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Abstract

Though completely integrable Camassa-Holm (CH) equation and
Degasperis-Procesi (DP) equation are cast in the same peakon family,
they possess the second- and third-order Lax operators, respectively.
From the viewpoint of algebro-geometrical study, this difference lies
in hyper-elliptic and non-hyper-elliptic curves. The non-hyper-elliptic
curves lead to great difficulty in the construction of algebro-geometric
solutions of the DP equation. In this paper, we derive the DP hi-
erarchy with the help of Lenard recursion operators. Based on the
characteristic polynomial of a Lax matrix for the DP hierarchy, we
introduce a third order algebraic curve IC,._o with genus r — 2, from
which the associated Baker-Akhiezer functions, meromorphic function
and Dubrovin-type equations are established. Furthermore, the theory
of algebraic curve is applied to derive explicit representations of the
theta function for the Baker-Akhiezer functions and the meromorphic
function. In particular, the algebro-geometric solutions are obtained
for all equations in the whole DP hierarchy.

1  Introduction
The Degasperis-Procesi (DP) equation
Up — Upzr + dUlUy — FUgUpy — Ulgpe = 0, (1.1)

was first discovered in a search for asymptotically integrable PDEs [2]. It
arose as a model equation in the study of the two-dimensional water waves
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propagating in an irrotational flow over a flat bed [20], [26], [B1]. Given
the intricate structure of the full governing equations for water waves, it
is natural to seek simpler approximate model equations in various physi-
cal regimes. The DP equation may be derived in the moderate amplitude
regime: introducing the wave-amplitude parameter € and the long-wave pa-
rameter 0. In this regime we assume that § < 1 and € ~ §. This regime
is more appropriate for the study of nonlinear waves than dispersive waves,
the stronger nonlinearity of which could allow for the occurrence of wave-
breaking. The other regime studied most is the shallow water system for
which § < 1 and € ~ 6%. In the parameter ¢ range, due to a balance between
nonlinearity and dispersion, various integrable systems like the Korteweg-de
Vries (KdV) equation arose as approximations to the governing equations.
However, among the models of moderate amplitude regime, only the CH
equation and the DP equation are integrable in the peakon family [3] in
the sense that they admit a bi-Hamiltonian structure and a Lax pair. Also,
they are two integrable equations from a family, corresponding to parameters
b =2 and b = 3, respectively, of the following b-family of equations

Up — Upzr + (b + Dutty = buglpy + Uligyy, (1.2)

where b is a constant.

Quasi-periodic solutions (also called algebro-geometric solutions or fi-
nite gap solutions) of nonlinear equations were originally studied on the
KdV equation based on the inverse spectral theory and algebro-geometric
method developed by pioneers such as the authors in Refs.[I],[4]-[10] in the
late 1970s. This theory has been extended to the whole hierarchies of nonlin-
ear integrable equations by Gesztesy and Holden using polynomial recursion
method [I3]-[I8]. As a degenerated case of algebro-geometric solution, the
multi-soliton solution and elliptic function solution may be obtained [4],[7],
[28]. Tt is well known that the algebro-geometric solutions of the CH hierar-
chy have been obtained with different techniques, see Gesztesy and Holden
[14], and Qiao [30]. However, within the authors’ knowledge, the algebro-
geometric solutions of the DP hierarchy are still not presented yet.

Before turning to each section, it seems appropriate to review some re-
lated literature as usual. Over recent three decades soliton equations associ-
ated with 2 x 2 matrix spectral problems have widely been studied. Various
methods were developed to construct algebro-geometric solutions for inte-
grable equations such as KdV, mKdV, Kadomtsev- Petviashvili equation,
Schrédinger, CH equations, sine-Gordon, AKNS, Ablowitz-Ladik lattice and

Toda lattice etc [4]-[10], [I3]-[18], [21], [22], [32], [33]. But it is very difficult



to extend these methods to soliton equations associated with 3 x 3 matrix
spectral problems. The main reasons for this complexity get traced back to
the associated algebraic curve, which is the second order hyper-elliptic in
the 2 x 2 matrix spectral problems while it is non-hyper-elliptic of the third
order one typically arising in the 3 x 3 case.

In Refs.[29], Qiao proposed the DP hierarchy through the procedure of
recursion operator and connected the DP hierarchy (including the DP equa-
tion as a special negative member) to finite-dimensional integrable systems
and gave its parametric solution on a symplectic submanifold by using the C
Neumann constraint under the nonlinearization technique. In Refs.[27], the
N-soliton of the DP equation is obtained by Hirota’s method. In Refs.[19],
the inverse scattering method for the DP equation is studied based on a
3 x 3 matrix Riemann-Hilbert (RH) problem, where the solution of the DP
equation is extracted from the large-k behavior of the solution of the RH
problem. In Refs.[23], [24], Dickson and Gesztesy proposed an unified frame-
work, which yields all algebro-geometric solutions of the entire Boussinesq
(Bsq) hierarchy. Geng et. al. further investigated the algebro-geometric
solutions of the modified Bsq hierarchy in a recent paper [25].

The purpose of this paper is to construct the algebro-geometric solutions
for the DP hierarchy which contains the DP equation (I.I)) as special mem-
ber. The outline of the present paper is as follows. In section 2, based on
the Lenard recursion operators and the stationary zero-curvature equation,
we derive the DP hierarchy associated with a 3 x 3 matrix spectral problem.
An algebraic curve IC,_o of arithmetic genus r — 2 is introduced with the
help of the characteristic polynomial of Lax matrix for the stationary DP
hierarchy.

In section 3, we study the meromorphic function ¢ satisfying a second-
order nonlinear differential equation. Moreover, the stationary DP equations
are decomposed into a system of Dubrovin-type equations.

In section 4, we present the explicit theta function representations for the
Baker-Akhiezer function and the meromorphic function. In particular, we
give the algebro-geometric solutions of the entire stationary DP hierarchy.

In sections 5 and 6, we extend all the Baker-Akhiezer function, the mero-
morphic function, the Dubrovin-type equations, and the theta function rep-
resentations dealt with in sections 3 and 4 to the time-dependent cases.
Each equation in the time-dependent DP hierarchy is permitted to evolve
in terms of an independent time parameter t,. We use a stationary solution
of the nth equation of the DP hierarchy as an initial data to construct a
time-dependent solution of the pth equation of the DP hierarchy.



2 The DP hierarchy

In this section, we derive the DP hierarchy and the corresponding sequence of
zero-curvature pairs by using a Lenard recursion formalism (see Refs.[29] for
more details). Throughout this section let us make the following assumption.

Hypothesis 2.1 In the stationary case we assume that u: C — C satisfies
u e C®(C), dfu e L®(CT), k € Ny. (2.1)
In the time-dependent case we suppose u: C> — C satisfies

u(-,t) € C°(C), d%u(-,t) € L=(C), k € Ny, t € C,

1 (2.2)
w(z, ), Uz (x,-) € C(C), z €C.
We start by the following 3 x 3 matrix isospectral problem
(0 0 10
Ve=UG, v=[ v |, U= o 01|, (@3
V3 —mz=t 1 0

where m = u — u,,, the function v is a potential, and z is a constant spec-
tral parameter independent of variable x. Next, we introduce two Lenard
operators

K = 4050 +0°, (2.4)
J = 3(2md +0m)(d — 9*)~  (md + 20m). (2.5)

Obviously, K and J are two skew-symmetric operators. A direct calculation
shows that

K1 = @0-0)"1t4-0H""
1 b ama1 1300 a3y, —1/39-1, —2/3
J = Fm O m~ (0 —0°)m” 20T m T,

and we further define an operator
L =K 1'=30-0"14-0*)"1(2md + 0m)(0 — 9*)" (md + 20m).

Choose Gy = % € kerK, the Lenard’s recursive sequence are defined as

follows
Gjo1=2"'Gj, j=1.2,... (2.6)



Hence G; are uniquely determined, for example, the first two elements read

as 1
G(] = 6, Gl = (8 — 83)_1’LL’LL$.

In order to obtain the DP hierarchy associated with the spectral problem
([23)), we first solve the stationary zero-curvature equation

Ve —[U, V] =0, V= (Vij)sxs (2.7)
with
Vit Vi Vi3
V=1 Vo Vo Vg [, (2.8)
Va1 V3 Vi3

where each entry V;; is a Laurent expansion in z
VU—ZV“ 20—+ G i=1,...,3, £=0,...,n. (2.9)

Equation ([Z7)) can be rewritten as

Vite = Vo +2z 'mWs,

Vise = Voo — Vi1 — Vg,

Vige = Vag — Vig,

Vor. = Va1 +z 'mbag,

Voo = Vo — Vor — Vg, (2.10)
Voge = Vg3 — Voo,

Vs = 'm(Vas — Va1) + Var,

Vasw = —z 'mVig+ Vag — Vi — Vag,

Vise = —2 'mVig+ Vog — Vi

VO = 14— 091Gy + 3:720(0 — 0%} (md + 20m) G,

VD = 371G, — 3272(0 — 8%) "} (md + 20m)Gy,

Vl(?f) = —6z_1Gg,

VD = 74— 093G + 32 2(0%(0 — 9%) " (md + 20m)Gy + 2mGy),
Vay = —2:71(Ge— Graa), (2.11)



VO = 371Gy, — 32720 — 0%) 1 (md + 20m)Gy,

VO = 24— 0% + 32720 + 2 m)(0 — 0% (md + 20m) G,
VO = 20— 8%)Gy — 327207 (md + 20m)Gy — 2mGy),

Ve = 27N (=2G — Guae) — 3272(0(0 — 0%) ' (md + 20m)Gy).

Substituting (210 and (2II) into (2.7), we can show that Lenard sequence
Gy satisfy the Lenard equation

KGy=2"2JGy, 1=0,1,--- . (2.12)
For our use in Theorem [6.2] we introduce the following notations

VO = a— oG, VY =300 — %) (md + 20m)Gy,

v = G, VY = —3(0 — 0%)"1(md + 20m)Gy,
WO - e, v <o,

Va? = (4-0%)Gea,

VD = 3(82(0 — 03) L (md + 20m) Gy + 2mGy),

VY = -2 - Grp) VY =0,

VO = 3G, VY = 30— 8%) " (md + 20m)Gy,

Vit? = (4-0)Graw,

VD = 30+ 2 im) (9 — 8%) 7 (md + 20m) Gy,

VLD = @ -0Gy VY = —307(md + 20m)Gy — 2mGy),
VEY = 0G, — Grae, VY = 23(0(0 — 0%) " (md + 20m)Gy).

Let 1) satisfy the spectral problem (2.3]) and an auxiliary problem
Wy, = Vb (2.13)

where V' is defined by (Z8]) and ([29). The compatibility condition between
23) and ([2I3)) yields the zero-curvature equation

U, — Ve +[U, V] =0,
which is equivalent to the DP hierarchy

DP,,(u) =my, — X,, =0, n >0, (2.14)



where the vector fields are given by
X, =JG, =JZL"Gy, n>0.

By definition, the set of solutions of ([2I4]), with n ranging in Ny, rep-
resents the class of algebro-geometric DP solutions. At times it convenient
to abbreviate algebro-geometric stationary DP solutions u simply as DP
potentials.

The system of equations DPy(u) = 0 represents the DP equation.

In order to derive the corresponding plane algebraic curve, we consider
the stationary zero-curvature equation

22y, = U, 22V, (2.15)

which is equivalent to (Z7), but the term z'/2V can ensure that the following
algebraic curve is in positive powers of z.

A direct calculation shows that the matrix yI — z'/2V also satisfies the
stationary zero-curvature equation, then we conclude that

%(det(yl — 21?2y =0,

which implies that the characteristic polynomial det(yI — z%/2V) of Lax
matrix z'/2V is independent of the variable z. Therefore we define the
algebraic curve

Fr(z,y) = det(yI — 21/2V) =3+ ySy(2) — T,(2), (2.16)

where S, (z) and T,(z) are polynomials with constant coefficients of z,

Vit Vio Vo Va3 Vit Vi3 )
Sy = . (217
() - <‘ Vo1 Vao V3a Vi3 ‘ Va1 Va3 (2.17)
Vit Viz Vi3
To(z) = 2%%| Voy Vi Vs |. (2.18)
Va1 Vzo Vi3

In order to ensure the polynomials with integer powers, we introduce the
2z = 72, the algebraic curve becomes,

Fr(2,y) :y3+y57’(2) —T:(2), (2.19)



where S,(2) and T,(Z) are polynomials with constant coefficients of Z,

Vi Wi
S 2 1 Viz
S(2) = 2 (‘ Var Vao )
dn+2
= > 52, (2.20)
=0

Vin. Vi2 Vi
T.(2) = 2| Var Vay Vas
Vi1 Vi V33

6n+4

= ) T E (2.21)
=0

‘ Vo Va3
V3a Vi3

‘Vn Vi
Va1 Va3

We note that T).(2) is a polynomial of degree r (r = 3(4n + 3)) with respect
to Z, then F,.(Z,y) = 0 naturally leads to the plane third order algebraic
curve K,_o of genus r — 2 € N (see Remark 2.2 and Remark 2.3),

Kroo: Fr(Z,y) = > +yS.(3) —T,(2) =0, r=12n+9. (2.22)

The algebraic curve IC,_9 in ([2.22]) is compactified by joining three points
at infinity
Pe,s i =1,2,3,

but for notational simplicity the compactification is also denoted by IC,_s.
Points on
Kr—o\{Ps,;}, i=1,2,3

are represented as pairs P = (Z,y(P)), where y(-) is the meromorphic func-
tion on KC,_9 satisfying
Fr(Z,y(P)) = 0.

