
ar
X

iv
:1

20
9.

08
82

v1
 [

m
at

h.
N

A
]

 5
 S

ep
 2

01
2

OPTIMAL RANDOMIZED MULTILEVEL ALGORITHMS FOR

INFINITE-DIMENSIONAL INTEGRATION ON FUNCTION SPACES

WITH ANOVA-TYPE DECOMPOSITION

JAN BALDEAUX∗ AND MICHAEL GNEWUCH†

Abstract. In this paper, we consider the infinite-dimensional integration problem on weighted
reproducing kernel Hilbert spaces with norms induced by an underlying function space decomposition
of ANOVA-type. The weights model the relative importance of different groups of variables. We
present new randomized multilevel algorithms to tackle this integration problem and prove upper
bounds for their randomized error. Furthermore, we provide in this setting the first non-trivial
lower error bounds for general randomized algorithms, which, in particular, may be adaptive or
non-linear. These lower bounds show that our multilevel algorithms are optimal. Our analysis
refines and extends the analysis provided in [F. J. Hickernell, T. Müller-Gronbach, B. Niu, K. Ritter,
J. Complexity 26 (2010), 229–254], and our error bounds improve substantially on the error bounds
presented there. As an illustrative example, we discuss the unanchored Sobolev space and employ
randomized quasi-Monte Carlo multilevel algorithms based on scrambled polynomial lattice rules.

Key words and phrases: Multilevel Algorithms; ANOVA Decomposition; Random-
ized Algorithms; Numerical Integration; Reproducing Kernel Hilbert Spaces; Scrambled
Polynomial Lattice Rules

1. Introduction. Motivated by applications arising e.g. in quantitativ finance
or physics, see [10, 36], there has recently been done a large amount of research
investigating integrals over functions with apriori unlimited or even infinitely many
variables. Multilevel algorithms, [17, 10], have been successfully used to solve these
problems. Furthermore, multilevel algorithms have been successfully combined with
QMC methods, [11], which turned out to be more efficient than plain Monte Carlo
(MC) or quasi-Monte Carlo (QMC) algorithms, respectively.

Researchers in information-based complexity started to study the complexity of
the infinite-dimensional integration problem on weighted reproducing kernel Hilbert
spaces of integrands with norms induced by function space decompositions of anchored
or ANOVA-type [19, 20, 18, 25, 12, 32, 2]. (For function space decompositions we refer
to [21].) For many spaces of integrands good lower bounds for the deterministic worst-
case integration error have been proved and constructive upper bounds for different
error criteria have been established with the help of multilevel [18, 25, 12, 2] and
so-called changing dimension algorithms [20, 32]. For some settings these bounds
are sharp. Nevertheless, the randomized setting and the case of function spaces with
norms induced by ANOVA-type decompositions are so far not well enough understood;
see also the comments in [18] or, for integration in the randomized setting in general,
in [28, p. 487]. The main reason for this is that the randomized setting and the
ANOVA setting are technically demanding and more difficult to analyze than the
deterministic worst-case setting and the anchored setting. But the former two settings
are particularly interesting and very important. The (deterministic) worst-case error

∗Finance Discipline Group, University of Technology, Sydney (Jan.Baldeaux@uts.edu.au).
†School of Mathematics and Statistics, University of New South Wales

(mig@numerik.uni-kiel.de).

1

http://arxiv.org/abs/1209.0882v1

2

is often unnecessarily pessimistic and furthermore suitably randomized algorithms can
achieve higher convergence rates and additionally provide statistical error estimates.
ANOVA decompositions have been used to explain the success of QMC methods
for financial applications, see e.g. [31, 4, 35]: If the effective dimension, see [4], of
the integration problem is small, i.e. the variance is concentrated in the lower-order
ANOVA terms, QMC methods can be expected to perform well. Furthermore, in [22]
and [15, 16] it was shown that lower order ANOVA terms exhibit more smoothness
than the corresponding function itself.

In [18] the convergence rates of randomized multilevel algorithms for infinite-
dimensional integration on Hilbert spaces with product weights are analyzed. But as
the authors admit in their paper, in the ANOVA case their analysis has unfortunately
some limitations. An undesirable consequence of this shortcoming is that they are
only able to study a very restricted class of multilevel algorithms. Non-trivial lower
bounds for the errors of randomized multilevel algorithms are not provided in [18].

In this paper we refine the analysis from [18] and extend it to other kinds of
weights. As a result we are able to study new multilevel algorithms and to estab-
lish good upper error bounds for their performance. In the case of product weights
our upper error bounds improve substantially on the ones given in [18] and [2]. A
key indegredient for our analysis of multilevel algorithms is the “ANOVA invariance
lemma”, Lemma 2.1. We also provide the first non-trivial lower bounds for the Nth
minimal errors of randomized multilevel algorithms (or, to be more precise, of general
randomized algorithms in the variable subspace sampling model introduced in [5]; for
lower error bounds for the Nth minimal errors of deterministic and randomized algo-
rithms in the case of anchored decompositions in the former model and the cost model
introduced in [20] we refer to the new preprints [6, 13]). These lower bounds show
that our constructive upper bounds are tight for both types of weights considered,
namely finite-intersection weights and product weights. (Similar optimal results for
multilevel algorithms are achieved in [6] in the deterministic worst-case setting for
norms based on anchored function space decompositions.) Furthermore, as done in
[18] for product weights, we provide for finite-intersection weights sharp upper and
lower error bounds for single-level algorithms (or, to be more precise, upper bounds
for specific and lower bounds for general randomized algorithms in the fixed subspace
sampling model defined in [5]). Our analysis tools can also be used to investigate the
convergence rates of other randomized algorithms, as, e.g., the randomized changing
dimension algorithms from [32], in the ANOVA setting.

The paper is organized as follows: In Section 2, we recall preliminaries, but also
provide new lemmas which are important for our error analysis. In Section 3 we pro-
vide lower bounds for the randomized errors of general randomized algorithms and
general weights. We specify these bounds for finite-intersection and product weights.
In Section 4 we present our multilevel algorithms for general weights and provide
concrete error bounds for finite-intersection weights in Theorem 4.3 and for prod-
uct weights in Theorem 4.5. In Section 5 we consider a concrete space of functions
of infinitely many variables and show that multilevel algorithms based on scram-
bled polynomial lattice rules are essentially optimal for finite-intersection and product
weights.

2. Preliminaries. Let us make some remarks on notation: For n ∈ N we denote
by [n] the set {1, 2, . . . , n}. For a finite set u we denote its cardinality by |u|. We
use the common Landau O-notation. For two functions f and g we write occasionally
f = Ω(g) for g = O(f), and f = Θ(g) if f = Ω(g) and f = O(g) holds. If we consider

3

a reproducing kernel K, then we always denote the corresponding reproducing kernel
Hilbert space by H(K) and its norm unit ball by B(K). The norm and the scalar
product ofH(K) are denoted by ‖·‖K and 〈·, ·〉K , respectively. Our standard reference
for reproducing kernel Hilbert spaces is [1].

2.1. The ANOVA decomposition. In this section, we recall the ANOVA de-
composition of L2-functions; the acronym “ANOVA” stands for “Analysis of Vari-
ance”. Let (Ω,Σ,P) be a probability space, and denote its d-fold product space by
(Ωd,Σd,Pd). The ANOVA decomposition of an L2-function f : Ωd → R is

f(x) =
∑

u⊆[d]

fu(x) , (2.1)

where fu denotes the ANOVA-term corresponding to the set u. For u ⊆ [d] and
x ∈ Ωd let xu := (xj)j∈u ∈ Ωu. For xu ∈ Ωu and ω ∈ Ω[d]\u let (xu, ω) ∈ Ωd be the
vector whose jth component is xj if j ∈ u and ωj otherwise. The ANOVA-term fu
can be computed recursively via

fu(x) =

∫

Ω[d]\u

f(xu, ω)P
[d]\u(dω)−

∑

v(u

fv(x) , where f∅ =

∫

Ωd

f(ω)Pd(dω).

Furthermore, it can be shown via induction over |u| that
∫

Ω

fu(x)P(dxj) = 0 for all j ∈ u. (2.2)

The important feature of the ANOVA decomposition is

Var(f) =
∑

u⊆[d]

Var(fu). (2.3)

Let (D,Σ′, ρ) be another probability space. The new randomized algorithms for
infinite-dimensional integration we present here, rely on random quadratures that
use n (deterministic) real coefficients wi and n randomly chosen quadrature points
x(1)(ω), . . . ,x(n)(ω) in Dd, i.e., that have the form

Qn(ω, f) =

n∑

i=1

wif(x
(i)(ω))

for f ∈ L2(Dd, ρd), ω ∈ Ωd. We assume that for fixed f the function ω 7→ Qn(ω, f) is
square integrable. The next lemma is crucial for the proof of our upper error bounds
for multilevel algorithms; it says that under a certain condition the uth ANOVA-term
of the L2(Ωd,Pd)-function Qn(·, f) is equal to Qn applied to the uth ANOVA-term
of the L2(Dd, ρd)-function f . We denote the ANOVA-terms of Qn(·, f), regarded as
a function on Ωd, by [Qn(·, f)]u, u ⊆ [d].

Lemma 2.1 (ANOVA Invariance Lemma). Let (Ω,Σ,P), (D,Σ′, ρ) be probability
spaces. Let d ∈ N, and let V be a subset of the power set of [d]. Assume that
Qn = Q[d],n, given by

Qn(ω, f) =

n∑

i=1

wif(x
(i)(ω)), ω ∈ Ωd, w1, . . . , wn ∈ R, f ∈ L2(Dd, ρd), (2.4)

is a randomized linear algorithm which satisfies the following condition:

4

(*) For all v ∈ V the random points x
(i)
v = (x

(i)
j (ω))j∈v ∈ Dv, i = 1, . . . , n, are of

the form x
(i)
v = (x

(i)
j (ωj))j∈v , and the random variables x

(i)
j are distributed

according to the law ρ.
Then we have for each f ∈ L2(Dd, ρd) whose ANOVA terms fv vanish if v /∈ V that

[Qn(·, f)]u = Qn(·, fu) for all u ⊆ [d]. (2.5)

Proof. We prove (2.5) by induction on |u|. So let first u = ∅. Then, due to (2.4),
(2.1), and condition (*),

[Q(·, f)]∅ =

∫

Ωd

Q(ω, f)Pd(dω) =
n∑

i=1

wi

∫

Ωd

f(x(i)(ω))Pd(dω)

=

n∑

i=1

wi

∑

u⊆[d]

∫

Ωd

fu(x
(i)(ω))Pd(dω) =

n∑

i=1

wi

∑

u⊆[d]

∫

Dd

fu(x) dρ
d(x)

=

n∑

i=1

wi

∫

Dd

f(x) ρd(x) = Q(·, f∅).

Let now ∅ 6= v ⊆ [d], and let us assume that (2.5) holds for all u with |u| < |v|. Then
we have for σ ∈ Ωd

[Q(·, f)]v(σ) =
∫

Ω[d]\v

Q
(
(σv, ω), f

)
P
[d]\v(dω)−

∑

u(v

[Q(·, f)]u(σ).

Now
∫

Ω[d]\v

Q
(
(σv, ω), f

)
P
[d]\v(dω) =

n∑

i=1

wi

∫

Ω[d]\v

f(x(i)(σv, ω))P
[d]\v(dω)

=
n∑

i=1

wi

∑

u⊆[d]

∫

Ω[d]\v

fu(x
(i)(σv, ω))P

[d]\v(dω).

