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New global stability estimates for monochromatic
inverse acoustic scattering

M.I. Isaev and R.G. Novikov

Abstract

We give new global stability estimates for monochromatic inverse acous-
tic scattering. These estimates essentially improve estimates of [P. Hahner,
T. Hohage, STAM J. Math. Anal., 33(3), 2001, 670-685] and can be con-
sidered as a solution of an open problem formulated in the aforementioned
work.

1 Introduction
We consider the equation
A +wn(z)p =0, z€R3 w>0, (1.1)
where
(1 —n) € W™(R?) for some m > 3,
Imn(z) >0, z¢€R3 (1.2)
supp (1 — n) C By, for some r; > 0,
where W 1(R3) denotes the standart Sobolev space on R3 (see formula (Z.IT])
of Section 2 for details), B, = {x € R : |z| < r}.
We interpret (IT]) as the stationary acoustic equation at frequency w in an
inhomogeneous medium with refractive index n.

In addition, we consider the Green function G (z,y,w) for the operator
A + w?n(x) with the Sommerfeld radiation condition:

(A + w2n(ac)) Gt (z,y,w) = 8(x —y),
lim || (E(ac w) —iwGt (x w)) =0
|I|*>oo a|1'| 7y’ ’y? b

uniformly for all directions & = z/|z],

(1.3)

x,y€R3, w > 0.

It is know that, under assumptions ([L2)), the function G is uniquely specified

by (L3, see, for example, [9], [6].
We consider, in particular, the following near-field inverse scattering problem

for equation (LI)):

Problem 1.1. Given Gt on 9B, x 0B, for some fixed w > 0 and r > ry, find
non By, .
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We consider also the solutions ¢ (z,k), z € R®, k € R3, k? = w? of
equation (.J]) specified by the following asymptotic condition:

cilklle]

o) ()
] f< M) e\

. .z
as |x| = oo [ uniformly in — |,

VT (z, k) = e — 21

||

with some a priory unknown f.

The function f on M, = {k € R} € R?: k? = [? = w?} arising in (7)) is
the classical scattering amplitude for equation (LTJ).

In addition to Problem 1.1, we consider also the following far-field inverse
scattering problem for equation (ILI):

Problem 1.2. Given f on M, for some fixed w > 0, find n on B,,.

In [4] it was shown that the near-field data of Problem 1.1 are uniquely
determined by the far-field data of Problem 1.2 and vice versa.

Global uniqueness for Problems 1.1 and 1.2 was proved for the first time
in [17]; in addition, this proof is constructive. For more information on recon-
struction methods for Problems 1.1 and 1.2 see [2], [9], [16], [17], [19], [23] and
references therein.

Problems 1.1 and 1.2 can be also considered as examples of ill-posed prob-
lems: see [I5], [5] for an introduction to this theory.

The main results of the present article consist of the following two theorems:

Theorem 1.1. Let C), > 0, r > r1 be fired constants. Then there exists a
positive constant C (depending only on m, w, r1, r and C,,) such that for all
refractive indices ni, ng satysfying |1 — nillwm.1rs), |1 — nallwmi@s) < Cy,
supp (1 — ny),supp (1 — na) C B,,, the following estimate holds:

—s -3
Iy — nallpe@sy < C (I (3+671)) 7, s:m—, (1.5)

where § = ||GT — G5 |lL20B,xo8,) and GY, G3 are the near-field scattering
data for the refractive indices ny, no, respectively, at fized frequency w.

Remark 1.1. We recall that if n1, ny are refractive indices satisfying (I2]), then
GY — G is bounded in L2(0B, x 0B,) for any r > r1, where G and Gj are
the near-field scattering data for the refractive indices n; and ns, respectively,
at fixed frequency w, see, for example, Lemma 2.1 of [9].

Theorem 1.2. Let C,, > 0 and 0 < € < ’"T_3 be fized constants. Then there
exists a positive constant C' (depending only onm, €, w, r1 and Cy, ) such that for
all refractive indices ny, no satysfying ||1 —nq|lwm.1(wsy, |1 = nallwm.1(ws) < Cy,
supp (1 — n1),supp (1 — n2) C By, the following estimate holds:

[In1 = nalLe ®sy < C (In (3 + 571))_8%7 §=—0 (1.6)

where 0 = [|f1 — f2|lL2(m,,) and fi, f2 denote the scattering amplitudes for the
refractive indices n1, na, respectively, at fixed frequency w.