The complex structure on K,_o is defined in the usual way by introducing
local coordinates
Co: P—=(¢=2—-%
near points
Qo = (20,y(Qo)) € Kr—2\{Fo = (0,0)},

which are neither branch nor singular points of K,_o; near Py = (0,0), the
local coordinate is )
Cpy: P — (=25, (2.23)



and similarly at branch and singular points of K, _3; near the points Py, €
K, _9, the local coordinates are

(po, :P—= (=271 i=1,23. (2.24)
The holomorphic map *, changing sheets, is defined by

% ’Cr—2 — ICT—27
P = (27y](§)) — P* = (§7yj+1(m0d 3)(2))7 j = 07 1727
P = (P*)*, etc., (2.25)
where y;(2), j = 0,1, 2 denote the three branches of y(P) satistying F,(Z,y) =

0.
Finally, positive divisors on IC,_9 of degree r — 2 are denoted by

Kr—2 — No,

D :
Pr,..Pr_a P —Dp,. p_,(P)= {

k if P occurs k times in {Py,..., P._2},
0if P¢{Py,...,P_s}.

(2.26)
In particular, the divisor (¢(-)) of a meromorphic function ¢(-) on K, is

defined by
(0(1) : Ko = Z, P — wy(P), (2.27)

where wy(P) =mg € Z if (¢ 0 (p1)(C) = Y ey Cn(P)C™ for some mg € Z
by using a chart (Up,(p) near P € IC,_o.

Remark 2.2 In this paper, we make the following two assumptions about
the curve Kp_o:

(i) The affine plane algebraic curve K,_o is nonsingular.
(17) The leading coefficients of Sy(z), Tr(z) satisfy

+ 2—535%2 — Ty # 0. (2.28)

Multiplying the polynomial T.(Z) by a constant h € R (or C), one easily
finds the curve [2.22) changes into

Fr(z,y) = v* +yS,(2) — hT0(2) = 0.
Since there exists a constant h such that

2—V9_3 S¥ — hTy # 0,

we assume ([Z28)) is always true for the curve K,._o [222) without loss of
generality.



Next, we give a few words about computing the genus of the curve ([2:22])
under the two assumptions in Remark

Remark 2.3 In this paper, we denote by K the associated projective curve
of a affine curve IC. There are two approaches to compute the genus g of
Kr—a. One of them is to use the formula

g=Mn—-1)(n-2)/2, (2.29)

where n is the degree of corresponding homogeneous polynomial of K,_o, if
the curve IC,_o is nonsingular (smooth). The Fermat curve is a celebrated
example of smooth projective curves. In general, the projective curve Kp_o
may be singular even the associated affine curve IC._o is nonsingular. In this
case one has to account for the singularities at infinity and properly amend
the genus formula ([229]) according to the results of Clebsch, M. Noether,
and Pliicker. Alternative and more efficient way is to use a special case
of Riemann-Hurwitz formula. The g-number g [34] of KCr—o and hence the
genus of Kr_o if K,—2 is nonsingular (smooth), is

g=1-N+B/2, with B= Y (k(P)-1), (2.30)
PEIC’I‘72

where N is the number of sheets of K,_o, B is the total branching number
of sheets of Kr—o, and k(P) — 1 is the branching order of P € K,_9. In
the current DP case, one easily finds N = 3. Next, one accounts for the
computation of B. The discriminant A(Z) of the curve (222) defined by
A(Z) = 2TT2(2)+4S2(2) = 22A1(2), where A1(Z) a polynomial of degree 2r—
2 with A1(0) # 0. Hence the Riemann surface defined by the compactification
of Z22) can have at most 2r double points. However, since Z = 0 is a triple
root of equation ([2:22)), there are at most 2r —2 double points on IC,_o. Then
if all branch points except Py are distinct double points, one obtains (taking
into account the triple point at Pp)

B = Y (kP)-1)= > (k(P)-1)+ kP)-1).
PEK, o Pek,—2\{Po}
= (2r—2)+2=24n+18

Substituting the value of N, B into the Riemann-Hurwitz formula [2.30), we

10



derive g =12n+7 =1 — 2.

Obviously, the DP-type curve K,_o differs from other kinds of algebraic
curves (such as KdV-type, AKNS-type, Boussinesq-type, etc.) in the sense
that it is compactified by three distinct points Py, (i = 1,2,3) at infinity.
Moreover, the genus of K,—2 is not v — 2 if we remove the assumption (ii)
in Remark 2.2. In the KdV (or AKNS, Boussinesq) case, the topological
genus is uniquely determined as long as the given affine curve is nonsingu-
lar. However, in the DP case, the only assumption that the affine curve is
nonsingular can not ensure its topological genus is of one type. Thus we add
a condition (2.28) to the curve IC,_s.

Remark 2.4 We investigate what happens at the point infinity on our DP-
type curve K,_o. Following the treatment in [11] we substitute the variable

v=2"1into @22) yields

(U4n+3y)3 4 (Sr,o + 57311)2 4+ 57,74n+2?}8n+4)1)4n+3y

— (Tro+ ...+ Trpnsav'? ) = 0. (2.31)
Let v1 = v 3y (231 becomes
v} + Spov1 — Ty =0 (2.32)

as v — 0 (corresponding to Z — o0). This corresponds to three distinct
points P, j = 1,2,3 at infinity (each with multiplicity one), given by the
three points (0,X;) for j =1,2,3, where R; (j = 1,2,3) are the three distinct
roots of equation (Z32). As each point at infinity has multiplicity one , none
are branch points, and consequently each admits the local coordinate (2.24])
for |Z| sufficiently large.

Similarly, near point Py = (0,0) € K,_a, one finds y> = 0 by taking
zZ — 0 in 222). This corresponds to one point of multiplicity three at
zZ = 0. We therefore use the coordinate [2.23)) at the branch point Py.

3 The stationary DP formalism

In this section, we are devoted to a detailed study of the stationary DP
hierarchy. Our principle tools are derived from a fundamental meromorphic
function ¢ on the algebraic curve IC,_o. With the help of ¢ we study the
Baker-Akhiezer vector v, and Dubrovin-type equations.

First, we give a brief description about the Baker-Akhiezer functions.
The exponential e® is analytic in C and has an essential singularity at the
point z = co. If ¢(z) is a rational function, then f(z) = e?(*) is analytic in

11



C = CP! everywhere except at the poles of (z), where f(z) has essential
singular points. In the last century Clebsh and Gordan considered a gener-
alizing functions of exponential type to Riemann surfaces of higher genus.
Baker noted that such functions of exponential type can be expressed in
terms of theta functions of Riemann surfaces. Akhiezer first directed atten-
tion to the fact that under certain conditions functions of exponential type
on hyperelliptic Riemann surfaces are eigenfunctions of second-order linear
diferential operators. Following the established tradition, we call functions
of exponential type on Riemann surfaces Baker-Akhiezer functions.

Next, we introduce the stationary vector Baker-Akhiezer function ¢ =

(Y1, 102, 13)"
V(P w,m0) = U(u(z), 2(P))Y (P, z, z0),
2V (u(z), 2(P))y (P!L"!E) y(P)Y(P, x, xo),
Po(P,xo, o) = 1; =(Z,y) € K2\ {Px,, P}, i1 =1,2,3, z € C.
(3.1)

Closely related to ¥(P, z,x¢) is the following meromorphic function ¢(P, x)
on K, _o defined by

~¢2m(P T, o)
o(P,x) = T,ZJQ(P,:E,:E()) , Pek,_9, zeC (3.2)
such that
Yo (P, x, xq —exp< / d(P, ") dm) PeKr_o\{Px,, P}, i=1,23.
(3.3)

Since ¢ is the fundamental ingredient for the construction of algebro-geometric
solutions of the stationary DP hierarchy, we next seek its connection with
the recursion formalism of Section 2. By using ([B.]), a direct calculation
gives

yV31 + C, zZF, _y*Vo1 —yA, + B,
yV21 v A, yVa —yCr+ D, : E, ’ (38:4)
where
Ap = Z(VagVa1 — VazVay)

Z[Va3 Va1 + Var (Vag + V1),
Voo (Vi1 Var + VagVir) — Var (ViaVar + Vas Vi),
(Va1 Vag — Voo V1)
Z[Va1 Vag + Va1 (Vir + Va3)],
2[Va1 (Vi1 Vag — VigVir) + Vaa (Vo Vag — Vag Vi )],

Sy}
S

Il
IS

(3.5)

9
Il
IS

-
<

Il
t\zz
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E, = 2*[Vag(Va1 Vaz — Vi1 Vay — VagVa1) + VizVia],

i (3.6)
F, = 2°[Va1 (Voo Vaz — Vi1 Vi + VigVar) — Va1 V).

The quantities A,,..., F, in B.35) and [B.6) are of course not independent
each other. There exist various interrelationships between them and S,., T,
some of which are summarized below.

Lemma 3.1 Let (Z,x) € C%. Then

‘/élFr - VE’)lDr - C? - ‘/232157’7
ATFT = TT"/,??:[ + CT’Dra

Va1 By = Voy B, — A2 — V2 S,.,
E.C. =TV + A.B,,

Vo1 Dy + V31 B — Vo1 V315, + A,.C = 0,
Trvél‘/?)l + ST’CrVél + STATVEH - AT’DT - BT’CT’ = 07 (39)
ETFT = _TTCT’V21 - TTAT"/?)l + BT’DT’7

Er,x = _257"‘/21 + 3B7‘7

. (3.10)
Va1 Frp = —2VE S, + 3Va1 D, + 22 2mVas Fy + VaymoJ,,

where
Jr = Vi Vag — Vi1 Vag Vg — ViV Vag — VagVih + 2Va1 Vaa Vig + Va1 VasVia.
Proof. Using (222)) and (34]), we have
EVay+ FA = Viy' + (VaDy = CR)y + G, D

= (VaiDy — C} = V{4 S )y + T,V + C,Dy,

Ervély + ETO’I‘ = ‘/2213/3 + (VY21BT - Az)y + ArBr
= (VaB, - Av% - V2215r)y + TTV221 + A, By,

(y*Var — yAr + B.) (y* Va1 — yCr + D)

(Vo1 Dy + Va1 B, — Var Vi Sy + A, Gy )y

+(T, Va1 Vay + S, Cr Vo + S, A Vs — A, D, — B, C,)y.
—T1,C Vo1 — T, A Va1 + B, D,

13



By comparing the same powers of y, we arrive at (3.7)-(3.9). With the help
of (B.0) and the stationary zero-curvature equation (ZI0), we have

E.. = Z[Va (Vi — Vi1Vag — VaaVag + VaaVi1) — VasVasVas
+2Vaa Vag Va1 — Va1 Vag Vit + 2Va1 ViaVar — VasVar Vg — ViaVA]
- _2ST’V21 + 3Br7

VarFry = 222V (Va1 Viz — VinVag + VigVar — VigVas + VaaVag — Vaa Vas)
+ V51 VinVag — 3V5} Vig + 3Vi Via Vg — 3V3 VagVaa + Vi Vaa V)
+ 27 mVa3 Fy 4+ mVa1 J,
= —2V3S, + 3Va D, + 22 mVasFy + mVsy J,.,

which is just I0). O

By inspection of (ZII) and (B3.6), one infers that FE, and Z?F, are
polynomials with respect to Z of degree r — 5 and r — 3, respectively.
Let {pj(x)}j=1,.r—5 and {v;(x)}j=1, . r—3 denote the zeros of E,(x) and
Z2F,.(x), respectively. Hence we may write

r—5
E.=u (2 - ,Uj(l‘)), (311)
j=1
r—3
F, = —uu2z7? H(Z —vj(z)). (3.12)
j=1

Defining

Ar(ﬂj(‘r)7 LZ')

— e, _9,j=1,...,r—5, z€C, (3.13
V21(Mj($)733)> 2 (3.13)

i) = (150,

; Cr(vj(x), ) > :
(@) = (vi(), =L Y e o =1, r—3, zeC. (3.14
vj(x) <uj(:1:) Var(v3(2), @) 2, J r x (3.14)
One infers from (34) that the divisor (¢(P,z)) of ¢(P,x) is given by

(¢(P,x)) = Dpy p(x)(P) — Ppy,| a@) (D), (3.15)

v(x) = {Dr(x), . res(@)}, () = {Pooys Poogs i1 (@), -+, fir—5(2) }-

14



That is, Py, 71(x),...,0p—3(x) are the r — 2 zeros of ¢(P,x) and Pso,, Pro,,
Py, fi1(x),. .., fir—s(z) its 7 — 2 poles.
Since from (220), y;(Z), j = 0, 1,2 satisfy F,.(%,y) = 0, that is

(v =9y = ()Y —12(2) =¢* +y5,:(2) - T:(3) =0, (3.16)
then we can easily get

Yo+y1+y2=0,

Yoy1 + Yoy2 + y1ye = Sy(2),
Yoy1y2 = Tr(2),

Yo +yi + 3 = —25,(2),
Yo+ i + s = 3T, (2),

Yoyt + voys + vivs = S7(2).

(3.17)

Further properties of ¢(P,x) and 1o (P,x,z¢) are summarized as follows.