Notice that the last integral is zero if u is not a subset of v, due to condition (*) and
(2.2) for u ∈ V and due to fu = 0 for u /∈ V . Since the ANOVA terms fu, u ⊆ v,
depend only on the variables in v, we thus get

∫

Ω[d]\v

Q
(
(σv, ω), f

)
P
[d]\v(dω) =

n∑

i=1

wi

∑

u⊆v

fu(x
(i)(σ)) =

∑

u⊆v

Q(σ, fu)

= Q(σ, fv) +
∑

u(v

[Q(·, f)]u(σ),

where the last step uses the induction hypothesis. Hence [Q(·, f)]v(σ) = Q(σ, fv), and
the proof is complete.

Remark 2.1. In the case where the set V in Lemma 2.1 is the whole power set
of [d], we may say that Qn is invariant under the ANOVA decomposition. Note that
for general subsets V of the power set of [d] and f ∈ L2(Dd, ρd) with fv = 0 for all
v /∈ V condition (*) of Lemma 2.1 implies that Qn(·, f) is square integrable on Ωd

and, if additionally

n∑

i=1

wi = 1 (2.6)

5

holds, an unbiased estimator of
∫
Dd f(x) ρ

d(dx).

2.2. Classes of weights. Let

U := {u ⊂ N | |u| < ∞},

and let γ = (γu)u∈U be a sequence of non-negative weights. The weights γ are called
product weights, [33], if there exists a sequence of non-negative numbers γ1 ≥ γ2 ≥ · · ·
such that γu =

∏
j∈u γj for all u ∈ U . The weights γ are called finite-order weights,

[9], of order ω if γu = 0 for all u ∈ U with |u| > ω. We are particularly interested in
some subclass of finite-order weights. We restate Definition 3.5 from [12].

Definition 2.2. Let ρ ∈ N. Finite-order weights (γu)u∈U are called finite-
intersection weights with intersection degree at most ρ if we have

|{v ∈ U | γv > 0 , u ∩ v 6= ∅}| ≤ 1 + ρ for all u ∈ U with γu > 0. (2.7)

Note that for finite-order weights of order ω condition (2.7) is equivalent to the
following condition: There exists an η ∈ N such that

|{u ∈ U | γu > 0 , k ∈ u}| ≤ η for all k ∈ N. (2.8)

Indeed, if (2.7) is satisfied, then (2.8) holds with η ≤ 1 + ρ, and if (2.8) is satisfied,
then (2.7) holds with ρ ≤ (η − 1)ω. A subclass of the finite-intersection weights are
the finite-diameter weights proposed by Creutzig, see, e.g., [12, 27]. Let us restate
Lemma 3.10 from [12], which will be essential for our analysis of finite-intersection
weights.

Lemma 2.3. Let (γu)u∈U be finite-intersection weights of finite order ω. Let η ∈ N

be such that (2.8) is satisfied. Then there exists a mapping φ : N → [η(ω − 1) + 1]
such that for all u ∈ U with γu > 0 the restriction φ|u is injective.

2.3. Function Spaces. Let D ⊆ R, ρ a probability measure on D, and µ :=
⊗n∈N ρ the product probability measure on DN. Unless stated otherwise, we denote
by u, v, and w finite subsets of N, i.e., u, v, w ∈ U . In many formulas we will not state
this explicitly, to make our notation not too cumbersome. Let (γu)u∈U be a sequence
of non-negative weights.

In this paper we make essentially the same assumptions as in [18, Sect. 2].
Assumptions 2.1. We assume that

(A 1) k 6= 0 is a measurable reproducing kernel on D ×D which satisfies
(A 2) H(k) ∩H(1) = {0} as well as
(A 3) M :=

∫
D k(x, x)ρ(dx) < ∞.

(A 4) γ∅ = 1 and

∑

u∈U

γuM
|u| < ∞. (2.9)

It is easily verified that for product weights and finite-order weights condition
(2.9) can be replaced by the equivalent condition

∑
u∈U γu < ∞.

For u ∈ U we put ku(x,y) :=
∏

j∈u k(xj , yj), for all x,y ∈ DN. In particular,
k∅(x,y) = 1. We define Hu := H(ku), i.e., Hu is the reproducing kernel Hilbert space
with kernel ku. The following lemma stems from [18].

Lemma 2.4. Let x,y ∈ DN and f ∈ Hu. If xu = yu, then f(x) = f(y).
Given v ∈ U we define the weighted kernel Kv(x,y) :=

∑
u⊆v γuku(x,y), for

x,y ∈ DN. For the next lemma see [19, Lemma 3] or [1, I, § 6].

6

Lemma 2.5. The reproducing kernel Hilbert space H(Kv) consists of all functions
f =

∑
u⊆v fu, for fu ∈ Hu. Furthermore, ‖f‖2Kv

=
∑

u⊆v γ
−1
u ‖fu‖2ku

.
In general we follow the convention that ∞ · 0 = 0. Note that γu = 0 implies

fu = 0 for all f ∈ H(Kv); in that case γ−1‖fu‖2ku
= 0.

Due to Lemma 2.4 we can consider the spaces H(ku) and H(Ku) as spaces of
functions on Du. In this case we have H(ku) = ⊗j∈uH(k), and H(Ku) is a tensor
product space if and only if the weights (γu)u∈U are product weights, see, e.g., [1, I,
§ 8].

Let us define the domain X of functions of infinitely many variables by

X :=

{
x ∈ DN

∣∣∣∣
∑

u∈U

γu
∏

j∈u

k(xj , xj) < ∞
}
. (2.10)

Similar as in [18, Lemma 1] one shows that X satisfies µ(X) = 1. For x,y ∈ X we put

K(x,y) :=
∑

u∈U

γuku(x,y).

Since K is well-defined, symmetric, and positive semi-definite, it is a reproducing
kernel on X× X, see [1]. For the next lemma see [19, Cor. 5] or [14].

Lemma 2.6. The reproducing kernel Hilbert space H(K) consists of all functions
f =

∑
u∈U fu, fu ∈ Hu, such that

∑

u∈U

γ−1
u ‖fu‖2ku

< ∞.

In the case of convergence, we have

‖f‖2K =
∑

u∈U

γ−1
u ‖fu‖2ku

. (2.11)

If f ∈ H(K), then the decomposition

f =
∑

u∈U

fu, fu ∈ Hu, (2.12)

is uniquely defined, since fu is the orthogonal projection of f onto Hu.

2.4. Integration. Integration with respect to the probablitiy measure µ defines
a bounded linear functional

I(f) :=

∫

X

f(x)µ(dx)

on H(K), as verified by the following estimates:

∫

X

|f(x)|µ(dx) =
∫

X

|〈f,K(·,x)〉K |µ(dx) ≤ ‖f‖K
∫

X

‖K(·,x)‖K µ(dx),

and

(∫

X

‖K(·,x)‖K µ(dx)

)2

≤
∫

X

‖K(·,x)‖2K µ(dx) =

∫

X

K(x,x)µ(dx) ≤
∑

u∈U

γuM
|u|,

7

and the last term is finite due to (2.9). The representer h ∈ H(K) of the integration
functional I is given by

h(x) = 〈h,K(·,x)〉K =

∫

X

K(x,y)µ(dy). (2.13)

Similar as above, it is easily shown that for every u ∈ Hu

Iu(f) :=

∫

Du

f(x) ρu(dx)

defines a bounded linear functional on Hu. It is also easily shown that H(K) ⊂
L2(X, µ) and Hu ⊂ L2(Du, ρu) for all u ∈ U . For the rest of this article we assume
that the following assumptions hold:

Assumptions 2.2. We assume that
(A 2a)

∫
D k(x, y) ρ(dx) = 0 for all y ∈ D.

(A 5) For all a ∈ D we have k(a, a) > 0.
Note that assumption (A 2a) and identity (2.13) immediately imply that

h(x) = 1 for all x ∈ X. (2.14)

Thus, if there exists an a∗ ∈ D with k(a∗, a∗) = 0, then this results for a∗ := (a∗)j∈N

in K(·,a∗) = h, which leads to I(f) = f(a∗) for all f ∈ H(K). Assumption (A 5)
avoids this trivial integration problem.

Under assumption (A 2a), the uniquely determined decomposition (2.12) is in
fact the ANOVA decomposition of f , see Remark 2.3.

2.5. Projections. Let us choose an anchor a ∈ X. Here the most interesting
case seems to us a vector a whose entries are all equal to a, where a ∈ D satisfies

∑

u∈U

γuk(a, a)
|u| < ∞; (2.15)

note that condition (2.9) ensures that such an a exists. For the sake of generality
we will consider a general a ∈ X. But to make proofs not unnecessarily complicated,
we will restrict ourselves to anchors a = (a, a, . . .) ∈ X for the concrete analysis
of our constructive multilevel algorithms in the case of product weights and finite-
intersection weights.

We define for u ∈ U

(Ψu,af)(x) := f(xu;a) for all x ∈ X,

where (xu;a) := (xu,aN\u). Note that due to (2.15) we have (xu;a) ∈ X.
For u, v, w ∈ U with u ⊆ v ⊂ w we define

f+
u,v :=

∑

u′⊂N\v

fu∪u′ and f−
u,v,w :=

∑

u′⊂N\v ;u′∩w 6=∅

fu∪u′ , (2.16)

as well as

r2v,u,a :=
∑

u′⊂N\v

γu∪u′ ku′(a,a) (2.17)

8

and

r̃2w,v,u,a :=
∑

u′⊂N\v ;u′∩w 6=∅

γu∪u′ ku′(a,a). (2.18)

Since a ∈ X, the quantities rv,u,a and r̃w,v,u,a are finite. Furthermore, we have
r̃2w,v,u,a ≤ r2v,u,a − γu.

Remark 2.2. Observe that we have the orthogonal decomposition

f =
∑

u⊆v

f+
u,v for all f ∈ H(K) and all v ∈ U . (2.19)

For a fixed f ∈ H(K) and v ⊂ w the functions f−
u,v,w, u ∈ v, form an orthogonal

function system in H(K).

Lemma 2.7. For all f ∈ H(K) and all finite subsets u ⊆ v ⊂ w of N we have
Ψv,a(f

+
u,v),Ψv,a(f

−
u,v,w) ∈ Hu and the norm estimates

‖Ψv,a(f
+
u,v)‖ku

≤ rv,u,a‖f+
u,v‖K (2.20)

and

‖Ψv,a(f
−
u,v,w)‖ku

≤ r̃w,v,u,a‖f−
u,v,w‖K . (2.21)

Furthermore, Ψv,a is a bounded projection from H(K) onto H(Kv), and its operator
norm is given by

‖Ψv,a‖K→Kv
= max

u⊆v ; γu>0
γ−1/2
u rv,u,a. (2.22)

Proof. To prove (2.20), we apply [18, Lemma 15]: Put

E1 := Dv and E2 :=
⋂

u⊆v

{
x ∈ DN\v

∣∣∣∣
∑

u′⊂N\v

γu∪u′

∏

j∈u′

k(xj , xj) < ∞
}
.

Since we assumed that there exists no a∗ ∈ D with k(a∗, a∗) = 0, it is easy to
observe that X = E1 × E2, see also [14]. Put K ′(x,y) :=

∑
u′∈U γ′

u′ ku′(x,y), where
γ′
u′ := γu′ if u′∩v = u and γ′

u′ = 0 otherwise. Let the reproducing kernel J be defined
by J((x1,x2), (y1,y2)) := K ′((x1;a), (y2;a)) for x1,y1 ∈ E1, x2,y2 ∈ E2. Then

J(x,y) =
∑

u′⊂N\v

γu∪u′ ku∪u′((xv;a), (yv;a))

=
∑

u′⊂N\v

γu∪u′

∏

ν∈u

k(xν , yν)
∏

ν∈u′

k(aν , aν) = ku(x,y) r
2
v,u,a.