For some regularity dependent s but always smaller than 1 the stability
estimates of Theorems [[.1] and were proved in [9]. Possibility of estimates
([CH), [C8) with s > 1 was formulated in [9] as an open problem, see page 685
of [9]. Our estimates (LF), (LO) with s = ™2 give a solution of this problem.
Apparently, using the methods of [21], [22] estimates ([LH]), (LG) can be proved
for s = m — 3. For more information on stability estimates for Problems 1.1 and
1.2 see [9], [I1], [24] and references therein. In particular, as a corollary of [11]
estimates (ILH), (L6) can not be fulfilled, in general, for s > 22

The proofs of Theorem [[.1] and are given in Section 3. These proofs use,
in particular:

1. Properties of the Faddeev functions for equation (II]) considered as the
Schrédinger equation at fixed energy E = w?, see Section 2.

2. The results of [9] consisting in Lemma B and in reducing (via Lemma
3.2) estimates of the form (6] for Problem 1.2 to estimates of the form
(LH) for Problem 1.1.

In addition in the proofs of Theorem [l and we combine some of the
aforementioned ingredients in a similar way with the proof of stability estimates

of [13].

2 Faddeev functions
We consider (LT)) as the Schrédinger equation at fixed energy E = w?:

— Ay +o(a)p = B, x€R3, (2.1)

where v = w?(1 —n), E = w?.
For equation () we consider the Faddeev functions G, ¢, h (see [7], [8],

[10], [171):

. l&z
G(x, k) = e*®g(z, k), g(z, k) / g ;lié (2.2)
vlak) = e 4 [ Gla = v By, by, (2.3
R3

where x € R3, k€ C3, k2 =FE, Imk # 0,

h(k,1) = (27)~3 / =1 (2) s (z, k) d, (2.4)

R3

where
k1eC? k*=01=E, Imk=1Iml#0. (2.5)

One can consider (Z3)), (24) assuming that

v is a sufficiently regular function on R3 (2.6)
with suffucient decay at infinity. '



For example, in connection with Problems 1.1 and 1.2, one can consider (2.3),
[@4) assuming that

velL>®(B,,), v=0onR*\ B,,. (2.7)
We recall that (see [7], [8], [10], [17]):
e The function G satisfies the equation

(A + E)G(x,k) =6(x), z€R? keC3\R® E=£k% (2.8)

e Formula (Z3) at fixed k is considered as an equation for
¢ = e p(z, k), (2.9)
where p is sought in L°°(R3);
e As a corollary of ([Z3), @2), Z]), ¢ satisfies 1)) for E = k?;

e The Faddeev functions G, ¥, h are (non-analytic) continuation to the
complex domain of functions of the classical scattering theory for the
Schrodinger equation (in particular, h is a generalized 7
plitude).

scattering”’ am-

In addition, G, v, h in their zero energy restriction, that is for £ = k? = 0,
were considered for the first time in [3]. The Faddeev functions G, v, h were,
actually, rediscovered in [3].

Let
Yp={keC® k*=ki+ki+ki=E},
Op={keXp, €3 :Imk=Iml}, (2.10)
k| = (|[Re k|? + |Im k|?)'/2.
Let

W™ (R = {w: 07w € LIR3), |J| <m}, meNUO, ¢>1,
3
ollu(x)
JeNU0?, |J =Y J, 0Tv(z) = ——————,
(NUO0)3, |J] ; () ortondon (211

|[wl[m,q = max ||8Jw||]Lq(]R3)~
<m

171
Let the assumptions of Theorems 1.1 and 1.2 be fulfilled:

(1 —n) € W™H(R?) for some m > 3,
Imn(z) >0, zcR3

(2.12)
supp (1 —n) C By,
11— nllm1 < C.
Let
v=w*1-n), N=u?C, FE=uw’ (2.13)
Then we have that:
wlx, k) =1 as |k — o0 (2.14)



and, for any o > 1,
|p(z, k)| <o for |k] > M (N,m,o,r1), (2.15)

where z € R3, k € Xg;
o(p) = lim h(k,1) for any p € R? (2.16)

(k1) € Op, k—1=p

[Imk| = |Im!l| — oo

C1 (ma Tl)N2

9p) — (kD] < G

for (k,1) € O, p=k—1,

Imk| = |Imil| = p, E+p*>> (N, m,r1), (2.17)
P’ < AE+p?),
where
o(p) = (27r)73/eiva(:c)d:c, p € R (2.18)

