if u in P has colour
φ(vh), then its colour in P′ will be h. By definition of S, the map δ now defines
a homomorphism from P′ to T. By Claim 3, there exists some vertex v of T such
that P′ → Tv, and hence P′ → Y; this induces a homomorphism from P to Dr(T)
and we are done. �

Let N U k denote the class of graphs that admit a k-ary NU polymorphism. The
first two results were previously known [23], see also [5], [6].

Theorem 5.17. Let k ≥ 2.

(1) A Rk ⊆ N U k+1;
(2) A R2 = N U 3;
(3) A R3 = N U 4;
(4) If k > 3 and T is a tree with k leaves which is not a polyad,

then Dr(T) ∈ N U k+1 \N U k and Dr(T)c 6∈ A R.

Proof. Statements (1), (2) and (3) are immediate by Theorems 3.9 and 5.7 and
the fact that elementary trees with at most 3 coloured elements are polyads. To
prove (4), notice that Dr(T) admits a critical obstruction with k leaves by Lemma
5.16, and hence it does not admit a k-ary NU polymorphism; on the other hand by
Lemma 4.3 and Corollary 4.4 it admits one of arity k + 1. Finally, it is immediate
by Lemma 5.16 (2) and (3) that Dr(T)c cannot have polyad duality and hence is
not an absolute retract by Theorem 5.7.

�

The following result was the prototype/motivation behind our investigations we
stated in the introduction:

Corollary 5.18. [19] Let H be a reflexive graph. Then the following conditions are
equivalent:

(1) H ∈ N U 3;
(2) H ∈ A R2;
(3) H is a retract of a product of paths.

Proof. Immediate by Lemma 5.9 (2) and Theorems 5.15 and 5.17. �

————————
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neuve West, Montréal, Qc, Canada, H3G 1M8
E-mail address: larose@mathstat.concordia.ca

Department of Mathematics and Statistics, University of the Fraser Valley, 33844

King Rd Abbotsford, BC Canada V2S 7M8
E-mail address: Cynthia.Loten@ufv.ca

College of Natural Sciences, Kyungpook National University, Daegu 702-701, South
Korea

E-mail address: mhsiggers@knu.ac.kr

Department of Mathematics and Computer Science, Royal Military College of Canada,

PO Box 17000 Station “Forces”, Kingston, Ontario, Canada, K7K 7B4

E-mail address: Claude.Tardif@rmc.ca