Due to [18, Lemma 15] we thus have

{Ψv,a(f) | f ∈ B(K ′)} = B(J) = {f ∈ H(ku) | ‖f‖ku
≤ rv,u,a}.

Observe that f+
u,v ∈ B(K ′) and that due to (2.11) the right hand side in (2.20) is

invariant under substituting the norm ‖ · ‖K by ‖ · ‖K′ . Hence we have proved (2.20)

9

and seen that the constant rv,u,a appearing on the right hand side is optimal. The
estimate (2.21) follows analogously. Due to Lemma 2.5 and (2.19) we get for f ∈ B(K)

‖Ψv,a(f)‖2Kv
=

∑

u⊆v;γu>0

γ−1
u ‖Ψv,a(f

+
u,v)‖2ku

≤
∑

u⊆v;γu>0

γ−1
u r2v,u,a‖f+

u,v‖2K ≤ max
u⊆v ; γu>0

γ−1
u r2v,u,a.

If u∗ ⊆ v satisfies γ−1
u∗ r2v,u∗,a = maxu⊆v ; γu>0 γ

−1
u r2v,u,a, then we get for f ∈ B(K)

with f = f+
u∗,v

‖Ψv,a(f
+
u∗,v)‖2Kv

= γ−1
u∗ ‖Ψv,a(f

+
u∗,v)‖2ku∗

≤ γ−1
u∗ r

2
v,u∗,a. (2.23)

Recall that this inequality is invalid for some f with ‖f+
u∗,v‖K = 1 if we decrease the

right hand side of (2.23). Thus ‖Ψv,a‖K→Kv
= maxu⊆v ; γu>0 γ

−1/2
u rv,u,a.

Remark 2.3. For u ∈ U and fu ∈ Hu we have

∫

D

fu(x) ρ(dxj) = 0 for all j ∈ u, x ∈ X. (2.24)

Indeed, assumption (A 2a) implies that (2.24) holds for all functions ku(·,y), y ∈ X.
Since the linear span of these functions is dense in Hu, and since I{j} ◦ Ψ{j},x is a
continuous linear functional on Hu ⊆ H(K), identity (2.24) is valid.

With the help of (2.24) it is easy to show that for v ∈ U and f ∈ H(Kv) the
uniquely determined decomposition f =

∑
u⊆v fu, fu ∈ Hu, is exactly the ANOVA

decomposition of f in L2(Dv, ρv). (Similarly as in the proof of Lemma 2.1 this can
be shown by induction on |u|.) In this sense, the uniquely determined decomposition
f =

∑
u∈U fu, fu ∈ Hu, of f ∈ H(K) is nothing but the infinite-dimensional ANOVA

decomposition of f in L2(X, µ).

Remark 2.4. An interesting question is under what conditions on the weights
the operator norms of the projections Ψv,a satisfy for some C > 0

‖Ψv,a‖K→Kv
≤ C for all v ∈ U . (2.25)

(This question is in fact relevant for our lower bounds in Theorem 3.2 and Corollary
3.4.) It is easily seen that product weights γ that satisfy (2.9) also satisfy (2.25), see
also [18, Lemma 7]. That this has not necessarily to be the case for general weights,
even not for finite-intersection weights, shows the following example: Let aj = a for
some a ∈ D and all j ∈ N. For a given ε > 0 let

γu =

j−2−ε if u = {j} for some j ∈ N,

j−1−ε if u = {j, j + 1} for some j ∈ N,

0 otherwise.

The weights γ = (γu)u∈U we obtain in this way are summable finite-intersection
weights. If j = max v, then (2.22) implies

‖Ψv,a‖2K→Kv
≥ γ−1

{j}r
2
v,{j},a ≥ γ{j,j+1}

γ{j}
k(a, a) = j k(a, a) → ∞ as j → ∞.

10

For a vector a with identical entries a ∈ D and finite-intersection weights γ of order
ω and with intersection degree ρ the monotonicity condition

γu ≥ γv for all u, v ∈ U with u ⊆ v and γu > 0 (2.26)

is sufficient to ensure that (2.25) holds, since then we have for ∅ 6= u ⊆ v, γu > 0

γ−1
u r2v,u,a ≤

∑

w∈N\v
γu∪w>0

k(a, a)|w| ≤ (1 + ρ)max{1, k(a, a)ω},

and (2.25) follows from (2.22) and (2.9).
Lemma 2.8. For v, w ∈ U with v ⊂ w we have for all f ∈ H(K)

(Ψw,a −Ψv,a)f =
∑

u⊆v

∑

∅6=u′⊆w\v

Ψw,a(f
+
u∪u′,w)−

∑

u⊆v

Ψv,a(f
−
u,v,w).

Proof. Let u ∈ U satisfy u ∩ v = u ∩ w. Then, due to Lemma 2.4, we have
Ψw,afu(x) = Ψv,afu(x) for all x ∈ X. Thus

(Ψw,a −Ψv,a)f = (Ψw,a −Ψv,a)
∑

u⊆v

∑

∅6=u′⊆w\v

∑

u′′⊂N\w

fu∪u′∪u′′

=
∑

u⊆v

∑

∅6=u′⊆w\v

Ψw,a(f
+
u∪u′,w)−

∑

u⊆v

Ψv,a(f
−
u,v,w).

Lemma 2.9. For any v ∈ U we have

b2v,a := sup
f∈B(K)

|I(f)− I(Ψv,af)|2 =
∑

∅6=u⊂N\v

γuku(a,a).

Proof. Let hv,a denote the representer of I ◦Ψv,a in H(K), i.e.,

hv,a(x) =

∫

Dv

K(x, (yv;a)) ρ
v(dyv) =

∑

u∈U

γu

∫

Dv

ku(x, (yv;a)) ρ
v(dyv).

Due to (2.24) the last integral is zero if v ∩ u 6= ∅. Hence

hv,a(x) =
∑

u⊂N\v

γuku(x,a).

Due to (2.14) we have

b2v,a = sup
f∈B(K)

|I(f)− I(Ψv,af)|2 = ‖h− hv,a‖2K =

∥∥∥∥
∑

∅6=u⊂N\v

γuku(·,a)
∥∥∥∥
2

K

=
∑

∅6=u⊂N\v

γu ‖ku(·,a)‖2ku
=

∑

∅6=u⊂N\v

γuku(a,a).

11

2.6. Cost and error. In this subsetion we present the cost models introduced
in [5]. Apart from slight generalizations, we essentially follow the representation in
[18, Sect. 3].

For x ∈ DN \ X we put f(x) = 0 for all f ∈ H(K). Let $(ν), ν ∈ N ∪ {0}, be
a monotone increasing cost function. Here we will usually assume that $(ν) = O(νs)
(for upper error bounds) or $(ν) = Ω(νs) (for lower error bounds), where s > 0.
(Corresponding results for the case s = 0 can easily be obtained by taking the limit
s → 0; anyhow, we believe that the most interesting case is s ≥ 1.)

In the fixed subspace sampling model function evaluations are only possible in
points from a finite-dimensional affine subspace

Xv,a := {x ∈ DN |xj = aj for all j ∈ N \ v}

of X for a given v ∈ U and an admissable anchor a ∈ X, and the cost for each function
evaluation is given by a cost function

cv,a(x) :=

{
$(|v|) if x ∈ Xv,a,

∞ otherwise.
(2.27)

In the variable subspace sampling model1 function evaluations can be done in a se-
quence of affine subspaces

Xv1,a ⊂ Xv2,a ⊂ · · ·

for a strictly increasing sequence v = (vi)i∈N of sets ∅ 6= vi ∈ U and an admissable
anchor a ∈ X, and the cost for each function evaluation is given by the cost function

cv,a(x) := inf{$(|vi|) |x ∈ Xvi,a}, (2.28)

where we use the standard convention that inf ∅ = ∞. Let Cfix and Cvar denote the
set of all cost functions of the form (2.27) and (2.28), respectively.

In general we assume that all a ∈ X are admissable anchors, but in some situation
we restrict ourselves to admissable anchors of the form a = (a, a, . . .) ∈ X, a ∈ D, as
done in [18].

We consider randomized algorithms for integration of functions f ∈ H(K) and, as
in [18], refer for a formal definition to [5, 26, 34]. The cost of an algorithm is defined
to be the sum of the cost of all function evaluations. For a randomized algorithm Q
the cost is a random variable, which may depend on the function f . That is why we
denote this random variable by costc(Q, f), where c denotes the relevant cost function
from Cfix or Cvar.

The worst case cost of a randomized algorithm Q on a class of integrands F is
given by

costfix(Q,F) := inf
c∈Cfix

sup
f∈F

E(costc(Q, f))

in the fixed subspace sampling model and by

costvar(Q,F) := inf
c∈Cvar

sup
f∈F

E(costc(Q, f))

1To distinguish this cost model clearly from the more generous one defined in [20] it seems to be
more accurate to rename it “nested subspace sampling model” as done in [6, 13]; since here we do
not consider the cost model from [20], we stay with the original name.

12

in the variable subspace sampling model.
The randomized error e(Q,F) of approximating the integration functional I by

Q on F is defined as

e(Q,F) :=

(
sup
f∈F

E

(
(I(f)−Q(f))

2
))1/2

.

For N ∈ R let us define the N th minimal errors by

eN,fix(F) := inf{e(Q,F) | costfix(Q,F) ≤ N}

and

eN,var(F) := inf{e(Q,F) | costvar(Q,F) ≤ N}.

3. Lower bounds. For a fixed anchor a ∈ X and a sequence of weights (γu)u∈U

satisfying (2.9) let u1, u2, . . . be an ordering of the non-empty sets u ∈ U with γu > 0
for which γ̂u1 ≥ γ̂u2 ≥ · · · holds, where γ̂u := γu ku(a,a). Let u0 := ∅. Furthermore,
we put

decayγ := sup

{
p ∈ R

∣∣∣ lim
j→∞

γ̂uj
jp = 0

}
.

3.1. General weights. The next two lemmas are helpful for establishing lower
bounds for the randomized error of numerical integration.

Lemma 3.1. Let θ ∈ (1/2, 1], v ∈ U , and let Q be a randomized algorithm that
satisfies P

(
Q(f) = Q(Ψv,af)

)
≥ θ for all f ∈ B(K). Then

e(Q,B(K)) ≥ max

{ √
2θ − 1 bv,a

1 + ‖Ψv,a‖K→Kv

, e(Q,B(Kv))

}
.

Proof. The proof adapts the proof idea from [18, Lemma 8]. Put r̂ := ‖Ψv,a‖K→Kv
.

Then we have for f ∈ B(K),

g =
f −Ψv,a(f)

1 + r̂
∈ B(K) .

Furthermore, we have Ψv,a(g) = Ψv,a(−g) = 0. Let A denote the event {Q(g) =
Q(−g)}. Then P(A) ≥ 2θ − 1. Hence

e(Q,B(K))2 ≥ max
{
E

(
(I(g)−Q(g))

2
)
,E
(
(I(−g)−Q(−g))

2
)}

≥max

{∫

A

(I(g)−Q(g))
2
P(dω),

∫

A

(I(−g)−Q(−g)))
2
P(dω)

}

≥(2θ − 1)|I(g)|2 = (2θ − 1)(1 + r̂)−2|I(f)− I(Ψv,a(f))|2 .

