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Abstract

Generalized sampling is a recently developed linear framework for sampling and reconstruction
in separable Hilbert spaces. It allows one to recover any element in any finite-dimensional subspace
given finitely many of its samples with respect to an arbitrary frame. Unlike more common ap-
proaches for this problem, such as the consistent reconstruction technique of Eldar et al, it leads to
completely stable numerical methods possessing both guaranteed stability and accuracy.

The purpose of this paper is twofold. First, we give a complete and formal analysis of generalized
sampling, the main result of which being the derivation of new, sharp bounds for the accuracy and
stability of this approach. Such bounds improve those given previously, and result in a necessary
and sufficient condition, the stable sampling rate, which guarantees a priori a good reconstruction.
Second, we address the topic of optimality. Under some assumptions, we show that generalized
sampling is an optimal, stable reconstruction. Correspondingly, whenever these assumptions hold,
the stable sampling rate is a universal quantity. In the final part of the paper we illustrate our
results by applying generalized sampling to the so-called uniform resampling problem.

1 Introduction

A central theme in sampling theory is the recovery of a signal or an image from a collection of its
measurements. Mathematically, this can be modelled in a separable Hilbert space H, with the samples
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of the unknown signal f ∈ H being of the form

f̂j = 〈f, ψj〉, j = 1, 2, . . . ,

where {ψj}∞j=1 is a collection of elements belonging to H (here 〈·, ·〉 is the inner product on H). Typically,

the sampling system {ψj}∞j=1 forms a frame for its span S = span{ψ1, ψ2, . . .}.
One of the most common, and arguably one of the most important, examples of this type of sampling

is the recovery of a function f with compact support from pointwise evaluations of its Fourier transform
f̂ . In this case, H = L2(−1, 1)d, where supp(f) ⊆ (−1, 1)d without loss of generality, and ψj(x) = eiπωj ·x

for suitable values {ωj}j∈N ⊆ Rd. This is precisely the type of sampling encountered in Magnetic
Resonance Imaging (MRI), for example.

If the measurements {ωj}j∈N are taken uniformly, both f and f̂ can be recovered via the Shannon
Sampling Theorem [41, 54]. However, the slow convergence of the corresponding reconstructions (both
infinite sums), as well as the appearance of the Gibbs phenomenon, means that this approach is often
not practical [27, 46, 54]. In cases where measurements {ωj}j∈N are not uniformly distributed, no simple
reconstruction need exist. It is standard in this setting to use a gridding algorithm [39, 45, 48, 60].
However, this also typically leads to less than satisfactory accuracy. Much as in the uniform case,
unsightly Gibbs oscillations also persist [60].

The MRI problem serves to illustrate several key issues that are critical to this paper. First, although
f is sampled via an infinite collection of elements {ψj}∞j=1, in practice we only have access to a finite
number. Thus, the problem we consider throughout this paper is that of recovering f from only its
first n samples f̂1, . . . , f̂n. Key issues herein are those of approximation – namely, how well f can
be recovered as n → ∞ – and robustness – does increasing n lead to worse stability, and thus more
sensitivity to noise and round-off error?

The MRI example also highlights another key issue. Namely, the samples {f̂j}j∈N of f are fixed,
and cannot easily be altered. This situation occurs typically when the sampling scheme is specified by
some physical device, e.g. the MR scanner in the above example. Although it is actually possible to
modify MR scanners to acquire different types of measurements, such as wavelet-encoded MRI [35, 61],
this is not without complications [43]. Thus, the question we consider in this paper is the following:
given a finite number of fixed samples of an element f of a Hilbert space H, how can one obtain a good
(i.e. accurate and robust) reconstruction?

This question is not new, and there has been much interest in the last several decades in alternative
reconstructions to those given by the Shannon Sampling Theorem. This is typically based on the
following principle: many signals that arise in practice can be much better represented in terms of a
different collection of elements {φj}j∈N ⊆ H [27, 54] than by Shannon’s theorem. Common examples of
such systems include wavelets, splines and polynomials, as well as more exotic objects such as curvelets
[12, 14], shearlets [17, 18, 42] and contourlets [19, 47]. Thus, given this additional knowledge about f ,
the problem is now as follows: how can we compute a reconstruction in the system {φj}j∈N from the

measurements f̂j = 〈f, ψj〉?
Consistent sampling is a linear technique designed specifically for this problem, based on stipulating

that the reconstruction of f agrees with the available measurements. Introduced by Unser & Aldroubi
[55, 57] and later generalised significantly by Eldar et al [22, 23, 24, 28], this technique has proved
successful in a number of areas, and is quite widely used in practice [54]. However, there are a number
of drawbacks. As discussed in [1, 4, 25, 37], consistent reconstructions need not be stable or convergent
as the number of measurements increases. Whilst stability and convergence can be guaranteed in
certain shift-invariant spaces [24, 56], it is quite easy to devise examples outside of this setting for
which consistent reconstructions either fail to converge, or are extremely unstable, or both [1].

Fortunately, it transpires that these issues can be overcome by using an recently-introduced alter-
native technique, known as generalized sampling [1, 4, 5]. This method forms the primary focus of our
paper. Our main results are described in the next section.
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1.1 Novelty of the paper and overview

The purpose of this paper is to give a complete analysis of generalized sampling. Not only do we
establish sharp bounds for stability and the reconstruction error, which improve on those appearing
previously in [1, 4, 5], we also provide several optimality results. These results demonstrate that under
mild conditions generalized sampling cannot be outperformed. To illustrate our results we consider the
so-called uniform resampling problem.

Let us now give an overview of the remainder of the paper. In §2–3 we give a mathematical descrip-
tion of the general instability and nonconvergence of consistent reconstructions. For this, it is necessary
to present a formal description of the reconstruction problem (§2). Herein we also introduce two key
constants to assess different methods for the problem: the condition number κ and the quasi-optimality
constant µ. The former measures the sensitivity of a given reconstruction method to perturbations (e.g.
noise and round-off), whilst the latter quantifies how close the reconstruction of an element f is to its
best (i.e. optimal) reconstruction in the desired system of functions. For succinctness, we also introduce
the reconstruction constant C of a method, defined as the maximum of κ and µ. In §2 we explain why
it is vital in practice to have a small reconstruction constant C.

The focus of §3 is consistent sampling. By analysing the reconstruction constant C in this instance,
we provide a comprehensive answer as to when this approach will give poor (i.e. unstable and inaccu-
rate) reconstructions. Moreover, we show how one can determine a priori an answer to this question
by performing a straightforward computation. In other words, the success or failure of a consistent
reconstruction for a particular problem can always be determined beforehand. We also show how this
question can be reinterpreted in terms of the behaviour finite sections of infinite operators, and thus
draw a connection between problems in sampling and computational spectral theory (such a connection
was first discussed in [1]).

To overcome the issues inherent to consistent reconstructions the new approach of generalized sam-
pling was introduced in [1, 4, 5]. In the second part of the paper (§4–5) we improve the previous
analysis of [1, 5] by using the formal framework developed in §2. In particular, we explain conclusively
how generalized sampling guarantees a stable and accurate reconstruction by deriving the exact values
for µ and κ, and therefore C, as opposed to the nonsharp bounds given previously in [1, 5]. Moreover,
we reinterpret generalized sampling using geometry of Hilbert spaces, and in particular, the notions
of oblique projections and subspace angles. Next, we introduce a necessary and sufficient condition,
the stable sampling rate, which determines how to select the generalized sampling parameters so as to
guarantee a good reconstruction. This improves on the previous sufficient conditions of [1, 5]. Once
more, this condition is easily computable, as explained in §5. We also discuss the connections between
generalized sampling and computing with sections of infinite operators.

In §6 we consider the question of optimality of generalized sampling. That is, we pose the question:
can another method outperform generalized sampling, and if so, in what sense? Using the sharp bounds
derived in §4–5, we show that no method which is perfect (a definition is given later) can exhibit better
stability than generalized sampling. Hence generalized sampling is an optimal, stable approach to
the reconstruction problem amongst the class of perfect methods. Moreover, for problems where the
stable sampling rate grows linearly, we show that no method (perfect or nonperfect) can outperform
generalized sampling in terms of the reconstruction accuracy by more than a constant factor. Thus,
although it is possible in theory to get a better approximation error with a different method, no method
can converge at an asymptotically faster rate than generalized sampling.

In the final part of this paper, §7, we consider the application of generalized sampling to the so-
called uniform resampling problem. This problem concerns the computation of the Fourier coefficients
of a function from nonuniformly-spaced samples of its Fourier transform. We show that the standard
approach to this problem is nothing more than an instance of consistent sampling, and we explain how
in general this will lead to an exponentially large reconstruction constant C. Next we consider the
application of generalized sampling to this problem. We prove that stable sampling rate is linear, and
therefore generalized sampling is, in the senses defined in §6, an optimal, stable method for this problem.
Finally, we consider alternatives to uniform resampling, and show how the incorporation of different
reconstruction systems – specifically, splines and polynomials – can lead to an improved reconstruction.
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1.2 Relation to sparsity and compressed sensing

One of the most significant developments in signal and image reconstruction in the last several decades
has been the introduction of sparsity-exploiting algorithms. Techniques such as compressed sensing
[13, 20, 26, 29], which exploit sparsity of the signal f in a particular basis (wavelets, for example) to
reduce the number of measurements required, have recently become extremely popular.

Generalized sampling, in the form we discuss in this paper, does not exploit sparsity. It guaran-
tees recovery of all signals, sparse or otherwise, from sufficiently many of their measurements. How-
ever, it transpires that generalized sampling can be combined with existing compressed sensing tools
(randomization and convex optimization) to achieve subsampling, whenever the signal f is sparse (or
compressible) in the basis {φj}j∈N [2]. The importance of this development is that it allows for com-
pressed sensing of analog signals (i.e. functions in function spaces) which have sparse (or compressible)
information content in some infinite basis. Conversely, the standard compressed sensing techniques and
theorems apply only to finite-dimensional signals, i.e. vectors in finite-dimensional vector spaces. We
refer to [2] for details, and [9, 21, 59] for related methodologies based on analog, but finite information
content, models for signals.

2 The reconstruction problem

We now describe the reconstruction problem in more detail. To this end, suppose that {ψj}j∈N is a
collection of elements of a separable Hilbert space H (over C) that forms a frame for a closed subspace
S of H (the sampling space). In other words, span{ψj : j ∈ N} is dense in S and there exist constants
c1, c2 > 0 (the frame constants) such that

c1‖f‖2 ≤
∑
j∈N
|〈f, ψj〉|2 ≤ c2‖f‖2, ∀f ∈ S, (2.1)

where 〈·, ·〉 and ‖·‖ are the inner product and norm on H respectively [16]. Suppose further that {φj}j∈N
is a collection of reconstruction elements that form a frame for a closed subspace T (the reconstruction
space), with frame constants d1, d2 > 0:

d1‖f‖2 ≤
∑
j∈N
|〈f, φj〉|2 ≤ d2‖f‖2, ∀f ∈ T. (2.2)

Let f ∈ H be a given element we wish to recover, and assume that we have access to the samples

f̂j = 〈f, ψj〉, j ∈ N. (2.3)

Note that the infinite vector f̂ = {f̂j}j∈N is an element of `2(N). Ignoring for the moment the issue of
truncation – namely, that in practice we only have access to the first nmeasurements – the reconstruction
problem can now be stated as follows: given f̂ = {f̂j}j∈N, find a reconstruction f̃ of f from the subspace
T.

2.1 Stability and quasi-optimality

There are two important conditions which a reconstruction, i.e. a mapping {f̂j}j∈N 7→ f̃ , ought to
possess. The first is so-called quasi-optimality :

Definition 2.1. Let F : H0 → T, f 7→ f̃ be a mapping, where H0 is a subspace of H. The quasi-
optimality constant of µ = µ(F ) > 0 is the least number such that

‖f − f̃‖ ≤ µ‖f −QTf‖, ∀f ∈ H0,

where QT : H → T is the orthogonal projection onto T. If no such constant exists, we write µ = ∞.
We say that F is quasi-optimal if µ(F ) is small.

4



Note that QTf is the best, i.e. energy-minimizing, approximation to f from T. Thus, quasi-
optimality states that the error committed by f̃ is within a small, constant factor of that of the
energy-minimizing approximation. The desire for quasi-optimal mappings arises from the fact that
typical images and signals are known to be well represented in certain bases and frames, e.g. wavelets,
splines or polynomials [54]. In other words, the error ‖f −QTf‖ is small. When reconstructing f in the

corresponding subspace T from its measurements {f̂j}j∈N it is therefore vital that µ�∞. Otherwise,

the beneficial property of T for the signal f may be lost when computing the reconstruction f̃ .
The second important consideration is that of stability. For this, we introduce a condition number:

Definition 2.2. Let H0 be a closed subspace of H and suppose that F : H0 → H is a mapping such
that, for each f ∈ H0, F (f) depends only on the vector of samples f̂ ∈ `2(N). The (absolute) condition
number κ = κ(F ) is given by

κ = sup
f∈H0

lim
ε→0+

sup
g∈H0

0<‖ĝ‖`2≤ε

{
‖F (f + g)− F (f)‖

‖ĝ‖`2

}
. (2.4)

We say that the mapping F is well-conditioned if κ is small. Otherwise it is ill-conditioned.

