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Abstract

A notion of an i-banner simplicial complex is introduced. For various values of i, these com-
plexes interpolate between the class of flag complexes and the class of all simplicial complexes.
Examples of simplicial spheres of an arbitrary dimension that are (i+1)-banner but not i-banner
are constructed. It is shown that several theorems for flag complexes have appropriate i-banner
analogues. Among them are (1) the codimension-(i + j − 1) skeleton of an i-banner homology
sphere ∆ is 2(i + j)-Cohen–Macaulay for all 0 ≤ j ≤ dim∆ + 1− i, and (2) for every i-banner
simplicial complex ∆ there exists a balanced complex Γ with the same number of vertices as ∆
whose face numbers of dimension i− 1 and higher coincide with those of ∆.

1 Introduction

Flag complexes (see, for instance, [1, 5, 9, 10, 13] and also [15, Chapter III]) form a fascinating family
of simplicial complexes with many nice results and a lot of open problems. Very recently Björner
and Vorwerk [4] introduced a class of banner simplicial complexes that strictly contains that of flag
complexes. Inspired by their work, we define a notion of i-banner complexes: for various values of i
these complexes interpolate between flag complexes and Björner–Vorwerk’s banner complexes, and
between those complexes and the class of all simplicial complexes; we then extend several known
theorems for flag complexes to the i-banner ones.

One motivation for the Björner–Vorwerk’s paper came from problems related to connectivity of
graphs. A graph G is called q-connected if it has at least q + 1 vertices and removing an arbitrary
subset of at most q−1 vertices from G results in a connected graph. Similarly, a simplicial complex
∆ is q-Cohen–Macaulay (q-CM, for short) if removing an arbitrary subset of at most q− 1 vertices
from ∆ results in a CM complex of the same dimension as ∆. In particular, a graph is q-connected
if and only if it is q-CM, and a 0-dimensional complex is q-CM if and only if it has at least q
vertices.

Barnette [3] (generalizing a result of Balinski [2]) proved that the graph, or 1-skeleton, of a
(d− 1)-dimensional polyhedral pseudomanifold is d-connected. Athanasiadis [1] then verified that
the graph of a flag d-dimensional simplicial pseudomanifold is 2d-connected. In the case of CM
complexes much more can be said: it was shown by Fløystad [7] that the codimension-j skeleton
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of a CM complex is (j + 1)-CM, while the authors and Goff [11, Theorem 4.1] proved that the
codimension-j skeleton of a flag 2-CM complex is 2(j + 1)-CM.

Björner and Vorwerk [4] introduced the class of banner simplicial complexes, which properly
contains the class of flag simplicial complexes, and proved that Athanasiadis’s result continues to
hold in this generality; namely, the graph of any d-dimensional banner normal pseudomanifold
is 2d-connected. Here we define the class of i-banner complexes for i ≥ 1. We show that the
relationship between all these classes is as follows.

• The class of flag complexes coincides with the classes of 1- and 2-banner complexes.

• For 2 ≤ i ≤ d, the class of (d−1)-dimensional complexes that are i-banner is strictly contained
in that of (i+ 1)-banner complexes.

• The class of (d− 1)-dimensional complexes that are banner in the sense of Björner–Vorwerk
coincides with the class of (d− 1)-banner (d− 1)-dimensional complexes.

• All (d− 1)-dimensional simplicial complexes are (d+ 1)-banner.

We will prove that the codimension-(i + j − 1) skeleton of an i-banner homology sphere ∆ is
2(i + j)-CM for all 0 ≤ j ≤ dim∆ + 1 − i (see Theorem 5.1). This result can thus be considered
as an “interpolation” between Björner–Vorwerk’s theorem [4, Theorem 4.4] and the result on CM-
connectivity of skeleta of flag complexes [11, Theorem 4.1] for homology spheres. We also establish
an analogous result for homology manifolds (see Corollary 5.3).

Björner and Vorwerk [4] also introduce a certain invariant b∆ that for a pseudomanifold ∆
controls the connectivity of the graph of ∆. Here we define a family of invariants {bi(∆) : i ≥ 0}
that contains b∆ from [4] as b1(∆). When ∆ is a homology sphere, we provide lower bounds on
CM-connectivity of the skeleta of ∆ in terms of these statistics (see Theorem 6.2). The (i = 1)-case
of our result recovers Theorem 1.1 of [4] for homology spheres.

Our next result concerns the face numbers of i-banner complexes. A conjecture posed by Eckhoff
[6] and Kalai (unpublished) and solved by Frohmader [9] posits that for every flag complex there
exists a balanced complex with the same face numbers. We establish the following extension of this
result (Theorem 7.1): for every i-banner complex ∆ there is a balanced complex Γ on the same
number of vertices whose face numbers of dimension i− 1 and higher coincide with those of ∆.

Many of the proofs in this paper are natural extensions of the proofs of the original results
for flag complexes. However we believe that the notion of i-banner complexes will be useful in
the study of simplicial complexes and their face numbers providing new ways of “interpolating”
results/conjectures on all simplicial complexes to a hierarchy of results/conjectures on i-banner
complexes for various values of i. We list some open problems along these lines in the last section.
We remark that another family interpolating between flag complexes and general simplicial com-
plexes is that of complexes without large missing faces (cf. Lemma 3.6 below); such complexes, and
especially their f -numbers, were extensively studied in [12].

The rest of this note is organized as follows: in Section 2 we collect several standard definitions
and results pertaining to simplicial complexes. In Section 3, we define i-banner complexes and
outline some of their basic properties that will be useful in later sections. In Section 4 we provide
examples of (i+1)-banner spheres that are not i-banner. In Section 5 we discuss CM-connectivity
of i-banner complexes; then in Section 6 we define bi(∆) invariants and establish lower bounds on
the CM-connectivity of the skeleta of homology spheres in terms of these statistics. In Section 7
we study face numbers of i-banner complexes. We close in Section 8 with a few open problems.