Since B (Kv) ⊆ B(K), we have additionally e (Q,B(K)) ≥ e (Q,B(Kv)).
We provide now a general lower bound for the randomized error of arbitrary

randomized algorithms and arbitrary weights.
Theorem 3.2. Assume that $(ν) = Ω(νs) for some s > 0 and that there exists a

p > 1 and a σ > 0 such that

bv,a
1 + ‖Ψv,a‖K→Kv

= Ω
(
|v|σ(1−p)

2

)
for all v ∈ U .

13

Assume further that γ{1} > 0 and that there exists an α > 0 with eN (B(K{1}))
2 =

Ω(N−α). Then we have for fixed subspace sampling

eN,fix(B(K))2 = Ω
(
N− ασ(p−1)

αs+σ(p−1)

)
,

and for variable subspace sampling

eN,var(B(K))2 = Ω
(
N−min{α, σ(p−1)

s }) .

Proof. Let Q be a randomized algorithm. In the fixed subspace sampling regime
our proof is a slight modification of the proof of [18, Thm. 2]: If costfix(Q,B(K)) ≤ N ,
then there exists a set v ∈ U and an anchor a ∈ X such that E(costcv,a(Q, f)) ≤ N+1
for every f ∈ B(K). This implies for every f ∈ B(K) that P(Q(f) = Q(Ψv,a f)) = 1.
Due to Lemma 3.1 we get e(Q,B(K))2 = Ω(|v|σ(1−p)).

The expected number of evaluations of Q is at most of order O(N/|v|s). Thus we
have

e(Q,B(K))2 ≥ e(Q,B(K{1}))
2 = Ω

((
N

|v|s
)−α

)
.

Now it is easily verified that

(
N

|v|s
)−α

+ |v|σ(1−p) = Ω
(
N− ασ(p−1)

αs+σ(p−1)

)
.

Let us turn to the variable subspace sampling regime: If costvar(Q,B(K)) ≤ N , then
there exists an increasing sequence v = (vi)i∈N, ∅ 6= vi ∈ U , and an anchor a ∈ X

such that E(costcv,a
(Q, f)) ≤ N + 1 for every f ∈ B(K). Let m be the largest

integer satisfying $(|vm|) ≤ 4(N + 1). That implies for all f ∈ B(K) that P(Q(f) =
Q(Ψvm,a f)) ≥ 3/4. Due to Lemma 3.1 we get e(Q,B(K))2 = Ω(|vm|σ(1−p)). Since

4(N + 1) = Ω(|vm|s), we obtain e(Q,B(K))2 = Ω(N
σ(1−p)

s). Furthermore, we have

e(Q,B(K))2 ≥ e(Q,B(K{1}))
2 = Ω(N−α).

This concludes the proof.

3.2. Finite-intersection and product weights. As already discussed in Re-
mark 2.4, for product weights the operator norm ‖Ψv,a‖K→Kv

is uniformly bounded
in v ∈ U , and the same holds true for finite-intersection weights γ as long as the
anchor a ∈ X has identical entries a ∈ D and the monotonicity condition (2.26) is
satisfied.

Lemma 3.3. Let γ be finite-intersection or product weights, and let p > decayγ .
Let v ∈ U . Then we have b2v,a = Ω(|v|1−p).

Proof. Let γ be finite-intersection weights. Let η be as in condition (2.8). Note
that the set {i|ui ∩ v 6= ∅} contains at most η|v| elements. Hence

b2v,a =
∑

∅6=u⊂N\v

γuku(a,a) =
∑

j∈N:

∅6=uj⊂N\v

γuj
kuj

(a,a) =
∑

j∈N:

j 6∈{i|ui∩v 6=∅}

γuj
kuj

(a,a)

≥
∞∑

j=|v|η+1

γuj
kuj

(a,a) ≥
2|v|η∑

j=|v|η+1

γuj
kuj

(a,a) ≥ |v|ηγ̂u2|v|η
= Ω

(
|v|1−p

)
.

14

In the case of product weights, b2v,a = Ω(|v|1−p) was proved in [18, p. 243].
Remark 3.1. The statement of Lemma 3.3 does not hold for arbitrary weights,

as shown by the following example: Consider weights (γu)u∈U defined by γu > 0 if
u = [d] for some d ∈ N and γu = 0 otherwise. Then

b2v,a =
∑

∅6=u⊂N\v

γuku(a,a) = 0 for all 1 ∈ v ∈ U .

Remark 2.4, Lemma 3.3, and Theorem 3.2 lead directly to the following lower
bounds for finite-intersection and product weights. Note that for s = 1 the lower
bound for product weights in the fixed subspace sampling model has already been
proved in [18, Thm. 2].

Corollary 3.4. Let γ be finite-intersection weights or product weights. In the
case of finite-intersection weights we additionally assume that the weights satisfy the
monotonicity condition (2.26) and γ{1} > 0, and that all admissable anchors a ∈ X

for fixed or variable subspace sampling are of the form a = (a, a, . . .) for some suitable
a ∈ D. Let $(ν) = Ω(νs) for some s > 0, and let p > decayγ . Assume further that
there exists an α > 0 with eN (B(K{1}))

2 = Ω(N−α). Then we have for fixed subspace
sampling

eN,fix(B(K))2 = Ω
(
N− α(p−1)

αs+p−1

)
,

and for variable subspace sampling

eN,var(B(K))2 = Ω
(
N−min{α, p−1

s }) .

4. Multilevel Algorithm. In this section, we discuss multilevel algorithms,
firstly in generality mostly relying on [12], and subsequently show how to tailor them
to finite-intersection and product weights.

4.1. General weights. Let us describe the general form of the multilevel algo-
rithms we want to use more precisely: Let L0 := 0, let L1 < L2 < L3 < . . . be natural
numbers, and let

v
(1)
k := ∪j∈[Lk]

uj and v
(2)
k := [Lk] for k ∈ N. (4.1)

For general weights we will use the sets v
(1)
k , k = 1, 2, In special cases as, e.g.,

for product weights or the lexicographically-ordered weights defined in [12], it is more
convenient to make use of the special ordering of the corresponding set system uj ,

j ∈ N, and choose the sets v
(2)
k for k = 1, 2, In all definitions and results that hold

for both choices of the v
(i)
k , i = 1, 2, we simply write vk. Put v0 := ∅. We will choose

the numbers L1, L2, . . . in general such that |vk| = Θ(bk) for some b ∈ (1,∞). (Here
a default choice would be Lk = 2k−1.) Let

V1 := {j ∈ N |uj ⊆ v1}

and

Vk := {j ∈ N |uj ⊆ vk and uj 6⊆ vk−1} for k ≥ 2.

15

Let us furthermore define

U(m) := ∪m
k=1Vk ∪ {0} and tailγ(m) :=

∞∑

j /∈U(m)

γ̂uj
,

where the weights γ̂uj
are defined as in Subsection 3. Let us fix an anchor a ∈ X. We

use the short hands Ψ0 := 0,

Ψk := Ψvk,a and b2k := b2vk,a, for k = 1, 2, . . .,

as well as

f+
u,k := f+

u,vk and f−
u,k := f−

u,vk−1,vk .

Furthermore, let

rk,u := rvk,u,a and r̃k,u := r̃vk,vk−1,u,a.

For natural numbers n1 ≥ n2 ≥ · · · ≥ nm, we consider randomized algorithms Qvk,a

of the form

Qvk,a(f) :=

nk∑

j=1

wj,kf(t
(j,k)
vk

;a), wj,k ∈ R, t(j,k)vk
∈ Dvk , (4.2)

that satisfy (2.6) and condition (*) of Lemma 2.1 for V = {u ⊆ vk | γu > 0}. We use
additionally the shorthand

Qk(f) := Qvk,a(f −Ψk−1f). (4.3)

Define the randomized multilevel algorithm Q via

Q(f) :=
m∑

k=1

Qk(f) =
m∑

k=1

nk∑

j=1

wj,k(f −Ψk−1f)(t
(j,k)
vk

;a), (4.4)

where the random variables Qk(f), k = 1, . . . ,m, are supposed to be independent.
Since E(Qvk,a(f)) = I(Ψkf) for all k, see Remark 2.1, we have E(Q(f)) =

I(Ψm(f)). Thus Q(f) is an unbiased estimator of I(Ψm(f)), and we obtain

E(I(f)−Q(f))2 = (I(f)− I(Ψmf))2 +Var(Q(f)). (4.5)

Since Qk(f), k = 1, . . . ,m, are independent random variables, we have the following
identity for the variance of Q(f):

Var(Q(f)) =

m∑

k=1

Var(Qk(f)). (4.6)

Lemma 4.1. For all f ∈ H(K) and all k ∈ [m] we have

Var(Qk(f)) =
∑

j∈Vk

Var(Qvk,a(Ψk(f
+
uj ,k

))) +
∑

∅6=u⊆vk−1

Var(Qvk,a(Ψk−1(f
−
u,k))). (4.7)

16

Proof. For k ∈ [m] we obtain from Lemma 2.8

Var(Qk(f)) = Var

∑

j∈Vk

Qvk,a(Ψk(f
+
uj ,k

)) +
∑

u⊆vk−1

Qvk,a(−Ψk−1(f
−
u,k))

 .

Recall from Lemma 2.7 that Ψk(f
+
uj ,k

) ∈ Huj
and −Ψk−1(f

−
u,k) ∈ Hu. Since Qvk,a

satisfies condition (*) in Lemma 2.1 for V = {u ⊆ vk | γu > 0}, we obtain with Remark
2.3 and Lemma 2.1

Var(Qk(f)) =
∑

j∈Vk

Var(Qvk,a(Ψk(f
+
uj ,k

))) +
∑

u⊆vk−1

Var(Qvk,a(Ψk−1(f
−
u,k))).

The statement of Lemma 4.1 follows after observing that for u = ∅ the function
Ψk−1(f

−
∅,k) ∈ H∅ is constant, and therefore also Qvk,a(Ψk−1(f

−
∅,k)).

Due to (4.5) and (4.6), we get for f ∈ B(K)

E(I(f) −Q(f))2 ≤
m∑

k=1

Var(Qk(f)) + b2m (4.8)

and for k ∈ [m] we have that (4.7) holds. Assume now that there exist for every
k ∈ N algorithms of the form (4.2) that satisfy (2.6) and condition (*) of Lemma 2.1
for V = {u ⊆ vk | γu > 0}, and for which there exists a τ > 0 and for each u ⊆ vk
with γu > 0 a constant Cu,k,τ such that

Var(Qvk,a(fu)) ≤ Cu,k,τ (nk − 1)−τ‖fu‖2ku
for all fu ∈ Hu. (4.9)

Then with Lemma 2.7 and Remark 2.2, we obtain for all f ∈ B(K)

Var(Qk(f))

≤
(
∑

j∈Vk

Cuj ,k,τ‖Ψk(f
+
uj ,k

)‖2kuj
+

∑

∅6=u⊆vk−1

Cu,k,τ‖Ψk−1(f
−
u,k)‖2ku

)
(nk − 1)−τ

≤
(
max
j∈Vk

Cuj ,k,τ r
2
k,uj

+ max
∅6=u⊆vk−1

Cu,k,τ r̃
2
k,u

)
(nk − 1)−τ .

Hence

e(Q,B(K))2 ≤
(

m∑

k=1

(
max
j∈Vk

Cuj ,k,τ r
2
k,uj

+ max
∅6=u⊆vk−1

Cu,k,τ r̃
2
k,u

)
(nk − 1)−τ + b2m

)
.