A well-conditioned mapping F is robust towards perturbations in the inputs {f̂j}j∈N. Thus, in
practice, where one always deals with noisy data, it is vitally important to have such a property.

It is worth noting at this stage that the condition number (2.4) does not assume linearity of the
mapping F . If this is the case, then one has the much simpler form

κ(F ) = sup
f∈H0

f̂ 6=0

{
‖F (f)‖
‖f̂‖

}
.

We also remark that (2.4) is the absolute condition number, as opposed to the somewhat more stan-
dard relative condition number [53]. This is primarily for simplicity in the presentation: under some
assumptions, it is possible to adapt the results we prove later in this paper for the latter.

Occasionally, we will also consider the absolute condition number at an element f ∈ H0:

κf (F ) = lim
ε→0+

sup
g∈H0

0<‖ĝ‖`2≤ε

{
‖F (f + g)− F (f)‖

‖ĝ‖

}
, f ∈ H0. (2.5)

This measures the local conditioning of F around f . Naturally, one has κ(F ) = supf∈H0
κf (F ).

For convenience, it is useful to introduce the notion of a reconstruction constant for F :

Definition 2.3. Let F be as in Definition 2.2. The reconstruction constant C = C(F ) is defined by

C(F ) = max {κ(F ), µ(F )} ,

where the quantities µ(F ) and κ(F ) are the quasi-optimality constant and condition number of F re-
spectively. If F is not quasi-optimal or if κ(F ) is not defined, then we set C(F ) =∞.

2.2 The computational reconstruction problem

As mentioned, in practice we do not have access to the infinite vector of samples f̂ . Thus, the com-
putational reconstruction problem concerns the recovery of f from its first n measurements f̂1, . . . , f̂n.
Since we only have access to these samples, it is natural to consider finite-dimensional subspaces of T.
Thus, we let {Tn}n∈N be a sequence of finite-dimensional subspaces satisfying

Tn ⊆ T, dim(Tn) <∞, (2.6)
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and
QTn → QT, n→∞, (2.7)

strongly on H. In other words, the spaces {Tn}n∈N form a sequence of finite-dimensional approximations
to T. Strictly speaking, the second condition is not necessary. However, it is natural make this
assumption in order to guarantee a good approximation.

Remark 2.4 It is quite common in practice to define Tn = span{φ1, . . . , φn} to be the space spanned
by the first n elements of an infinite frame {φj}j∈N for T. Note that (2.6) and (2.7) automatically hold
in this case. Moreover, one has the nesting property T1 ⊆ T2 ⊆ . . .. However, this is not necessary.
The reconstructions we consider in this paper are actually independent of the spanning system for Tn.
Such a system only needs to be specified in order to perform computations. Hence, we consider the
more general setting outlined above.

With this in hand, the computational reconstruction problem is now as follows: given the samples
f̂1, . . . , f̂n, compute a reconstruction to f from the subspace Tn.

When considering methods Fn for this problem, it is clear that the constants reconstruction C(Fn)
should not grow rapidly with n. If this is not the case, then increasing the number of measurements
could, for example, lead to a worse approximation and increased sensitivity to noise. We shall see
examples of this in §3.6. To avoid this scenario, we now make the following definition:

Definition 2.5. For each n ∈ N, let Fn be a mapping such that, for each f , Fn(f) belongs to a finite-

dimensional reconstruction space Tn and depends only on the samples f̂ [n] = {f̂1, . . . , f̂n}. We say that
the reconstruction scheme {Fn}n∈N is numerically stable and quasi-optimal if

C∗ := sup
n∈N

C(Fn) <∞,

where C(Fn) is the reconstruction constant of Fn. We refer to the constant C∗ as the reconstruction
constant of the reconstruction scheme {Fn}n∈N.

This definition incorporates the issue of approximation into a sequence of reconstruction schemes.
Although in practice one only has access to a number of samples, it is natural to consider the behaviour
of Fn as n – the number of samples – increases. Ideally we would like Fn(f) to behave like Qnf , the best
approximation to f from Tn. Namely, Fn(f) should converge to f at precise the same rate as Qnf . This
is vitally important from a practical standpoint. The premise for computing a consistent reconstruction
is the knowledge that f is well represented in terms of the reconstruction system {φj}j∈N. This is
equivalent to the property that the orthogonal projections Qnf converge rapidly. Hence it is vital that
the computed reconstruction Fn(f) does not possess dramatically different behaviour as n → ∞. Put
simply, there is little point reconstructing in the basis {φj}j∈N if the good approximation properties of
f in this basis are destroyed by reconstruction technique.

Remark 2.6 In some applications, one may wish to relax the above definition slightly to allow mild
growth of C(Fn). If an ∈ (0,∞) is an increasing sequence, we say that {Fn}n∈N is stable and quasi-
optimal with respect to {an}n∈N if

C∗ = lim sup
n→∞

C(Fn)

an
<∞.

In other words, C(Fn) can grow at worst like O (an) as n→∞.

3 Consistent reconstructions and oblique projections

We now consider the consistent sampling technique of [23, 24, 28, 55, 57].
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3.1 Consistent sampling

Let us first return to the problem of recovering f from its infinite vector of samples f̂ . A simple
and elegant way to obtain a reconstruction F with small constant C(F ) is by solving the so-called
consistency conditions. Specifically, we define F (f) = f̃ by

〈f̃ , ψj〉 = 〈f, ψj〉, j = 1, 2, . . . , f̃ ∈ T. (3.1)

Consistency means that the samples of f̃ agree with those of f . We say that f̃ is a consistent recon-
struction of f , and refer to the mapping F : f 7→ f̃ as consistent sampling.

An analysis of consistent reconstructions, which we shall recap and extend in §3.3, was given in
[23, 24, 28]. Crucial to this is the notion of oblique projections in Hilbert spaces, which we discuss next.
This tool will also be used later in analysing the generalized sampling technique.

3.2 Oblique projections and subspace angles

We commence with the definition of a subspace angle:

Definition 3.1. Let U and V be closed subspaces of a Hilbert space H and QV : H→ V the orthogonal
projection onto V. The subspace angle θ = θUV ∈ [0, π2 ] between U and V is given by

cos(θUV) = inf
u∈U
‖u‖=1

‖QV u‖. (3.2)

Note that there are a number of different ways to define the angle between subspaces [50, 52].
However, (3.2) is the most convenient for this paper. We shall also make use of the following equivalent
expression for cos (θUV):

cos (θUV) = inf
u∈U
‖u‖=1

sup
v∈V
‖v‖=1

〈u, v〉. (3.3)

We are interested in subspaces for which the cosine of the associated angle is nonzero. The following
lemma is useful in this extent:

Lemma 3.2. Let U and V be closed subspaces of a Hilbert space H. Then cos (θUV⊥) > 0 if and only
if U ∩V = {0} and U + V is closed H.

Proof. See [52, Thm. 2.1].

We now make the following definition:

Definition 3.3. Let U and V be closed subspaces of a Hilbert space H. Then U and V satisfy the
subspace condition if cos (θUV⊥) > 0, or equivalently, if U ∩V = {0} and U + V is closed in H.

Subspaces U and V satisfying this condition give rise to a decomposition U ⊕ V = H0 of a closed
subspace H0 of H. Equivalently this ensures the existence of a projection of H0 with range U and kernel
V. We refer to such a projection as an oblique projection and denote it by WUV. Note that WUV

will not, in general, be defined over the whole of H, but rather the subspace H0. However, this is true
whenever V = U⊥, for example, and in this case the projection WUV coincides with the orthogonal
projection QU.

We shall also require the following results on oblique projections (see [11, 51]):

Theorem 3.4. Let U and V be closed subspaces of H with U⊕V = H. Then

‖WUV‖ = ‖I −WUV‖ = sec (θUV⊥) ,

where ‖·‖ is the standard norm on the space of bounded operators on H.
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Corollary 3.5. Suppose that U and V are closed subspaces of H satisfying the subspace condition, and
let WUV : H0 → U be the oblique projection with range U and kernel V, where H0 = U⊕V. Then

‖WUVf‖ ≤ sec (θUV⊥) ‖f‖, ∀f ∈ H0, (3.4)

and
‖f −QUf‖ ≤ ‖f −WUVf‖ ≤ sec (θUV⊥) ‖f −QUf‖, ∀f ∈ H0, (3.5)

where QU : H → U is the orthogonal projection. Moreover, the upper bounds in (3.4) and (3.5) are
sharp.

Proof. The sharp bound (3.4) follows immediately from Theorem 3.4. For (3.5) we first observe that
(I −WUV) = (I −WUV)(I −QU), sinceWUV and QU are both projections onto U. Hence, by Theorem
3.4,

‖f −WUVf‖ = ‖(I −WUV)(I − QU)f‖ ≤ sec (θUV⊥) ‖f −QUf‖,

with sharp bound.

Remark 3.6 Although arbitrary subspaces U and V need not obey the subspace condition, this is
often the case in the important examples arising in practice. For example, if U ⊆ V⊥ then it follows
immediately from the definition that cos (θUV⊥) = 1.

To complete this section, we present the following lemma which will be useful in what follows:

Lemma 3.7. Let U and V be closed subspaces of H satisfying the subspace condition. Suppose also that
dim(U) = dim(V⊥) = n <∞. Then U⊕V = H.

Proof. Note that U⊕V = H if and only if cos (θUV⊥) and cos (θV⊥U) are both positive [52, Thm. 2.3].
Since cos (θUV⊥) > 0 by assumption, it remains to show that cos (θV⊥U) > 0. Consider the mapping
QV⊥

∣∣
U

: U→ V⊥. We claim that this mapping is invertible. Since U and V⊥ have the same dimension

it suffices to show that QV⊥
∣∣
U

has trivial kernel. However, the existence of a nonzero u ∈ U with

QV⊥u = 0 implies that cos (θUV⊥) = 0; a contradiction. Thus QV⊥
∣∣
U

is invertible, and in particular, it

has range V⊥. Now consider cos (θV⊥U). By (3.3) and this result,

cos (θV⊥U) = inf
w∈V⊥

w 6=0

sup
u∈U
u6=0

〈w, u〉
‖w‖‖u‖

= inf
u′∈U
u′ 6=0

sup
u∈U
u6=0

〈QV⊥u′, u〉
‖QV⊥u′‖‖u‖

≥ inf
u′∈U
u′ 6=0

‖QV⊥u′‖
‖u′‖

= cos (θUV⊥) > 0.

This completes the proof.

3.3 Quasi-optimality of consistent sampling

Oblique projections arise in many types of sampling [8], and consistent reconstructions are intimately
related with such mappings. The following result was proved in [28, Thm. 2.1]:

Lemma 3.8. Suppose that T and S⊥ satisfy the subspace condition. If f ∈ H0 = T ⊕ S⊥ then there
exists a unique f̃ ∈ T satisfying (3.1). Specifically, the mapping F : H0 → T, f 7→ f̃ coincides with the
oblique projection WTS⊥ .

As a result of this lemma, consistent reconstructions are equivalent to oblique projections. However,
we note one important distinction. When defining the consistent reconstruction (3.1), we assume that
a frame {ψj}∞j=1 of S is given. Indeed, this is natural in view of the sampling process. However, the
oblique projection WTS⊥ , being determined solely by the spaces T and S, is actually independent of
this basis. In light of Lemma 3.8, the same must also be true for f̃ . In fact, as we detail in §3.5,
specification of frames or bases {φj}∞j=1 and {ψj}∞j=1 is only necessary when writing (3.1) as a linear
system of equations to be solved numerically.
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Lemma 3.8, in combination with Corollary 3.5, gives the following sharp bounds for consistent
sampling:

‖f̃‖ ≤ sec (θTS) ‖f‖, ∀f ∈ H0, (3.6)

‖f −QTf‖ ≤ ‖f − f̃‖ ≤ sec (θTS) ‖f −QTf‖, ∀f ∈ H0. (3.7)

The latter illustrates quasi-optimality of the reconstruction, whereas the former gives a continuous
stability estimate for f̃ , i.e. the norm of the reconstruction is bounded by a constant multiple of the
norm of the input signal. Note that (3.6) and (3.7) were derived previously in [57] and [55] respectively.
However, the observation that they are also sharp does not, to the best of our knowledge, appear in the
literature on consistent reconstructions.

Another property of the consistent reconstruction is confirmed by the above bounds. Namely, it is
a perfect reconstruction:

Definition 3.9. A mapping F : H→ T is a perfect reconstruction if (i) for each f ∈ H, F (f) depends

only on the vector of samples f̂ , and (ii) F (f) = f whenever f ∈ T.

3.4 The condition number of consistent sampling

The bound (3.7) demonstrates that the quasi-optimality constant of consistent sampling is µ(F ) =
sec (θTS). We now wish to determine the condition number. For this, it is useful to first recall several
basic facts about frames [16]. Given the sampling frame {ψj}j∈N for the subspace S, we define the
synthesis operator S : `2(N)→ H by

Sα =
∑
j∈N

αjψj , α = {αj}j∈N ∈ `2(N).