Theorem 3.2 Assume BI) and B2), P = (2,y) € Kr—2 \ {Pw,, o},
i=1,2,3, and let (2,2,20) € C3. Then

Goa(P,z) + 357 (P, )b (P, ) + 5 26%(P,a) — ”7;‘;((;)) s (P, 7)
— ¢(P,z) — 5—1%(;))&(19,:1:) +m(x)z7 + %z =0, (3.18)
6(P.2)b(P*, 2)$(P™,2) = —3 gz 2)) (3.19)
6(P.2) + 6(P*,3) + (P, z) = z% (3.20)
1 1 1 _ FaZr) m()) ()
o(P.x) oo e(Pma) | IR ER(a)
2m(x)Vs3(Z, x
% (3.21)
y(P)(P,x) + y(P*)p(P*,z) + y(P™)p(P™, x) =
ATV G, 0) +25,() A, 0) 52

E.(z,2) ’

15



E.(z,x)

Uo(P, x, x0) Y2 (P*, 2, 20) 2 (P, 2, 20) = Fo (5 29)] (3.23)
V2.2 (P, 2, 20)2 0 (P*, x,20)1)2 o (P™, 2,10) = _%7 (3.24)
[ B ]
wQ(PaxaxO) — |:ET(§7$0):|
T y(P)2Var(Z,a') —y(P)A,(2,2) + 3S.(A)Vau (,2)
X exp </ﬁc0 RN 3 d:lt).
(3.25)

Proof. A straightforward calculation shows that (BI8)) holds. Next, we
prove 3.19)-@.23). From B.2), B.4), B.1)-BI0) and B.IT), we have
x - yoVar+Cr iV + G _yaVs + G
Px)p(P*,x)p(P™,x) =2 X Z X Z
AP ) )9 ) voVor + A yiVar+ A Vo + A,

_ 53 yoy1y2(Va1)? + Cr(Va1)? (yoyr + yoyz + y1y2) + C2Vai(yo + y1 + y2) + C
Yoy1y2(Va1)3 + Ar(Va1)?(yoyr + yoye + y1y2) + A2Var(yo + y1 + ) + A3
ggT(Vgl)3+ (Vgl) S, +03
( 1)3 + AT(V21)2S + A3
:ggT(V31)3+0r(V31D — Vo1 B, —C?) 4+ C3
T,(Va1)? + A (Va1 By — Va1 E, — A2) + A3
_ 3F (2,2)
E.(%,2)
B 2—25}V21 + 3B,
E,
B (%)
~ EGax)
Lo, 1 Ve tyi+93) =Gl +4e) +3D,
o(Px)  d(P*x)  H(P*, ) ZF,
_ _257"‘/31 + 3D,
N ZF,
F..(z2,z) mdJ.(Zx) mVss

= D - —2
iF.(Z,x)  iF.(Zax) 2V

16



y(P)o(P,x) +y(P")o(P*, x) + y(P™) (P, x)

_ S Vou(ys + 7 +95) — Ar(ys + i +3) + Br(yo + 1 + 1)
E,

_ 3TV £ 25,4,
- 5 ,

xT

Yo (P, x, x0) o (P*, x, x0) 02 (P, x,20) = exp <2_1 [6(P, ") + ¢p(P*,2") + ¢(P*, :ﬂ)]da:')

v Er x’ />
= exp = dx
< o ET

E.(z,z)
Er(gy Z'()) ’

¢2,IE(P7$7$0)¢2,IE(P*7$7$0)w2,$(P**7$7$0) = 2_111Z)2(P,:E,£E0)¢(P,33) X 2_11[)2(P*,£E,£E0)¢(P*,$)
X 2_111Z)2(P**,3§‘,3§‘0)¢(P**,$)

Fr(27x)

ET(Z7:E0).

Using B3), 34) and (3I0]), we obtain
o (P, x,x9) = exp (2_1/ (P, x')dm')
xo

T 2V — yA, 4+ 22rVetEra
= exp (2_1/ 2y 2 Y 3 dx’
x

0 ET’
2 2
v Y V21 - yAr + gsr‘él / 1 v Er x/ /
= d - “—d.
exp(/gcO B x+3 o E, x
E.(3,z)]Y? o /x y* Va1 — yA, + %Srv2ld$,
E, (2, a0) P E, ’

which implies (320). O
Next, we derive Dubrovin-type equations which is first-order coupled
systems of differential equations, and govern the dynamics of the zeros j;(z)

and vj(x) of E,(Z,x) and F,.(Z,x) with respect to .

Lemma 3.3 Assume ([2.14]) to hold in the stationary case.

17



(i) Suppose the zeros {pj(x)}j=1,. r—5 of Er(Z,z) remain distinct for
x € Q,,, where Q, C C is open and connected. Then {j;(x)};j=1,. r—5 satisfy
the system of differential equations,

[Sr () + 3y (i (2))*]V2

—
—
=
<.
&
8
~

() = —

w2 (i () — () ’
k#j
(3.26)
with tnitial conditions
{ij(x0)}j=1,..r—5 € Kr—2, (3.27)

for some fized xo € . The initial value problem B.28), B27) has a unique
solution satisfying

fij € C®(Q, K s), j=1,...,r—5. (3.28)

(ii) Suppose the zeros {v;(z)}j=1,. r—3 of Fr(Z,x) remain distinct for
x € Qy,, where Q,, C C is open and connected. Then {v;(x)};j=1,. r—3 satisfy
the system of differential equations,

[Sr(vs(2)) + 3y(#5(2))*] Va1 (v (), @) + m(x) Ty (v;(2), @)

V',m($) = V'(x)z r— )
! ! w2 [T (v (2) — ve())
k#j
j=1,....,r=3 (3.29)
with tnitial conditions
{Dj(20)}j=1,...r—3 € K2, (3.30)

for some fized xo € Q. The initial value problem [B29)), B30) has a unique
solution satisfying

0, € C®(Q,Kra), j=1,...,7—3. (3.31)

Proof. From ([B1) and (B.8]), substituting Z = p;(x) and v;(x) respectively,
we have

Vi (ki (@), 2)8p (5 (2)) — Var (s (), 2) By (1 (), ) + A7 (), 2) 2(0, |
3.32
Vii (vj(@), 2) 8, (v (2)) = Var (v (x), 2) Dy (v (2), )+ CF (v (2), ) = 0. (3.33)

18



Then it is easy to get

2 i\r), T
Br(uj(@),x) = ‘él(uj(x),w)Sr(uj(w))Jr%

= [Sr(1j(@) + y(i; (2))*]Va1 (s (2), ), (3.34)

Dr(vj(z),x) = Vai(vj(x),2)S,(vj(2)) +

= [8:(v(2)) + y(0;(x))*] Va1 (v (2), 2). (3.35)
Inserting (3:34]) and (B35 into (B.I0) respectively, we obtain
By (pj(@), @) = [Sr(nj (@) + 3y (it (2))?]Var (1 (), ), (3.36)
Fro(vj(z),x) = [S;(v(2)) + 3y (7 (2))*] Va1 (v; (), ) + m(z) Iy (v (2), ).
(3.37)
On the other hand, derivatives of (B.11]) and (B.I2]) with respect to z are
r—5
Eralimp;@) = —upja() || (0(2) — pe()), (3.38)
=
r—3
Frolsm, (o) = wigv(@) 2vie(z) ] (v(@) — ve(2)). (3.39)
k=1
k#j

Comparing ([B36)-(339) leads to B:26) and 329). O

Remark 3.4 In LemmaB3|, we assume that {{;(x)}j=1,. r—5 are pairwise
distinct. However, if two or more of {jj(x)}j=1,. r—5 coincide at x = xg,
the Dubrovin-type equation [B.20)) is ill-defined and the stationary algorithm
breaks down at such value of x. Moreover, 0(Z(P, ji(x))) = 0(Z(P,2(x))) = 0.
Therefore, when attempting to solve the Dubrovin-type equation ([B.26]), they
must be augmented with appropriate divisor Dy, € 0" 2K, _o as initial

conditions. The similar analysis holds for {v;(x)}j=1,. r—3.

4 Stationary algebro-geometric solutions

In this section we continue our study of the stationary DP hierarchy, and
will obtain explicit Riemann theta function representations for the meromor-
phic function ¢, the Baker-Akhiezer function 15, and the algebro-geometric
solutions u for the stationary DP hierarchy.
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Lemma 4.1 Let z € C.

(i) Near Py, € K,_a, in terms of the local coordinate ¢ = 271, we have
1 & :
(P, x) Cjo Z]Z_:O kj(x)(?  as P — P, (4.1)
where
_ —0, 4.2
Ko (@)’ K1 (4.2)
m
Kowz + 3 (Koaka + Kokaa) + BKgka — Ko +m = = (o + 260k2)
(4.3)
R3 = 0, ......
S S S—1
Kog,zz + 3 Z K2ik2c—2i,0 + Z Z K2ik2eR2c—2i—20 — K2g
i=0 i=0 (=0
m S
= <Z H2m2<—2z’> ) (4.4)
m \izo
ko1 =0, ¢>2, ¢eN. (4.5)

(ii) Near Py € K,_o, in terms of the local coordinate ¢ = Z%, we have

o0
Px) = ()¢ P — P 4.6
o(Px) = > (@) as P = R, (4.6)
7=0
where
1
Lp = —ms3, 11 =0,
2
mg/m)Ly — gt
LQZ( SL’/ )02 0071’:07 L3:O,
35
T p Lo — L
Ly = m 0,z 20 0,:(::(:’ 15 = 0’
3
e (204 — 1) — 3(Lg.pts + tot
16 = m( 0l4 ) 2( 0,zt4 04,x)’ L7:0, (47)
3uf
- T (20262 + Lag—dz) + L2c—a — L2c—4zz — 3(tot2c—22 + Lozl2—2)
% 3% ’
toc+1 =0, ¢ >4, ceN. (4.8)
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Proof. The existence of these asymptotic expansions (@Il and (48] in
1

terms of local coordinates ( = Z7" near Py, and ( = 5 near Py is clear
from the explicit form of ¢ in ([84]). Insertion of the polynomials Vj; (4,5 =
1,2,3) then, in principle, yields the explicit expansion coefficients in (4.T])
and (L6]). For example, ko = uy(x)/u(z) and k1 = 0 in ([£2)). However, this
is a cumbersome procedure, especially with regard to the next to leading
coefficients in ([€.]). Much more efficient is the actual computation of these
coefficients utilizing the Riccati-type equation ([BI8]). Indeed, in terms of

the local coordinate ¢ = 3, then (BI8) can be written as

boa(P,x) + 3¢ 3G(P, ) (P, ) + C‘6¢3(P, ) — %%(R )

4.9
— ¢(Pw) — ¢T3 ¢2(Pf€)+mC + 2 C=0 .

near the point Fy. Substituting a power series ansatz
(0.]

= ZL] (]‘H as P — P,
¢—0 =0

into (E9) and comparing the same powers of ¢, then yields ([&T]).
Similarly, in terms of the local coordinate ¢ = 27!, equation (I8 can
be written as

¢mm(P’x) + 3C¢(P,l‘)¢m(P,l‘) + C2¢3(P,l‘) - ¢(Pv$) - T::((::)) ¢m(Pv$)
_oma(T) o my(x)
Gy P + i)+ T (4.10)

near the point P,,,. Substituting a power series ansatz

C%OCZH] ¢! as P — Py,

into (£I0) and comparing the same powers of (, then yields the indicated

Laurent series relations (£3]) and (£4]). Finally, (£5) and (48] arise from
the technical treatment in section 2 (z = 22, see (Z19)). O

Remark 4.2 We have derived the explicit expressions for kg, kacy1,S € Ny
in Lemma [A1] . However, the coefficients kac,s € N in the high-energy ex-
pansion of ¢ are still implicit, since [@3)) and [@2) involve the x-derivatives
of kac,s € N and hence yields a series of second order ODFEs (or PDEs
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in time-dependent case) with variable coefficients. In the process of solving
other integrable evolution equations such as classical Thirring system(near
the points Py +, see [15]), Camassa-Holm hierarchy (near the points Psoy,
see [14L[15]), if we directly insert a ansatz into a Riccati-type equation, anal-
ogous problem will arise. The DP hierarchy shares some similarities with the
CH hierarchy at this point. Since the concrete expressions kj,j > 2,5 € N
are useless in the process of finding the algebro-geometric solutions of DP
hierarchy, we are not intend to take effort to write out their explicit forms

from (B4).

We assume K5 to be nonsingular for the remainder of this section. We
now introduce the holomorphic differentials 7;(P) on K,_o defined by

1 =14z, 1<1<8n+5,
m(P) = {

3y(P)? + Sp(2) |y(P)2'80dz, 8n+6<I1<12n+7.

(4.11)
and choose an appropriate fixed homology basis {a;, b; };;% on /C,_o in such
a way that the intersection matrix of cycles satisfies

ajoby =06, ajoar=0, bjob,=0, jk=1,...,r—2.

Define an invertible matrix £ € GL(r — 2,C) as follows

E = (Ejr)r-2)x(r—2)> Eijk =/ N,
a

(4.12)
e(k) = (er(k), .- er—a(k)), ej(k) = (E71)j4,
and the normalized holomorphic differentials
r—2
wj:Zej(l)m, / wj: k> / wj:FJ-,k, j,k:1,...,7’—2.
=1 ak b,
(4.13)

One can see that the matrix I' = (I'; j) (;—2)x (r—2) is symmetric, and it has
a positive-definite imaginary part.

Next, choosing a convenient base point Qo € K,—2\{Pso,, Fo}, the vector
of Riemann constants =, is given by (A.45) [I5], and the Abel maps A (-)
and ), () are defined by

AQ Ko — J(]CT’—2) = (CT_2/LT’—27

0
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Pis Agy(P) = (Agua(P)..... Agys—a(P))

P P
= </ Wiy ,/ wr_2> (mod Lr_g),
Qo Qo

ag, : Div(K,—2) = J(K;-2),

D ag,(D) = Z D(P)Aq,(P),
Pel,—2

where L, o ={2€C' 2| z=N+TM, N, M € Z"?}.
For brevity, define the function z : KCp_g X 0" 2K, _g — C" 2 b
z(P, Q) - EQo B AQO(P) +QQ0(,DQ)’
PeEK,—2,Q = (Q1,...,Qr—2) € 0" *K,_o, (4.14)

here z(-, @) is independent of the choice of base point Qg. The Riemann
theta function #(z) associated with IC,_o and the homology is defined by

and

0(z) = Zexp (2mi < n,z > +mi <n,nl' >), z€C 2
nez
where < B,C >=B-C! = Z;;% FjCj denotes the scalar product in C" 2.
The normalized differential wg’;l p,(P) of the third kind is the unique

differential holomorphic on K,_2 \ {Px,, Po} with simple poles at P, and
Py with residues +1, respectively, that is,

Wil (P) = (¢ O()dC, a3 P P,

G (py = -1 0(1Nd PP (4.15)

Whe, Pyl )430 (=¢CT +0Q1))d¢, as P — P.