(4.10)
The aim is now to minimize the right hand side of this error bound for given cost
by choosing m, L1, . . . , Lm, and n1, . . . , nm essentially optimal. To do so, one needs
more specific information about the constants Cu,k,τ and about the weights (γu)u∈U .

4.2. Finite-Intersection Weights. Let (γui
)i∈N be finite-intersection weights

of finite order ω. Let η ∈ N be such that the set system uj , j = 1, 2, . . ., satisfies (2.8).
Put

d := η(ω − 1) + 1. (4.11)

17

Here we choose the sets vk = v
(1)
k = ∪j∈[Lk]uj in (4.1), where the numbers L1, L2, . . .

will be determined later. Observe that η−1Lk ≤ |vk| ≤ ωLk for all k ∈ N. We assume
that a = (a, a, . . .), where a ∈ D satisfies (2.15). Notice that this assumption leads to

0 < min{1, k(a, a)ω} ≤ kuj
(a,a) ≤ max{1, k(a, a)ω} for all j ∈ N.

Proposition 4.2. Assume that for d given by (4.11) and all n ∈ N there exist
randomized linear algorithms Qn = Q[d],n of the form (2.4), that satisfy condition (*)
of Lemma 2.1 for V = {u ⊆ [d]}, and for which there exist constants α, β, and Cd,
independent of n, such that

Var(Qn(fu)) ≤ Cdn
−α ln(n)β‖fu‖2ku

for all u ⊆ [d], fu ∈ Hu. (4.12)

Then we find for all k ∈ N and all nk ∈ N randomized linear algorithms Qvk,a of the
form (4.2), that satisfy condition (*) of Lemma 2.1 for V = {u ⊆ vk | γu > 0} and

Var(Qvk,a(fuj
)) ≤ Cdn

−α
k ln(nk)

β‖fuj
‖2kuj

for all uj ⊆ vk, fuj
∈ Huj

. (4.13)

If all Qn satisfy (2.6), then the Qvk,a satisfy (2.6), too.
Proof. Consider for given nk the algorithm Qnk

. Due to Lemma 2.3 we find a
mapping φ : N → [d] such that for all j ∈ N the restriction φ|uj

is injective. We obtain

the random point t
(i,k)
vk ∈ Dvk by defining its νth component by

t(i,k)vk,ν (ω) := x
(i)
φ(ν)(ωφ(ν)) for all ν ∈ vk, ω ∈ Ω[d], i = 1, . . . , nk. (4.14)

Notice that the projection of t
(i,k)
vk to [0, 1]uj for uj ⊆ vk consists of |uj| different

components of x(i). We choose the coefficients of Qvk,a to be the coefficients of Qnk
,

i.e., wj,k := wj . Observe that the resulting randomized algorithm Qvk,a satisfies
condition (*) of Lemma 2.1 for V = {u ⊆ vk | γu > 0}. It is easily seen that (4.13)
holds.

4.2.1. Variable Subspace Sampling. In the variable subspace sampling cost
model we have the following result on the multilevel algorithm and finite-intersection
weights.

Theorem 4.3. Assume that for d given by (4.11) and all n ∈ N there exist
an algorithm Qn = Q[d],n as in the condition of Proposition 4.2 that satisfies (2.6).
Consider the multilevel algorithm Q defined in (4.4), where the algorithms Qvk,a are
as in Proposition 4.2. Let N be the cost of the algorithm corresponding to the cost
function $(ν) = O(νs) for some s > 0. Then there exists for all δ > 0 a constant
C = C(d, δ) such that

e(Q,B(K))2 ≤ CN−α+δ if decayγ ≥ 1 + αs,

and

e(Q,B(K))2 ≤ CN−
decayγ −1

s
+δ if 1 + αs > decayγ > 1.

In the case, where the assumptions of Corollary 3.4 hold for the same α as in
Theorem 4.3, our lower bound on eN,var(B(K)) shows that the upper bounds in
Theorem 4.3 are essentially sharp.

18

Proof. Let f ∈ B(K). Due to Proposition 4.2, we find for every δ > 0 a constant
C = Cd,δ with

Var(Qvk,a(Ψk(f
+
uj ,k

))) ≤ Cn
−(α−δ)
k ‖Ψk(f

+
uj ,k

)‖2kuj

for all j ∈ Vk, and

Var(Qvk,a(Ψk−1(f
−
u,k))) ≤ Cn

−(α−δ)
k ‖Ψk−1(f

−
u,k)‖2ku

for all u ⊆ vk−1. Furthermore, Lemma 2.7 gives us

‖Ψk(f
+
uj ,k

)‖2kuj
≤ r2k,uj

‖f+
uj,k

‖2K

and

‖Ψk−1(f
−
u,k)‖2ku

≤ r̃2k,u‖f−
u,k‖2K .

Now

r2k,uj
= O(tailγ(k − 1)) and r̃2k,u = O(tailγ(k − 1)), (4.15)

and we set σk := tailγ(k − 1) for k = 1, 2, We get from (4.7)

Var(Qk(f)) = O

(
n
−(α−δ)
k σk

(
∑

j∈Vk

‖f+
uj ,k

‖2K +
∑

u⊆vk−1

‖f−
u,k−1‖2K

))
,

and the two sums in parentheses are bounded by 2‖f‖2K ≤ 2, see Remark 2.2. Hence

Var(Qk(f)) = O
(
n
−(α−δ)
k σk

)
. (4.16)

Thus we have, due to (4.8) and since b2m = O(tailγ(m)),

e(Q,B(K))2 = O

(
m∑

k=1

σkn
−(α−δ)
k + σm+1

)
. (4.17)

Let S > M , where M :=
∑m

k=1 L
s
k, be given. We assume that Lk = L⌈Ak⌉ for a fixed

L ∈ N and A > 1. We want to find the minimum x∗ = (x∗
1, . . . , x

∗
m) of the function

G(x) =
m∑

k=1

σkx
−(α−δ)
k subject to the constraint

m∑

k=1

xkL
s
k = S.

Due to Lagrange’s multiplier theorem there exists a λ ∈ R such that gradG(x∗) =
λ(Ls

1, . . . , L
s
m). This relation and the constraint imply that the minimum x∗ is given

by

x∗
k = C̃σ

1
α+1−δ

k L
− s

α+1−δ

k , where C̃ = S

(
m∑

k=1

σ
1

α+1−δ

k L
(α−δ)s
α+1−δ

k

)−1

. (4.18)

For k = 1, 2, . . . ,m we choose nk := ⌈x∗
k⌉. This leads to

N = O

(
m∑

k=1

nkL
s
k

)
= O(S +M) = O(S).

19

We have

m∑

k=1

σkn
−(α−δ)
k ≤ S−(α−δ)

(
m∑

k=1

σ
1

α+1−δ

k L
(α−δ)s
α+1−δ

k

)α+1−δ

.

Let p ∈ (1, decayγ), then σ1 = O(1) and σk = O(L1−p
k−1) for k ≥ 2. Thus we have

altogether

e(Q,B(K))2 = O
(
S−(α−δ)

(
1 + L(α−δ)s+1−p

m

)
+ L1−p

m

)
.

Case 1 : decayγ ≥ 1 + αs. Then we may choose p such that (α − δ)s < p − 1.

Choose m such that S = Θ(L
p−1
α−δ
m), then

e(Q,B(K))2 = O
(
S−(α−δ)

)
= O

(
N−(α−δ)

)
.

Case 2 : decayγ < 1 + αs. Then, for δ small enough, we get (α − δ)s > p − 1.
Choose m such that S = Θ(Ls

m), then

e(Q,B(K))2 = O
(
S

1−p
s

)
= O

(
N− p−1

s

)
.

4.2.2. Fixed Subspace Sampling. In this subsection, we discuss fixed sub-
space sampling. For some fixed L ∈ N let

v :=
⋃

j∈[L]

uj .

We focus on algorithms of the form

Q(f) = Qv,a(f) =
n∑

i=1

wif(t
(i)
v ,a). (4.19)

We interpret the “unilevel algorithm” Q(f) as a multilevel algorithm with m = 1,
L1 = L, v1 = v, and n1 = n. Notice that the upper bound in the next theorem is
essentially sharp, as can be seen from the corresponding lower bound in Corollary 3.4.

Theorem 4.4. Assume that for d given by (4.11) and all n ∈ N there exists an
algorithm Qn = Q[d],n as in the condition of Proposition 4.2 that satisfies (2.6). Let
Q = Qv1,a be as in Proposition 4.2. Let N be the cost of the algorithm corresponding
to the cost function $(ν) = O(νs) for some s > 0. Then there exists for all δ > 0 a
constant C = C(d, δ) such that

e(Q,B(K))2 ≤ CN
−

(α−δ)(decayγ −1)

(α−δ)s+decayγ −1 .

Proof. Since our algorithm Q = Qv1,a is a multilevel algorithm with m = 1, we
have just to follow the proof of Theorem 4.3 and modify it slightly. Let p ∈ (1, decayγ).
From (4.17) and (4.18), we obtain for the choice n1 := ⌈x∗

1⌉
e(Q,B(K))2 = O(S−(α−δ)L

(α−δ)s
1 + L1−p

1),

where S = Θ(n1L
s
1) and N = O(S). We set

S := Θ

(
L

(α−δ)s+p−1
α−δ

1

)
, resulting in e(Q,B(K))2 = O

(
N− (α−δ)(p−1)

(α−δ)s+p−1

)
.

20

4.3. Product Weights. In this subsection, we discuss product weights, dealing
with variable and fixed subspace sampling separately. We assume that a = (a, a, . . .),

where a ∈ D satisfies (2.15). Furthermore, we choose vk = v
(2)
k = [Lk] in (4.1).

4.3.1. Variable Subspace Sampling. In the variable subspace sampling cost
model we have the following result on the multilevel algorithm and product weights.

Theorem 4.5. Let $(ν) = O(νs) for some s > 0. Assume that there exist for
every k ∈ N algorithms of the form (4.2) that satisfy (2.6) and condition (*) of Lemma
2.1 for V = {u ⊆ vk}. Let α ≥ 1, and let τ := min{α, decayγ} − δ for some δ > 0.
Assume further that (4.9) holds for all u ⊆ vk and that for all j ∈ Vk

Cuj ,k,τγuj
= O(L1−p

k−1) , (4.20)

where p := decayγ −δs, and for all ∅ 6= u ⊆ vk−1

Cu,k,τγu = O(1) . (4.21)

Consider the multilevel algorithm defined in (4.4), and let N be the cost of the algo-
rithm corresponding to the cost function $(ν). Then we obtain for s ≥ α−1

α ,

e(Q,B(K))2 = O(N−α+δ), if decayγ ≥ 1 + αs ,

e(Q,B(K))2 = O(N−
decayγ −1

s
+δ), if 1 + αs > decayγ > 1 ,

and for α−1
α > s > 0,

e(Q,B(K))2 = O(N−α+δ), if decayγ ≥ α ,

e(Q,B(K))2 = O(N− decayγ +δ), if α > decayγ >
1

1− s
,

e(Q,B(K))2 = O(N−
decayγ −1

s
+δ), if

1

1− s
≥ decayγ > 1 .

In section 5 we will see that condition (4.20) and (4.21) are quite natural and
are, in particular, satisfied by scrambled polynomial lattice rules constructed via a
component-by-component approach.