Its adjoint, the analysis operator, is defined by

S∗f = f̂ = {〈f, ψj〉}j∈N, f ∈ H.

The resulting composition P = SS∗ : H→ H, given by

Pf =
∑
j∈N
〈f, ψj〉ψj , ∀f ∈ H, (3.8)

is well-defined, linear, self-adjoint and bounded. Moreover, the restriction P|S : S → S is positive and
invertible with c1I|S ≤ P|S ≤ c2I|S. We now require the following lemma:

Lemma 3.10. Suppose that T and S⊥ satisfy the subspace condition, and let P be given by (3.8). Then

c1 cos2(θTS) I|T ≤ P|T ≤ c2I|T, (3.9)

where c1, c2 are the frame constants appearing in (2.1).

Proof. Let f ∈ H be arbitrary, and write f = QSf +QS⊥f . Then

〈Pf, f〉 =
∑
j∈N
|〈f, ψj〉|2 =

∑
j∈N
|〈QSf, ψj〉|2 = 〈PQSf,QSf〉. (3.10)

Suppose now that φ ∈ T. Using (3.10) and the frame condition (2.1) we find that

c1‖QSφ‖2 ≤ 〈Pφ, φ〉 ≤ c2‖QSφ‖2.

The upper bound in (3.9) follows immediately from the observation that ‖QSφ‖ ≤ ‖φ‖. For the lower
bound we use the definition of the subspace angle θTS, and the fact that φ ∈ T.
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Corollary 3.11. Suppose that S and T are as in Lemma 3.10, and let F : H0 := T⊕ S⊥ → T denote
the consistent reconstruction defined by (3.1). Then the condition number κ(F ) satisfies

sec(θTS)
√
c2

≤ κ(F ) ≤ sec(θTS)
√
c1

.

Proof. Since the reconstruction f̃ = F (f) ∈ T is defined by (3.1), we have

‖f̂‖2`2 =
∑
j∈N
|〈f̃ , ψj〉|2 = 〈P f̃ , f̃〉.

Hence, by the previous lemma, ‖f̂‖2`2 ≥ c1 cos2(θTS)‖f̃‖2. Since F is linear, this now gives

κ(F ) = sup
f∈H0

f̂ 6=0

{
‖F (f)‖
‖f̂‖`2

}
≤ sec(θTS)

√
c1

.

On the other hand, since the reconstruction F is perfect,

κ(F ) ≥ sup
f∈T

f̂ 6=0

{
‖f‖
‖f̂‖`2

}
= sup
f∈T
f 6=0

{
‖f‖
‖f̂‖`2

}
.

Moreover, by (3.10), we have ‖f̂‖2`2 ≤ c2‖QSf‖2. Hence

κ(F ) ≥ 1
√
c2

sup
f∈T
f 6=0

{
‖f‖
‖QSf‖

}
=

sec(θTS)
√
c2

,

as required.

Combining Corollaries 3.5 and 3.11, we now find that the reconstruction constant C(F ) of consistent
sampling satisfies

sec(θTS) max{1, 1√
c2
} ≤ C(F ) ≤ sec(θTS) max{1, 1√

c1
}. (3.11)

Hence, if S and T are not close to perpendicular (i.e. if cos(θTS) is not too small), then consistent
sampling is stable and quasi-optimal.

3.5 Consistent sampling for the computational reconstruction problem

The consistent reconstruction f̃ solves the reconstruction problem of recovering f from the infinite
vector f̂ = {f̂j}j∈N. Note that once a frame {φj}j∈N is specified for T, this is equivalent to the infinite

system of linear equations Uα = f̂ , where U is the infinite matrix

U =

 〈φ1, ψ1〉 〈φ2, ψ1〉 · · ·
〈φ1, ψ2〉 〈φ2, ψ2〉 · · ·

...
...

. . .

 , (3.12)

and α = {αj}j∈N ∈ `2(N) is such that f̃ =
∑
j∈N αjφj . Observe that U , which we may view as an

operator on `2(N), coincides with X = S∗T : `2(N)→ `2(N), where S and T are the synthesis operators
for the frames {ψj}∞j=1 and {φj}∞j=1 respectively.

Clearly this approach does not solve the computational reconstruction problem outlined in §2.2
since one cannot compute solutions to Uα = f̂ in general. To overcome this, the standard approach
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[23, 24, 25, 37, 54] is to replace the infinite consistency conditions (3.1) by a finite version. That is, we
seek a reconstruction f̃n,n defined by

〈f̃n,n, ψj〉 = 〈f, ψj〉, j = 1, . . . , n, f̃n,n ∈ Tn, (3.13)

(the use of the double index in f̃n,n is for agreement with subsequent notation). Note that if Tn =

span{φ1, . . . , φn} then this is equivalent to the finite-dimensional linear system U [n,n]α[n,n] = f̂ [n], where

U [n,n] =

 〈φ1, ψ1〉 · · · 〈φn, ψ1〉
...

. . .
...

〈φ1, ψn〉 · · · 〈φn, ψn〉

 , (3.14)

f̂ [n] = {f̂1, . . . , f̂n}, α[n,n] = {α[n]
1 , . . . , α

[n]
n } and f̃n,n is given by

∑n
j=1 α

[n,n]
j φj .

The condition (3.13) is completely natural and reasonable to enforce: it states that the reconstruction

f̃n,n is consistent with the available data {f̂j}nj=1. Moreover, it is tempting to think that stability and

quasi-optimality of the infinite-dimensional consistent reconstruction f̃ should imply the same behaviour
of f̃n,n. In other words, C∗ = supn∈N C(Fn,n) should be both finite and not too large. However, as we
explain in the next section, there is no guarantee that this will be the case in practice.

First, however, we determine the reconstruction constant for this approach. As a direct consequence
of Lemmas 3.7, 3.8 and Corollary 3.5, we have

Corollary 3.12. Let Sn = span{ψ1, . . . , ψn} and suppose that

cos (θn,n) > 0, (3.15)

where θn,n = θTnSn . Then, for each f ∈ Hn := Tn ⊕ S⊥n there exists a unique f̃n,n ∈ Tn satisfying

(3.13). Moreover, the mapping Fn,n : Hn → Tn, f 7→ f̃n,n coincides with the oblique projection WTnS⊥
n

,
and we have the sharp bounds

‖f̃n,n‖ ≤ sec (θn,n) ‖f‖, (3.16)

and
‖f −Qnf‖ ≤ ‖f − f̃n‖ ≤ sec (θn,n) ‖f −Qnf‖, (3.17)

where Qn is the orthogonal projection onto Tn. If dim(Tn) = dim(Sn) (in particular, if both {ψj}j∈N
and {φj}j∈N are bases), then the above conclusions hold with H0 = H.

This theorem demonstrates that the quasi-optimality constant of consistent sampling satisfies

µ(Fn,n) = sec (θn,n) . (3.18)

We now state the following result concerning the condition number (a proof is given in §4):

Corollary 3.13. Suppose that cos(θn,n) > 0 and that dim(Sn) = dim(Tn). Then the condition number
of consistent sampling satisfies

κ(Fn,n) ≥ 1
√
c2

sec(θn,n).

This result, in combination with (3.18), implies that the reconstruction constant C(Fn,n) satisfies

C(Fn,n) ≥ max{1, 1√
c2
} sec(θn,n).

Hence, good behaviour of the reconstructions (i.e. stability and quasi-optimality for all n) is only
guaranteed if the subspace angles θn,n remain bounded away from π

2 for all n ∈ N. As we next explain,
there is no need for this to be the case in general, even when the angle θTS between the infinite-
dimensional subspaces T and S satisfies this condition.
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Figure 1: (a): cos(θn,n) against n. (b): the errors ‖f − f̃n,n‖ (circles) and ‖f −Qnf‖ (crosses) against n, where
f̃n,n is the consistent reconstruction of f , Qnf is the orthogonal projection of f onto Tn, and f(x) = 1

2+cosπx
.

(c): the error ‖f − f̃n,n‖ against n, where f(x) = 1√
2
e8iπx and each sample f̂j is perturbed by an amount ηj

chosen uniformly at random with |ηj | ≤ η, and η = 0, 10−9, 10−2 (circles, crosses and diamonds respectively).

3.6 Example

It is easiest to illustrate this issue by introducing the main example we shall consider in this paper:
namely, the uniform resampling (URS) problem. This problem, which we shall discuss in further detail
in §7, occurs in the reconstruction of signals and images from nonuniformly sampled Fourier data.

An example of this problem, written in terms of the consistent sampling framework, is as follows.
Let H = L2(−1, 1) and, for 0 < δ < 1 set

ψj(x) =
1√
2

eijπδx, φj(x) =
1√
2

eijπx, j ∈ Z,

(for convenience we now index over Z, as opposed to N). In this case, {ψj}j∈Z is a tight frame for S = H
with frame bounds c1 = c2 = 1

δ , and {φj}j∈Z is an orthonormal basis for T = H. Since S = T = H we
have θTS = 0.

In Figure 1(a) we plot the behaviour of cos(θn,n) against n for δ = 1
2 , where

Sn = span{ψj : |j| ≤ n}, Tn = span{φj : |j| ≤ n}.

As is evident, the quantity cos (θn,n) is exponentially small in n. In particular, when n = 50 Figure
1(a), in combination with Corollary 3.13, implies that the reconstruction constant for the consistent
reconstruction based on these spaces is around 1014 in magnitude. Hence we expect extreme instability.

As mentioned, this example is an instance of the URS problem. The reconstruction space Tn is the
space of trigonometric polynomials of degree n, and as such, it is particularly well-suited for recovering
smooth and periodic functions. In particular, if f is smooth, then the error ‖f−Qnf‖ decays extremely
rapidly: namely, faster than any algebraic power of n−1. However, such good approximation properties
are destroyed when moving to f̃n,n. In Figure 1(b) we plot the error ‖f − f̃n,n‖ for the consistent
reconstruction, as well as that of the orthogonal projection Qnf . The latter decays rapidly with n,
as expected. On the other hand, the maximal achievable accuracy of the consistent reconstruction is
limited to only around one or two digits due to the ill-conditioning and the effect of round-off errors.

The situation worsens significantly when the samples f̂j are corrupted by noise. The function used
in Figure 1(c) actually lies in Tn whenever n ≥ 8, and therefore, in theory at least, should be recovered
perfectly. However, this is completely obliterated by even moderate amounts of noise. For example,
even with noise at amplitude 10−9 the reconstruction error is around 104 (i.e. an amplification of 1015),
rendering such an approach useless for this particular problem.

Remark 3.14 The exponential blow-up of the reconstruction constant in the above example is by no
means unique to this particular problem. In [1] several other problems, based on spaces Tn consisting
of polynomials or piecewise constant functions, were shown to exhibit similar exponential growth.
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3.7 Operator-theoretic interpretation

To sum up, the failure of the finite-dimensional consistent reconstruction f̃n,n is due to the poor be-
haviour of the finite subspace angles θn,n = θTn,Sn in relation to θ = θTS

Another interpretation of this failure was provided in [1]. If the sampling and reconstruction bases
are orthonormal (this fact is not necessary, but simplifies what follows) then cos(θn,n) and cos(θ) coincide
with the minimal singular values of the matrices U [n,n] and U respectively. Hence, the fact that θn,n
may behave wildly, even when θ is bounded away from π

2 , demonstrates that the spectra of the matrices

U [n,n] poorly approximate the spectrum of U .
This question – namely, how well does a sequence of finite-rank operators approximate the spectrum

of a given infinite-rank operator – is one of the most fundamental in the field of spectral theory. Recalling
the definition (3.14), we notice that U [n,n] is nothing more than the n× n finite section of U . In other
words, if {ej} is the canonical basis for `2(N) and Pn : `2(N) → span{e1, . . . , en} is the orthogonal

projection, then U [n,n] = PnUPn. Moreover, f̂ [n] = Pnf̂ , and thus the finite-dimensional consistent
reconstruction f̃n,n is precisely the result of the finite section method applied to the equations Uα = f̂ .

The failure of consistent reconstructions can consequently be viewed from this perspective. The
properties of finite sections have been extensively studied over the last several decades [10, 34, 44], and
unfortunately there is no general guarantee they are well behaved. To put this in a formal perspective,
suppose for the moment that we approximate the operator U with a sequence U [n] of finite-rank opera-
tors (which may or may not be finite sections), and instead of solving Uα = f̂ , we solve U [n]α[n] = f̂ [n].
For obvious reasons, it is vitally important that this sequence satisfies the three following conditions:

(i) Invertibility: U [n] is invertible for all n = 1, 2, . . ..
(ii) Stability: ‖(U [n])−1‖ is uniformly bounded for all n = 1, 2, . . ..
(iii) Convergence: the solutions α[n] → α as n→∞.