R3
Results of the type (2.14]), [2.15) go back to [3]. For more information concerning

[2I5) see estimate (4.11) of [12]. Results of the type (216), 2I7) (with less
precise right-hand side in (ZI7)) go back to [10]. Estimate (ZI7) follows, for

example, from formulas (Z3]), (24) and the estimate

AT g(E)A™ %l L2 (ra) L2 (Re) = O(k|™h)

2.19
as |k| = oo, keC®\R?, (2.19)

for s > 1/2, where g(k) denotes the integral operator with the Schwartz kernel
g(x — y, k) and A denotes the multiplication operator by the function (1 +
|z|?)/2. Estimate 2.I9) was formulated, first, in [14]. This estimate generilizes,
in particular, some related estimate of [25] for k> = E = 0. Concerning proof

of 219), see [20].
In addition, we have that:
ho(k, 1) — hy(k, 1) = (2m) 3 /1/11 (x, =) (v2(x) — vi(x))2(x, k)dx

RS (2.20)
for (k,1) € Op, [Imk| = [Iml| # 0,

and vy, v satisfying (2.6)),
and, under the assumptions of Theorems [T and [[.2]

A ) ca(m, 1) Nllvr —val[L=(s,,)
[01(p) — D2(p) — ha(k,1) + ha(k, )] < (E + p2)1/2

for (k,1) € ©g, p=k—1, [Imk|=|Iml| = p,
E+P2 > )\S(Namarl)’ p2 < 4(E+p2)’

(2.21)

where hj, 1; denote h and ¢ of 24) and 23] for v; = w?(1 —n;), j = 1,2,
N =w?C,, E = w?.
Formula (220) was given in [18], [20]. Estimate (221 was given e.g. in [13].



3 Proofs of Theorem [1.1] and Theorem 1.2

3.1. Preliminaries. In this section we always assume for simplicity that v, = 1.
We consider the operators S;, j = 1,2, defined as follows

S0 = [ Gy 0B, j=12. ()
OB,
Note that . A
[S1 = SallL2om,) < IGT — GF l|L2(9B,)x12(68,)- (3.2)

To prove Theorems 1.1 and 1.2 we use, in particular, the following lemmas (see
Lemma 3.2 and proof of Theorem 1.2 of [9]):

Lemma 3.1. Assume ry =1 < r <ry. Moreover, ny, na are refractive indices
with supp (1 — n1),supp (1 — na) C By. Then, there exists a postive constant c3
(depending only on w, 7, r2) such that for all solutions vy € C%(B,,) NL%(B,,)
to A+ w?n1yp = 0 in By, and all solutions 1y € C?(B,,) NL*(B,,) to Ay +
w?neth = 0 in B,, the following estimate holds:

/(m — na)¥1tpadz| < esl| St — Sallizon 1¥illLaca,)lv2lizs,,)-  (3.3)

1

Note that estimate (3.3]) is derived in [9] using an Alessandrini type identity,
where instead of the Dirichlet-to-Neumann maps the operators Sy, So are used,
see [1], [9].

Lemma 3.2. Letr > =1, w>0,C, >0, u>3/2and 0 < 0 < 1. Let
n1,ng be refractive indices such that ||(1 —n;)|lgurs) < Cyn, supp(l —n;) C By,
j =1,2, where H* = W2, Then there exist positive constants T and 1 such
that

I = folleomn) \
1GF = GF R ops, x0ps,) < 1D (— (—lnT—n” (3.4)

for sufficiently small ||f1 — fallL2(m,,), where G;r, f;j are near and far field
scattering data for n;, j = 1,2, at fized frequency w.

3.2. Proof of Theorem 1.1. Let

Ly (R?) = {u € L*(R?) : [lull, < +o0},

lull = ess sup (1 -+ |p)*[u(p)l, 2> 0. (3:5)
pER3
Note that
we W™ (R?) = b € Li*(R*) N C(R?), 36)
@]l < ca(m)|wllmy  for  p=m, '
where W1, 1.o° are the spaces of (ZI1)), (B.3),
w(p) = (2#)73/eipzw(x)dx, p € R?. (3.7)

R3



Let
N =w?C,, E=w? vj=uw*(1-n;),j=12

Using the inverse Fourier transform formula
w@) = [t e B
R3
we have that
o = vl < sup | [ €77 dalr) — 01(p) | <
rEB; 5
< (k) + Ix(k) forany k>0,

where

I(x) = / (o2 (p) — 01 (p)|dp,

lp|<w

Io(x) = / (82 (p) — 00 (p)dp.