In particular,
/Wgo)olpo(P):O, j:l,‘.‘,r_2.
a;
Then
" - 3)

Wp PO(P) = In¢ +e®(Qo) + 0(C), as P — Py,

i 1 o (4.16)

P
(3) _ 3)
L nP) =, e +e(Q0) +0(0), ws PR,

10'7'72K:7-72: Kro X .. X Kra.

r—2
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where e®)(Qy) is an integration constant.
The theta function representation of ¢(P,x) then reads as follows.

Theorem 4.3 Assume that the curve KCr_g is nonsingular. Let P = (Z,y) €
Kr—2 \{Pwx,, Po} and let x,xq € Q,,, where 2, C C is open and connected.
Suppose that Dy, or equivalently, Dy, is nonspecza. A for x € Q. Then

2) = —m3(z E(x)))ex e _ Pw(3)
oP.a) = o e g (@0~ [, Pzpoz)‘
1

Proof. Let ® be defined by the right-hand side of ([AI7) with the aim to
prove that ¢ = ®. From (£I0) it follows that

P
exp <€(3)(Q0) _ / wg’ilp()) Cjo '+ 0(1), as P— P,
@o (4.18)

P
3) o (3) — 2 P P
exp <€ (Qo) /Qo wPoolP()) o C(+0(¢*), asP— R

Using (B.I5) we immediately know that ¢ has simple poles at j(z) and
P..,, and simple zeros at Py and p(z). By @I7) and a special case of
Riemann’s vanishing theorem [12] 15 [16], we see that ® shares the same
properties. Hence, using the Riemann-Roch theorem ([12] 15, [16]) yields
that the holomorphic function ®/¢ = v, where v is a constant with respect
to P. Finally, considering the asymptotic expansion of ® and ¢ near Py, we
obtain
® _ —m'A1+0(Q)C+0?)

5 o Sl O o 14+0(), asP— Fy, (4.19)

from which we conclude that v = 1, where we used ([@I]]) and (&6]). Hence,
we prove (I7). O

(2)

Furthermore, let wp';(P) denote the normalized differential of the sec-
ond kind which is holomorphlc on IC,_o \ {Py} with a pole of order 3 at
P07

—l
RE) B dz
P073(P) 3(3y( +§ )‘]nj C +O( ))d<7 as P — P07

2The definition of a nonspecial divisor see [12].
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where the constants {\;};=1 _,_2 € C are determined by the normalization
condition
/ W (P)=0, j=1,..,r—2,
a;
and the differentials {n;(P)}j=1.. r—2 (defined in @II])) form a basis for
the space of holomorphic differentials. Moreover, we define the vector of

b-periods of wg&g,

~(2) ~ (2 ~ (2 ~ (2 1 2 .
0 =@, 02, 0¥ =L / W@y j=1,.r—2 (420)
'j

P
[ P 2, =56+ @) 100, PRy

P
/Q wl(%{g(P) o egz)(Qo) + f§2)(Qo)C2 +0(¢Y, as P— P,

where 63 (Qo) 352)(@0) are integration constants.
Similarly, the theta function representation of the Baker-Akhiezer func-
tion o (P, x,x0) is summarized in the following theorem.

Theorem 4.4 Assume that the curve K,_o is nonsingular. Let P = (Z,y) €
ICr—2 \ {Pwo,, Po} and let x,x¢ € Q,, where Q,, C C is open and connected.
Suppose that Dy, or equivalently, Dy () is nonspecial for v € Q. Then

0(Z(P, fi(x)))0(Z(Po, fu(x0)))
N E N e TETEn)) 2
) P
X exp< ms ( dx/(/Q wPO — 63 Qo))>
Proof. Assume temporarily that
pi(x) # pr(x), for j#kand z € Qu cQ,, (4.22)

where ﬁu is open and connected. For the Baker-Akhiezer function vy we
will use the same strategy as was used in the previous proof. Let ¥ denote
the right-hand side of (£.2I]). We intend to prove ¢ = W. For that purpose
we first investigate the local zeros and poles of 5. Since

Uo(P, 2, 0) —eXp< /¢P$ da;> (4.23)
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we can see that the zeros and poles of ©9 can come only from simple poles in
the integrand (with positive and negative residues respectively). By using
the definition ([34) of ¢, (3.10) and the Dubrovin equations ([B.26]), we obtain

2y2V21 —yA, + B,

P =
6P, ) P
o 2y2V21 - yAr + %‘/2157" + %Er,x
- B
(1 3*+S, 1E., 1-3yA, + VS,
= Z(3Va 5 5
3 E, 3 E, 3 E,
A
(2 3y2 + S, 1By ‘ély(y + VT )
= Vs —— — 21 . 4.24
z<3 2 g T3E, E, (424)
Hence

o) = (525 -3 o)
= L 01) as 2 (), (4.25)

where
y = y(f;(z)) = —
More concisely,
6(P) = py(e) - n(z — py()) +O(1), for P uear fy(x),  (426)

which together with ([A23]) yields

Uo(Pwz0) = exp ( / " (%m(z ) + 0(1)>>

0

Z — (=)

Y
(2 — pj(2))O(1) for P near fij(z) # f1j(zo),
= q0O(1) for P near ij(x) = fij(xo), (4.27)

(2 = uj(w0))~'O(1)  for P near fij(wo) # fu(x),

where O(1) # 0 in ([@27). Consequently, all zeros and poles of ¢y and ¥
on K,_2 \ {Px,, Po} are simple and coincident. It remains to identify the
behavior of 99 and ¥ near Py, and Fp.
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(i) Near Py,: from (@II), we infer

exp (2_1/ dx' (P, :p’)) o 1 —I—/ ko(2')dz' +O(C?) as P — Pu,.
o - T

’ (4.28)
Taking into account the expression (A2]]) for ¥, then shows that 1, and ¥
have identical exponential behavior near Py, .
(ii) Near Py: from (L6), we arrive at
€T €T
2_1/ dr'¢(P,2') = —/ m%(x')dx' (C_2 +O(C2)) as P — Py,
y) ¢—0 y)
Taking into account the expression (A2]]) for ¥, then shows that 1, and ¥
have identical exponential behavior up to order O(¢?) near Fy.
The uniqueness result for Baker-Akhiezer functions ([13] 15 16, [18]) then
completes the proof 12 = W as both functions share the same singularities
and zeros. The extension of this result from x € Q, to x € Q, then simply

follows from the continuity of o, and the hypothesis of Dy, being non-
special for z € Q,. 0O a

The asymptotic behavior of y(P) and S, near P, are summarized as
follows.

Lemma 4.5

y(P) o —égﬁ“m_?’(l + ool + a1+ 0(C%), as P— Py, (4.29)

—éc—*‘”—ﬁ(l + B¢+ it +0(¢%), as P — P, (4.30)

" S0
where o = =38y and Ny is the root of of algebraic equation [232)) corre-
sponding to the point P, € Kr_a.

Proof. From (31 and (32), we arrive at

(2% — ¢2°)
m

y(P) =Va + Va2z + Vas . (4.31)

Then, in terms of the local coordinate ¢ = 27!, insertion of (Z11) and (&I))
into (@.31)) yields

1 n a1 - - 00 -
y(P) = — > V(GO0 = Y Y
=0 j=0
+ Z ‘/2(215) (GZ)C_4("+1_Z)_1
£=0
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+ Z V2(§)(G£)€—4(n+1—e) Z Hjcj—l
(=0

Jj=0

1
S0 —§QC_4n_3(1 +apC? +a1¢t +0(¢%), as P — Py,. (4.32)

Similarly, we recall the definition of S,
Sy = 2(Vi1Vao + Vi1 Vag + VaaVaz — VioVay — VigViy — VagVia),  (4.33)
Insertion of (A1) into (A33]) leads to (A30). O

A straightforward Laurent expansion of (A1), ([AI2) and (£I3]) near
P, yields the following results.

Lemma 4.6 Assume the curve K,_o to be nonsingular. Then the vector of
normalized holomorphic differentials w have the Laurent series

w=(wi,...,wr_2) o (g, + ;¢ +O(¢))d¢ (4.34)

near Puo, with

0
Py = ﬁﬁ(gn +5)+ ﬁﬁ(r —2),
- 0
b= g Te8n +4) + 7 e(r=3),
where o = —3R, Ny is given in Lemma 4.5.

Proof. Using (29) and (Z30), the local coordinate ( = 27! near Py, , we
obtain

1 g
3y2+ S, =03 8170102 — 1+ (2020 — Bo) 2+ (20° a1 + 0% — B1) ¢ +O(CO)).

(4.35)
Then
1 ~ aesnge| 1 20%a0 — Bo .o [20%°c1 + 0% — B
e e A G
(20%ap — fo)*
W)& + O(C6)]. (4.36)
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From (£I1)), (£I3) and ([Z36]), we have

r—2 8n+5

~l ld sl— 8n—6d~
wj = ei(m =Y e (l)gy +; Z ?@T&z
=1 =1 1=8n+6
8n+45 —1-1 r—2 —1+8n+4
SRS yC d¢
— (NS (nL— 5
; eil )3y2 + 5, l:;:%e]( ) 3y? + S,
8n+5 2 2 9
- _ 14+-8n+5 1 2Q & — Po 2y 20°a;1 + 0%ag — B
(=0 Z 3¢ ()¢ [92 L (?—1)? “ ( —(0* = 1)2
P =2 1
+( é()QC;O_ 1)50) >C4 + O(C6)] dC + Z er(l)é-—l+7“—2 |:Q2 — _
1=8n+6
20%a0 — Bo .o (20%a1 + 0%ad — B (20%a0 — Bo)*\ .4 6
e ¢ (i oy )< o)
x [1+agC® + ar¢* + 0(¢))d¢
-3 -3
= (ﬁej(sn +5) + gz—é’_lej(r )+ [ oges(Bn+4) + 929_ ]
X ej(r =3¢+ 0(H)) d. (4.37)

which yields (£34). O

Theorem 4.7 Assume that the curve IC,_o is nonsingular and let x, zo € C.
Then

001 (Dpte) = 0, (Do) + £l = 2)(w = a0) +e(5n +5) [ (),
) (4.38)

010, (Date) = 80, (Pt + 5607 =)o = 0) 45 +5) | o' (14,
(4.39)

where Wy(p) = Zl2n+4 j(x). In particular, the Abel map does not lin-

earize the divisor Du() and D_(.).

Proof. We prove only ([438)) as (£.39) can be obtained from (4.38]) and
Abel’s theorem. Assume temporarily that

pi(z) # pj(x) for j # 5 and x € Qu cC, (4.40)
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where ﬁu is open and connected. Then using (3:26), (A1) and (£.I3]), one
computes

d d 12n+4-4 12n+4-4
%aQo,l(Dg(x)) = i ;::1 /Qo Z 1,2 (@)wi (1 (x))
12n+4-4

r—2
= > wjal@) Y ealk)m
=1 k=1

12n+4-4 ~ 8n+5H k—1
R s (uj)+3y(u;)2]V21(uj(:ﬂ))< -
2 oI g ) 2l
— y(iij ="
> el(k)Sr(u])Jri%y(ﬂj)?)

k=8n+6

8n+5 12n+4 ~
_ Z Vzl(NJ( ) Z 1y Z V21 ,Ug y(ﬂj)
uH12n+4( Np) P 12n+4(uj /Lp)
p#y PFJ

x> ekl

8n+5 12044y, k-1 r—2
=3 ) T S )
P T Hp) j=8n+6
X12§"J:r4 —Var (g () )y (fu ) s 5"

12n+4
=1 u H n+ (15 — 1p)
p#y

8n—+5 12n+4 (’LL An—2 . —
wi A aop" T A )

= Z el(k) Z H12n+4( , ) ™ Z ei(k)

r= = 1075] o

12n+4 8n—+2 + bo,u8"

3u'u]
X Z H12n+4(
7j=1

p;ﬁj

k—8n—6
)

— Hp)

Using the standard Largange interpolation argument then yields

d 1
%QQOJ(’DE(J;)) = \Ill(ﬁ)el(8n + 5) + 561(7’ — 2). (4.41)
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Then we have

ag, (Dg(m)) =ag, (Dg(mo)) + —e(r —2)(z — xo) +e(8n +5) /1‘ d:n'(\Ifl(E)).

(4.42)

W =

The equality ([4.39) follows from the linear equivalence

Dpoy js(z) ~ Proi(a)s
that is,
Ao (Posy) + 2y (Pag)) = Ag, (Fo) + ag, (D)),

and ([{42). The extension of all these results from z € Qu to x € C then
simply follows from the continuity of a,  and the hypothesis of Dj(,) being
nonspecial on €,. [ a

Next, we provide an explicit representation for the stationary DP so-
lutions w in terms of the Riemann theta function associated with IC,_o,
assuming the affine part of K,_5 to be nonsingular.

Theorem 4.8 Assume that u satisfies the n-th stationary DP equation (2.14)),
that is, X, (u) = 0, and the curve KC,_o is nonsingular. Let x € €2, where
Q,, € C 1s open and connected. Suppose that Dy, or equivalently Dy () is
nonspecial for x € Q,. Then

() — o) PE P B (Prey ()
G (P i) (o, ()

Proof. Using Theorem [44] one can write 19 near Py, in the coordinate
(=21 as

Yo (P, x0) o (o0(x) + o1 (z)¢ + oo ()% + 0(43)) (4.44)

(4.43)

X exp << : 2mé(az’)dx'> (f§2)(Qo)C2 + O(C4))> , as P — Py,

0

where the terms oy(x),01(x) and o9(x) in ([@44]) come from the Taylor ex-
pansion about P, of the ratios of the theta functions in ([@2]]). That is

0 (2(P, u(x))) 0 (EQO — A, (P) + ag, (Dg@)))
6 EB. @) 0(2g, - Ag)(Po) +ag,(Dy)))

- Pso
0(Zq, — Agu(Poer) + 20, (Do) + f )

0 (Zq, — gy (F0) + g, (D))
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0(Zq, — Agy(Pxy) + g, (Diw) — p0,C — 01,62 +0(C?))