Unfortunately, there is no guarantee that finite sections, and therefore the consistent reconstruction
technique, possess any of these properties. In fact, one requires rather restrictive conditions, such as
positive self-adjointness, for this to be the case. Typically operators U of the form (3.12) are not

self-adjoint, thereby making this approach unsuitable in general for discretizing Uα = f̂ .
The framework of generalized sampling, which we next discuss, overcomes these issues by obtaining

a sequence of operators that possess the properties (i)–(iii) above. The key to doing this is to allow the
number of samples m to vary independently from the number of reconstruction vectors n. When done
in this way, we obtain a finite-dimensional operator U [n,m] (which now depends on both m and n) that
inherits the spectral structure of its infinite-dimensional counterpart U , provided m is sufficiently large
for a given n. It turn, this ensures a stable, quasi-optimal reconstruction.

4 Generalized sampling

We now consider generalized sampling. This framework was first introduced in [1], and applied to
the resolution of the Gibbs phenomenon in [5]. Several extensions have also been pursued, to infinite-
dimensional compressed sensing [2], inverse and ill-posed problem [6], and problems where the sampling
and reconstruction systems lie in different Hilbert space [3].

From now on we shall assume that the subspaces T and S⊥ obey the subspace condition. In other
words, cos θTS > 0. Without this, the infinite-dimensional reconstruction problem is itself ill-posed, and
thus it becomes far more difficult to obtain stable, quasi-optimal reconstructions.

Let Sm = span{ψ1, . . . , ψm} and suppose that {Tn}n∈N is a sequence of finite-dimensional recon-
struction spaces satisfying (2.6) and (2.7). We seek a reconstruction f̃n,m ∈ Tn of f from the m samples

f̂1, . . . , f̂m. Let Pm : H→ Sm be the finite rank operator given by

Pmg =

m∑
j=1

〈g, ψj〉ψj .
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Note that, due to (2.1), the sequence of operators Pm converge strongly to P on H [16], where P is
given by (3.8). With this to hand, the approach proposed in [1] is to define f̃n,m ∈ Tn as the solution
of the equations

〈Pmf̃n,m, φj〉 = 〈Pmf, φj〉, j = 1, . . . , n, f̃n,m ∈ Tn. (4.1)

We refer to the mapping Fn,m : f 7→ f̃n,m as generalized sampling. Observe that Pmf is determined

solely by the coefficients f̂1, . . . f̂m of f . Hence Fn,m(f) is also determined solely by these values.
In what follows it will be useful to note that (4.1) is equivalent to

〈f̃n,m,Pmφj〉 = 〈f,Pmφj〉, j = 1, . . . , n, f̃n,m ∈ Tn, (4.2)

due to the self-adjointness of Pm. An immediate consequence of this formulation is the following:

Lemma 4.1. Suppose that cos(θn,n) > 0 and that dim(Sn) = dim(Tn). Then when m = n the gener-

alized sampling reconstruction f̃n,m of f ∈ H defined by (4.1) is precisely the consistent reconstruction

f̃n,n defined by (3.13).

Proof. We first claim that Pn is a bijection from Tn to Sn. Suppose that Pnφ = 0 for some φ ∈ Tn.
Then 0 = 〈Pnφ, φ〉 =

∑n
j=1 |〈φ, ψj〉|2 and therefore φ ∈ S⊥n . Since φ ∈ Tn, and Tn ∩ S⊥n = {0} by

assumption, we have φ = 0, as required.
By linearity, we now find that the conditions (4.2) are equivalent to (3.13). Since the consistent

reconstruction f̃n,n satisfying (3.1) exists uniquely (Corollary 3.12), we obtain the result.

We conclude that generalized sampling contains consistent sampling as a special case corresponding
to n = m, which justifies the use of the same notation for both. However, as expounded in [1, 5], the
key to generalized sampling is to allow m to vary independently from n. As we prove, doing so results
in a small reconstruction constant.

4.1 An intuitive argument

Before providing a complete analysis, let us first give an intuitive explanation as to why this is the case.
To this end, suppose that n is fixed and let m→∞. Equations (4.1) now read

〈P f̃n,∞, φ〉 = 〈Pf, φ〉, ∀φ ∈ Tn, f̃n,∞ ∈ Tn,

for some f̃n,∞ ∈ Tn, where P is given by (3.8). In [5] it was shown that f̃n,∞ = limm→∞ f̃n,m for fixed

n ∈ N, exactly as one would expect. Hence, we can understand the behaviour of f̃n,m for large m by

first analysing f̃n,∞.

Since P is self-adjoint, f̃n,∞ is equivalently defined by

〈f̃n,∞,Φ〉 = 〈f,Φ〉, ∀Φ ∈ P(Tn), f̃n,∞ ∈ Tn. (4.3)

We now have

Theorem 4.2. For any f ∈ H, there exists a unique f̃n,∞ ∈ Tn satisfying (4.3). Moreover, the mapping

f 7→ f̃n,∞ is precisely the oblique projection with range Tn and kernel (P(Tn))⊥, and we have the sharp
bounds

‖f̃n,∞‖ ≤ sec (θn,∞) ‖f‖, (4.4)

and
‖f −Qnf‖ ≤ ‖f − f̃n,∞‖ ≤ sec (θn,∞) ‖f −Qnf‖, (4.5)

where θn,∞ is the angle between Tn and P(Tn).
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Proof. We first claim that cos(θn,∞) > 0, so that the oblique projection W with range Tn and kernel
(P(Tn))⊥ is well-defined as a mapping of H0 = Tn ⊕ (P(Tn))⊥. Suppose not. Since Tn is finite
dimensional, there exists a φ ∈ Tn, φ 6= 0, satisfying QP(Tn)φ = 0. Thus

0 = 〈QP(Tn)φ,Pφ′〉 = 〈φ,Pφ′〉, ∀φ′ ∈ Tn,

and, in particular, 〈φ,Pφ〉 = 0. Thus φ = 0 by Lemma 3.10 – a contradiction. HenceW is well-defined.
Note that Wf satisfies the equations (4.3). Arguing in the standard way, we can show that solutions
to (4.3) are unique. Hence f̃n,∞ =Wf , as required.

It remains to show that H0 = H. The result follows immediately from Lemma 3.7 provided
dim(P(Tn)) = dim(Tn). However, if not, then there is a nonzero φ ∈ Tn with Pφ = 0, which also
contradicts Lemma 3.10.

Note that this theorem improves on [5, Thm. 2.1] by giving sharp bounds. We can also estimate the
reconstruction constant of the mapping Fn,∞ : f 7→ f̃n,∞:

Corollary 4.3. Let Fn,∞ be the mapping f 7→ f̃n,∞, where f̃n,∞ is defined by (4.3). Then

1 ≤ µ(Fn,∞) ≤
√
c2√

c1 cos (θTS)
,

1
√
c2
≤ κ(Fn,∞) ≤ 1

√
c1 cos (θTS)

. (4.6)

and

max

{
1,

1
√
c2

}
≤ C(Fn,∞) ≤

max
{

1,
√
c2
}

√
c1 cos (θTS)

. (4.7)

This corollary (we present the proof in the next section) confirms that the reconstruction scheme

{Fn,∞}n∈N is stable and quasi-optimal in the sense of Definition 2.5, with constant C∗ ≤ max{1,√c2}√
c1 cos(θTS) .

Hence, unlike the consistent sampling scheme {Fn,n}n∈N, where the reconstruction constants C(Fn,n)
can quite easily be exponentially large in n (see §3.6), this approach guarantees good approximation
and robustness with respect to noise.

However, one cannot actually compute f̃n,∞, since it involves the infinite-rank operator P. Nonethe-

less, since the generalized sampling reconstruction f̃n,m ≈ f̃n,∞ for large m, we may expect the good
properties of Fn,∞, i.e. stability and quasi-optimality, to be inherited whenever m is sufficiently large.
In the next section we prove this to be the case.

Before doing so, however, let us relate f̃n,∞ to the the discussion in §3.7. Recall first that we wish

to solve Uα = f̂ . Since α satisfies these equations it also obeys the normal equations

U∗Uα = U∗f̂ . (4.8)

Now write f̃n,∞ =
∑n
j=1 α

[n,∞]
j φj . It is easily shown that α[n,∞] = {α[n,∞]

1 , . . . , α
[n,∞]
n } is defined by

PnU
∗UPnα = PnU

∗f̂ ,

where f̂ = {f̂1, f̂2, . . .}. Thus, α[n] is precisely the result of the finite section method applied to the
normal equations (4.8). Since the operator U∗U is self-adjoint and positive, its finite sections must
possess properties (i)–(iii), and hence we are guaranteed a good reconstruction.

4.2 Analysis of generalized sampling

The analysis of f̃n,m is similar to that of f̃n,∞. Whilst such an analysis was originally given in [1, 5],
the estimates derived were not sharp. Our main result in this section is to present new, sharp bounds.
We first require the following lemma:
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Lemma 4.4. Let θn,m and θn,∞ be the angles between Tn and the subspaces Pm(Tn) and P(Tn)
respectively. Then, for fixed n, θn,m → θn,∞ as m→∞. In particular,

1 ≤ lim
m→∞

sec (θn,m) ≤
√
c2√

c1 cos (θTS)
.

Proof. From the definition (3.2), we have

cos (θn,m) = inf
φ∈Tn
‖φ‖=1

sup
φ′∈Tn
Pmφ′ 6=0

〈φ,Pmφ′〉
‖Pmφ′‖

.

Recall first that Pm → P strongly on H. Since Tn is finite-dimensional, this implies uniform convergence
of Pm → P on Tn. In other words, if em = ‖P|Tn − Pm|Tn‖ then em → 0 as m → ∞. In particular,
for sufficiently large m, Pmφ′ 6= 0 if and only if Pφ′ 6= 0. Thus, for large m,

cos (θn,m) = inf
φ∈Tn
‖φ‖=1

sup
φ′∈Tn
φ′ 6=0

〈φ,Pmφ′〉
‖Pmφ′‖

= inf
φ∈Tn
‖φ‖=1

sup
φ′∈Tn
Pφ′ 6=0

〈φ,Pmφ′〉
‖Pmφ′‖

. (4.9)

Now

〈φ,Pmφ′〉
‖Pmφ′‖

=

(
‖Pφ′‖
‖Pmφ′‖

)(
〈φ,Pφ′〉
‖Pφ′‖

− 〈φ, (P − Pm)φ′〉
‖Pφ′‖

)
. (4.10)

Note that ∣∣‖Pmφ′‖ − ‖Pφ′‖∣∣ ≤ ‖(P − Pm)φ′‖ ≤ em‖φ′‖.

Moreover,

‖Pφ′‖ = sup
g∈H
‖g‖=1

〈Pφ′, g〉 ≥ 〈Pφ
′, φ′〉
‖φ′‖

≥ c1 cos2 (θTS) ‖φ′‖.

Thus, ∣∣‖Pmφ′‖ − ‖Pφ′‖∣∣ ≤ em
c1

sec2(θTS)‖Pφ′‖. (4.11)

Combining this with (4.10), we now obtain

〈φ,Pmφ′〉
‖Pmφ′‖

≥ 1

1 + em
c1

sec2(θTS)

(
〈φ,Pφ′〉
‖Pφ′‖

− ‖φ‖em
c1

sec2(θTS)

)
,

and
〈φ,Pmφ′〉
‖Pmφ′‖

≤ 1

1− em
c1

sec2(θTS)

(
〈φ,Pφ′〉
‖Pφ′‖

+ ‖φ‖em
c1

sec2(θTS)

)
,

Hence (4.9) now gives

cos(θn,m) ≥ 1

1 + em
c1

sec2(θTS)

(
cos(θn,∞)− em

c1
sec2(θTS)

)
cos(θn,m) ≤ 1

1− em
c1

sec2(θTS)

(
cos(θn,∞) +

em
c1

sec2(θTS)

)
,

and the result now follows from the fact that em → 0 as m→∞.

We now have:
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Theorem 4.5. For each n ∈ N and any f ∈ H, there exists an m0, independent of f , such that the
reconstruction f̃n,m defined by (4.1) exists and is unique for all m ≥ m0. In particular, m0 is the least

m such that cos(θn,m) > 0. Moreover, the mapping f 7→ f̃n,m is precisely the oblique projection onto
Tn along [Pm(Tn)]⊥, and we have the sharp bounds

‖f̃n,m‖ ≤ sec (θn,m) ‖f‖, (4.12)

and
‖f −Qnf‖ ≤ ‖f − f̃n,m‖ ≤ sec (θn,m) ‖f −Qnf‖. (4.13)

Proof. The existence of an m0 such that cos(θn,m) > 0 for all m ≥ m0 follows from Lemma 4.4. Thus,
when m ≥ m0 the oblique projection W with range Tn and kernel (Pm(Tn))⊥ is well-defined over
H0 := Tn⊕(Pm(Tn))⊥ and satisfies (4.1). Moreover, under this condition, solutions of (4.1) are unique,
and thus f̃n,m = Wf whenever f ∈ H0. An application of Corollary 3.5 now gives (4.12) and (4.13).
To complete the proof we need only show that H0 = H. This follows immediately from Corollary 3.7,
provided dim(Pm(Tn)) = dim(Tn). However, if not then there exists a nonzero φ ∈ Tn ∩ (Pm(Tn))⊥,
which contradicts the fact that cos(θn,m) > 0.