Assume that we have eN (B(K{1}))
2 = Ω(N−α). Then we see that for cost func-

tions $(ν) = O(νs), where s ≥ α−1
α , the upper bounds in Theorem 4.5 are essentially

sharp, as confirmed in Corollary 3.4. Furthermore, for α−1
α > s > 0, the upper bounds

are essentially sharp in the regimes decayγ ≥ α and 1
1−s ≥ decayγ > 1. The case

s ≥ α−1
α is more interesting and relevant in applications than the case α−1

α > s > 0,
see, e.g., [10, 25, 32].

Proof. Let Lk = L⌈Ak⌉ for fixed L ∈ N and A > 1. We use the analysis from
Subsection 4.1 and get (4.10). We have

r2k,uj
=

∑

w⊂N\vk

γuj∪wkw(a,a) = γuj

∑

w⊂N\vk

γwkw(a,a) = O(γuj
)

and

r̃2k,u = r̃2vk,vk−1,u,a
=

∑

w′⊂N\vk−1;w′∩vk 6=∅

γu∪w′kw′(a,a)

21

≤ γu
∑

∅6=w′⊂N\vk−1

γw′k(a, a)|w
′| .

Now we have

∑

∅6=w′⊂N\vk−1

γw′k(a, a)|w
′| =

∞∏

j=Lk−1+1

(1 + γjk(a, a))− 1

≤k(a, a)

(∞∑

j=Lk−1+1

γj

)(
1 +

k(a, a)

2

(∞∑

j=Lk−1+1

γj

)
exp

(
k(a, a)

∞∑

j=Lk−1+1

γj

))

=k(a, a)O
(
L1−p
k−1

) (
1 + o(1)

)
= O

(
L1−p
k−1

)
.

From this we obtain

r̃2k,u = O(γuL
1−p
k−1) and b2m = O(L1−p

m).

Thus we have from Equations (4.20) and (4.21)

e(Q,B(K))2 = O

(
m∑

k=1

L1−p
k−1(nk − 1)−τ + L1−p

m

)
. (4.22)

We use the notation σk := L1−p
k−1 and M :=

∑m
k=1 L

s
k. Let S ≥ 2M be given. Arguing

as in the proof of Theorem 4.3, we choose nk = ⌈x∗
k⌉+ 1, where

x∗
k = C

(
L

1−p−s
τ+1

)
and C = S

(
m∑

k=1

L
1−p+sτ

τ+1

k

)−1

. (4.23)

This leads to

N = O

(
m∑

k=1

nkL
s
k

)
= O(S) .

We now have

m∑

k=1

L1−p
k−1(nk − 1)−τ ≤ S−τ

(
m∑

k=1

L
1−p+sτ

τ+1

k

)τ+1

= O
(
S−τ

(
1 + L1−p+sτ

m

))
.

We set S = Θ(Ls
m) and obtain

e (Q,B(K))
2
= O

(
S−τ + S−τL1−p+sτ

m + L1−p
m

)

= O
(
S−τ + S

1−p
s

)

= O
(
S−min{τ, p−1

s })

= O

(
S
−min

{

min{α,decayγ},decayγ −1

s

}

+δ
)

.

We consider two cases, s ≥ α−1
α and α−1

α > s > 0.

22

Case 1 : If s ≥ α−1
α , we consider two subcases. If decayγ ≥ 1 + αs, then we have

decayγ −1

s ≥ α and decayγ ≥ α. Hence

e(Q,B(K))2 = O
(
S−α+δ

)
.

If 1 + αs > decayγ > 1, then
decayγ −1

s ∈ (0, α). Moreover, s ≥ α−1
α implies decayγ ≥

decayγ −1

s . Thus

e(Q,B(K))2 = O
(
S−

decayγ −1

s
+δ
)
.

Case 2 : If α−1
α > s > 0, we consider three subcases. If decayγ ≥ α, then

decayγ −1

s > α. Hence

e(Q,B(K))2 = O
(
S−α+δ

)
.

If α > decayγ > 1
1−s , then

decayγ −1

s > decayγ , and

e(Q,B(K))2 = O
(
S− decayγ +δ

)
.

Finally, if 1
1−s ≥ decayγ > 1, then decayγ ≥ decayγ −1

s , and

e(Q,B(K))2 = O
(
S−

decayγ −1

s
+δ
)
.

4.3.2. Fixed Subspace Sampling. For fixed subspace sampling, our analysis
recovers Theorem 1 from [18].

5. Example: The Unanchored Sobolev Space and Scrambled Polyno-

mial Lattice Rules. In this section, we apply the results from Section 4 to a par-
ticular function space, the unanchored Sobolev space, and employ a particular class
of quadrature rules, namely scrambled polynomial lattice rules.

5.1. The Unanchored Sobolev Space. We recall the unanchored Sobolev
space, which is also discussed for example in [18, 27, 37]. Let k : [0, 1]2 → R be
the unanchored kernel given by

k(x, y) = 1/3 + (x2 + y2)/2−max(x, y).

Regarding the anchor, we fix a = 1
2 and set a = (a, a, . . .) which minimizes

∑

u∈U

γ̂u =
∑

u∈U

γuku(a,a) ,

see e.g. [18]. For u 6= ∅ the space Hu consists of all absolutely continuous functions

f such that the weak derivative f (u) = ∂|u|
∏

j∈u ∂xj
f satisfies f (u) ∈ L2([0, 1]

u) and
∫ 1

0 f(y) dyj = 0 for all j ∈ u. We have

‖f‖2ku
=

∫

[0,1]u
(f (u)(y))2 dy .

Remark 5.1. We recall from [26], Section 2.2.9, Proposition 1, that the N th
minimal integration error in the Sobolev space W 1

2 ([0, 1]) is of order Ω(N−3/2). For
γ{1} > 0 the space W 1

2 ([0, 1]) is obviously continuously embedded in H(K{1}), thus
implying eN (B(K{1}))

2 = Ω(N−3).

23

5.2. Scrambled Polynomial Lattice Rules. In this subsection we recall a
result on scrambled polynomial lattice rules that will be used in Subsection 5.3. Poly-
nomial lattice rules were introduced in [24], see also [7, 8, 23]. For background on the
scrambling algorithm, we refer the reader to [29, 30], for background on scrambled
polynomial lattice rules and finite-dimensional integration results, we refer the reader
to [3]. The proof of the following result is given in the Appendix.

Theorem 5.1. Let (γu)u∈U be general weights. Assume that vk, for k ∈ N, is as
in Section 4. Then for all k, Mk ∈ N, there exists a scrambled polynomial lattice rule
{xi}nk

i=1 ∈ [0, 1)vk, where nk = bMk and b a prime, such that the algorithm

Qvk,nk
(f) =

1

nk

nk∑

i=1

f(xi) , (5.1)

satisfies condition (*) of Lemma 2.1 for V = {u ⊆ vk}, and we have for all 1 ≤ τ < 3
and all u ⊆ vk,

Var(Qvk,nk
(fu)) ≤ Cu,k,τ (nk − 1)−τ‖fu‖2ku

for all fu ∈ Hu,

where

Cu,k,τ =

∑

zu∈w⊆[zu]

γ
1
τ
wC

|w|

b, 1
τ

τ

γ−1
u ,

here Cb,λ is given by

Cb,λ := max

(
b− 1

3λ
b3λ−1

b3λ−1 − 1
,

b2λ

(b+ 1)λ3λ

)
, (5.2)

and zu = maxu, u ⊂ N.
We remark that the scrambled polynomial lattice rules referred to in Theorem

5.1 can be constructed using a modification of the component-by-component (CBC)
algorithm from [3], see the Appendix.

5.3. Results for multilevel algorithms. In this subsection, we present results
for the multilevel algorithms from Section 4 for the space of integrands H(K) based
on the unanchored kernel k discussed in Subsection 5.1. We rely on the scrambled
polynomial lattice rules from Theorem 5.1. We remark that scrambled polynomial
lattice rules consist of n points, where n is the power of a prime, see Theorem 5.1,
and cannot be constructed for all n ∈ N, as stated in the propositions and theorems
of Section 4. However, when required to construct a quadrature rule consisting of
n points, where n ∈ N, we simply construct a scrambled polynomial lattice rule
consisting of bM points, where bM ≤ n < bM+1, and we set the quadrature weights
corresponding to the superfluous points equal to zero.

5.3.1. Finite-Intersection Weights. We now present results for finite-inter-
section weights distinguishing between variable and fixed subspace sampling.

Variable Subspace Sampling. For finite-intersection weights and variable sub-
space sampling, we have the following result, which is essentially optimal in the case
where the monotonicity condition (2.26) holds and γ{1} > 0, see Corollary 3.4 and
Remark 5.1. Let again d be as in (4.11)

Corollary 5.2. Let $(ν) = O(νs) for s > 0. Let Qn = Q[d],n be the algorithm
Qv1,n1 from Theorem 5.1 with n1 = n and v1 = [d]. Consider the multilevel algorithms

24

Q defined in (4.4), where the algorithms Qvk,a are as in Proposition 4.2 Put N :=
costvar(Q,B(K)). Then there exists for all δ > 0 a constant C = C(d, δ) such that

e(Q,B(K))2 ≤ CN−3+δ if decayγ ≥ 1 + 3s,

and

e(Q,B(K))2 ≤ CN−
decayγ −1

s
+δ if 1 + 3s > decayγ > 1.

Proof. We need to verify that the conditions of Theorem 4.3 are satisfied. Scram-
bled polynomial lattice rules Q[d],n are of the form (2.4), satisfy condition (*) of
Lemma 2.1 for V := {u ⊆ [d]}, and (4.12) for arbitrarily small ε > 0, α = 3− ε =: τ ,
β = 0 and

Cd =

 ∑

∅6=w⊆[d]

C
|w|

b, 1
τ

τ

,

where Cb,λ is given by (5.2) and we simply set γu = 1 for all u ⊆ [d] in Theorem 5.1.

Fixed Subspace Sampling. For fixed subspace sampling, we obtain from The-
orem 4.4 the following result, which is essentially optimal according to Corollary 3.4
and Remark 5.1.

Corollary 5.3. Let $(ν) = O(νs) for some s > 0. Let Qn = Q[d],n be the
algorithm Qv1,n1 from Theorem 5.1, where n1 = n and v1 = [d]. Let Q = Qv1,a be
as in Proposition 4.2. Put N := costvar(Q,B(K)). Then there exists for all δ > 0 a
constant C = C(d, δ) such that

e(Q,B(K))2 ≤ CN
−

(3−δ)(decayγ −1)

(3−δ)s+decayγ −1 .

5.3.2. Product Weights. For product weights, we have the following results,
where we again distinguish between variable and fixed subspace sampling.

Variable Subspace Sampling. For variable subspace sampling we obtain the
following result, which is essentially optimal for cost functions $(ν) = O(νs), that
satisfy s ≥ 2

3 . For
2
3 > s > 0, the results are optimal for the regimes decayγ ≥ 3 and

1
1−s ≥ decayγ > 1, see Corollary 3.4 and Remark 5.1.

Corollary 5.4. Let (γu)u∈U be product weights and consider the algorithm

Q(f) =

m∑

k=1

Qvk,a(f −Ψk−1f) ,

where the Qvk,a are related to the scrambled polynomial lattice rules Qvk,nk
from

Theorem 5.1 via Qvk,a = Qvk,nk
◦Ψk. Let N be the cost of the algorithm corresponding

to the cost function $(ν) = O(νs) for some s > 0. Then, for arbitrarily small δ > 0,
we obtain for s ≥ 2

3 ,

e(Q,B(K))2 = O(N−3+δ), if decayγ ≥ 1 + 3s ,

25

e(Q,B(K))2 = O(N−
decayγ −1

s
+δ), if 1 + 3s > decayγ > 1 ,

and for 2
3 > s > 0,

e(Q,B(K))2 = O(N−3+δ), if decayγ ≥ 3 ,

e(Q,B(K))2 = O(N− decayγ +δ), if 3 > decayγ >
1

1− s
,

e(Q,B(K))2 = O(N−
decayγ −1

s
+δ), if

1

1− s
≥ decayγ > 1 .