So 0 (Zq, — Agy (F0) + ag, (D))
r—2
1 00y 00 %6, 3
o b [90_ 93,1098 ~ ; (82 P 2 507, ”OJ”“>C +0()
0o — 0:00¢ + (502600 — Qg)@o)Cz + O(C?’)
(=0 01
192
00 0z 2000 — 82:(;2)60 2 3
od o ¢+ o ¢*4+0(¢°), as P — Py, (4.45)
where
o = 60(‘7:) - H(E(Poolvﬁ(x))) =0 (EQO AQO(POCH) + aQo(DE(SC))) >
th = 01(z) = 0(Z(Po, i(x))) =0 (EQO - Ag, (Po) + g, (Du(ac))) ;
and )
0.2 Z U(2-)i
Uy e 3.3 82j
denotes the directional derivative in the direction of the vector of b-periods
U §2), defined by
@ _ (72 (2) (2 _ 1 2) _
gi} _(U3717"'7U37r—2)7 37j_%/ Poo137 ,7_17"'7T_27
(4.46)
with wgoll , holomorphic on K3 \ {Pw, } with a pole of order 3 at P,
wir) L (P) = (3 +0(1)d¢ as P — Py, (4.47)
Similarly, we have
- . PN -1
0 (2(Po, (o)) 0 (2(P, ji(x)))
0 (2(P, ju(x0))) 0 (2(Po, (= ))) =20
fo a -
C:O <91 < (C )>> T=x0
_ 0 2
So B (1+0:1In6y ¢ +O(C?)) -
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_ Gi(@o) <1+8xln00(a;)

2
0 Bolmo) ¢(+O0(¢ )) ,as P— Py, (4.48)

T=x0

Then the Taylor expansion about 19 is as follows

Z(P, ju(z))
(P, x0) 50 0(Z(Fo, i)

01 (o) bo() 01 (o) bo() 01(0) Ozbo(x)
50 [9(1](:172) 0(1)(x) * <9(1](x2) 9(1](:6) Flnbol@)| _ 9(1) (o) 10 >
+O(C2)] X exp << ’ 2mi1’>(x')da;'> ( Qo)+ O( C4 >
01(xo) bo(x 01(xo) Oo(x)
S0 g 6 * aoirg o (2@ —2umoe)) ¢
o] x (14 (17@0) [ C2mbea) ¢ o).

as P — Py,. (4.49)

Hence, comparing the same powers of ¢ in ([@44]) and ([A49) gives

oo(x) = 7 ,
o(zo) 01(z)
(4.50)
_ 91(zo) bo(2) n6y(x — 0y Inby(x
)= g o) (0], -0 ah)
If we set

(> o (o0(z) + 01(2)¢ + 02(2)C2 + O(C?)) exp(A), as P — Py, (4.51)
with

exp(A) = exp<< /x:zmé(g;')dx'> (f§2>(Qo)c2+0(g4))>,

_ (1 4 <f§2>(Q0) /m: 2m%(x’)d:n’> ¢+ O(C4)> :
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then we compute its z-derivatives as (P — Px,)

Uae =) (000 + 0120+ O(C) exp () + (2157 QuIm ) ¢+ 0(CY)) ¥

= 00z + 01+ O(C?),
=0 , (4.52)
7;[)2,xx = 00,px T O-l,mm< + O(C )7
¢—0

T;Z)2,mvx = 00pzx T Ul,xwa + 0(42)
¢(—0
By eliminating ¢ and 3 in ([23]), we arrive at
9 m m
¢2,mmm = —mz 2 + _x¢2,mm - —xlbz + ¢2,$' (4'53)
m m

Substituting ([E52) into @53]) and comparing the coefficients of (Y, we ob-
tain

My

00,xxx = _(00,9090 - 00) + 00,2,

m

namely,
(JO,mm - JO)w _ % _ (’LL(J)) - um(m))x
00,32 — 00 m u(x) — ugy ()

which together with the first line of [L50) leads to (£43). O

I

Remark 4.9 We note the unusual fact that Py, as opposed to P, i =
1,2,3, is the essential singularity of vo. What makes matters worse is the
intricate x-dependence of the leading-order exponential term in o, near
Py, as displayed in [A21)). This is in sharp contrast to standard Baker-
Akhiezer functions that typically feature a linear behavior with respect to x
in connection with their essential singularities of the type exp((x — x9)(2)
near ¢ = 0. Therefore, in Theorem [T, the Abel map does not provide the
proper change of variables to linearize the divisor Dy, in the DP context is

wn sharp contrast to standard integrable soliton equations such as the KdV
and AKNS hierarchies.

5 The time-dependent DP formalism

In this section we extend the results of Section 3 to the time-dependent DP
hierarchy. We employ the notations G, V, V;;, etc., in order to distinguish
them from G;, V, Vj;, etc. In addition, we indicate that the individual pth

34



DP flow by a separate time variable ¢, € C. In analogy to (B1l), we introduce
the time-dependent vector Baker-Akhiezer function ) = (11,12, 13) by

%(Paﬂfal’o,tp,to,p) = U(u(w,tp),E(P))T/J(P,x,xo,tp,tom),
wtp(P7x7x07tp7t07p) = V(u(x7tp)7g(P))w(P7x7x07tp7t07p)v

i K (5.1)
ZV(’LL(.Z', tp)? Z(P))w(P7 ‘Ta ‘T07 tp? tO,p) = y(P)w(P7 .Z', .Z'(), tp7 tO,p)a
wQ(Pa‘TOwTOthpthp) = 17 x7tp € (c7
where V = (‘Z’j)gxg, and
~ p ~ ~
V=Y VW(@zte) =13, 1=0,....p (5.2)
1=0

with ‘Zy)(él) determined by G;, which is defined in (Z8) by substituting G,
for Gj.

The compatibility conditions of the first three expressions in (51]) yield
that

Uy, (2) — Vi(2)
—Vo(3)+[U(3),V(3)] =0, (5.3)
~V,(5) +[V(2),V(Z)] =0.

A direct calculation shows that yI — 2V (Z) satisfies the last two equations
in (B3)). Then the characteristic polynomial of Lax matrix ZV'(Z) for the
DP hierarchy is an independent constant of variables x and t, with the
expansion

det(yI — 2V) = y® 4+ yS,.(2) — T,(2), (5.4)

where S,(Z) and T,(2) are defined as in (Z20)). Then the time-dependent
DP curve K,_5 is defined by

Kros: Fo(Z,y) = y* +ySp(2) — T,(2) = 0. (5.5)

In analogy to ([B.2), we can define the following meromorphic function ¢(P, z, t,)
on K, _9 the fundamental ingredient for the construction of algebro-geometric
solutions of the time-dependent DP hierarchy,

~8x7;b2(P7 T, X0, tp7 tO,p)

P x,t,) = Pek,_ C. 5.6
¢( " p) : ¢2(P7x7x07tp7t0,p) ’ & 20 © ( )
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Using (5.00), a direct calculation shows that

_yVai1(Z,z,t,) + Cr (2, 2, tp)

Pt = Z — ~
o v) yVar(Z,x,t,) + Ar(Z, 2, tp)
_ F.(Z,2,t),)

z - ’ -
Y2 Va1 (2, x,tpy) — yCr(Z, 2, t,) + D (2, 2, tp)
V(e 1)~ A

Y (5'7)

where P = (2,y) € K,—2, (7,t,) € C%, and A, (2, 2,1,), B (Z,2,tp), Cr(Z,2,1p),
D, (Z,x,tp), Er(Z,2,tp), Fr(Z,2,t,) and J,.(Z, ,t,) are defined as in (B.5]) and
(B6). Hence the interrelationships among them (3.7)-(3I0]) also hold in the
time-dependent case.

Similarly, we denote by {u;(x,tp)}j=1,. r—5 and {vj(x,ty)}j=1,. r—3 the
zeros of E,.(Z,x,ty) and 22F,.(Z,z,t,), respectively. Thus, we may write

E.(Z,z,tp) = u(x,tp) H — pi(z,tp)) (5.8)
r—3
Fr(Z,2,ty) = —ule, ty)ul(z, )22 [ (2 = vi(x,t,)). (5.9)
j=1
Defining
fiity) = (15, ts) yis (1))
= <uj(w=tp)a —é’;%iﬁ%ii’g) €2, (5.10)
j=1,...,r=5, (x,t,) e C?,
pilaty) = (vt v t)
t

= <I/j(x,tp)7_ Crlu(e, p)’x’tp)> €Kiz, (5.11)

One infers from (5.7)) that the divisor (¢(P,x,t,)) of ¢(P,x,t,) is given by

(¢(P7$7tp)) = DPO,Q(x,tp) (P) - DPool,E(x7tp)(P)7 (512)
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where
2(337 t;D) = {791(:177 tp)v cee 7197‘—3(337 tp)}a
é(l" tp) = {Poom Pooswal(:pv tp)v oo 7/27‘—5(337 tp)}'
That is, Py, 1(x,tp),...,0r—3(z,tp) are the r — 2 zeros of ¢(P,z,t,) and
Pooyy Psoy, Pooy, ft1(x,tp), ..., fir—5(z,t,) its 7 — 2 poles.

Further properties of ¢(P,x,t,) are summarized as follows.

Theorem 5.1 Assume (BI) and B8), P = (2,y) € Kr—2 \ {Px,, P},
i=1,2,3, and let (Z,x,t,) € C3. Then

Guz (P, ty) + 3571 p(P,x, t)) b (P, ty) + 27203 (P, , t,)

ma(x,tp) __img(x,tp)
Tty ) =y )
— (P, x,ty) + mlx, )5 + %5 =0, (5.13)

7
o (Paity) = 3, (%( ~ 26,(Paaty) - (Paty)
FVn(Z,2,t) + Vas(Z,m, )5 0P ty)), (5.14)
s F(z,2,t
Pty )P t)o(P" anty) = —PEETEL (59
~E7"Z' ~7 7t
¢(P7x7tp)+¢(P*7x7tp)+¢(P**7x7tp) :Z#Jiftzfj))’ (516)
L 1 . 1 | Fa(Gaty)
qb(P)x)t;D) gb(P*)x)t;D) qb(P**v:Evtp) - ZFT(’g)x)tp)
_m(z,tp) e (Z 3, ) 2m(z,tp)Vas(Z, 2, tp) (5.17)
ZF.(Z,2,tp) Va1 (Z,m,ty) ’
y(P)o(P,z,tp) +y(PH)o(P7, 2, ty) + y(P™)¢ (P**,x ) =

Er(z7x7tp)
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Proof. Equation (5.I3) follows from (G.]) and (5.7). Relation (5.14) can
be proved as follows. Differentiating (5.6]) with respect to ¢, and using (5.1]),

we have

Varh1 + Vaothy + Vagihs

(¢)tp = Z0;
o
~ _ ~2 o~ ~
= 28x|:v21( ¢2’:2;—2¢2)2 +V22+V23%}

= z0, [%(—2%—¢2+z2)+1722+17235—1¢]. (5.19)

Moreover, ([B.I5)-(518) can be derived as in Theorem O

Next, we consider the t,-dependence of E, and F;.

Lemma 5.2 Assume (5.1)), (B3) and let (Z,z,t,) € C3. Then

- - ~ V: - ~ Vi
By (2,2ty) = B2, 1) (Vs — 37Vas ) 4+ By (2,2, 1)3 (Vo = 32V

(5.20)
Fry,(Z2,t) = Fra(Z,2,t,)Vas — Jo(Z,2,1,) (22 Va1 + mVig)
+F. (2, x,tp) (3‘722 + 3‘7237m — 22?7“213(%2%1 + ‘732))
(5.21)
Proof. From (5. and (5.6]), we obtain
Zéy + 02 = %(—z—ly ¥ Vag + 5 Wase) + 32, (5.22)

Hence, one can compute

25 (P, x, ty) + Z¢g (P*, 2, t)) + 20, (P, x,tp)
+ ¢*(P,w,tp) + ¢*(P*, 3, t,) + ¢*(P**, 3, t,)

m — _— ~
= E(_Z 1yo 4+ Voo + 2 1‘@3(]5(P)) + 32

m — ~ * ~
+ E(—Z lyl 4+ Voo + 2 1V23¢(P ) + 52

m — ~ o =
+ E(—Z 1y2 4+ Voo + 2 1V23¢(P )+ 32

=1
mzZ~ (yo + y1 + y2) mVa 9
= - +3 + 3z
Vor Va1

m2_1V23 % s
o (O(P) +o(P7) + o(P™))
21
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=1
=g | M2V Py 1 g(PY) + 9(P™) 432, (5.23)
Va1 Vi

and
O, (B(P, m,tp) + O(PF, 2, 1)) + (P, 2, 1p))
B E, . (Z,2,tp)
at”( E.(Z,z,tp,) >
= 20;,0,(InE,(Z,z,1p))
= 30,0, (INE, (3, 2, 1,)). (5.24)

On the other hand, from (G.I4]), we can see that
8tp(¢(P $ 13 ) + ¢(P*7$7tp) + ¢(P**7x7tp))
V21 B 2
= 20, (S22 = 6u(P,ty) — X (P )

+%2 + %32_1¢(P7 x, tp))

+20, (‘jn (2% = 20, (P*, 2, ty) — *(P*, 2, 1))

+%2 + %32_1¢(P*7 z, tp))

v20,(22 - 20,(P7 nty) — 2P )
Vo + ’v“agz—lszs(P**,:v,tp))- (5.25)

Without loss of generality, we take the integration constants as zero and
then obtain

Oy, (InEy(Z,2,ty)) = —Ez(qﬁx(P z,tp) + ¢z (P, tp) + u (P, 2, tp)

_?((ZQ(P z, 13 )+¢2(P*7x7tp) +¢2(P**7x7tp)
+2 Was(o(P,x, b)) + ¢(P*, 1, t,) + ¢(P**, z, 1))