Note that this theorem improves the bounds of [5, Thm. 2.4], and gives the exact value µ(Fn,m) =
sec(θn,m) for the quasi-optimality constant of generalized sampling. Having done this, we next determine
the condition number κ(Fn,m), and as a result the reconstruction constant C(Fn,m). For this, we
introduce the following quantity:

Dn,m =

 inf
φ∈Tn
‖φ‖=1

〈Pmφ, φ〉

− 1
2

, n,m ∈ N, (4.14)

(this is similar to the quantity Cn,m of [5, Eqn. (2.12)]). Note that Dn,m need not be defined for all
n,m ∈ N. However, we will show subsequently that this is the case provided m is sufficiently large (for
a given n). We shall also let

Dn,∞ =

 inf
φ∈Tn
‖φ‖=1

〈Pφ, φ〉

− 1
2

, n ∈ N.

We now have the following lemma:

Lemma 4.6. For fixed n ∈ N, Dn,m → Dn,∞ as m→∞. In particular,

1
√
c2
≤ lim
m→∞

Dn,m ≤
1

√
c1 cos (θTS)

.

Proof. The first result follows from strong convergence of the operators Pm → P on H and the fact
that Tn is finite-dimensional. The second result is due to Lemma 3.10.

With this to hand, our main result is as follows:

Corollary 4.7. Let n ∈ N and suppose that m ≥ m0, where m0 is as in Theorem 4.5. Let Fn,m be the

generalized sampling reconstruction f 7→ f̃n,m, where f̃n,m is defined by (4.1). Then

µ(Fn,m) = sec (θn,m) , κ(Fn,m) = Dn,m, (4.15)

and the reconstruction constant C(Fn,m) satisfies

Dn,m ≤ C(Fn,m) ≤ max {1,
√
c2}Dn,m, (4.16)
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whenever Dn,m is defined. In particular, for fixed n,

1 ≤ lim
m→∞

µ(Fn,m) ≤
√
c2√

c1 cos (θTS)
,

1
√
c2
≤ lim
m→∞

κ(Fn,m) ≤ 1
√
c1 cos (θTS)

, (4.17)

and

max

{
1,

1
√
c2

}
≤ lim
m→∞

C(Fn,m) ≤
max

{
1,
√
c2
}

√
c1 cos (θTS)

. (4.18)

Proof. We claim that
sec (θn,m) ≤

√
c2Dn,m (4.19)

Note first that Dn,m <∞ implies that Pm|Tn : Tn → Pm(Tn) is invertible. Hence, by (3.2),

cos (θn,m) = inf
φ∈Tn
φ 6=0

sup
φ′∈Tn
φ′ 6=0

〈φ,Pmφ′〉
‖φ‖‖Pmφ′‖

≥ inf
φ∈Tn
φ6=0

〈φ,Pmφ〉
‖φ‖‖Pmφ‖

. (4.20)

Now consider ‖Pmφ‖. Since Pmφ ∈ Sm, basic properties of Pm give that

‖Pmφ‖ = sup
ψ∈Sm
‖ψ‖=1

〈ψ,Pmφ〉 ≤
√
〈φ,Pmφ〉 sup

ψ∈Sm
‖ψ‖=1

√
〈ψ,Pmψ〉 ≤

√
〈φ,Pmφ〉 sup

ψ∈S
‖ψ‖=1

√
〈ψ,Pψ〉, (4.21)

and therefore
‖Pmφ‖ ≤

√
c2
√
〈φ,Pmφ〉.

Applying this to (4.20) now gives (4.19).
Note that (4.16) and (4.18) now follow immediately from (4.15), (4.17), (4.19) and the definition

C(Fn,m) = max{µ(Fn,m), κ(Fn,m)}. Moreover, (4.17) follows from (4.15) and Lemmas 4.4 and 4.6.
Hence we only need to prove (4.15). The first part is due to Theorem 4.5. Therefore it remains to show
that κ(Fn,m) = Dn,m. Since Fn,m is linear and, due to (4.13), perfect on Tn, we have

κ(Fn,m) = sup
f∈H

f̂ 6=0

{
‖Fn,m(f)‖
‖f̂‖`2

}
≥ sup
φ∈Tn
φ 6=0

{
‖φ‖
‖φ̂‖`2

}
.

Since ‖φ̂‖2`2 = 〈Pmφ, φ〉, this now gives

κ(Fn,m) ≥

 inf
φ∈Tn
‖φ‖=1

〈Pmφ, φ〉

− 1
2

= Dn,m.

We now wish to derive the upper bound. Let Fn,m(f) = f̃n,m. Since f̃n,m ∈ Tn, (4.1) gives that

〈Pmf̃n,m, f̃n,m〉 = 〈Pmf, f̃n,m〉 ≤
√
〈Pmf, f〉

√
〈Pmf̃n,m, f̃n,m〉.

Thus ‖f̂‖`2 ≥
√
〈P f̃n,m, f̃n,m〉. Since f 7→ f̃n,m is a surjection onto Tn, we therefore deduce that

κ(Fn,m) ≤ sup
f∈H

f̂ 6=0

 ‖f̃n,m‖√
〈Pmf̃n,m, f̃n,m〉

 = sup
φ∈T
φ 6=0

{
‖φ‖√
〈Pmφ, φ〉

}
= Dn,m,

as required. This completes the proof.

We are now in a position to establish the two results not proved previously:
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Proof of Corollary 4.3. By replacing Pm by P in the proof of Corollary 4.7 we find that sec (θn,∞) ≤√
c2Dn,∞ and κ(Fn,∞) = Dn,∞. The result now follows from this and Lemmas 4.4 and 4.6.

Proof of Corollary 3.13. Under the assumption dim(Sn) = dim(Tn) the consistent reconstruction (3.13)
coincides with the generalized sampling reconstruction (4.1) (Lemma 4.1). The result now follows
immediately from (4.15) and (4.19).

Corollary 4.7 confirms the advantage of generalized sampling. Given n ∈ N, one can always take
m sufficiently large to guarantee a stable, quasi-optimal reconstruction with reconstruction constant

asymptotically bounded by
max{1,√c2}√
c1 cos(θTS) .

The key issue remaining is to determine how large m must be taken to ensure such properties. This
will be discussed in the next section. First, however, let us connect generalized sampling to the discussion

of §3.7. Observe that if f̃n,m =
∑n
j=1 α

[n,m]
j φj , then the vector α[n,m] = {α[n,m]

1 , . . . , α
[n,m]
n } ∈ Cn is

the unique solution to
(U [n,m])∗U [n,m]α[n,m] = (U [n,m])∗f̂ [m],

where U [n,m] ∈ Cm×n is precisely PmUPn and f̂ [m] = Pmf̂ . The matrix U [n,m] is the leading m × n
submatrix of U , and is sometimes referred to as an uneven section of U . Uneven sections have recently
gained prominence as effective alternatives to the finite section method for discretizing non-self adjoint
operators [31, 36]. In particular, in [33] they were employed to solve the long-standing computational
spectral problem. Their success is due to the observation that, under a number of assumptions (which
are always guaranteed for the problem we consider in this paper), we have

(U [n,m])∗U [n,m] = PnU
∗PmUPn → PnU

∗UPn, m→∞,

where PnU
∗UPn is the n× n finite section of the self-adjoint matrix U∗U . This guarantees properties

(i)–(iii) for U [n,m], whenever m is sufficiently large in comparison to n.
Finite (and uneven) sections have been extensively studied [10, 34, 44], and there exists a well-

developed and intricate theory of their properties involving C∗-algebras [32]. However, these general
results say little about the rate of convergence, nor do they provide explicit constants. Yet, as illustrated
in Theorem 4.5, the operator U in this case is so structured that its uneven sections admit both explicit
constants and estimates for the rate of convergence. Moreover, of great importance for computations,
such constants can also be numerically computed, as we discuss in §5.

4.3 The condition number and quasi-optimality constant

As shown, the condition number κ(Fn,m) coincides with Dn,m, and the quasi-optimality constant
µ(Fn,m) = sec (θn,m), where θn,m is the angle between Tn and Pm(Tn). In addition, since

sec (θn,m) ≤
√
c2Dn,m, (4.22)

one can control the behaviour of both quantities, and therefore also C(Fn,m), by controlling Dn,m. The
advantage of this, as we discuss in §5, is that it is typically easier to compute Dn,m than it is θn,m.

However, it is in general possible for sec (θn,m) to be somewhat smaller than Dn,m. Thus, in
numerical examples, one may see a better approximation than the bound (4.22) suggests. For this
reason, we now present a result that addresses the relationship between sec (θn,m) and Dn,m:

Lemma 4.8. Let G[m] = {〈ψj , ψk〉}mj,k=1 ∈ Cm×m be the Gram matrix of the first m sampling vectors
{ψ1, . . . , ψm}. Then √

c1,mDn,m ≤ sec (θn,m) ≤ √c2,mDn,m,

where c1,m and c2,m are the frame bounds for the frame sequence {ψ1, . . . , ψm}. In particular, when
{ψj}j∈N is a Riesz basis, we have

d1Dn,m ≤ sec (θn,m) ≤ d2Dn,m,
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where d1, d2 > 0 are the Riesz basis constants for {ψj}j∈N, and when {ψj}j∈N is an orthonormal basis
it holds that

sec (θn,m) = Dn,m.

Note that, by Riesz basis constants, we mean constants d1, d2 > 0 such that

d1‖β‖`2 ≤

∥∥∥∥∥∥
∑
j∈N

βjψj

∥∥∥∥∥∥ ≤ d2‖β‖`2 , ∀β = {βj}j∈N ∈ `2(N).

Proof of Lemma 4.8. By definition

cos (θn,m) = inf
φ∈Tn
‖φ‖=1

‖QPm(Tn)φ‖.

Consider ‖QPm(Tn)φ‖. Since Pm(Tn) ⊆ Sm, we have

‖QPm(Tn)φ‖ = sup
ψ∈Pm(Tn)
‖ψ‖=1

〈φ, ψ〉 ≤ sup
ψ∈Sm
‖ψ‖=1

〈φ, ψ〉.

Recall that the operator Pm is invertible on Sm. Hence

‖QPm(Tn)φ‖ ≤ sup
ψ∈Sm
ψ 6=0

〈φ,Pmψ〉
‖Pmψ‖

≤
√
〈Pmφ, φ〉 sup

ψ∈Sm
ψ 6=0

√
〈Pmψ,ψ〉
‖Pmψ‖

. (4.23)

Consider the latter term. The operator Pm : Sm → Sm is invertible, self-adjoint and positive-definite.
Hence, it has a unique square root (Pm)

1
2 with these properties [16, Lem. 2.4.4]. Thus

sup
ψ∈Sm
ψ 6=0

√
〈Pmψ,ψ〉
‖Pmψ‖

= sup
ψ∈Sm
ψ 6=0

‖(Pm)
1
2ψ‖

‖Pmψ‖
= sup
ψ∈Sm
ψ 6=0

‖ψ‖
‖(Pm)

1
2ψ‖

= sup
ψ∈Sm
ψ 6=0

‖ψ‖√
〈Pmψ,ψ〉

=
1

√
c1,m

.

Combining this with (4.23) now gives sec(θn,m) ≥ √c1,mDn,m as required.
For the upper bound, we first notice that

‖QPm(Tn)φ‖ ≥
〈φ,Pmφ〉
‖Pmφ‖

.

Moreover, arguing as in (4.21) one finds that ‖Pmφ‖ ≤
√
c2,m

√
〈Pmφ, φ〉. Combining this with the

previous expression and using the definition of cos(θn,m) now gives the first result.
For the second part of the proof, we first recall that the Riesz basis bounds d1, d2 for {ψj}j∈N

are lower and upper bounds for the Riesz basis bounds d1,m, d2,m for the finite subset {ψ1, . . . , ψm}.
Moreover, by [16, Thm. 5.2.1], the frame bounds c1,m, c2,m for the Riesz basis {ψ1, . . . , ψm} are identical
to the Riesz basis bounds d1,m, d2,m. This gives the second result. Finally, when {ψj}j∈N is orthonormal
we have d1 = d2 = 1, and thus we obtain the final result.

This lemma demonstrates that the difference in magnitudes between sec (θn,m) and Dn,m is deter-
mined by

√
c1,m and

√
c2,m. Note that c2,m ≤ c2, where c2 is the frame bound for the infinite frame

{ψj}j∈N. However, c1,m can exhibit wild behaviour: it is possible to construct simple frames for which
c1,m is exponentially small in m, even though c1 is moderate in magnitude [15]. On the other hand, if
{ψj}j∈N is a Riesz or orthonormal basis, we find that Dn,m and sec(θn,m) are, up to a possible factor
proportional to the Riesz basis constants d1 and d2, the same.
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4.4 Computing the generalized sampling reconstruction

Recall that the generalized sampling reconstruction f̃n,m depends only on Tn, and not on the system

of functions used to span Tn. Let {φj}dnj=1 be a spanning set for Tn, where dn ≥ dim(Tn), and write

f̃n,m =

dn∑
j=1

α
[n,m]
j φj .