Before proving Corollary 5.4, we compare it to the results obtained in [2] and
[18], where the case s = 1 was treated. So let s = 1. In [18], the rate of convergence
3 − δ, δ arbitrarily small, was achieved for decayγ ≥ 11, see Corollary 4, and in [2]
for decayγ ≥ 10. Using our analysis, we achieve this rate for decayγ ≥ 4, a result
which is optimal, see Corollary 3.4 and Remark 5.1, and thus cannot be improved
further. In the remaining regime 4 > decayγ > 1, the result of Corollary 5.4 is again
essentially optimal and improves clearly on the results from [2] and [18].

Proof. We need to verify the conditions of Theorem 4.5. Since we base the
algorithms Qvk,a on the scrambled polynomial lattice rules from Theorem 5.1, we
obtain (4.9) for all 1 ≤ τ < 3. We now confirm that the constants Cu,k,τ satisfy
Equations (4.20) and (4.21) respectively. For u ∈ vk, we have

γu

 ∑

zu∈w⊆[zu]

γ
1
τ
wC

|w|

b, 1
τ

τ

γ−1
u =

 ∑

zu∈w⊆[zu]

γ
1
τ
wC

|w|

b, 1
τ

τ

.

For τ ∈ (1, decayγ), since we deal with product weights, we obtain for j ∈ Vk

∑

zuj
∈w⊆[zuj

]

γ
1
τ
wC

|w|

b, 1
τ

= γ
1
τ
zuj

Cb, 1
τ

∑

w⊆[zuj
−1]

γ
1
τ
wC

|w|

b, 1
τ

= O(γ
1
τ
zuj

) ,

and hence Cuj ,k,τγuj
= O

(
L−p
k−1

)
for each p < decayγ . For ∅ 6= u ⊆ vk−1,

 ∑

zu∈w⊆[zu]

γ
1
τ
wC

|w|

b, 1
τ

τ

≤
(
∑

w∈U

γ
1
τ
wC

|w|

b, 1
τ

)τ

< ∞ ,

so Cu,k,τγu = O (1) as required.

Fixed Subspace Sampling. We can combine Theorem 1 from [18] with scram-
bled polynomial lattice rules to recover Corollary 3.1 from [2], which used Theorem 1
from [18] to improve on Corollary 1 from [18].

Acknowledgments. Michael Gnewuch was partially supported by the German
Science Foundation DFG under grant GN91-3/1 and by the Australian Research
Council ARC.

Appendix A. Scrambled Polynomial Lattice Rules.

The quadrature rules employed in Section 5 are based on scrambled polynomial
lattice rules, which we now recall mostly relying on [3].

Polynomial lattice rules were introduced in [24], see also [7, 8, 23]. We recall
that b is a fixed prime and denote by Zb the finite field containing b elements and by

26

Zb((x
−1)) the field of formal Laurent series over Zb. Elements of Zb((x

−1)) are formal
Laurent series,

L =

∞∑

l=w

tlx
−l ,

where w can be an arbitrary integer and all tl are in Zb. The field Zb((x
−1)) contains

the field of rational functions over Zb as a subfield. Finally, the set of polynomials over
Zb is denoted by Zb[x]. For an integer M , we denote by νM the map from Zb((x

−1))
to [0, 1) defined by

νM

(
∞∑

l=w

tlx
−l

)
=

M∑

l=max(1,w)

tlb
−l .

The following definition of polynomial lattice rules stems from [24], see also [8, 23].
Recall that a quasi-Monte Carlo rule is a linear quadrature rule whose quadrature
weights are all equal and sum up to one.

Definition A.1. Let b be prime and M be an integer. For a given dimension
s ≥ 1, choose p(x) ∈ Zb[x] with deg(p(x)) = M and q1(x), . . . , qs(x) ∈ Zb[x]. For
0 ≤ h < bM let h = h0 + h1b + · · · + hM−1b

M−1 be the b-adic expansion of h. With
each such h we associate the polynomial

h(x) =

M−1∑

r=0

hrx
r ∈ Zb[x] .

Then Sp,M (q), where q = (q1, . . . , qs), is the point set consisting of the bM points

xh =

(
νM

(
h(x)q1(x)

p(x)

)
, . . . , νM

(
h(x)qs(x)

p(x)

))
∈ [0, 1)s ,

for 0 ≤ h < bM . A quasi-Monte Carlo rule using the point set Sp,M (q) is called a
polynomial lattice rule.

Regarding notation, we write h for vectors over Z or R. Polynomials over Zb

are denoted by h(x) and vectors of polynomials by h(x). Finally, we introduce the
dual lattice which plays an important role in numerical integration, see [7, 8], which
requires us to introduce the following function: for a non-negative integer k with b-
adic expansion k = k0 + k1b+ . . . we write trM (k) = k0 + k1b+ · · ·+ kM−1b

M−1 and
thus the associated polynomial

trM (k)(x) = k0 + k1x+ . . . kM−1x
M−1 ∈ Zb[x]

has degree < M . For a vector k ∈ N
s
0, trM (k) is defined componentwise. We fix a

polynomial p(x) ∈ Zb[x] with deg(p(x)) = M .
Definition A.2. Let q(x) = (q1(x), . . . , qs(x)) ∈ Zb[x]

s, then the dual polynomial
lattice of Sp,M (q) is given by

D = Dp(q) =

k ∈ N

s
0 :

s∑

j=1

trm(kj)(x)qj(x) ≡ 0 (mod p(x))

 .

27

Also, we set D′ = D \ {0} and use the notation Dp(qu) to denote the dual lattice
corresponding to the generating polynomials qj , j ∈ u, and define D′(qu) analogously.
The following function plays an important role in the analysis of polynomial lattice
rules

r(l) =

{
1 if l = 0
1

3b3a if l > 0
,

where l = l0+ l1b+ · · ·+ lab
a, la 6= 0, and for lu ∈ N

|u|
0 we set rγ(lu) = γuh

∏
j∈uh

r(lj),
where uh = {j ∈ u : lj > 0}.

We now recallOwen’s scrambling algorithm introduced in [29, 30]. The scrambling
algorithm is best illustrated for a generic point x ∈ [0, 1)s, where x = (x1, . . . , xs)
and

xj =
ξj,1
b

+
ξj,2
b2

+

Then the scrambled point shall be denoted by y ∈ [0, 1)s, where y = (y1, . . . , ys),

yj =
ηj,1
b

+
ηj,2
b2

+

The permutation applied to ξj,l, j = 1, . . . , s, depends on ξj,k, for 1 ≤ k < l. In
particular, ηj,1 = πj(ξj,1), ηj,2 = πj,ξj,1(ξj,2), ηj,3 = πj,ξj,1,ξj,2(ξj,3) and in general

ηj,k = πj,ξj,1,...,ξj,k−1
(ξj,k) , k ≥ 2 ,

where πj and πj,ξj,1,...,ξj,k−1
, k ≥ 2, are random permutations of {0, . . . , b− 1}. We

assume that permutations with different indices are mutually independent. Using P
to denote a point set in [0, 1)s and Pπ to denote the point set resulting from the
application of Owen’s scrambling algorithm to the points in P , it is known from [29],
see Proposition 2, that each point in Pπ is uniformly distributed in [0, 1)s. Using
Owen’s scrambling algorithm to randomize polynomial lattice rules, we are able to
obtain the following estimate on the variance of a quadrature rule based on a scrambled
polynomial lattice rule.

Theorem A.3. Let b be prime, M an integer and set n = bM . Assume s ∈ N

and that (γu)u∈U are general weights. We set

Q[s],n(f) =
1

n

n∑

i=1

f(xi) , (A.1)

where {xi}ni=1 ∈ [0, 1)s is based on a scrambled polynomial lattice rule, and obtain for
all u ⊆ [s]

Var(Q[s],n(fu)) ≤
∑

lu∈N
|u|

lu∈D(qu)

rγ(lu)γ
−1
u ‖fu‖2ku

. (A.2)

Theorem A.3 can be verified by recalling that polynomial lattice rules are digital
nets, see e.g. [8, 23], and using the proof approach of [8, Corollary 13.7]. The coeffi-
cients σ2

(lu,0)
(f) appearing in that proof can be bounded in terms of the norm ‖ · ‖ku

with the help of the analysis in the proof of [37, Lemma 6].

28

For u ⊆ vk we can use the bound

∑

lu∈Nu

lu∈D(qu)

rγ(lu) ≤
∑

zu∈w⊆[zu]

∑

lw∈Nw

lw∈D(qw)

rγ(lw) =: B(q, [zu], γ̃
(zu)) , (A.3)

where

γ̃(zu)
w = 0 for w ⊆ [zu − 1] and γ̃(zu)

w = γw for zu ∈ w ⊆ [zu] ,

where zu = maxu, u ⊂ N.

Appendix B. Constructing Polynomial Lattice Rules for the Unan-

chored Sobolev Space.

The aim of this section is twofold: Firstly, we would like to discuss how to imple-
ment the multilevel algorithm from Section 5 in practice, and secondly we would like
to establish Theorem 5.1. The construction of the scrambled polynomial lattice rules
underlying the algorithm from Section 4 is based on the component-by-component
(CBC) construction from [3]. In [3], the construction was presented in the context
of a Walsh function space and product weights, whereas we are going to present the
results for the unanchored Sobolev space from Subsection 5.1 and general weights.

We will illustrate how to construct the scrambled polynomial lattice rule under-
lying the algorithm Qvk,a, see Equation (4.2). To do so, we proceed as follows: We
note that the sets (vk)k∈N from Section 4 satisfy v1 ⊆ v2 ⊆ v3 ⊆ . . . , hence we firstly
construct a scrambled polynomial lattice rule corresponding to the set v1, i.e. con-
struct a point set in [0, 1)v1 . Subsequently, we extend this point set to a scrambled
polynomial lattice rule corresponding to the set v2, i.e. construct points in [0, 1)v2 .
Next we extend this point set to a scrambled polynomial lattice rule corresponding
to the set v3, i.e. construct points in [0, 1)v3 , etc.. Hence we need to present two
algorithms; the first algorithm, CBC 1, shows how to construct scrambled polynomial
lattice rules corresponding to v1 in [0, 1)v1 , the next algorithm, CBC 2, shows how
to extend a scrambled polynomial lattice rule corresponding to vk−1 in [0, 1)vk−1 to
a scrambled polynomial lattice rule corresponding to vk in [0, 1)vk , for k = 2, 3,
Clearly it suffices to show how to construct the polynomial lattice rule corresponding
to v1 and then how to extend it to a polynomial lattice rule corresponding to v2.
Without loss of generality, we assume that v1 = [s1] and v2 = [s2], where s1, s2 ∈ N,
and s1 < s2. We now discuss how to construct a scrambled polynomial lattice rule
in [0, 1)s1 using the CBC construction. Intuitively, the CBC construction chooses the
polynomials q1, . . . , qs1 in a greedy fashion: The first polynomial q1 is chosen so that
a given quality criterion is minimized. The resulting polynomial is then fixed, say
q∗1 , and consequently the second polynomial q2 is chosen so that the quality criterion
is minimized. The resulting polynomial, say q∗2 , is now fixed and we continue this
procedure. We note that the quality criterion plays a crucial role for the CBC con-
struction, and we use B(q, [zu], γ̃