2



2 Preliminaries

For the sake of completeness, we collect here several definitions and results pertaining to simplicial
complexes. An excellent reference to this material is Stanley’s book [15].

A simplicial complex ∆ on the vertex set V = V (∆) is a collection of subsets of V that is closed
under inclusion and contains all singletons {i} for i ∈ V . The elements of ∆ are called its faces,
and the maximal faces under inclusion are called facets. A set F ⊆ V is called a missing face of ∆
if it is not a face of ∆, but all of its proper subsets are faces. A simplicial complex ∆ is flag if all
missing faces of ∆ have size 2.

Let ∆ be a simplicial complex on the vertex set V . For F ∈ ∆, set dimF := |F | − 1 and define
the dimension of ∆, dim∆, as the maximal dimension of its faces. We denote by fj = fj(∆), where
−1 ≤ j ≤ dim∆, the number of j-dimensional faces of ∆ (j-faces, for short). The j-skeleton of ∆,
Skelj(∆), is defined as Skelj(∆) := {F ∈ ∆ : dimF ≤ j}.

A (d − 1)-dimensional simplicial complex ∆ is called balanced if the graph of ∆ is d-colorable.
Equivalently, ∆ is balanced if one can partition the vertex set of ∆ into d sets V1, . . . , Vd in such a
way that for every face F ∈ ∆ and for every 1 ≤ k ≤ d, |F ∩ Vk| ≤ 1.

Let ∆1 and ∆2 be simplicial complexes on disjoint vertex sets V1 and V2. Then their join is the
following simplicial complex on V1 ∪ V2,

∆1 ∗∆2 := {F1 ∪ F2 : F1 ∈ ∆1, F2 ∈ ∆2}.

The suspension of ∆, Σ∆, is the join of ∆ with a 0-dimensional sphere.
If ∆ is a simplicial complex and F is a face of ∆, then the link of F in ∆ is lk∆ F = lkF :=

{G ∈ ∆ : F ∪G ∈ ∆, F ∩G = ∅}. Also, for a subset W of the vertex set V of ∆, let ∆[W ] := {F ∈
∆ : F ⊆ W} denote the restriction of ∆ to the vertices in W and ∆−W := {F ∈ ∆ : F ⊆ V \W}
denote the restriction of ∆ to V \W .

Using a result of Reisner [14], we say that a (d− 1)-dimensional complex ∆ is Cohen–Macaulay
over k (CM, for short) if H̃i(lkF ;k) = 0 for all F ∈ ∆ (including the empty face) and all i <
d − |F | − 1. Here k is a field and H̃i(−,k) denotes the ith reduced simplicial homology with
coefficients in k. If in addition, H̃d−|F |−1(lkF ;k) ∼= k for every F ∈ ∆, then ∆ is called a homology
sphere over k (or a Gorenstein* complex over k). We say that ∆ is q-CM if for all W ⊂ V with
|W | ≤ q − 1, the complex ∆−W is CM and has the same dimension as ∆. 2-CM complexes are
also known as doubly CM complexes. Every simplicial sphere (that is, a simplicial complex whose
geometric realization is homeomorphic to a sphere) is a homology sphere (over any k), and every
homology sphere over k is doubly CM over k. Moreover, joins of homology spheres are homology
spheres.

A simplicial complex ∆ is called Buchsbaum over k if ∆ is pure (that is, all facets of ∆ have
the same dimension) and all vertex links of ∆ are CM over k. As with CM complexes, we say that
∆ is q-Buchsbaum if for all W ⊂ V with |W | ≤ q− 1, the complex ∆−W is Buchsbaum and has the
same dimension as ∆. A Buchsbaum complex all of whose vertex links are homology spheres over
k is a homology manifold over k. Every simplicial manifold is a homology manifold (over any k)
and every homology manifold over k is 2-Buchsbaum over k.

3 Basic properties of i-banner complexes

We are now in a position to define i-banner complexes and present some of their properties.
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Definition 3.1. Let ∆ be a (d− 1)-dimensional simplicial complex on the vertex set V (∆).

• A subset T of V (∆) is called a clique if every two vertices of T form an edge of ∆.

• A clique T ⊆ V (∆) is critical if T \ {v} is a face of ∆ for some v ∈ T .

• For an 1 ≤ i ≤ d, we say that ∆ is i-banner if every critical clique T of size at least i+1 is a
face of ∆.

When dim∆ = d− 1, saying that ∆ is (d− 1)-banner amounts to requiring that ∆ has no non-face
critical clique of size d and no critical clique of size d+1. Complexes with this property are precisely
the banner complexes in the sense of [4].

The following two lemmas show that for various values of i, the families of i-banner complexes
interpolate between the class of flag complexes and the class of all simplicial complexes.

Lemma 3.2. Every i-banner complex is also (i + 1)-banner; every (d − 1)-dimensional simplicial
complex is (d+ 1)-banner.

Proof: The first part is immediate from the definition of i-banner complexes, while the second
part follows from the observation that a complex containing a critical clique of size at least d + 2
must have dimension at least d. �

Lemma 3.3. The following conditions are equivalent for any simplicial complex ∆.

1. ∆ is flag,

2. ∆ is 1-banner,

3. ∆ is 2-banner.

Proof: First we show that ∆ is 1-banner if and only if it is 2-banner. As any 1-banner complex is
2-banner, we only need to show the converse. Suppose ∆ is 2-banner, and let T be a critical clique.
In order to show that ∆ is also 1-banner, we need only consider the case that |T | = 2. But in this
case, a critical clique of size 2 is tautologically a face of ∆; and hence ∆ is 1-banner.