The vector α[n,m] = {α[n,m]
j }dnj=1 is the least squares solution to the overdetermined linear system

U [n,m]α[n,m] = f̂ [m],

where U [n,m] ∈ Cm×dn has (j, k)th entry 〈φk, ψj〉. Thus, computing f̃n,m is equivalent to solving a least
squares problem. From a numerical perspective, it is important to understand the condition number
κ(U [n,m]) = ‖U [n,m]‖‖(Un,m)†‖ of the matrix U [n,m], where † denotes the pseudoinverse. The following
lemma is similar to [5, Lem. 2.11] (for this reason we forgo the proof):

Lemma 4.9. Let {φj}dnj=1 be a spanning set for Tn, and write G[n] ∈ Cdn×dn for its Gram matrix.

Then the condition number of the matrix U [n,m] satisfies

1
√
c2Dn,m

√
κ
(
G[n]

)
≤ κ(U [n,m]) ≤

√
c2Dn,m

√
κ
(
G[n]

)
.

This lemma shows that the condition number of the matrix U [n,m] is no worse than that of the Gram
matrix G[n] whenever m is chosen sufficiently large to ensure boundedness of Dn,m. In particular, if the
vectors {φ1, . . . , φn} are a Riesz or orthonormal basis, then κ(G[n]) = O (1) and hence the condition
number of U [n,m] is completely determined by the magnitude of Dn,m. In this case, not only is the

reconstruction f̃n,m numerically stable, but so is the computation of its coefficients α[n,m]. For further

details on the computation of f̃n,m, see [5].

5 The stable sampling rate

The key ingredient of generalized sampling is that the parameter m must be sufficiently large in com-
parison to n. The notion of how large was first quantified in [1, 5]. In this section we improve on this
by using the sharp bounds of the previous section. We define:

Definition 5.1. The stable sampling rate is defined by

Θ(n; θ) = min {m ∈ N : C(Fn,m) ≤ θ} , n ∈ N, θ ∈
(

max{1,√c2}√
c1 cos(θTS)

,∞
)
.

The stable sampling rate measures how large m must be (for a given n) to ensure guaranteed, stable
and quasi-optimal recovery. Indeed, choosing m ≥ Θ(n; θ), we find that C(Fn,m) ≤ θ and therefore the

reconstruction f̃n,m is numerically stable and quasi-optimal, up to the magnitude of θ. In other words,
given n ∈ N and some desired θ, the stable sampling rate determines precisely how many samples are
required to guarantee a priori a reconstruction constant of magnitude at most θ. Note that a similar
quantity was introduced previously in [5]. However, this was based on estimates for the condition
number and quasi-optimality constants which were not sharp. The stable sampling rate defined above
improves on this quantity in that the condition m ≥ Θ(n; θ) is both sufficient and necessary to ensure
stable, quasi-optimal reconstruction: if one were to sample at a rate below the Θ(n; θ) then instability
and worse convergence of the reconstruction is guaranteed.
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One can also ask the reverse question: namely, given a number of samples m and a parameter θ,
how large can n be taken? We refer to the quantity

Ψ(m; θ) = max{n ∈ N : C(Fn,m) ≤ θ}, m ∈ N, θ ∈
(

max{1,√c2}√
c1 cos(θTS)

,∞
)
, (5.1)

as the stable reconstruction rate.
Recall that Remark 2.6 permits sequences of reconstruction schemes with mildly growing recon-

struction constants. One can also readily define the stable sampling and reconstruction rates to reflect
this. For a positive and increasing sequence θ = {θn}n∈N with infn∈N θn >

1√
c1 cos(θTS) , we define

Θ(n; θ) = min {m ∈ N : C(Fn,m) ≤ θn} , n ∈ N,

and
Ψ(m; θ) = max {n ∈ N : C(Fn,m) ≤ θn} , m ∈ N.

Once more, one has the interpretation that sampling at the rate m ≥ Θ(n; θ) ensures stability and
quasi-optimality up to the growth of θn.

A key property of the stable sampling and reconstruction rates is that they can be computed:

Lemma 5.2. Let Dn,m and θn,m be as in (4.14) and Lemma 4.4 respectively, and suppose that {φj}knj=1

is a spanning set for Tn. Then the quantities 1/D2
n,m and cos2(θn,m) are the minimal generalized

eigenvalue of the matrix pencils
{

(U [n,m])∗U [n,m], A[n]
}

and {B[n,m], A[n]} respectively, where A[n] is

the Gram matrix for {φj}knj=1, U [n,m] is as in §4.4, B[n,m] is given by

B[n,m] = (U [n,m])∗U [n,m]
(

(U [n,m])∗C [m]U [n,m]
)−1

(U [n,m])∗U [n,m],

and C [m] is the Gram matrix for {ψj}mj=1. In particular, if {φj}nj=1 is an orthonormal basis for Tn,

Dn,m =
1

σmin(U [n,m])
, sec(θn,m) =

1√
λmin(B[n,m])

,

where σmin(U [n,m]) and λmin(B[n,m]) denote the minimal singular value and eigenvalue of the matrices
U [n,m] and B[n,m] respectively.

Proof. The proof of this lemma is similar to that of [5, Lem. 2.13], and hence is omitted.

Although this lemma allows for computation of the reconstruction constant C(Fn,m) (recall that
C(Fn,m) = max{sec(θn,m), Dn,m} as a result of Corollary 4.7), and therefore Θ(n; θ) and Ψ(m; θ), it is
somewhat inconvenient to have to compute both Dn,m and sec(θn,m). The latter, in particular, can be
computationally intensive since it involves both forming and inverting the matrix (U [n,m])∗C [m]U [n,m].
However, recalling the bound C(Fn,m) ≤ max{1,√c2}Dn,m, we see that stability and quasi-optimality
can be ensured, up to the magnitude of c2, by controlling the behaviour of Dn,m only. This motivates
the computationally more convenient alternative

Θ̃(n; θ) = min {m ∈ N : Dn,m ≤ θ} , n ∈ N, θ ∈
(

1
√
c1 cos(θTS)

,∞
)
,

and likewise Ψ̃(m; θ). Note that setting m ≥ Θ̃(n; θ) ensures a condition number of at worst θ and a
quasi-optimality constant of at most max{1,√c2}θ.
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6 Optimality of generalized sampling

In the previous sections we provided an analysis of generalized sampling, which improved on [1, 5]
by providing sharp bounds and establishing the connection between generalized sampling and certain
oblique projections. The purpose of this section is to address the question of optimality of generalized
sampling; a topic which was not considered in either previous paper.

We consider the following problem:

Problem 6.1. Given the m measurements {〈f, ψj〉}mj=1 of an element f ∈ H, compute a reconstruction

f̃ of f from the subspace Tn.

Generalized sampling provides a (perhaps the most) straightforward solution to this problem –
namely, performing a least-squares fit of the data – with stability and quasi-optimality being determined
by the quantities Dn,m and sec(θn,m). An obvious question to pose is the following: can a different
method outperform generalized sampling? Our first answer to this question is given in the next section.

6.1 Optimality amongst perfect methods

Theorem 6.2. Suppose that m,n ∈ N are such that Dn,m 6= 0, where Dn,m is given by (4.14). Let Gn,m
be a method taking measurements {〈f, ψj〉}mj=1 and giving a reconstruction Gn,m(f) ∈ Tn. Suppose that
Gn,m is perfect in the sense of Definition 3.9. Then, if the condition number κ(Gn,m) is defined in
(2.4), we have

κ(Gn,m) ≥ Dn,m.

In particular, if Fn,m is the generalized sampling reconstruction, then κ(Gn,m) ≥ κ(Fn,m).

Proof. Since Gn,m is perfect, we have Gn,m(0) = 0. Setting f = 0 in (2.4), we notice that

κ(Gn,m) ≥ lim
ε→0+

sup
g∈H

ĝ[m] 6=0

‖Gn,m(εg)‖
‖εĝ[m]‖`2

.

Since Dn,m 6= 0, we have that ĝ[m] 6= 0 for g ∈ Tn if and only if g 6= 0. Thus, using the perfectness of
Gn,m once more,

κ(Gn,m) ≥ lim
ε→0+

sup
g∈Tn
g 6=0

‖Gn,m(εg)‖
‖εĝ[m]‖

= lim
ε→0+

sup
g∈Tn
g 6=0

‖g‖
‖ĝ[m]‖

= Dn,m,

as required. The second result follows from Corollary 4.7.

This theorem, which is embarrassingly simple to prove, states the following: any perfect method
for Problem 6.1 must have a worse condition number than that of generalized sampling. We remark
that perfectness is not an unreasonable assumption in practice. In particular, any method which is
quasi-optimal (for fixed n and m) is also perfect. Indeed, quasi-optimality is equivalent to the condition

‖f −Gn,m(f)‖ ≤ µ(Gn,m) inf
φ∈Tn

‖f −Qnf‖, ∀f ∈ H, (6.1)

for some µ(Gn,m) < ∞ (the quasi-optimality constant). The right-hand side vanishes for any f ∈ Tn,
which implies perfectness of Gn,m.

One can also generalize Theorem 6.2 somewhat to consider a larger class of methods. Indeed, let
Gn,m be a method such that

‖f −Gn,mf‖ ≤ λ‖f‖, ∀f ∈ Tn,

for some λ ∈ (0, 1). We refer to such methods as contractive. Note that perfect methods are a particular
example of contractive methods with λ = 0. Arguing as in the proof of Theorem 6.2, one can show that

κ(Gn,m) ≥ (1− λ)κ(Fn,m).
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Hence, the condition number of generalized sampling can only possibly be improved by a factor of
(1− λ) when using a contractive method.

Beside the imposition of perfectness (or contractiveness), it may also appear at first sight that
Theorem 6.2 is also restrictive because it deals with a worst case scenario taken over the whole of H.
In practice, it may be the case that our interest does not lie with recovering all f ∈ H, but rather only
those f belonging to some subspace U of H. For example, U could consist of functions with particular
smoothness. One may reasonably ask: is it possible to circumvent this bound if one restricts ones
interest to only a small class of functions? The answer is no. If Tn ⊆ U, then one can just redefine
the condition number κ to be taken as a supremum over U, as opposed to H, and repeat the same
argument.

It is also worth observing that Theorem 6.2 can be weakened by considering the condition number
κf at a fixed f ∈ H (we refer to (2.5) for the definition of κf ). Indeed, it is clear from the proof that

κf (Gn,m) ≥ Dn,m ≥ κf (Fn,m), ∀f ∈ Tn.

In some applications, typically where one’s interest lies with recovering only one fixed signal f , the
local condition number is arguably more important. Hence, the fact that condition numbers cannot be
improved, even locally, demonstrates the importance of appropriately scaling m with n.

One can also reformulate the conclusions of Theorem 6.2 in terms of the stable sampling rate. To
this end, suppose that Gn,m is any reconstruction method satisfying (6.1), and let κ(Gn,m) and µ(Gn,m)
be its condition number and quasi-optimality constant respectively. Define the reconstruction constant
C(Gn,m) = max {κ(Gn,m), µ(Gn,m)} in the standard way, and let

ΘG(n; θ) = min {m ∈ N : C(Gn,m) < θ} , n ∈ N,

be the stable sampling rate for Gn,m. If, given n, there does not exist an m such that C(Gn,m) < θ,
then we set ΘG(n; θ) = ∞. In other words, for this θ and n, there is no number of samples m which
renders the reconstruction stable and quasi-optimal. If this is not the case, then Theorem 6.2 trivially
gives that

ΘG(n; θ) ≥ Θ(n; max{1,
√
c2}θ), (6.2)

where Θ is the stable sampling rate for generalized sampling. This result implies the following: up to a
constant on the order of max{1,√c2}, any reconstruction requires at least the same number of samples as
generalized sampling to guarantee a stable quasi-optimal reconstruction with constant θ. In applications
(see §7) one typically has that Θ(n; θ) ∼ c(θ)g(n) for functions c and g with c(θ) decreasing as θ →∞
and g(n) increasing as n → ∞. In other words, the stable sampling rate Θ(n; θ) grows asymptotically
like g(n) (typically g(n) = nα for some α ≥ 1). Hence, (6.2) implies that no perfect method Gn,m can
have a stable sampling rate that grows at a slower rate than that of generalized sampling, although the
constant can be slightly improved whenever the sampling frame has c2 > 1.

6.2 An optimality result for problems with linear stable sampling rates

Suppose that the stable sampling rate Θ(n; θ) is linear in n for a particular example of Problem 6.1. This
means that there is, up to a constant, a one-to-one correspondence between samples and reconstructed
coefficients, which suggests that generalized sampling can only be outperformed by a constant factor in
terms of the convergence of the reconstruction. Another method for the problem (perfect or otherwise)
might obtain a slightly smaller error, but the asymptotic rate of convergence should be equal.