(zu)) from (A.3) as quality criterion to construct the
scrambled polynomial lattice rule in [0, 1)zu. This criterion is closely related to the
bound on the variance from Equation (A.2), and we have for all u ⊆ [s1]

Var(Q[s1],n(fu)) ≤ B(q, [zu], γ̃
(zu))γ−1

u ‖fu‖2ku
for all fu ∈ Hu. (B.1)

To be useful for the CBC 1 algorithm, we need the quality criterion B(q, [zu], γ̃
(zu)) to

be computable. The following theorem provides an explicit formula, see [3, Lemma 1].
Theorem B.1. Let b be prime, M an integer and set n = bM . Then the following

29

equality holds for q = (q1, . . . , q[zu]) and the point set Sp,M (q) = {xi}b
M

i=1 for u ⊆ [s1]

B(q, [zu], γ̃
(zu)) =

1

n

n∑

i=1

∑

zu∈w⊆[zu]

γw
∏

j∈w

(
φ(xi,j)

3

)
, (B.2)

where

φ(x) =

{
b2

b+1 for x = 0
b2(1−b−2(a0−1))

(b+1) − b−2a0b2 for ξi = 0 , i = 1, . . . , a0 − 1 , ξa0 6= 0 , a0 ≥ 1 ,

where x = ξ1
b + ξ2

b2 +
We now briefly recall the CBC algorithm from [3], but immediately present it for

general weights. The generating polynomials of the polynomial lattice rule are chosen
from the following set

Rb,M := {q ∈ Zb[x] : deg(q) < M and q 6= 0} ,

so |Rb,M | = bM −1. The CBC algorithm constructs a q ∈ Rs1
b,M so that B(q, [e], γ̃(e)),

e = 1, . . . , s1, converges at a rate of O(n−3+δ), for any δ > 0.

Algorithm 1 CBC 1 algorithm

Require: b a prime, s1,M ∈ N, an irreducible polynomial p ∈ Zb[x] with deg(p) =
M , and weights (γu)u⊆[s1]

.
1: Set q1 = 1.
2: for e = 2 to s1 do

3: find qe ∈ Rb,M by minimizing B((q1, . . . , qe), [e], γ̃
(e)) as a function of qe.

4: end for

5: return q = (q1, . . . , qs1).

The next theorem is the analogue of Theorem 1 in [3], but immediately presented
for general weights.

Theorem B.2. Let (γu)u∈U be general weights. Assume that the vector q =
(q1, . . . , qs1) is obtained using the CBC 1 algorithm, see Algorithm 1. Then we have
for all 1 ≤ τ < 3, u ⊆ [s1],

B(q, [zu], γ̃
(zu)) ≤ (bM − 1)−τ

 ∑

zu∈w⊆[zu]

γ
1
τ
wC

|w|

b, 1
τ

τ

,

where Cb,λ is given by (5.2) and zu = max u.
We now discuss how to extend the vector q = (q1, . . . , qs1) from Theorem B.2 to

a vector (q1, . . . , qs2), where s2 > s1. Intuitively speaking, we employ the polynomials
q1, . . . , qs1 constructed via the CBC 1 algorithm, and simply continue the CBC search,
now constructing polynomials qs1+1, . . . , qs2 . This is formalized in Algorithm 2, the
CBC 2 algorithm.

We get the following corollary to Theorem B.2, which shows that Algorithm 2
achieves the essentially optimal rate of convergence.

Corollary B.3. Let (γu)u∈U be general weights. Assume that the polynomials
q1, . . . , qs1 are given and that the polynomials qs1+1, . . . , qs2 are obtained via Algorithm

30

Algorithm 2 CBC 2 algorithm

Require: b a prime, s1, s2,M ∈ N, where s1 < s2, an irreducible polynomial p ∈ Zb[x]
with deg(p) = M , weights (γu)u⊆[s2]

and polynomials qj , j = 1, . . . , s1.
1: for e = s1 + 1 to s2 do

2: find qe ∈ Rb,M by minimizing B((q1, . . . , qe), [e], γ̃
(e)) as a function of qe.

3: end for

4: return q = (q1, . . . , qs2).

2. Then we have for all 1 ≤ τ < 3 and u ⊆ [s2],

B(q, [zu], γ̃
(zu)) ≤ 1

(bM − 1)τ

 ∑

zu∈w⊆[zu]

γ
1
τ
wC

|w|

b, 1
τ

τ

,

where Cb,λ is defined as in (5.2) and zu = maxu.
Due to Theorem B.2, Corollary B.3, and Equation (B.1), our approach provides

us with a scrambled polynomial lattice rule {xi}b
M

i=1 ∈ [0, 1)vk , such that the algorithm

Qvk,nk
(f) =

1

nk

nk∑

i=1

f(xi)

satisfies the claims made in Theorem 5.1.

REFERENCES

[1] N. Aronszajn, Theory of reproducing kernels. Trans. Amer. Math. Soc. 68 (1950), 337-404.
[2] J. Baldeaux, Scrambled polynomial lattice rules for infinite-dimensional integration, to appear

in: L. Plaskota, H. Woźniakowski (Eds.), Monte Carlo and Quasi-Monte Carlo Methods
2010, Springer 2012.

[3] J. Baldeaux J. Dick. A construction of Polynomial Lattice Rules with small gain coefficients.
Num. Math. 119 (2011), 271–297.

[4] R. E. Caflisch, W. Morokoff, A. B. Owen. Valuation of mortgage backed securities using Brow-

nian bridges to reduce effective dimension. J. Comp. Finance 1 (1997), 27–46.
[5] J. Creutzig, S. Dereich, T. Müller-Gronbach, K. Ritter. Infinite-dimensional quadrature and

approximation of distributions. Found. Comput. Math. 9 (2009), 391–429.
[6] J. Dick, M. Gnewuch. Infinite-dimensional integration in weighted Hilbert spaces: anchored

decompositions, deterministic algorithms, and higher order convergence. Preprint 2012.
[7] J. Dick, F. Kuo, F. Pillichshammer, I. Sloan. Construction algorithms for polynomial lattice

rules for multivariate integration. Math. Comp. 74 (2005), 1895–1921.
[8] J. Dick, and F. Pillichshammer. Digital nets and sequences. Cambridge University Press, Cam-

bridge, 2010.
[9] J. Dick, I. H. Sloan, X. Wang, H. Woźniakowski. Good lattice rules in weighted Korobov spaces

with general weights. Numer. Math. 103 (2006), 63–97.
[10] M. B. Giles. Multilevel Monte Carlo path simulation. Oper. Res. 56 (2008), 607–617.
[11] M. B. Giles, B. J. Waterhouse. Multilevel quasi-Monte Carlo path simulation. Radon Ser.

Comput. Appl. Math. 8 (2009), 165–181.
[12] M. Gnewuch. Infinite-dimensional Integration on Weighted Hilbert Spaces. Math. Comp. 81

(2012), 2175–2205.
[13] M. Gnewuch. Lower error bounds for randomized multilevel and changing dimension algorithms.

Preprint 2012.
[14] M. Gnewuch, S. Mayer, K. Ritter. On an orthogonal decomposition in weighted Hilbert spaces

of functions of infinitely many variables. In preparation.
[15] M. Griebel, F. Y. Kuo, I. H. Sloan. The smoothing effect of the ANOVA decomposition. J.

Complexity 26 (2010), 523–551.

31

[16] M. Griebel, F. Y. Kuo, I. H. Sloan. The smoothing effect of integra-

tion in R
d and the ANOVA decomposition. Math. Comp., 2012. (DOI:

http://dx.doi.org/10.1090/S0025-5718-2012-02578-6)
[17] S. Heinrich. Monte Carlo complexity of global solution of integral equations. J. Complexity 14

(1998), 151-175.
[18] F. J. Hickernell, T. Müller-Gronbach, B. Niu, K. Ritter. Multi-level Monte Carlo Algorithms

for Infinite-Dimensional Integration on RN. J. Complexity 26 (2010), 229–254.
[19] F. J. Hickernell, X. Wang. The error bounds and tractability of quasi-Monte Carlo algorithms

in infinite dimension. Math. Comp. 71 (2001), 1641–1661.
[20] F. Y. Kuo, I. H. Sloan, G. W. Wasilkowski, H. Woźniakowski. Liberating the dimension. J. Com-

plexity 26 (2010), 422–454.
[21] F. Y. Kuo, I. H. Sloan, G. W. Wasilkowski, H. Woźniakowski. On decompositions of multivariate

functions. Math. Comp. 79 (2010), 953–966.
[22] R. Liu, A. B. Owen. Estimating mean dimensionality of analysis of variance decompositions.

J. Amer. Statist. Assoc. 101 (2006), 712–720.
[23] H. Niederreiter. Random number generation and quasi-Monte Carlo methods, CBMS-NSF Re-

gional Conference Series in Applied Mathematics, Vol. 63, Society for Industrial and Ap-
plied Mathematics (SIAM), Philadelphia, PA, 1992.

[24] H. Niederreiter. Low-discrepancy point sets obtained by digital constructions over finite fields.
Czech. Math. J. 42 (1992), 143–166.

[25] B. Niu, F. J. Hickernell, T. Müller-Gronbach, K. Ritter. Deterministic multi-level algorithms

for infinite-dimensional integration on RN. J. Complexity 27 (2011), 331–351.
[26] E. Novak. Deterministic and Stochastic Error Bounds in Numerical Analysis, Lect. Notes in

Math. 1349. Springer-Verlag, Berlin, 1988.
[27] E. Novak, H. Woźniakowski. Tractability of Multivariate Problems. Volume I, European Math-

ematical Society, Zürich, 2008.
[28] E. Novak, H. Woźniakowski. Tractability of Multivariate Problems. Volume II, European Math-

ematical Society, Zürich, 2010.
[29] A. B. Owen. Randomly permuted (t,m, s)-nets and (t, s)-sequences. In: H. Niederreiter, and

P. J.-S. Shiue (eds.), Monte Carlo and Quasi-Monte Carlo Methods in Scientific Comput-

ing, 299–317, Springer, New York, 1995.
[30] A. B. Owen. Monte Carlo variance of scrambled equidistribution quadrature. SIAM J. Numer.

Anal. 34 (1997), 1884–1910.
[31] S. H. Paskov, J. F. Traub. Faster valuation of financial derivatives. J. Portfolio Management

(1995), 113–120.
[32] L. Plaskota, G. W. Wasilkowski. Tractability of infinite-dimensional integration in the worst

case and randomized setting. J. Complexity 27 (2011), 505–518.
[33] I. H. Sloan, H. Woźniakowski. When are quasi-Monte Carlo algorithms efficient for high dimen-

sional integrals?. J. Complexity 14 (1998), 1–33.
[34] J. F. Traub, G. W. Wasilkowski, H. Woźniakowski. Information-Based Complexity, Academic

Press, New York, 1988.
[35] J. F. Traub, A. G. Werschulz. Complexity and Information, Lezioni Lincee, Cambridge Uni-

versity Press, Cambridge, 1998.
[36] G. W. Wasilkowski, H. Woźniakowski. On tractability of path integration. J. Math. Physics 37

(1996), 2071–2088.
[37] R.-X. Yue, and F. J. Hickernell. Strong tractability of integration using scrambled Niederreiter

points. Math. Comp. 74 (2005), 1871–1893.

http://dx.doi.org/10.1090/S0025-5718-2012-02578-6