Now we show that ∆ is 2-banner if and only if it is flag. Suppose first that ∆ is 2-banner, and
let T be a clique in ∆ of size at least 3. We prove that T is a face of ∆ by induction on |T |. When
|T | = 3, T is a critical clique, and hence a face of ∆ by definition. Next, suppose |T | > 3, and let u
be a vertex of T . Since T − {u} is a clique in ∆ of size at least 3, the inductive hypothesis implies
that T − {u} is a face of ∆. Thus T is a critical clique of size at least 3, and hence a face of ∆.
Therefore, any clique in ∆ is a face, and so ∆ is flag.

Conversely, if ∆ is a flag complex, then every clique (and in particular a critical clique) of size
at least 3 in ∆ is a face of ∆. Thus ∆ is 2-banner. �

Recall that if ∆ is flag then so are all the links of ∆ as well as the suspension of ∆. For i-banner
complexes the following analogous statements hold.

Lemma 3.4. Let ∆ be an i-banner simplicial complex with i ≥ 2. Then the link of v, lk∆(v), is
(i− 1)-banner for every vertex v of ∆. Moreover, if F ⊆ V (lk∆(v)) is a face of ∆ but not a face of
lk∆(v), then dimF ≤ i− 2.
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Proof: To prove the first part, let T be a critical clique of size at least i in lk∆(v). This means there
is some vertex u ∈ T for which T −{u} is a face of lk∆(v). Since (T −{u})∪{v} = (T ∪{v})−{u}
is a face of ∆, T ∪ {v} is a critical clique in ∆ of size at least i + 1. Thus T ∪ {v} is a face of ∆,
and hence T is a face of lk∆(v).

For the second part, let F ⊆ V (lk∆(v)) be a face of ∆ of size at least i. Since all vertices of F
are in the link of v, it follows that F ∪ {v} is a clique in ∆ of size at least i+ 1; in fact, since F is
a face of ∆, this clique is a critical clique. Therefore, F ∪ {v} is a face of ∆, and we infer that F is
a face of lk∆(v). �

Lemma 3.5. Let ∆ be a simplicial complex. Then ∆ is i-banner if and only if the suspension of
∆, Σ∆, is (i+ 1)-banner.

Proof: Let u and u′ be the suspension vertices of Σ∆.

Suppose first that ∆ is i-banner, and let T be a critical clique in Σ∆ with |T | ≥ i + 2. By
definition, there is a vertex v ∈ T such that T − {v} is a face of Σ∆. We examine three possible
cases. If neither u nor u′ belongs to T , then T is a face of ∆ since ∆ is i-banner. If u (or u′) belongs
to T and v = u, then T − {u} is a face of ∆, and hence T is a face of Σ∆. Finally, if u (or u′)
belongs to T but v 6= u, then T − {u} is a critical clique of ∆ of size at least i+ 1. Thus T − {u}
is a face of ∆ and hence T is a face of Σ∆.

Conversely, suppose Σ∆ is (i + 1)-banner, and let T be a critical clique of ∆ with |T | ≥ i + 1.
Then T ∪ {u} is a critical clique of Σ∆, hence a face of Σ∆, which means T is a face of ∆ as well.
�

As the suspension of the boundary complex of an (i − 1)-simplex shows, a complex with no
missing faces of size larger than i (for i > 2) need not be i-banner; the converse statement, however,
does hold:

Lemma 3.6. Let ∆ be an i-banner complex with i ≥ 2. Then ∆ has no missing faces of size larger
than i.

Proof: As every missing face is a critical clique, it follows that every missing face in ∆ has size
at most i. �

4 Examples

Example 4.1. To construct a (d − 1)-dimensional complex that is (i + 1)-banner, but not i-
banner, simply take a (d−1)-dimensional simplex and the (i−1)-dimensional skeleton of a simplex
of dimension at least i, and glue these two complexes along one of the (i− 1)-dimensional faces.

In this section we present a construction of an (i+1)-banner sphere of an arbitrary dimension
that is not i-banner. We start by constructing 3-banner spheres that are not flag.

Recall that the stellar subdivision of a simplicial complex ∆ at a face σ (where σ ∈ ∆ and
dimσ > 0) is the simplicial complex obtained from ∆ by removing all faces containing σ and
adding a new vertex vσ, as well as all sets of the form τ ∪ {vσ} where τ does not contain σ but
τ ∪ σ ∈ ∆. Observe that if σ and τ are two faces of ∆ and dimσ > dim τ , then τ is also a face of
the subdivision of ∆ at σ.
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Proposition 4.2. Let T be the boundary of a triangle, S the boundary of a (d − 2)-dimensional
simplex, and let ∆ := T ∗S. Consider the complex ∆̃ obtained from ∆ by taking stellar subdivisions
at all positive-dimensional faces of ∆ except for the edges of T (starting from top-dimensional faces
and working toward the lower-dimensional ones). Then ∆̃ is a (d−1)-dimensional simplicial sphere
that is 3-banner but not flag.

Proof: That ∆̃ is a simplicial sphere follows from the fact that the join of two spheres is a sphere
and that stellar subdivisions do not change the homeomorphism type of a complex. To see that
∆̃ is not a flag complex, observe that the vertices of T , which we denote by x, y, z, form a missing
face in ∆̃ of size 3. Finally, note that the faces of ∆̃ are in bijection with those chains in the face
poset of ∆ that contain at most 1 element from the list

{x}, {y}, {z}, {x, y}, {x, z}, {y, z},

where a chain of faces σs ⊃ σs−1 ⊃ · · · ⊃ σ1 ⊃ ∅ in the face poset of ∆ corresponds to the face
{vσs , · · · , vσ1

} of ∆̃ if σ1 is not in the above list, and to the face {vσs , · · · , vσ2
} ∪ σ1 otherwise.