[p|>x

Using (3.8]), we obtain that
[02(p) — 01(p)] < 2ea(m)N(L+[p)™™, peR’.

Using BI1), 312), we find that, for any x > 0,

dt <87TC4(m)N 1
tm=2 = -3 pgm3

+oo
I (k) < 8mea(m)N /

Due to (Z21]), we have that

A R ca(m)Nllvr — va L= (B,)
|’02(p)7vl(p)| S |h2(k7l)7h1(kﬂl)|+ (E+p2)1/2 9

for (k,1) € ©p, p=k—1, |[Imk|=|Iml| = p,
E+p> > X\3(N,m), p* <4(E+p%).

Let
ro be some fixed constant such that ro > 7,

§ =IGT — G5 ll2@8, x08,);

cs = (2m)73 / da.

By,

Combining (2:20), (32), (33) and B.8]), we get that
|h2(k’ﬂl) - hl(k’ﬂl)| <

< ezesw? [ Y1 (-, =) ||lLe(s,,) 0 |02 (-, B)lL=(B,,),
(k,1) € ©p, |Tmk| = [Im] £ 0.

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)



Using ([Z13)), we find that

||1/Jj(-,k)||Loo(BT2) < o exp (|Imkz|r2), j=1,2,

keXp, |k3| > )\1(N,m,0’).

(3.17)

Here and bellow in this section the constant o is the same that in (ZI5]).
Combining (3.16) and (317), we obtain that

|ho (k1) = ha (R, 1)] < cacsw’o? e,
for (k1) € ©p, p= |Imk| = |Iml, (3.18)
E+p*> > X(N,m,o0).

Using (314), BI8), we get that

2(m)N|lv1 — vallLe(By)
(E + p?)t/2 ’ (3.19)
peR3 pP< 4(E + p2), E+p*> max{)\%,)\g}.

¢
|02(p) — D1(p)| < czeswo?e®26 +

Let
5 1/3
=(—— 3.20
c (8#02(m)N> (3:20)
and Ay(N,m, o) > 0 be such that
E+p* > M(N,m,0),
2
E+p? > M(N,m,o) = { E+p722(N,m), (3.21)
N2
(E(E + p2)5) < 4(E + p?).
Using (B.11)), (319), we get that

4
ILi(k) < 57m3 (03056020'262PT25 +

c2(m)N|lvg — 02||1L°°(Bl))
(E + p?)1/2 ’
k>0, K2 <4(F +p?),
E+p? > M\(N,m,0).

Combining (310), BI3), B22) for k = £(E + p?)s and B2I), we get that

||’U1 - 'U2||]L°°(Bl) < C6(N,m,w,a)\/m€2m“25+

m

_: 1
+C7(N, m)(E + p2)— —3 + 5”1}1 — ’Ug”Lao(Bl), (3.23)

(3.22)

E+p? > M\(N,m,0).

Let 7 € (0,1) and

B = , p=Blm(3+467"), (3.24)
2



where § is so small that E+ p? > A\y(N,m, o). Then due to ([3:23)), we have that

1
vt = vl (py <

< (N, m,w, o) ( ﬁln 3—i—(5_1))2

+c7(N,m)

)

(Bl (3+671))7) = (3.25)
)
(

(2+
=cg(N,m,w, o) ( ﬁln 3+571))2
+

where 7, 8 and § are the same as in ([3.24)).
Using ([B.28]), we obtain that

_m=3
lvr = v2lLee(m,) < cg(N,m,w,0,T) (ln (3 + (5_1)) 3 (3.26)

for § = ||G — G;HM(BBTX@BT) < 51 (N,m,w,o,7), where d; is a sufficiently
small positive constant. Estimate ([B.26]) in the general case (with modified cg)
follows from B26) for § < §1 (N, m,w, o, 7) and the property that

llvjllLee(B,) < co(m)N, j=1,2. (3.27)

Taking into account (3.8)), we obtain (3.
3.2. Proof of Theorem 1.2. According to the Sobolev embedding theorem, we
have that

WmHR3) c H™3/2(R?), (3.28)

where HV = W2,
Combining ([2), (LX), B4) with 0 satisfying 753 = =3 — ¢, and ([B2J),

we obtain (L6) for sufficiently small || f1 — fa|[L2(a4,,) (analogously with the proof
of Theorem 1.2 of [9]). Using also (8:27) and (B:8)), we get estimate (6] in the
general case.
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