V
+3V22 -|-3—Z

Var

= 2 (Vi = g Vi ) (6(P) + 6(P") + 6(P™))

o
143V — 3%1/22
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~ < ‘7 ~Er xT = ‘7
= Z 1<V23—%V23) (Z E’ > +3V22—3%V22
o e ‘721 Er,:c = ‘721
= (Vs - V—lezg)< i ) + 3V 3V, (5.26)
which implies
= o Y7 ‘721 ~ ‘721
Er,tp (z,x,tp) — Er,:c (‘/23 - E‘@i’)) + Er3(‘/22 — EVQQ). (527)

Relation (5.2I) can be proved as follows. Using (5.3), (5.13), (G.15), (5.17)
and (£.23)), we have

~ Fr ~7 7t * *ok
8tp ( - 23#27;:;) = 8tp [¢(P7$7tp)¢(P 7x7tp)¢(P 7x7tp)]

= 01, (P)(P*)p(P™) + ¢(P) oy, (P*)¢(P™) + ¢(P)p(P") by, (P™)

= ¢(P")p(P™) (2@0 [%(—EMP) —*(P)+ ) + Vi + %35—1¢<P>])

+o(P)$(P™) (zax [%(—m(P*) — ' (P) +2°) + Vo + %32—1¢<P*>]>

+¢(P)p(PY) (2@0 [%(—E%(P**) — ¢ (P™) +2°) + Vog + 17232—1¢<P**>})

Y
— Z U310, n(P)d(P*)$(P*™) —

m

Vo1

= (P)p(P7)p(P™) — = (9(P) + (P7) + ¢(P))

22V

2Vo1 . 1 1 1 L
m

+E(— = +‘721+‘722,x)<¢(P)+¢<P*)+¢(P**)>
Va1

+ 22 (202(P) + 9(P) + 26(P") + 62(P") + 26 (P™) + 6*(P™))

+ 3‘723,z

32 V.
— — V310, Inp(P)p(P*)p(P™) — %(@%P) + ¢(P*) + ¢(P*))

m

= o(P)p(P")p(P™)

Ve o~ = 1 1 1 2V~
+Z(7m + Vo1 + ‘/22,x)<¢(P) + ¢(P*) + (b(P**)) -3 m + 3V237;(;

(6(P) + 6(P") + ¢(P*)) + 32

Va1 (3mVay 271V
+ﬂ(m2z+2 23

m \ Vo Va1
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_ _=sbh| 25 <Fr7x_Er,x>_z2‘721,xEr,x 3@‘/ +@V
Er m Fr Er m Er ‘/21 2 Vl » 7”
32 - ~ o~ F.. mJ, 2mVss ~
(S Vare + Vor + Vo ) ( A 22‘/31)+3v23,x . (5.28)
which implies that
Fr,tp . FrEr,tp
E B2
Fr 22 e Frx Erx 22‘721 T Erx ‘/21 ‘721
:———v(’—’)— w Dre y Py 321y
E.| m*\UE T E mEr+‘/212r+‘/§122
32~ ~ o~ F, md,  2mVas
= Vs, ) (2 = T~ ) + 37,
+(mV21,x+V21+ A F 2V, +3Va3 2
F, 32~ 32 - ~ o~
= = ( - —V31 + <—V21,x + Vo1 + V22,x>>
E, m m
E, . F, <22 ~ PV, V21
Tratr (2 oy 2 2he V2l >
+ EZ \m 31 m V 2
Voo =~ 2mVas 2% ~
3222V 4 3Vase — VB (E g Uy 4 T )
Er< V2 21 +3V23 22%}1( 21,2 + Vo1 + 22m)
mJ
i3 (mV21m+V21+‘/22x) (5.29)
T

Then substituting (5:27]) and the following formulas
Vot = Va1 + 2 2mVi,
‘722,x = Vi — Va1 — Va3
into (5.29), we obtain (B.21). O
The properties of 2(P, x, o, tp, top) are summarized as follows.

Theorem 5.3 Assume (BI) and B0), P = (2,y) € Kr—2 \ {Px,, P},
i=1,2,3, and let (Z,x,20,tp,t0p) € C>. Then

1/}27tp(P7‘T7w07tp7t07p) - (%( - Z(bx(P x, t ) ¢2(P,$,tp)) + ‘722(27‘T7tp)

+%3(27 X, tp)é_lqb(P) €z, tp)) ¢2(P7 x,xo, tpv tO,p)) (530)
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f_ly(P)—Vgg(f o t/)
P, t,,t = P,z t,)d 7
Va(Prm, 30, b, top) = exp( / P tp)d +/top[ Va1 (2, o, 1)
Va1 (2, o, t')

X‘721 (2,:170,75/) + (‘723(2,330,75/) — Vor (2 o t/)

‘/23(27 Zo, t/))é_IQS(P, zo, t/)

—H~/22(2,a:0,t')] dt,> , (5.31)

Er(27x7tp)

¢2(P7x,xO)tpvt07p)¢2(P*7:Ev:E(]atp7to,p)¢2(P**7$7$07tp7t0,p) = m7

(5.32)

Fr('i 33‘, tp)
Er(éy xo, 750,;1)) '
(5.33)

¢2,IE (Pa €,To, tpv to,p)¢2,m(P*7 x,xo, tpv tO,p)¢2,m(P**7 €, To, tp7 tO,p) = -

E(2,2,t,) \\/3
P, L X0, by, t = (#)
Yo (P, x, 0, tp, to,p) E,(2,20,t0,p)

X exp * (y(P)2‘/21(27x,7tp) _y(P)Ai(27$l7tp) + %ST(Z)‘@I(gazplvtp))dx/
xo E.(Z,2',t)

_’_/tp (y(P)2VY21(27$07t/) - y(P)AT(27$07t,) + %ST(’g)Vél(gv$07t,))
t Er(g,l'(),t/)

0,p

~ Vo (2, 20, 1) 1 Var (, 20, ')
V- )y - =2 Py g
X ( 23(2’,1’0, ) ‘@1(5,1’0,t’) V23(Z xo,1 )> +z y( )V21(2’x07t/)

Proof. Relation (5.30) can be proved as follows. Using (5.1]) and (5.6]), we
have

Va4, (P2, w0, tp, top) = ‘7211/11 + Vagthy + Vagihy
(1/}2 v m)22 + Vagthy + Va2~ iy

~ _ _ 2 . .
= Vy <W>¢2 + Vagthg + Vaz 2™ Lo

- [V21 (W) + Vao + ‘7235_1¢] V.
(5.35)
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Then using (5.22), we obtain

x tp - _
o(P,z,xo,tp, top) = eXp</ 2_1¢(P,x’,tp)d:17’—|—/ [Vgl(é,:no,t’)
X

0 to,p

> (52 - 2¢1‘(P7 Z’O,t/) - ¢2(P7 .Z'(),t/))

m

Va2, w0, t') + Vag (2, 0, ') L H(P, o, )}dt/>

T t -
- exp(/ 2_1¢(P,x’,tp)da:/+/p [Vgl(i,a:o,t/)

0 to,p

« (2_1y(P) — VQQ(Z,:EQ,t,)
‘/21(273307tl)

> + ‘722(5, xg, t/)

~ - Vgl(z i) )
\% t = VL t
+< 23(’273307 ) V21(Z,330,t/) 23(Z xo, ))
57 L6(P, o, t’)} dt’) , (5.36)
which is (B.31).
Hence

o (P, x, 20, tp, top) 2 (P*, 2, 20, tp, top) 2 (P, 2, 20, tp, top)

oz ly(P) — Vao (2, 20, 1) ~
= (P, ’ t
exp( / o(P, 2 t,)dx’ —I—/O [ Vor Goron?) Vo1 (2, 2o, t")

Voi(, 2o, ')
Vo1 (2, zo, t')

+‘~/22(2, xg, t,)} dt,>

t
X exp( / d(P* 2 t, da:'—i—/p — Vas (2, 20, ¢ )Vgl(z x0,t")

top V21 Z xo,t’)

+(Vaa(2, 0, #) = Vas(Z,20,t) ) 27 9P, 20, )

V21(’Z 330, )
V21(’Z 330, )

+‘~/22(2, X, t/)} dt/>

—|—<‘723(2,l‘0,t/) V23(Z Zo,t )) 1¢( , X0, ¢ )
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t >—1 sk
X exP( / S(P™, 2! t,)da! +/p [Z y(P™) — VolZ, a:o,t)v2l(2 zo,t)

t(),p ‘61(27‘T07t )

V21 (Z To,t )

<V23(Z l‘o,t/) V21(Z o t/)

‘/23(27 Zo, t/)) 2_1¢(P**7 Zo, t/)
+‘~/22(§, o, t,)} dt,>

= exp < /x 2_1[¢(P, 2 ty) + o(P* 2 ty) + ¢(P*, 2 t,)|da’

0

tp ~ ‘721(2 o) t/)
3( Voo (2, o, t') — L Vao(Z, w0,
+/toyp|: ( 22(’273307 ) ‘/21(2 ﬂi‘o,t/) 22(Z7$07 ))
Va1 (2, 20, t')

—1( -
Vs t
+z ( 23(2,1’0, ) ‘/21(2 .Z'(),t/)

Vas(Z, xo, t ))

BP0, 1) + BP0 >+¢<P**,wo,t'>]}dt’)

t t - T/ =~ !
exp(/ (2,27 )d /+/p [3<V22(5,$0,t/)— wvm(i,iﬂoat/))

Z x/ tp) to.p VY21(Z73307t/)

Vgl(z l‘o,t) - , Ergc(z zo, )
—|-<V23 zZ, xo, t' W‘@s(zafﬂoat )) <m>}dt

t
exp< (InE,(2,2',t,))dz’ + ’ at/(lnEr(Z,:Eo,t/))dt’>

to,p
z x, t
E (Z7x07t0717)

Then the relation ([5.33)) is follows from (5.37) and (5.15), that is

V2,2 (P, x,x0,tp,top) X Vo.(P* @, xo,tp, top) X Yo (P, z, 20,1y, top)
= 77 p(P,x, t))ha (P, o, w0, ty, top) X 2 Lo(P*,x,ty)ba(P*, x, 20, tp, top)
x ZT LGP, t,)he (P, 2, w0, ty, to,p)
Fo(Z,z,tp)

= —— " &7 | 5.38
B, (2, 70,%0,) (5.38)

(5.37)

Moreover, using (5.20), we arrive at

T

¢2(P7x7x07tp7t0710) = eXp(/ 2_1
x

0

tp ~
@(P, ﬂj‘,,tp)d$/+/ |:V23(Z $07t) @(P 33‘0, )

to,p
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22 - §¢I(P7 .Z'(),t/) - ¢2(P7 ‘T()at/)
m

z oo F7y(P) — Vao(Z, xo, t
~—1 / / Vou (3 ! y(P) (% 20,¢)
=ex Zo(Pa ty)dx +/ Z, o, Voi(Z
p</x0 ( p) to,p |: 21( 0 )( 21(27‘T07t,) >

Var(, o, )
Vo1 (2, xo, t')

Va1 (3, w0, t’)( ) + Vo (3, o, t')} dt’)

+‘722(27$07t,) + (‘723(2,$0,t/) ‘/23(27$07t,))2_1¢(P7 $07t/):| dt,)

T 2 s _ s 5
— exp(/ (y(P) V21(’Z7$ 7tp) y(P)AT(Z7x 7tp) + BT(’Z7$ 7tp))d$l

0 E,.(Z,2',t,)
tp
- Mz, xo,t")dt' |,
to,p
where
~ 51 (P) — V22(2 fty) t,) ~
M = t/ — V ~ t/ (Z y 9 9 > V ~ t/
(Z7$07 ) 21(Z7$07 ) ‘/21(27:170’75/) + 22(’273307 )

%1(27 Zo, t/)

— = Ve (2 )z to(P ).
‘/21(2,3)0,15/) 23('27:1707 ))Z qb( » L0, )

(5.39)

+ (‘723(27 Zo, t/)

From (5.20)), it is easy to see that

7 ~ %1(2 Zo t,) ~ / 1E7“t’(27x07t/)
Voo (3, 10, ') — 20Ty (5 ,t>:_7—
( (200 t) = e S Ve Eae ) ) = 3
1/~ . Vor(Z,20,t) .. N\ Ero(Z,20,t)
. V , ’t/ _ ) ) V , ’t > y bl ) .
3< 2(%,20,) Vo1 (Z, 20, ') 25(%,20,1) E,(Z, 20,1
(5.40)

Inserting (5:40) into (5.39), we arrive at

Var(Z, o, ')

~ / _ 1 > !
Mo, t) = (Veolo. ) = g2 2

Vas (2, 20, 1)

. 1 E, (2, 20,t) 1 E,v(Z,x0,t)
1 / r,x\~> ) s 9 9
P7 7t - 5 : ~ > - =
% (Z O(P, o, 1) 3 E.(Z,x0,1) 3 E.(Z,x0,t)
- p
bty Yo t) (5.41)

Va1 (2, 2o, t")
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Substituting (5.41]) into the above representation of 12, we have

E.(Z,x,t 1/3
1/}2(P7x7x07tp,t07p) = (M)

ET(Zv Zo, tp)
o J/x (y(fnzvél(g’$ctp)_‘y(fvfh457$ﬁtp)+—%vél(z,xctp)5;(z))dx/
zo Er(gyl',,tp)
(Bt yie
ET(zv Zo, tO,p)

/tp <y(P)2V21(2,3§‘0,t/) B y(P)Ar(é,ﬂj‘o,t/) + %Sr(é)VQI(’g)xO)t/))
X exp =
Er(Zaﬂfoat')

to,p
%1 (27 Zo, t/)

= - _ - Vo1 (2, 20, t'
x (‘@3(27$07t/) - WV%(%%J')) +Z 1y(P)Mdt’>,

Vo1 (2, xo, t')

which implies (534). O

The stationary Dubrovin-type equations in Lemma 3.3 have analogs for
each DP,, flow (indexed by the parameter ¢,), which govern the dynamics of
wi(z,t,) and vj(x,t,) with respect to variations of x and t,. In this context
the stationary case simply corresponds to the special case p = 0 as described
in the following result.