Hence we conclude that (i) there is no clique in ∆̃ that properly contains the clique C = {x, y, z},
and (ii) every clique C ′ 6= C in ∆̃ forms a face of ∆̃. Thus C is the only critical clique of ∆̃ that is
not a face, and hence ∆̃ is 3-banner. �

Corollary 4.3. For every 2 ≤ i ≤ d, there exists a (d−1)-dimensional sphere that is (i+1)-banner,
but not i-banner.

Proof: According to Proposition 4.2, there exists a 3-banner (d − i + 1)-dimensional simplicial
sphere that is not flag. Suspending this sphere (i− 2) times yields, by Lemma 3.5, a (d− 1)-sphere
that is (i+ 1)-banner, but not i-banner. �

Remark 4.4. Björner and Vorwerk [4, Example 3.6] construct a 3-dimensional sphere that is
banner, and hence 3-banner, but not flag. Their construction is different from the one in Proposi-
tion 4.2 (for instance, it contains fewer vertices than the complex in our construction). Suspending
this sphere an appropriate number of times produces another family of (d− 1)-dimensional spheres
that are (d− 1)-banner, but not (d− 2)-banner.

5 Cohen-Macaulay connectivity of skeleta

We now turn to discussing connectivity of i-banner complexes. In particular, our goal in this section
is to prove the following theorem:

Theorem 5.1. Let ∆ be a (d − 1)-dimensional homology sphere over a field k. If ∆ is i-banner
for some 1 ≤ i ≤ d, then Skeld−i−j(∆) is 2(i + j)-CM over k for all 0 ≤ j ≤ d− i.

We begin with a lemma. (See Remark 7.5 for a stronger statement on the face numbers of
(d− 1)-dimensional 2-CM complexes that are d-banner.)

Lemma 5.2. Let ∆ be a (d − 1)-dimensional homology manifold over a field k, and suppose that
∆ is i-banner for some 1 ≤ i ≤ d. Then ∆ has at least 2d vertices.
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Proof: The proof is by induction on d. The claim holds when d = 2 since a 1-dimensional
homology manifold ∆ is a graph that is a cycle or a disjoint union of cycles, but not a triangle
(since i ≤ 2 and hence ∆ is flag). Suppose now that d ≥ 3.

First we claim that the graph of ∆ is not a clique. To see this, let F be a facet of ∆ and let
v be a vertex that does not belong to F . Such a vertex exists since ∆ is not a simplex, and hence
has at least d + 1 vertices. If the graph of ∆ is a clique, then F ∪ {v} is a critical (d + 1)-clique,
and thus a face of ∆. This contradicts the assumption that ∆ is (d− 1)-dimensional.

Since the graph of ∆ is not a clique, there exist vertices u and u′ such that {u, u′} is not an
edge in ∆. Since the link of u is an (i− 1)-banner, (d− 2)-dimensional homology sphere, it has at
least 2(d− 1) vertices by our inductive hypothesis. These vertices, together with u and u′ account
for at least 2d vertices in ∆. �

We are now ready to prove Theorem 5.1. Our proof follows the same general outline as the
proof of [11, Theorem 4.1].

Proof: We begin by establishing notation that will be used throughout the proof. We will assume
that all homology groups are computed with coefficients in k, and the field will be suppressed from
our notation. Similarly, when we say that a simplicial complex is CM (respectively q-CM), we mean
that it is CM over k (resp. q-CM over k). Finally, suppose Γ is a subcomplex of ∆, and let W be
a subset of V (∆) (but not necessarily a subset of the vertices of Γ). We write Γ−W to denote the
restriction of Γ to the vertices in V (Γ) \W . We will also make use of the following observation:

lk(Skelk(∆))−W
(F ) = (lkSkelk(∆)(F ))−W = (Skelk−|F |(lk∆(F )))−W . (5.1)

The proof is by induction on d. Theorem 4.1 in [11] verifies an analogous result for flag com-
plexes. Hence the result holds when i ≤ 2; this also implies that it holds when d = 2.

By Reisner’s criterion [14], together with the fact that the p-dimensional homology groups of
a simplicial complex are determined by its (p + 1)-skeleton, we must establish the following three
statements in order to show that Skeld−i−j(∆) is 2(i+ j)-CM.

(A). ∆−W is at least (d− i− j)-dimensional for any W ⊆ V (∆) with |W | < 2(i+ j).

(B). lkSkeld−i−j(∆)(F ) is 2(i+ j)-CM for any nonempty face F ∈ ∆.

(C). H̃r(∆−W ) = 0 for all r < d− i− j for any W ⊆ V (∆) with |W | < 2(i + j).

First we prove claim (A). Let G be a maximal face of ∆−W and suppose |G| ≤ d − i − j. By
Lemma 5.2, lk∆(G) has at least 2(d− |G|) vertices. Since

2(d− |G|) ≥ 2(d− (d− i− j)) = 2(i+ j) > |W |,

there is a vertex of lk∆(G) that does not belong to W . This contradicts the assumption that G is
maximal in ∆−W .

Next, we prove claim (B). We consider two cases based on |F |. If |F | < i − 2, then lk∆(F ) is
(i− |F |)-banner by Lemma 3.4. Since lk∆(F ) is also a (d− |F | − 1)-dimensional homology sphere,
our inductive hypothesis implies that lkSkeld−i−j(∆)(F ) = Skel(d−|F |)−i−j(lk∆(F )) is 2(i + j)-CM.
On the other hand, if |F | ≥ i− 2, then Lemmas 3.3 and 3.4 imply that lk∆(F ) is a flag homology
sphere. Thus by [11, Theorem 4.1], lkSkeld−i−j(∆)(F ) is 2(i+ j)-CM.