This is formalized in the following theorem:

Theorem 6.3. Let {ψj}j∈N be a frame for H, and let {Tn}n∈N a sequence of finite-dimensional sub-
spaces satisfying (2.6) and (2.7). Suppose that the corresponding stable sampling rate Θ(n; θ) is linear
in n. Let f ∈ H be fixed, and suppose that there exists a sequence of mappings

Gm : {f̂j}mj=1 7→ Gm(f) ∈ TΨf (m),
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where Ψf : N → N with Ψf (m) ≤ cm for some c > 0. Suppose also that there exist constants
c1(f), c2(f), αf > 0 such that

c1(f)n−αf ≤ ‖f −Qnf‖ ≤ c2(f)n−αf , ∀n ∈ N. (6.3)

Then, given θ ∈
(

max{1,√c2}√
c1 cos(θTS) ,∞

)
, there exists a constant cf (θ) > 0 such that

‖f − FΨ(m;θ),m(f)‖ ≤ cf (θ)‖f −Gm(f)‖, ∀m ∈ N, (6.4)

where Fn,m corresponds to generalized sampling and Ψ(m; θ) is the stable reconstruction rate (5.1).

Proof. Since generalized sampling is quasi-optimal,

‖f − FΨ(m;θ),m(f)‖ ≤ θ‖f −QΨ(m;θ)f‖.

Using (6.3) we deduce that

‖f − FΨ(m;θ),m(f)‖ ≤ θ c2(f)

c1(f)

(
Ψf (m)

Ψ(m; θ)

)αf
‖f −QΨf (m)f‖.

The orthogonal projection Qnf is the best approximation to f from the subspace Tn. Therefore

‖f − FΨ(m;θ),m(f)‖ ≤ θ c2(f)

c1(f)

(
Ψf (m)

Ψ(m; θ)

)αf
‖f −Gm(f)‖.

The result now follows from the fact that Ψ(m; θ) = O (m) and Ψf (m) ≤ cm.

This theorem states that, in the case of a linear stable sampling rate, and for functions with algebraic
decay of ‖f −Qnf‖, generalized sampling can only be improved upon by a constant factor. As shown
by (6.4), the error of generalized sampling decays at the same (or better) asymptotic rate as any other
reconstruction method Gm. Note that the stipulation of algebraic convergence (6.3) is reasonable in
practice. In the next section we shall see several examples for which this condition holds.

Unlike the case of generalized sampling, the method Gm in the above theorem can depend in a
completely nontrivial manner on the function f . However, even with this added flexibility, this theorem
shows that it is only possible to improve on generalized sampling by a constant factor. An example
of such a method is an oracle. Suppose there was some method that, for a particular f satisfying
(6.3), could recover the orthogonal projection Qmf exactly (i.e. with no error) from m samples. The
conclusion of the above corollary is that generalized sampling commits an error that is at worst a
constant factor larger than that of this method.

Remark 6.4 The fact that the stable sampling rate is linear is key to Theorem 6.3. In situations where
Θ(n; θ) is superlinear (for an example, see the next section), it is possible to devise methods, albeit
unstable methods, with asymptotically faster rates of convergence.

7 Uniform resampling with generalized sampling

§1–6 of this paper have considered generalized sampling in its abstract form. We now consider its
application to a particular problem, the so-called uniform resampling (URS) problem. As we show,
generalized sampling leads to an improvement over the standard approach to this problem, which
results in an ill-posed discrete reconstruction.

We first describe the URS problem in further detail.
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7.1 The uniform resampling problem

In applications such as MRI, radio-astronomy and diffraction tomography [60, 48], the URS problem
addresses the question of how to recover the Fourier coefficients of a function f ∈ L2(−1, 1)d from
nonuniformly spaced pointwise samples of its Fourier transform

f̂(ω) =
1

2
d
2

∫
(−1,1)d

f(x)e−iωπx dx, ω ∈ R.

This problem is important since typical sampling devices (such as MR scanners) are not best suited to
acquire Fourier data in a uniform pattern (i.e. Fourier coefficients). Indeed, it is often more convenient to
acquire samples along interlacing spirals or radial lines, for example (see [58] and references therein). In
uniform resampling, one seeks to compute Fourier coefficients from these nonharmonic Fourier samples,
and then recover the image via a standard DFT.

Consider the case d = 1, and let ω−n < ω−n+1 < . . . < ωn be a set of 2n+1 nonequispaced points at
which f̂(ω) is sampled. The derivation of the standard URS reconstruction follows from the Shannon
Sampling theorem [48, 49, 60]. Using this theorem, we have

f̂(ω) =
∑
k∈Z

f̂(k)sinc(ω − k), ω ∈ R,

where the right-hand side converges uniformly, and therefore

f̂(ωj) =
∑
k∈Z

f̂(k)sinc(ωj − k), |j| ≤ n. (7.1)

Let αk, k = −n, . . . , n be the values αk ≈ f̂(k) that we seek to compute from the samples {f̂(ωj)}|j|≤n.
It is natural to truncate (7.1) at level n, leading to

f̂(ωj) ≈
∑
|k|≤n

αksinc(ωj − k), |j| ≤ n.

Let U [n,n] ∈ C2n+1,2n+1 be the matrix with (j, k)th entry sinc(ωj − k). The URS method determines
the vector α[n,n] = {αk}|k|≤n as the solution to the linear system

U [n,n]α[n,n] = f̂ [n], (7.2)

where f̂ [n] = {f̂(ωj)}|j|≤n.
Suppose now that the finite collection {ωj}|j|≤n extends to an infinite set {ωj}j∈Z such that the

system

ψj(x) =
1√
2

eiωjπx, j ∈ Z,

is a frame for L2(−1, 1). Let φj(x) = 1√
2
eijπx, so that

Tn = span {φj : |j| ≤ n} , (7.3)

is the space of trigonometric polynomials of degree n. Then the URS method (7.2) is nothing more
than a specific instance of the consistent sampling framework described in §3.

It has been widely reported that the URS method (7.2) may be very ill-conditioned in practice
[48, 60]. Various strategies have been applied to the linear system (7.4) to try to overcome this issue,
with the most common involving first manually computing a singular value decomposition and then
applying standard regularization techniques from the literature on discrete ill-posed problems [48, 60].
However, this approach is both computationally expensive and sensitive to noise (see [49] and references
therein). As a consequence, even in the presence of low noise, the resulting image can often be highly
contaminated (much as in the examples presented in §3.6).
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Although the effect of noise can be somewhat mitigated [49], it can never truly be removed, since the
underlying discrete problem is ill-posed. However, the interpretation of URS as an instance of consistent
sampling means that this ill-posedness – which is merely another instance of that seen in the consistent
reconstructions of §3 – is completely artificial. The key theorems presented in §4 demonstrate that by
replacing (7.2) with an overdetermined the least squares (i.e. generalized sampling)

U [n,m]α[n,n] = f̂ [m], (7.4)

and by increasing m suitably we will be able to obtain a numerically stable reconstruction. Hence, rather
than performing an intensive regularization on a discrete ill-posed problem, we discretize differently so
as to obtain a well-posed discrete problem (recall the operator-theoretic interpretation of §3.7)

Remark 7.1 Of course, Theorem 6.2 states that if the uniform resampling (7.2) is ill-conditioned (for
a given n) then so will any other perfect method. In other words, there is in essence no stable way to
obtain n Fourier coefficients from n nonuniformly spaced Fourier samples. Hence, increasing m is not
just a good way to proceed, in this sense it is the only possible way to obtain a stable reconstruction.

We remark also that overdetermined least squares of the form (7.4) has been used in the past for
the uniform resampling problem. However, it is still reported as resulting in an ill-conditioned problem
[48, 60]. This is unsurprising in the results of this paper: m needs to not only be larger than n to ensure
stability, but also above the critical threshold of the stable sampling rate Θ(n; θ).

Remark 7.2 There are a number of alternatives to uniform resampling, such as convolutional gridding
techniques [39, 45, 48, 60], which is quite popular in practice. However, URS provides an optimal
solution to the problem, and consequently often provides better results [48] (in particular, it can lead
to a significant decrease in artifacts [58] over gridding). Convolutional gridding has the advantage of
being more efficient [48] than the standard URS algorithm. However, modifications such at the block
uniform resampling (BURS) [48] possess comparable efficiency.

7.2 Generalized sampling for the URS problem

Provided one selects the parameter m using the stable sampling rate for this problem, the key theorems
of §4 demonstrate that (7.4) will be perfectly stable, as well as quasi-optimal. It is therefore critical to
determine Θ(n; θ) in this instance. Our main result below demonstrates that Θ(n; θ) is linear in n for
(almost) all nonuniform sampling patterns arising as Fourier frames.

First we require the following definition [30]:

Definition 7.3. A sequence {ωj}j∈Z is a balanced sampling sequence if the following conditions hold:

(i) Ω = {eiωjπ· : j ∈ Z} is a frame for L2(−1, 1),
(ii) {ωj}j∈Z is δ-separated, i.e. there exists δ > 0 such that |ωj − ωk| > δ, ∀j 6= k,

(iii) {ωj}j∈Z is increasing, i.e. ωj ≤ ωj+1, ∀j ∈ Z,
(iv) {ωj}j∈Z is balanced, i.e. ωj ≥ 0 if j ≥ 0 and ωj < 0 if j < 0.

Note conditions (iii) and (iv) can always be guaranteed by reordering. Condition (iv) is also reason-
able in practice since sampling strategies are typically symmetric. Although (ii) does not hold for all
Fourier frames, we shall assume it for simplicity in the presentation that follows. It is possible in what
follows to derive a fully general result on the stable sampling rate for arbitrary Fourier frames using
[40, Lem. 2] (see also [30, Thm. 3]). However, for simplicity we shall not do this.

Theorem 7.4. Suppose that {ωj}j∈Z is a balanced sampling sequence. Then the stable sampling rate
Θ(n; θ) = O (n). Specifically, let τ : N → (0,∞) be given by τ(m) = min{ωm,−ω−m}, and define
τ−1 : (0,∞)→ N by

τ−1(c) = min{m ∈ N : τ(m) > c}.
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Then τ−1(c) < d cδ e, ∀c > 0, and we have the upper bound

Θ(n; θ) ≤ τ−1

(
g(θ)

g(θ)− 1
+
g(θ) + 1

g(θ)− 1
n

)
,

where g(θ) = exp
(
π2δ(c1 −max{1, c2}θ−2)

)
.

Proof. Let Pmg =
∑
|j|≤m〈g, ψj〉ψj , and suppose that φ ∈ Tn is arbitrary. Then

〈Pmφ, φ〉 = 〈Pφ, φ〉 − 〈(P − Pm)φ, φ〉 ≥ c1‖φ‖2 − 〈(P − Pm)φ, φ〉. (7.5)

Let φ =
∑
|j|≤n αjφj so that ‖φ‖ = ‖α‖`2 . Since

〈(P − Pm)f, g〉 ≤
√
〈(P − Pm)f, f〉

√
〈(P − Pm)g, g〉, ∀f, g ∈ L2(−1, 1),

it follows that

〈(P − Pm)φ, φ〉 =
∑

|j|,|k|≤n

αjαk〈(P − Pm)φj , φk〉

≤

∑
|j|≤n

|αj |
√
〈(P − Pm)φj , φj〉

2

≤ ‖φ‖2
∑
|j|≤n

〈(P − Pm)φj , φj〉. (7.6)

Let us suppose that m is sufficiently large so that |ωj | > n for |j| > m (i.e. m > n
δ ). Note that

|〈φk, ψj〉| ≤
1

π|ωj − k|
, |j| > m, |k| ≤ n.

Therefore

〈(P − Pm)φk, φk〉 ≤
∑
|j|>m

1

π2|ωj − k|2
=

1

π2

∑
j>m

1

|ωj − k|2
+

1

π2

∑
j>m

1

|ω−j − k|2
.

Consider the first sum. We have∑
j>m

1

|ωj − k|2
≤ 1

δ

∫ ∞
ωm

1

(ω − k)2
dω =

1

δ(ωm − k)
.

Using a similar estimate for the other sum, we obtain

〈(P − Pm)φk, φk〉 ≤
1

π2δ

(
1

ωm − k
+

1

k − ω−m

)
.

Substituting this into (7.6), we obtain

〈(P − Pm)φ, φ〉 ≤ ‖φ‖
2

π2δ

∑
|k|≤n

(
1

ωm − k
+

1

k − ω−m

)
.

Notice that ∑
|k|≤n

1

ωm − k
≤
∫ n+1

−n

1

ωm − x
dx = ln

(
ωm + n

ωm − n− 1

)
.
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Figure 2: The quantity Dn,cn against n for the generalized sampling applied to the uniform resampling problem
for the frames (a)–(c). The values c = 1, 5
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4
, 4 for (b) and (c).

Likewise ∑
|k|≤n

1

k − ω−m
≤
∫ n

−n−1

1

x− ω−m
dx = ln

(
n− ω−m

−ω−m − n− 1

)
.

Hence

〈(P − Pm)φ, φ〉 ≤ ‖φ‖
2

π2δ
ln

(
τ(m) + n

τ(m)− n− 1

)
.

Combining this with (7.5), we obtain

D−2
n,m = inf

φ∈Tn
‖φ‖=1

〈Pmφ, φ〉 ≥ c1 −
1

π2δ
ln

(
τ(m) + n

τ(m)− n− 1

)
.