Lemma 5.4 Assume (5.1) — (5.7).

(i) Suppose the zeros {pj(z,tp)}j=1,. r—5 of Ex(Z,x,t,) remain distinct for
(z,t,) € Qu, where Q, C C? is open and connected. Then {u;(z,tp)}j=1. r—5
satisfy the system of differential equations,

(S (3 (2 tp)) + By (it (@, tp))*]Var (1 (2, ) 2, 1)

/‘j,m(x,tp) = - o )
u(w,tp) k:51 (g, tp) — pr(w,tp))
k#j
j=1,...,r=5, (5.42)
:uj,tp(x?tp) = _[Vél(ﬂj(x?tp)vxvtp)%i%(uj(xvtp)vxvtp)

_‘721 (lu’j (:Ev tp)7 €z, tP)V23(Mj (337 tp)7 €z, tp)]

[Sr (s (2, tp)) + 3y (it (@, tp))?]
u(z, tp) %_;51 (ki (z,tp) — (s tp))

j=1,...,r—5, (5.43)
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with tnitial conditions

{ij(zo, top) ti=1,..r—5 € Kr—2, (5.44)

for some fized (xo,t0p) € Qu. The initial value problem [B.43), (544) has a
unique solution satisfying

fi; € C®(QKry), j=1,...,r—5. (5.45)
(ii) Suppose the zeros {v;(x,tp)}j=1,. r—3 of Fr(Z,x,t,) remain distinct

for (z,t,) € Q,, where Q,, C C? is open and connected. Then {vj(z,tp)}j=1,..r—3
satisfy the system of differential equations,

Viae,ty) = vi(e ) (IS5, 1)) + 3y(95(z,1,))?)
X V31(Vj(x7tp)7x7tp) + m(xvtP)JT(Vj(xvtp)vxvtp)>
X ! ’
u($vtp)u%($vtp) Tk_:gl (Vj($vtp) - Vk($vtp))
k#j
j=1,...,r—3, (5.46)
Vi (nty) = 3o, t)? ([SH(ws(e, 1)) + 3y(05 (2. 1,))°)

X ‘/31(’/]'(3;7tp)7x7tp)‘732(yj($vtp)a$atp)
_Vj($7tp)2‘]?(yj($vtp)v$7tp)‘731(yj(x7tp)7x7tp))

1
u(z, tp)uz(z, tp) %_;?;1 (vj(@, tp) — V/Yc(mvtp))7
j=1,....r—3, (5.47)
with initial conditions
{7(@o, top) bi=1,..r—3 € Ky—2, (5.48)

for some fized (xq,top) € Q. The initial value problem (5.47), (5.48]) has a
unique solution satisfying

0; € C®(Q,Kra), j=1,...,7 =3 (5.49)
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Proof. For obvious reasons in suffices to focus on (5.42)) and (543). But
the proof of (5.42) is identical to that in Lemma 3.3. We now prove (5.43]).
From (5.8)), we have

r—5
Ert, (2,2, tp) s (o.,) = —wl@, tp) e, (@, p) | | ((2,1p) — pi(, tp)).
k=1
ks
(5.50)
On the other hand, using (5.20) and (5.42]), one computes
~ = ‘72]_
ET,tp (Za x, tp)|2:uj(x,tp) = Er,x(:uj (337 tp)7 €z, tp) Vos — EVI&)
r—5
= —ulz, tp)pje(@, tp) H (j(z,tp) — pr(z,tp))
k=1
k]
= Va1
X <V23 - EV%)
A ~ \%
= Vel (s, £5)) + 3y 1))?] (Vs — 72 Vi)
Vo
=[S (s, tp)) + Byt (0, 1)) (Va1 Vag — Va1 Vag),
(5.51)

which together with (Z50) yields (B43). O
The analog of Remark 3.4 directly extends to the current time-dependent

setting.

6 Time-dependent algebro-geometric solutions

In the final section, we extend the results of section 4 from the stationary
DP hierarchy to the time-dependent case. In particular, we obtain Rie-
mann theta function representations for the Baker-Akhiezer function, the
meromorphic function ¢ and the algebro-geometric solutions for the DP
hierarchy.

We start with the theta function representation of the meromorphic func-
tion ¢(P,x,t,).

Theorem 6.1 Assume that the curve K,_o is nonsingular. Let P = (Z,y) €
Kr—2\ {Psoy, Po} and let (x,t,), (xo,t0p) € O, where Q, C C? is open and
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connected. Suppose that Du(m ), or equivalently, Dy, 4y is nonspecial for
(x,tp) € Q. Then

.t )0(§(P ,D(2,tp)))0(Z2(Po, fi(, tp)))
P02 (P, 2(w,1)))0(Z(P, i, 1))

P
X exp <e<3><@o> -/ w§;1p0> -
Qo

Proof. The proof of (6] is analogous to the stationary case in Theorem

g3 O

=

O(P,z,ty) =—m
(6.1)

Motivated by (5.30]), we define the meromorphic function I(P, z,t,) on
]CT»_Q X (C2 by

I(Px,t,) = %( — 260 (P, 1) — ¢2(P, 1)) + Vaa(Z, 2, )
» VP
+Va3(Z, )2 p(P, , t,). (6.2)

The asymptotic properties of I4(P, s,t,) are summarized as follows.

Theorem 6.2 Let s =4p + 2, p € Ny, (z,t,) € C2. Then B

s—4

2 -5 : ~ —(s—25—
L(Paty) = 567+ Zoajc CTH X2 +0(3), (63)
¢(=z:"1 asP— Py,
Iy(P, 2, 9) So u(z, to)m'3(z,t0)¢ 2 + O(C?), (6.4)
(=:Y3, asP— R,
where {dj}jzo,...,%‘ € C, and
U
Xo = —— (K2 +2Kokag) — uko,
m
5—2 2—k+47 s+2—k [s+2—k 5—2 s—07 s—0 [s—¢
ngz — m—l Z 19]4‘/2(1[ 1 ]7 1 [ 1 ]) +Zl‘i£‘/2(3 1 L 1 [ 1 ])7 5> 27
k=-2 /=0

the function [-] returns the value of a number rounded downwards to the
nearest integer.

3Here sums with upper limits strictly less than their lower limits are interpreted as

Zero.
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Proof. Treating t, as a parameter, we note that the asymptotic expansions
of ¢(P) near P, and near Py in (A1) and (£0) still apply in the present

time-dependent context. In terms of local coordinate ¢ = 27! near P,

from [@I), (B2) and ([6.2]), we easily get

Vo1(Z, x, t 5 5 ~
L(P,z,ty) = % (22 — 202 (P,x,t0) — ¢*(P, 2, t0)) + Vao(Z, 2, to)
+ %3(2,$,t0)2_1¢(P,33,t0)
_u(w,to) B 2\ 2 1l
= o to) [(1 Kow — Kg) ¢ (K22 + 2/-@0/-@2,:0)} 3C
—u(z, tg)ko + O(C2)
2
=370 0(E),  as P P, (6.5)
where u
X0 = —— (kg + 2Koka4) — UKo,
m
and )
o U (U
KO_Z’ Ho’x_u <u>

Therefore (6.3]) holds for s = 2. For s > 2, recall the definitions of 1721, 1722, 1723
in (B.2]), we may write

V21 V(O 1) 4p + V(l 0) ~4p 2 V2(1171)24;D 4 o+ Vz({’ ,0) 22 _|_ Vz({% )

J

_ZVHJT JH1-[52]) ¢ (4p—27)

— Z {/2137 A= C (4p=2)
%2 — V2(2070)24p+2 + ‘/"2(%70)54])—2 + V2(2270):‘2‘4p—6 + . V(pv ) ,
2 . .
_ z”: (319~ apa-2i)
_ i y D) o api2-25)

%3 — V2(:§)71) ~4]) + V(LO) ~4p—2 + V2(3171)24p 4 + VQ({) 0) + V2(§)7 )

J

—ZV%JT JH1-[52]) ¢ (4p— 2))
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where

‘6(11762):V2(§1752):0 for g1 >p+1, pr1,82 €N,
VP —0 for B >p+1 or By=1, Bi,BaeEN.

Moreover, from {Il), we find

52— 2¢.(P,x,ty) — ¢*(P,x,tp) Z D9;¢H,

with

Therefore, in terms of local coordinate ( = z~

I(P,z,tp,)

]——1
oo

>0 Y (92iCY + 025016 as P Py,
=1

m(x,t
19_2:1—/40@—/{(2):M

Y
u(z,tp)
2j+2
Vo) = —kojya — Kikigjt2—i
i=0

Y241 =0, j € Np.

! near P.,, we obtain

_ %( ~ 26u(Paty) — Pty + V(o)
Va3 (Z, 2t ) _1¢(P z,tp)

s=—1

2p . ) +1 '
+ZV2(2[%]7]_[%])< 4p+2 2] <Z [] 7.7+1 [ 2 })C—(4p—2])>

=0 =0
1 ,
(g me)
7=0
00 27 o . .
N m—l Z ( Z 79kv2(1[2j f+4}’21 4k+4_[21 4k+4]))c_4p+2j
j=— k=—2
ol 1
+ Z V2(2[J2 }7]""1 [Jz ])<—4p+2]
j=—1

ol



2; e+2 (2lh2 g2 l42 )
o (S )

2p—1
= c UPF2) £ N " XTI X + Z Xi¢PTH,(6.6)
3=0 Jj=2p+1
where
2j 2j—k+47 2j—k+4  [2j—k+4 J+1 i+1
— ’ - 5 +1 2
Y :mlzﬁkvm ), 2t (2 1)“/2(2[ Li+1-[234)
k=—2
2] z+2 2j—0+2  [2j—L+2
+Z"WV23 TR e 0<i<op—1, jeN,,
2; k+4 2j—k+4 2; k+4 23 £+2 2j4+2_ 2j—4+2
Xj = m_IZﬁVm o ! “‘Z’fvzzs ! o
k=-2

for j 2 2p, j € Np.

Then inserting (6.6) into (G.I4]) and comparing the coefficients of the same
powers of ¢! (¢ < 0) yields
Xjz=0, for 0<j5<2p—-1, je€N,

Hence, we conclude that

X2p—1 = Y2p—1(tp);

where v;(t,) (j =1,2,...) are integration constants. Next we note that the
coefficients r; (j = 0,1,...) of the power series for ¢(P,xz,t,) in the coordi-
nate ¢ near Pw, are the ratios of two functions closely related to u. Mean-
while, the coefficients of the homogeneous polynomials V;; (i,j = 1,2,3)
are differential polynomials in u. From these considerations it follows that
v; = &; € C. Hence, we obtain (€3]). Finally, (6.4]) follows from (.6) and

62). O

Let wgoll’j, j =4l + 2,1 € Ny, be the Abel differentials of the second
kind normalized by vanishing of all their a-periods

/ wﬁfoll,jzo, k=1,....,r—2
ag
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and holomorphic on ;9 \ {Pso, }, with a pole of order j at Py, ,

) (P)

P (7 +0(1)d¢, as P — Pu,. (6.7)

gio

Furthermore, define the normalized differential of the second kind by

s—4
~ (9 92 ) P} ‘ i )
Q(Po)ol,s-i-l = gsw(Po)ol,s—l—l + Z(S - 2] - 2)ajw(Po)ol7$—2j—3 (68)
7=0
wnd 02 (2
QP(),3 = 2wPo,37 (69)

where s = 4p + 2, p € Ng. Thus, one infers

o2 _ =2 B
/ QPool,s—i-l_O? / Qp(),g—o, k’—l,...,’r’—Z,
ag a,

In addition, we define the vector of b-periods of the differential of the second

1 0@
kind onol’S_H,
~(2) ~(2 ~(2 ~(2 1 (2 .
Ugir = (Us(-i-)l,l? - '7Us(+)1,r—2)7 Us(—l—)l,j = i N 9530)01,5-1-17 J=1...,r=2
’ (6.10)
with s = 4p + 2, p € Ny. Integrating (6.8 and (6.9]) yields
p C .554 C
5?2 _ 2 (2) _2-_2~,/ @
/Qo QP°°1’8+1 ¢—0 38/(0 Pyl i ;(3 ’ )a] o “Popy5-2)-8
s—4
2 (¢ 1 2 ¢ 1
50 gs/co <s+1d<+]z::(3_23 _Z)O‘J/ (5-2-3 ¢
+0(1)
s—4
2oy a e+ é®, @0+ 0(0)
50 3 =~ ]CS_QJ‘_Q s+1\=0 )
as P — Py, (6.11)
and
e @)
/ 0P, = —¢ 24 e82(Qo)+0(C), as P — R, (6.12)
Qo ¢—0
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where égzl(Qo)7é;(),2)(Q0) are constants that arise from evaluating all the
integrals at their lowers limits @)y, and summing accordingly. Combining

©3), (6.4), @II) and (612 yields
tp P
_ _ 5(2) _ =(2)
/ [S(P7 “ T)dT C:O (tp tO,p) <65+1(Q0) /QO QPoopS-i-l)

to,p

t
+/pxs,22(x,7)d7+0(§), as P — Py,, (6.13)

to,p

to to (2) P~(2)
[ nanar = [ (e nmben (€20 - [ 62,))ar
to,0 ¢=0 Jitg,o Qo ’

+0(¢) as P — F. (6.14)

Given these preparations, the theta function representation of 2 (P, z, zo, tp, to p)
reads as follows.

and

=

Theorem 6.3 Assume that the curve KCr_y is nonsingular. Let P = (Z,y) €
Kr—2\ {Psoy» Po} and let (z,tp), (z0,t0p) € Qpu, where Q, C C? is open and
connected. Suppose that Dy(y.1,), or equivalently, Dy, ) is nonspecial for