Finally, we prove claim (C). Again, we must consider two cases based on whether or not the
vertices in W form a clique. In the case that the vertices of W do not form a clique, the proof is
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identical to that of [11, Theorem 4.1]. (It relies on eq. (5.1) and a simple Mayer–Vietoris argument.)
So suppose the vertices in W do form a clique. We claim that H̃k(∆[W ]) = 0 for any k ≥ i − 1.
If W is not a face of ∆, then it contains no critical cliques of size at least i + 1. This means that
no i vertices of W form a face of ∆, and hence ∆[W ] has dimension at most i − 2. Thus, indeed
we have H̃k(∆[W ]) = 0 for any k ≥ i− 1. On the other hand, if W is a face of ∆, then ∆[W ] is a
simplex, and H̃k(∆[W ]) = 0 for all k.

Since ∆ is a (d− 1)-dimensional homology sphere, Alexander duality implies that

H̃r(∆−W ) ∼= H̃d−r−2(∆[W ]) for all r.

If r < d− i− j, then d− r− 2 ≥ i+ j − 1 ≥ i− 1, and we conclude that H̃r(∆−W ) = 0 for all such
r. �

Corollary 5.3. Let ∆ be a d-dimensional homology manifold over a field k. If ∆ is (i+1)-banner
for some 1 ≤ i ≤ d, then Skeld+1−i−j(∆) is 2(i + j)-Buchsbaum over k for all 0 ≤ j ≤ d + 1 − i.
Moreover, if ∆ is also connected, then ∆−W is connected for any W ⊆ V (∆) with |W | < 2(i + j).

Proof: Since ∆ is a d-dimensional homology manifold, all vertex links of ∆ are (d−1)-dimensional
homology spheres. Furthermore, since ∆ is (i+1)-banner, all vertex links of ∆ are i-banner. Thus,
according to Theorem 5.1, Skeld−(i+j)(lk v) is 2(i+ j)-CM for every vertex v and all 0 ≤ j ≤ d− i.
Eq. (5.1) then completes the proof for 0 ≤ j ≤ d− i. Finally, for j = d+1− i, the first part follows
from Lemma 5.2.

To prove the second part, let W = {v1, . . . , vk} with k < 2(i + j). We prove that ∆−W is
connected by induction on k. Since we assumed that ∆ is connected, the result holds when k = 0,
and we may assume that k > 0. LetW ′ = W−{vk}. The decomposition ∆−W ′ = ∆−W∪st∆

−W ′
(vk)

gives a Mayer-Vietoris sequence

· · · → H̃0(lk∆
−W ′

(vk)) → H̃0(∆−W )⊕ H̃0(st∆
−W ′

(vk)) → H̃0(∆−W ′) → 0.

By our inductive hypothesis on k, ∆−W ′ is connected, and lk∆
−W ′

(vk) = (lk∆(vk))−W ′ is connected
since lk∆(vk) is 2(i+ j)-CM. Thus by exactness, ∆−W is connected as well. �

6 An extension of banner connectivity

In this section we discuss an extension of Theorem 5.1 to arbitrary homology spheres. This requires
defining the following family of invariants (cf., [4, Definition 5.1]).

Definition 6.1. Let ∆ be a simplicial complex of dimension d− 1. For 0 ≤ i ≤ d− 1, define

bi(∆) := min{s : lk∆(F ) is (d− s− i)-banner or dim lk∆(F ) = i for all F ∈ ∆ with |F | = s}.

We will use bi as a shorthand for bi(∆) whenever this can not cause any confusion.

Thus, 0 ≤ bi(∆) ≤ d− i − 1 and b0 ≥ b1 ≥ · · · ≥ bd−1 = 0 (this follows from Lemma 3.2). If ∆ is
the boundary of a d-simplex, then bi = d− i− 1 for all i. On the other hand, bi(∆) = 0 if and only
if i = d − 1 or ∆ is (d − i)-banner. We also note that b1(∆) coincides with the invariant b∆ of [4,
Definition 5.1].

Below is the main result of this section. For i = 1 it reduces to [4, Theorem 1.1] for the case of
homology spheres.
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Theorem 6.2. Let ∆ be a (d − 1)-dimensional homology sphere over a field k. Then Skeli(∆) is
(2(d − i) − bi)-CM over k for all 0 ≤ i ≤ d − 1. Moreover, if for a certain i, bi < d − i − 1, then
Skelk(∆) is (2(d − k)− bi)-CM over k for all 0 ≤ k ≤ i.

The proof of Theorem 6.2 relies on the following lemma.

Lemma 6.3. Let ∆ be a Cohen-Macaulay complex of dimension d− 1, and suppose that lk∆(v) is
q-CM for every vertex v ∈ ∆. Then Skeld−2(∆) is (q + 1)-CM.

Proof: Let W = {v1, . . . , vk} ⊆ V (∆) be a collection of vertices with k ≤ q. As in the proof
of Theorem 5.1, in order to verify that Skeld−2(∆) is (q + 1)-CM, we need to show that (A) each
face of ∆−W is contained in a face of dimension at least d− 2, and (B) for each face F of ∆−W of
dimension at most d− 2, H̃i(lk∆−W

(F )) = 0 for all i < d− |F | − 2. Both of these claims hold when
k = 0 since ∆ is Cohen-Macaulay. We thus assume that k > 0 and proceed by induction on k. Let
W ′ := W − {vk}.