Recall that C(Fn,m) ≤ max{1,√c2}Dn,m. Hence C(Fn,m) < θ provided

c1 −
1

π2δ
ln

(
τ(m) + n

τ(m)− n− 1

)
> max{1, c2}θ−2.

Rearranging, we obtain

τ(m) + n

τ(m)− n− 1
< g(θ) ⇐⇒ τ(m) >

g(θ)

g(θ)− 1
+
g(θ) + 1

g(θ)− 1
n,

and this gives the result (note that this condition implies that |ωj | > n, |j| > m, which was the
assumption made for the above analysis). Note also that τ(m) = min{ωm,−ω−m} ≥ δm. Thus
τ−1(c) ≤ d cδ e. This completes the proof.

7.3 Numerical results

We now give numerical results for generalized sampling for applied to this problem. We consider the
following three sequences

(a) : ωj =
1

2
j, (b) : ωj =

1

4
j, (c) : ωj =

1

4
j + νj ,

where in the last case νj ∈ (− 1
5 ,

1
5 ) is chosen uniformly at random. Note that all three sequences are

frames for L2(−1, 1) [16].
In Figure 2 we plot the quantity Dn,m with various linear scalings of m with n. As is evident,

this constant is exponentially large when m = n (i.e. consistent sampling), and it remains exponentially
large when m = cn for small c below a certain threshold. However, as c increases the rate of exponential
growth decreases, and once c is sufficiently large, there is no exponential growth at all.
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Figure 3: The stable sampling rate Θ̃(n; θ), scaled by n−1, for the frames (a)–(c), where θ = 5
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Figure 4: The error ‖f − f̃n,m‖ against m where n = m (left) and n = 1
2
m (right), f(x) = 1√

2
e8iπx, and f̃n,m is

computed from noisy data {f̂j + ηj}|j|≤n, where |ηj | ≤ η is chosen uniformly at random with η = 0, 10−9, 10−2

(circles, crosses and diamonds respectively). The sampling frame (a) was used.

To determine the critical c for which the reconstruction constant is bounded, we compute the stable
sampling rate. This is shown in Figure 3. For the frame (a) this critical value is roughly 2, whereas for
(b) and (c) it is approximately 4. Moreover, the closeness of the graphs indicates that one only needs
to exceed this critical value by a very small amount to get an extremely good reconstruction constant.

To illustrate the effectiveness of generalized sampling for this problem, in Figure 4 we consider the
reconstruction from noisy data. As is evident, when m = n, noise is amplified by around 1015. However,
double oversampling, as suggested in Figure 3, renders the reconstruction completely stable: the overall
reconstruction error is on the order of the magnitude of the noise.

7.4 Alternatives to uniform resampling

The goal of uniform resampling is to recover the Fourier coefficients of the unknown function f from
its nonuniform Fourier samples. However, it is well known that images and signals (which are typically
nonperiodic) are poorly represented by their Fourier series. Although the Fourier series converges (due
to the Shannon Sampling Theorem), the rate is often intolerably slow and the finite series is polluted
by Gibbs oscillations.

However, there is no reason besides familiarity to actually compute Fourier coefficients from nonuni-
form Fourier samples. With generalized sampling one is able to reconstruct in any subspace Tn; in
particular, one which is better suited to the particular function. Thus, provided such a subspace is
known, we are able to obtain a better reconstruction over the classical Fourier series.

In this final section we consider briefly two alternative choices for Tn besides the Fourier space (7.3).
The first is a spline space of piecewise polynomial functions of fixed degree d ∈ N:

Tn =
{
φ ∈ Cd−1[−1, 1] : φ|[ jn , j+1

n ) ∈ Pd, j = −n, . . . , n− 1
}
, n ∈ N. (7.7)

Note that the sequence of orthogonal projections Qnf of a function f ∈ Cd[−1, 1] converge to f at the
rate n−d−1, without the assumption of periodicity of f . Conversely, the Fourier series (i.e. the URS
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n 8 16 32 64
(a) 8.33e12 7.24e25 2.17e52 3.40e105
(b) 1.51e5 3.14e12 1.37e25 2.69e51
(c) 2.54e6 9.53e11 1.65e23 3.98e45

n 8 16 32 64
(a) 3.14e11 6.68e23 2.25e49 2.16e104
(b) 4.95e4 3.84e10 5.32e22 1.41e48
(c) 2.29e2 4.19e4 2.11e9 1.30e19

Table 1: The quantities Dn,n (left) and Dn,2n (right) for the spaces (a): (7.7) (d = 2), (b): (7.7) (d = 4) and
(c): (7.8). The sampling frequencies are ωj = 1

4
j + νj , where νj ∈ (− 1

5
, 1
5
) was chosen uniformly at random.

m Fourier splines (d = 2) splines (d = 4) polynomials
32 2.80e-2 3.64e-3 5.95e-4 1.42e-2
64 1.49e-4 4.15e-4 3.05e-5 3.23e-3
128 1.04e-11 4.89e-5 4.76e-7 3.01e-5
256 3.30e-15 6.04e-6 1.33e-8 5.43e-8
512 4.06e-15 7.55e-7 4.10e-10 5.02e-14
1024 4.79e-15 9.45e-8 1.27e-11 4.86e-14

Table 2: The error ‖f − f̃n,m‖ for the smooth and periodic function f(x) = sin 3πx + 2e
20
π2 (cos 2πx−4 cosπx−5)

,
where the reconstruction space Tn is the Fourier space (7.3), the spline space (7.7) with d = 2, 4, or the
polynomial space (7.8). The sampling frequencies are given by ωj = 1

4
j + νj , where νj ∈ (− 1

5
, 1
5
) was chosen

uniformly at random. The parameter n was chosen so that Dn,m ≤ 4.

reconstruction with Tn given by (7.3)) converges like n−
1
2 when f is nonperiodic. Hence, the spaces

Tn are better suited for moderately smooth and nonperiodic functions.
The second choice for Tn is the polynomial space

Tn = Pn. (7.8)

Observe that if f is smooth, i.e. f ∈ C∞[−1, 1], then Qnf converges faster than any power of n−1.
Hence, this space is particularly well suited for smooth functions. Note that the use of this space for
uniform Fourier samples ωj = j was extensively discussed in [5].

As one might expect, both the spaces (7.7) and (7.8) lead to instability in the corresponding consis-
tent reconstruction. This is shown in Table 1: in both cases, the constant Dn,n is exponentially large
in n. Nonetheless, such instability can be overcome by sampling at the stable sampling rate. Although
we shall not do it in this paper (for the sake of brevity), it is possible to prove that the stable sampling
rate is linear Θ(n; θ) = O (n) for the spaces (7.7) for any fixed d ∈ N, and quadratic Θ(n; θ) = O

(
n2
)

for (7.8). Note that a similar result for the latter in the case of uniform Fourier samples was shown
previously in [5] and [38].

Instead, we now illustrate the advantage gained from exploiting these different reconstruction spaces.
In Tables 2 and 3 we give numerical results for the three different spaces considered. In each case, the
parameter m (the number of samples) was fixed and n chosen so that the quantity Dn,m ≤ 4. As can be
seen in Table 2, the Fourier space (7.3) is particularly well suited for periodic functions, and outperforms
both the spline (7.7) and polynomial (7.8) spaces. However, the situation changes completely when the
function to be reconstructed is not periodic. In Table 3 we see that the polynomial space (7.8) gives
the best reconstruction, followed by the spline space (7.7). The URS reconstruction, which uses the
Fourier space (7.3), suffers from the Gibbs phenomenon and thus exhibits only low accuracy.

7.5 On optimality

In view of the numerical results for the constant Dn,m (Figure 2), Theorem 6.2 demonstrates that any
perfect method for the uniform resampling problem with be exponentially unstable, unless the stable
sampling rate is adhered to. Moreover, since the stable sampling rate is linear in this case (Theorem
7.4), Theorem 6.3 also applies in this instance. Hence, for periodic functions of finite smoothness (i.e.

31



m Fourier splines (d = 2) splines (d = 4) polynomials
32 3.13e-1 3.12e-2 4.72e-3 3.62e-2
64 1.53e-1 4.79e-3 1.80e-4 1.56e-3
128 8.65e-2 5.16e-4 1.31e-5 1.79e-6
256 9.27e-2 5.96e-5 4.84e-7 4.41e-11
512 6.21e-2 7.14e-6 1.32e-8 4.33e-14
1024 2.50e-2 8.82e-7 3.94e-10 4.19e-14

Table 3: The error ‖f − f̃n,m‖ for the smooth function f(x) = sin 10x + 2e20(x
2−1), where the reconstruction

space Tn is the Fourier space (7.3), the spline space (7.7) with d = 2, 4, or the polynomial space (7.8). The
sampling frequencies are given by ωj = 1

4
j + νj , where νj ∈ (− 1

5
, 1
5
) was chosen uniformly at random. The

parameter n was chosen so that Dn,m ≤ 4.

functions for which (6.3) holds), one cannot outperform generalized sampling by more than a constant
factor regardless of the method.

The same conclusions also hold in the case of the spline spaces (7.7), in view of the numerics in
Table 1. For the polynomial space (7.8), however, Theorem 6.3 does not apply, since the stable sampling
rate is quadratic. Hence, it is in theory possible to outperform generalized sampling in terms of the
asymptotic rate of convergence. Nonetheless, it transpires that this cannot be done in this case without
compromising stability. For a more thorough analysis of stability and convergence for this reconstruction
problem we refer the reader to [7].
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[10] A. Böttcher. Infinite matrices and projection methods. In Lectures on operator theory and its applications
(Waterloo, ON, 1994), volume 3 of Fields Inst. Monogr., pages 1–72. Amer. Math. Soc., Providence, RI,
1996.

32



[11] D. Buckholtz. Hilbert space idempotents and involutions. Proc. Amer. Math. Soc., 128:1415–1418, 1999.

[12] E. Candès and D. L. Donoho. Recovering edges in ill-posed inverse problems: optimality of curvelet frames.
Ann. Statist., 30(3):784–842, 2002.

[13] E. J. Candès. An introduction to compressive sensing. IEEE Signal Process. Mag., 25(2):21–30, 2008.

[14] E. J. Candès and D. Donoho. New tight frames of curvelets and optimal representations of objects with
piecewise C2 singularities. Comm. Pure Appl. Math., 57(2):219–266, 2004.

[15] O. Christensen. Frames and the projection method. Appl. Comput. Harmon. Anal., 1:50–53, 1993.

[16] O. Christensen. An Introduction to Frames and Riesz Bases. Birkhauser, 2003.

[17] S. Dahlke, G. Kutyniok, P. Maass, C. Sagiv, H.-G. Stark, and G. Teschke. The uncertainty principle
associated with the continuous shearlet transform. Int. J. Wavelets Multiresolut. Inf. Process., 6(2):157–
181, 2008.

[18] S. Dahlke, G. Kutyniok, G. Steidl, and G. Teschke. Shearlet coorbit spaces and associated banach frames.
Appl. Comput. Harmon. Anal., 27(2):195–214, 2009.

[19] M. N. Do and M. Vetterli. The contourlet transform: An efficient directional multiresolution image repre-
sentation. IEEE Transactions on Image Processing, 14(12):2091–2106, 2005.

[20] D. L. Donoho. Compressed sensing. IEEE Trans. Inform. Theory, 52(4):1289–1306, 2006.

[21] P. L. Dragotti, M. Vetterli, and T. Blu. Sampling moments and reconstructing signals of finite rate of
innovation: Shannon meets Strang–Fix. IEEE Trans. Signal Process., 55(5):1741–1757, 2007.

[22] T. Dvorkind and Y. C. Eldar. Robust and consistent sampling. IEEE Signal Process. Letters, 16(9):739–742,
2009.

[23] Y. C. Eldar. Sampling with arbitrary sampling and reconstruction spaces and oblique dual frame vectors.
J. Fourier Anal. Appl., 9(1):77–96, 2003.

[24] Y. C. Eldar. Sampling without input constraints: Consistent reconstruction in arbitrary spaces. Sampling,
Wavelets and Tomography, 2003.

[25] Y. C. Eldar and T. Dvorkind. A minimum squared-error framework for generalized sampling. IEEE Trans.
Signal Process., 54(6):2155–2167, 2006.

[26] Y. C. Eldar and G. Kutyniok, editors. Compressed Sensing: Theory and Applications. Cambridge University
Press, 2012.

[27] Y. C. Eldar and T. Michaeli. Beyond Bandlimited Sampling. IEEE Signal Process. Mag., 26(3):48–68,
2009.

[28] Y. C. Eldar and T. Werther. General framework for consistent sampling in Hilbert spaces. Int. J. Wavelets
Multiresolut. Inf. Process., 3(3):347, 2005.

[29] M. Fornasier and H. Rauhut. Compressive sensing. In Handbook of Mathematical Methods in Imaging,
pages 187–228. Springer, 2011.

[30] A. Gelb and T. Hines. Recovering exponential accuracy from non-harmonic fourier data through spectral
reprojection. J. Sci. Comput., 51(158–182), 2012.
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