(x,tp) € Q. Then for s =2

O (&P, plx,t0))) O(Z(Po, fi(20,t0,0)))
Ya(P, z,w0,t0,t00) = 8(2(Po, iz, 10)))IG(P. (0, o)) (6.15)

P
x exp< / 2m'/3 (2!, 1) da’ /Q wg)),?,_eéz)@o)))
o 0

P _ to
+ (to —to,) (éi(’,2)(Q0) — / ng)olﬁ) + / Xo(xo,T)dT)
Qo i

0,0

to 2 P 2
X / <u(x0,7)ml/3(xo,7) <é;(), )(Qo) —/ ano)g>> dr,
t0,0 QO '

= (6.16)

and for s > 2

z
¢2(P7x7x07tp7t0,p) = E

P _ tp
+ (tp —top) <é§2+)1(Q0) _/ ng)o ,5+1> +/ Xs=2 (w0, T)dT |.
Qo ! 2
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Proof. We present only the proof of the time variation here, since the proof
of the space variation is analogous to the stationary case in Theorem [£4]
Let ¢o(P,z,x0,tp,top) be defined as in (B31I)). For s > 2, we denote the
right-hand side of (6.16]) by Y (P, z,zg,tp,top). While s = 2, for our conve-
nience, we also denote the right-hand side of (G.I5]) by W(P,xz,xo,tp,top)-
Temporarily assume that

pi(x,ty) # pr(x,ty), for j #k and (z,t,) € ﬁu cQ,, (6.17)

where ﬁu is open and connected. In order to prove that 1o = ¥, by using

(20) and [(22), we compute

V - ~ ~ __
L(Pa,ty) = 22 =2y = ) + Voo £ VisZ 10
Ve - o T
= V212y722 + Vag + (Vaz — —2 V)3 1
Va1 Va1
- V ~ V ~—1 ‘/21
= (V23—V—V23) ¢+V22—V—V22+ Y.
- Va1 y?Var — yAr + 25, Va1 + 3B, p
N T s
Vo o Vi
Voo — LV Ly
+Vaa Vor 22 + 2 V21
. 1E7’tp e ‘/21 Y ‘/21 - yAT’ + %ST’V21
= gp (= V) o8 )
. Vi
e —
yV21
LB g Ty [2Va@4S)  uValt )
T 3 F By B3 E, E,
1 Vo
+3 7 ly—=. 6.18
YVar (6.18)

Hence,

1 pje 2 e
L(Pat,) = —-tde = Fily | 54
= Mt + O(1), as Z — pj(z,tp). (6.19)
e

More concisely,

Is(P,zo,7) = %ln(i — pj(z0,7)) +O(1) for P near fij(xo,tp). (6.20)
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Therefore

exp (/:p dr (%ln(i — (o, 7)) + O(l)>>

0,p

_ Z— Mj(l'o,tp) O(l)

Z — pj(zo,top)

(2 — pj(20,1p))O(1)  for P near fij(zo,tp) # f1j(x0,t0,p),
=< O(1) for P near fij(xo,tp,) = ftj(zo,t0p), (6.21)

(2 = pj(zo,to,p)) ~'O(1)  for P near jij(wo,top) # f1j(xo0, tp),

where O(1) # 0 in ([G2I). Consequently, all zeros and poles of ¢y and ¥
on KCp_o \ {Px,, Py} are simple and coincident. It remains to identify the
essential singularity of ¥2 and ¥ at P, and Py with respect to the time
variation. By (GI3]) and (6I4]), we see that the singularities in the expo-
nential terms of ¢ and ¥ with respect to the time variation coincide. The
uniqueness result for Baker-Akhiezer functions ([I3] [I5] [16], [I8]) completes
the proof that 1o = ¥ on ﬁu' The extension of this result from (z,t,) € ﬁu
to (w,t,) € €, then simply follows from the continuity of o), and the hy-
pothesis of Dy, ;) being nonspecial for (r,t,) € Q,. O

Remark 6.4 We provided two explicit representations for the Baker-Akhiezer
function 1o in terms of the Riemann theta function, corresponding to the
case s = 2 and s > 2, respectively. By 64), Iy = O((™2), Py is a essen-
tial singularity of ¥y for s = 2. Howewver, for s > 2, I, = O((?) near Py,
and there are no singularities in this case. Thus, we investigated these two
sttuations respectively in Theorem and Theorem [6.3l What we want to
emphasize is that these results will not take any trouble for us to obtain the
solution u(z,t,). We can deal with the two expressions (610 and (G.10)
uniformly. The more details will be given in Theorem [G.0l

The straightening out of the DP flows by the Abel map is contained in
our next result.

Theorem 6.5 Assume that the curve K,_o is nonsingular, and let (x,t,),
(zo,top) € C2 Then for s > 2,

Yol (2)
@Q, (,Dﬂ(wﬂ‘/p)) = 2 (Dﬂ(ro,to,p)) - </ 2m3(x/7tp)d$/> Us

- - 0

~(2)
+ Qs-l—l(tp - tO,p)v (622)
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wl=

aQ, (,DQ(:v,tp)) = 29, (Dﬁ(wo,to,p)) - </ 2m ( )dx> U3
xo
+ 0ty — to,), (6.23)

and for s = 2,

Yo ~(2)
aQ,(Pi ) = QQO(ng,to,o))—( / 2m3(<v’,to)d:n’> Us (6.24)

~ to A~
+ Qgi}l(to t070) + (/ 2u(m0,7)m%($0,7)d7'> Q§2),
to,0
S ~(2)
Qo (Poate) = 2qo(Poaoston) ~ < / 2m3(w',to)dw'> Uy (6.25)
o

_ to N
+ le(to —to,0) + (/ QU(xo,T)m%(xo,T)dT) Qz(’,z)-

Proof. As in the context of Theorem [4.7] it suffices to prove ([6.22]). Tem-
porarily assume that DM(I ¢,) 1s nonspecial for (x,t,) € Q, C C?, where Q,
is open and connected. We introduce the meromorphic differential

0 -
Nz, zo,tp, top) = glan(',x,xo,tp,to,p))dz. (6.26)

From the representation (6.16]), one infers

X 1 ~
Q(m,xo,tp,to,p) = </ 2ms3 (2, ' )d$/> Wgo),?, - (tp - tovp)Qggol,s—irl

r—>5

wug (z0,t0,p),i (z,tp) +w, (6.27)

J=1

where @ denotes a holomorphic differential on K, _o, that is, © = Z;;% ejwj
for some e; € Cand w; (j = 1,...,7—2) denote the normalized holomorphic
differentials (see [@I3])). Since (-, z,zo,tp, top) is single-valued on I, _o,
all a- and b-periods of 2 are integer multiples of 27¢ and hence

2mimy, = / Q(z, zo,tp, top) = / w=er, k=1,...,1r—2, (6.28)
ag ag
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for some my, € Z. Similarly, for some ny € Z,

27Ti7’Lk = / Q($,$0,tp,t07p)

b

x 1 ~
= </ 2m§(a:’,tp)dx/>/ wg?,g — (tp — tOm)/ ng)o s+l

xo bk bk !

r—>5 @) r—2

3 .
N Z/b Wi (wo.t0,p).fis (itp) T 2 Z i /b I
j=1 k Jj=1 k

= 2mi Zm%(x', tp)da:’> U?E%z —2mi(t, — tO,p)ﬁﬁ)M

r—5 0 r—2
Mg (x()vtO,p)
iy [ a2y [
J=1 fij (,tp) j=1 b
T ~
— oni < / zmw,tp)dxf) 02— 2mi(t, — t0,) 02, ¢
xo
r—2
+27TiaQo,k(,DE(gc,tp)) — 271'1'()4@07]{(2)&(%071504))) + 271 Z mjrj,ka
j=1
(6.29)
where we have used the formula
3) Q1
/ wo, Q2=2m’/ W, k=1,...,r—2. (6.30)
by ’ Q2
By symmetry of I' this is equivalent to
RPN /) @
QQ, (,Dﬁ(wﬂ‘/p)) = Qg (,Dg(ro,to,p)) - 2m3 (x 7tp)dx U,
zo
~(2)
+ Ug a1ty — top), (6.31)

for (z,t,) € Q, which leads to ([6.22). Since Dp,p and Dp,, j are linearly
equivalent, that is

AQy(Po) + 2y (Dy(a,t,)) = Agy(FPooi) + g, (Di(at,))»

hence ([6.23) holds. Similarly, one can prove ([6.24) and (G.25). Finally, this
result extends from (z,1,) € Q, to (z,t,) € C? using the continuity of o,
and the fact that positive nonspecial divisors are dense in the space of divi-
sors. [
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Our main result, the theta function representation of time-dependent
algebro-geometric solutions for the DP hierarchy now quickly follows from
the materials prepared above.

Theorem 6.6 Assume that u satisfies the p-th DP equation (2Z14)), that is,
DP,(u) = my, — X, = 0, and the curve K,_o is nonsingular Let (x,t,) €
Q,, where Q, C C? is open and connected. Suppose also that Di(x,t,)s OT
equivalently, Dy(y.1,) is nonspecial for (z,t,) € Q,. Then -

u(x t ) _ u(x ¢ )H(E(PO’E(x()?tO,P)))H(Z(Poo17ﬁ(x7tp)))
”’ 00 G (P, ion to ) )0 G (P, i, 1))

Proof. In the time-dependent context, we will use the same strategy as was
used in Theorem [A.8in the stationary case, treating t, as a parameter. A
closer look at Theorem [6.3] we note that the two expressions of ¥ in (G15)
(p =0,s = 2) and (@I6) (p > 0,s > 2) can be written uniformly as the
following form near P,

(6.32)

o o (00 + 01¢ + 02¢% + O(¢?))
X exp (( / x 2m%<:c’,tp>dw’> (#7(@Quc*+ O<<4>)>
2, T - 1 tp I 4t
X exp ((tp —top) <§C + jZ::O ajm + /tO,p xs%z(azo,tp)dtp)
+0(%), (=7, as P Py, (6.33)

where the terms o; = 04(z,t,) (¢ = 1,2,3) come from the Taylor expansion
about Ps,, of the ratios of the theta functions in (6.I0) (p = 0) or (G.I6)

(p > 0) (see ([£4H)). That is

1
0 (Z(P, ju(x,tp)) o L) ¢+ 20200 - agéz)eo

- 0 2103 P — Py
6 (2(Po, i t,))) <0 01 6y oo T e

with

0o = Oo(z,tp) = O(Z(Pecy, i, tp))) = 0 (5@) — Agy(Pooy) + QQO(DE(x,tp))) ;
01 = 01(,1,) = 0Py, u(x,1,))) = 0 (Eq, — Aoy (P) + 2, (Dycesy) ) -
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and
2)
U(Q) Z U?EJ 0%

Similarly, we have

0 (2P0 pleoto,) [ 0(EPA@E) )
0 - 0 (2(Po, iz, tp))) (@,tp)=(0,t0,p)

& (- Terow))

0
= 9(1] (149, In6y¢ + O(¢?)

9 (ZEo,top)
= 7 1 1 ’
¢—0  BOo(zo,top) 0 Info(, )

({E,tp):(mo 7t0yp)

(SEJP):(Z‘O 7t07P)

+0(¢? > ,
(Z‘,tp):(l‘o,t()’p)g (C )
as P — P, .

Then we will give the Taylor expansion about 1),

0(Z(P, i, tp)))0(Z(Po, f(o, to,p)))
=0 O(Z(Fo, i, tp)))0(Z(P, (0, t0,p)))

xexp< / zmé@f,tp)dx') ( | <Qo><2+0<<4>)>
« exp<( —to,) ( ™ +Z % 352 2] 5 / X ==z (o, p)dt>

+0(c?)

_ |:91(£ t()p
9 ($0,t0p

)
)
X (0yInfy(x,tp)

O(xvtp) + Hl(xo,tom) Ho(x,tp)
1($7tp) 90(33077507;0) 91($7tp)

— 9y Inby(x,t +0(¢?
(@,tp)=(@0,t0.) nbo(e p))C (€ )}

<o (([Camtw. i) (1@ +o(ch) )

0

2 N1 i
X exp ((tp — t07p) (gC 54 Z ajm + / X%(‘TO, t;,)dt;)
=0 fo.p

+0((%). as P — Ps,. (6.34)
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Hence, comparing the same powers of ¢ in ([6.33) and ([G.34) gives
01(zo, tO,p) bo(z, t;D)

oo(z,t , 6.35
o(z, t) Oo(xo,top) O1(x,tp) (6.35)
) = (0,1n60(x,t 0,10 0oz, t
o ty) = (Gelmbolw )| =0 t)
01(x0,t0,p) Oo(x,1tp)
’ . 6.36
Oo(xo,top) O1(x,tp) (6.36)
If we set
ia =, (o0l 1) + @, ty)C 02l )67 + O(C) exp (A) exp (B),
as P — Py,
with

=

exp(d) =ewp ([ "2t ) (17 Qo+ 0ch)

0

and

exp(A) = exp (( —top) ( ¢ +Z ]CS 2] 3 / X s=2 2(5507 t,)dt), ) —l—O(C?)) )

then we can show as (P — Px,)

V2. cio (00@ +01,¢+ O(Cz)) exp (A) ,
7;[)2,xx CjO (JO,mm + O-l,mmc + O(C2)) €xp < ~> s (637)
¢2,xxx Ci(] ( 00,zxx + 01 :c:c:cC + O(C )) exp <A> .

By eliminating ¢ and 3 in (23]), we arrive at
m
+ —¢2 2z — Exwz + o g (6.38)

Substituting (637 into (6:38)) and comparing the coefficients of ¢? yields

mi—2
¢2,mmm =

My
00,z — E(UO,LL‘Z‘ - UO) + 00,2,

namely
(00,00 — 00)a _ Ma _ (w(z, tp) — Uza(@,tp))a

00,2z — 00 m u(z, tp) — Uy (T, tp)
which together with (6.35]) leads to (G.32]). O

)
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