To prove claim (A), suppose there is a maximal face σ of ∆−W with |σ| ≤ d − 2. Since σ is
also a face of ∆−W ′ , there is a face τ of ∆−W ′ such that σ ⊆ τ and |τ | ≥ d − 1. This means
that τ = σ ∪ {vk} by our assumption that σ is a maximal face of ∆−W , and hence σ is a face of
lk∆

−W ′
(vk) = (lk∆(vk))−W ′ . Since |W ′| < q and lk∆(vk) is q-CM, (lk∆(vk))−W ′ is pure of dimension

d − 2. Thus there is a face τ ′ of lk∆
−W ′

(vk) with |τ ′| ≥ d − 1 such that τ ′ ⊇ σ. This contradicts
our assumption that σ is maximal.

To prove claim (B), let F be a face of ∆−W of dimension at most d− 2, and let i < d− |F | − 2.
For ease of notation, we define

Γ := lk∆−W
(F ) = (lk∆(F ))−W , and similarly Γ′ := (lk∆(F ))−W ′ .

For any i < d− |F | − 2, an appropriate piece of the Mayer-Vietoris sequence for the decomposition
of Γ′ as Γ′ = Γ ∪ stΓ′(vk) is

· · · → H̃i(lkΓ′(vk)) → H̃i(Γ)⊕ H̃i(stΓ′(vk)) → H̃i(Γ
′) → · · · .

By our inductive hypothesis on k, we see that H̃i(Γ
′) = 0. Since lkΓ′(vk)) = (lklk∆(vk)(F ))−W ′ and

lk∆(vk) is (d − 2)-dimensional and q-CM, we obtain that H̃i(lkΓ′(vk)) = 0. Thus it follows from
exactness that H̃i(Γ) = 0 as well. �

Corollary 6.4. Let ∆ be a Cohen–Macaulay complex, and suppose that Skelk(lk∆(F )) is q-CM for
all faces F ∈ ∆ with |F | = s. Then Skelk(∆) is (q + s)-CM.

Proof: It follows from Reisner’s criterion and the assumption that ∆ is Cohen–Macaulay that
Skelk+1(∆) is Cohen–Macaulay as well. Furthermore, since Skelk(lk∆(F )) is q-CM for all faces
F ∈ ∆ with |F | = s, Lemma 6.3 implies that Skelk(lk∆(G)) is (q + 1)-CM for all faces G ∈ ∆ with
|G| = s− 1. Inductively, this gives the desired result. �

Now we are ready to prove Theorem 6.2

Proof: Fix i and let s = bi(∆). If s = d− i−1, then we only claim that Skeli(∆) is (d− i+1)-CM,
and this is immediate from the fact that ∆ is 2-CM and a result of Fløystad [7] asserting that the
codimension-1 skeleton of a q-CM complex is (q + 1)-CM. Hence assume that s < d− i− 1. Then
by Definition 6.1, for each face F ∈ ∆ with |F | = s, the link lk∆(F ) is a (d − s − 1)-dimensional
homology sphere that is (d−s− i)-banner. Thus by Theorem 5.1, Skelk(lk∆(F )) is 2(d−s−k)-CM
provided 0 ≤ i− k ≤ i (which is true by our assumptions). Therefore by Corollary 6.4, Skelk(∆) is
(2(d − s− k) + s) = (2(d − k)− bi(∆))-CM. �
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7 Face numbers of i-banner complexes

Here we discuss how being i-banner affects the face numbers of a simplicial complex. The main
result of this section is the following extension of Frohmader’s theorem [9] on the face numbers of
flag complexes to i-banner complexes.

Theorem 7.1. Let ∆ be an i-banner simplicial complex (for some 2 ≤ i ≤ d). Then there exists
a balanced complex Γ with the same number of vertices as ∆ such that fk−1(∆) = fk−1(Γ) for all
k ≥ i.

The face numbers of balanced complexes (both numerically and combinatorially) were charac-
terized in [8]. For our purposes we will only need a combinatorial characterization. It relies on the
notion of the reverse-lexicographic (“rev-lex”, for short) order: if A and B are two finite equal-size
subsets of N—the set of positive integers, then we say that A precedes B in the rev-lex order and
write A ≺ B if max ((A \B) ∪ (B \ A)) is an element of B. For instance, {3, 5, 7} ≺ {2, 6, 7}.

We say that a simplicial complex ∆ is d-colorable if V (∆) can be partitioned into d sets V1, . . . , Vd

(“colors”) in such a way that |F ∩ Vj | ≤ 1 for all 1 ≤ j ≤ d. (Thus a (d− 1)-dimensional complex
is d-colorable if and only if it is a balanced complex.) Also call a subset A of N d-permissible if no
two distinct elements of A have the same remainder modulo d. Given k,m ≥ 0, let Id

k(m) denote
the collection of first m-many d-permissible (k + 1)-subsets of N in rev-lex order, and let Cd

k(m)
denote the k-dimensional pure simplicial complex whose set of facets is Id

k(m). Note that Cd
k(m) is

a d-colored complex, as is any complex all of whose faces are d-permissible sets (with one color for
each remainder modulo d).

Theorem 7.2. (Frankl-Füredi-Kalai, [8]) Let a, b, and k be nonnegative integers. Then there exists
a d-colorable simplicial complex ∆ with fk−1(∆) = b and fk(∆) = a if and only if Cd

k−1(b) ∪ Id
k(a)

is a simplicial complex.

We start the proof of Theorem 7.1 by verifying two lemmas. The proof of the first of them
is essentially the same as Frohmader’s proof [9] but relies on the observation that restrictions
of i-banner complexes are i-banner and on Lemma 3.4 instead of analogous statements for flag
complexes.

Lemma 7.3. Let ∆ be a (d − 1)-dimensional i-banner complex and i ≤ k ≤ d − 1. Then there
exists a d-colorable simplicial complex Γ such that fk−1(Γ) = fk−1(∆) and fk(Γ) = fk(∆).

Proof: The proof is by induction on i. Lemma 4.1 in [9] proves an analogous statement for flag
complexes, and hence by Lemma 3.3, the result holds when i ≤ 2. So fix i ≥ 3 and k ≥ i ≥ 3 and
assume that the statement holds for i− 1 and all k′ ≥ i− 1.

Let v0 be the vertex of ∆ with the property that fk−1(lk∆ v0) ≥ fk−1(lk∆ v) for all v ∈ V . In
other words, v0 is contained in the most k-faces of ∆. Let v1, . . . , vs be all vertices of ∆ that do
not belong to the link of v0. Set W0 = ∅, and for 1 ≤ j ≤ s + 1 consider Wj := {v0, v1, . . . , vj−1}.
Thus ∆−Ws+1

is the restriction of ∆ to the vertex set of lk∆ v0, and

∆ = ∆−W0
⊇ ∆−W1

⊇ · · · ⊇ ∆−Ws+1
.

Note also that ∆−Wj
\∆−Wj+1

is precisely the set of faces of ∆−Wj
that contain vj .

Let fk−1(lk∆−Wj
vj) = aj and fk−2(lk∆−Wj

vj) = bj. Two observations are in order. First, since

restrictions of i-banner complexes are also i-banner, Lemma 3.4 implies that for all 0 ≤ j ≤ s,
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lk∆−Wj
vj is a (d − 2)-dimensional (i − 1)-banner complex. Thus, by our induction hypothesis,

along with Theorem 7.2,

Λ(bj , aj) := Cd−1
k−2(bj) ∪ Id−1

k−1(aj) is a simplicial complex for all 0 ≤ j ≤ s, and (7.1)

Λ0 := Cd−1
k−1(a0) ∪ Id−1

k (fk(lk∆ v0)) is a simplicial complex. (7.2)

Second, since the p-faces of ∆−Wj
containing vj are in bijection with (p− 1)-faces of lk∆−Wj

vj and

since by Lemma 3.4, the set of (k− 1)- and k-faces of lk∆(v0) coincides with the set of (k− 1)- and
k-faces of ∆−Ws+1

, we conclude that

fk(∆) = fk(lk∆(v0)) +
s∑

j=0

aj and fk−1(∆) = a0 +
s∑

j=0

bj . (7.3)

We now construct a d-colorable complex Γ with fk−1(Γ) = fk−1(∆) and fk(Γ) = fk(∆). To
do so, start with a (d − 1)-colorable complex Λ0 of eq. (7.2). By adding to Λ0 faces of dimension
≤ k − 2, if needed, we obtain a (d− 1)-colorable simplicial complex Λ with

fk(Λ) = fk(lk∆(v0)), fk−1(Λ) = a0, and Λ ⊇ Cd−1
k−2(max{b0, b1, . . . , bs}). (7.4)

In addition, by our choice of v0,

a0 = fk−1(lk∆ v0) ≥ fk−1(lk∆ vj) ≥ fk−1(lk∆−Wj
vj) = aj for all 0 ≤ j ≤ s.

Hence,
Λ ⊇ Λ0 ⊃ Id−1

k−1(a0) ⊇ Id−1
k−1(aj),

which combined with eq. (7.4) yields that each complex Λ(bj , aj) of eq. (7.1) is a subcomplex of Λ.
Let v′0, v

′
1, . . . , v

′
s be s+ 1 new vertices of color d, and define

Γ :=
(⋃

v′j ∗ Λ(bj , aj)
)
∪ Λ.

The above discussion shows that Γ is a well defined simplicial complex, it is d-colorable and has the
same number of k-faces and (k−1)-faces as ∆ (the last statement is a consequence of our definition
of Γ and equations (7.3) and (7.4)). The lemma follows. �

For the second lemma, let Γ(n, d) denote the complete multipartite graph on n vertices and
d parts, each of which has size either ⌈n

d
⌉ or ⌊n

d
⌋, and let

(
n
j

)
d
denote the number of j-cliques in

Γ(n, d).

Lemma 7.4. Let ∆ be an i-banner simplicial complex of dimension d − 1 on n vertices. Then
fi−1(∆) ≤

(
n
i

)
d
.

Proof: We prove the claim by induction on d and on n. The result holds when d = 2 by Turán’s
Theorem and is clear when n = d. So inductively we may suppose that the claim holds for all (i−1)-
banner complexes of dimension d− 2 and for all i-banner complexes of dimension at most d− 1 on
fewer than n vertices. We will make use of the fact that, fi−1(∆) = fi−2(lk∆(u)) + fi−1(∆− u) for
any vertex u ∈ ∆ and use induction to bound each of these pieces.

Let F be a (d−1)-dimensional face of ∆, and letW ⊆ V (∆) denote the collection of vertices that
do not lie on F . For each vertex w ∈ W , there is at least one vertex v ∈ F such that {v,w} /∈ ∆:
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otherwise, F ∪ {w} would be a critical clique of size d+ 1 in ∆. By the pigeonhole principle, there
is some vertex v ∈ F that contributes to at least ⌈n−d

d
⌉ = ⌈n

d
⌉ − 1 missing edges in ∆. Since v lies

on the (d− 1)-face F , lk∆(v) is an (d− 2)-dimensional and (i− 1)-banner simplicial complex on at
most (n− 1)− (⌈n

d
⌉ − 1) = n− ⌈n

d
⌉ vertices.

On the other hand, ∆ − v is either (d − 1)-dimensional or (d − 2)-dimensional. In the former
case, the inductive hypothesis implies that fi−1(∆ − v) ≤

(
n−1
i

)
d
; however, in the latter case the

inductive hypothesis only gives fi−1(∆ − v) ≤
(
n−1
i

)
d−1

. An extension of Turán’s theorem due
to Zykov [16] shows that Γ(n − 1, d) has the maximum number of j-cliques among all d-colorable
graphs for any 1 ≤ j ≤ d. Since Γ(n − 1, d − 1) is (d − 1)-colorable (and hence d-colorable), it
follows that

(
n−1
i

)
d−1

≤
(
n−1
i

)
d
in this case as well.

Thus

fi−1(∆) = fi−2(lk∆(v)) + fi−1(∆− v)

≤

(
n− ⌈n

d
⌉

i

)

d−1

+

(
n− 1

i

)

d

.

In order to complete the proof, we claim that
(n−⌈n

d
⌉

i

)
d−1

+
(
n−1
i

)
d
=

(
n
i

)
d
. Indeed, let W ′ be a

partite set of Γ(n, d) with ⌈n
d
⌉ vertices, and let x be a vertex in W ′. Then there are

(n−⌈n
d
⌉

i

)
d−1

i-cliques in Γ(n, d) that contain x and
(
n−1
i

)
d
i-cliques that do not contain x. �

We are now ready to prove Theorem 7.1.

Proof: [of Theorem 7.1] If ∆ is an i-banner (d− 1)-dimensional complex on n vertices, then by
Lemma 7.4 the complex Cd

i−1(fi−1(∆)) has at most n vertices. By Lemma 7.3 and Theorem 7.2, the

complex Cd
i−1(fi−1(∆)) ∪ (∪d−1

j=i I
d
j (fj(∆))) is a balanced complex whose face numbers of dimension

i− 1 and higher coincide with those of ∆. �

Remark 7.5. The h-numbers, hj = hj(∆), of a (d − 1)-dimensional simplicial complex ∆ are
defined by

d∑

j=0

fj−1(∆)(x− 1)d−j =

d∑

j=0

hj(∆)xd−j .

Athanasiadis [1] shows that the h-numbers of an arbitrary 2-CM flag complex of dimension d − 1
satisfy hj ≥

(
d
j

)
for all 0 ≤ j ≤ d. The proof of this result is an induction argument that relies

on standard results about the h-numbers of CM complexes along with the fact that the graph of a
2-CM flag complex is not a clique and that vertex links of a flag 2-CM complex are also flag 2-CM
complexes of a smaller dimension. As the graph of a 2-CM d-banner (d− 1)-dimensional complex
is not a clique (indeed, the only (d − 1)-dimensional d-banner complex whose graph is a clique
is a simplex), and since vertex links of d-banner complexes are (d − 1)-banner, exactly the same
argument as in [1] yields the following more general result: If ∆ is a 2-CM (d − 1)-dimensional
simplicial complex that is d-banner, then hj(∆) ≥

(
d
j

)
for all 0 ≤ j ≤ d.

8 Open problems

We conclude the paper with a few open problems.
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As an extension of the Kalai-Eckhoff conjecture, Kalai also conjectured that the f -vector of a
Cohen–Macaulay flag complex is the f -vector of a Cohen–Macaulay balanced complex. It would
be interesting to try to extend Theorem 7.1 to Cohen–Macaulay complexes.

Question 8.1. Let ∆ be a Cohen–Macaulay i-banner simplicial complex. Is there a Cohen–
Macaulay balanced complex Γ for which fk−1(∆) = fk−1(Γ) for all k ≥ i?

Let ∆ be an i-banner complex. Theorem 7.1 together with [8] provides an upper bound on
fj(∆) in terms of fj−1(∆) for all j ≥ i. However, at present we do not have any non-trivial bounds
on the lower-dimensional face numbers of i-banner complexes.

A simplicial complex Γ is called (a1, . . . , ar)-balanced, where a1, . . . ar are positive integers
satisfying

∑r
k=1 ak = 1 + dim∆, if the vertex set of ∆ can be partitioned into r sets V1, . . . , Vr in

such a way that

|F ∩ Vk| ≤ ak for every face F of ∆ and all 1 ≤ k ≤ r.

Thus (1, 1, . . . , 1)-balanced complexes are the usual balanced complexes; on the other extreme, every
(d − 1)-dimensional simplicial complex is a (d)-balanced complex. If a2 = a3 = · · · = ar = 1, we
write (a1, 1

r−1) instead of (a1, a2, . . . , ar). The following question seems to be a natural interpolation
between these two extremes.

Question 8.2. Let ∆ be an i-banner (d−1)-dimensional complex. Is there always an (i−1, 1d−i+1)-
balanced complex Γ such that fj(Γ) = fj(∆) for all j ≥ 0?

The non-pure i-banner complexes from Example 4.1 that are constructed by gluing a (d − 1)-
simplex to the (i− 2)-skeleton of a simplex of dimension at least i− 1 answer Question 8.2 in the
affirmative. Indeed, each of these complexes is (i− 1, 1d−i−1)-balanced.

Another intriguing direction is to study face numbers of i-banner homology spheres. The
celebrated Charney–Davis conjecture [5] posits that if ∆ is a (2e−1)-dimensional flag complex and
if, in addition, ∆ is a homology sphere, then (−1)e

∑2e
j=0(−1)jhj(∆) ≥ 0. Gal’s conjecture [10]

generalizes the Charney–Davis conjecture for flag spheres. It asserts that all of the coefficients of a
certain γ-polynomial associated with a sphere are non-negative if the sphere is flag. Gal’s conjecture
was further generalized to a series of conjectures in [13]. It would be extremely interesting to find
appropriate analogs of these conjectures for i-banner spheres.
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