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New global stability estimates for monochromatic

inverse acoustic scattering

M.I. Isaev and R.G. Novikov

Abstract

We give new global stability estimates for monochromatic inverse acous-
tic scattering. These estimates essentially improve estimates of [P. Hähner,
T. Hohage, SIAM J. Math. Anal., 33(3), 2001, 670-685] and can be con-
sidered as a solution of an open problem formulated in the aforementioned
work.

1 Introduction

We consider the equation

∆ψ + ω2n(x)ψ = 0, x ∈ R
3, ω > 0, (1.1)

where
(1− n) ∈ W

m,1(R3) for some m > 3,

Imn(x) ≥ 0, x ∈ R
3,

supp (1− n) ⊂ Br1 for some r1 > 0,

(1.2)

where Wm,1(R3) denotes the standart Sobolev space on R3 (see formula (2.11)
of Section 2 for details), Br = {x ∈ R3 : |x| < r}.

We interpret (1.1) as the stationary acoustic equation at frequency ω in an
inhomogeneous medium with refractive index n.

In addition, we consider the Green function G+(x, y, ω) for the operator
∆ + ω2n(x) with the Sommerfeld radiation condition:

(

∆+ ω2n(x)
)

G+(x, y, ω) = δ(x− y),

lim
|x|→∞

|x|

(

∂G+

∂|x|
(x, y, ω)− iωG+(x, y, ω)

)

= 0,

uniformly for all directions x̂ = x/|x|,

x, y ∈ R
3, ω > 0.

(1.3)

It is know that, under assumptions (1.2), the function G+ is uniquely specified
by (1.3), see, for example, [9], [6].

We consider, in particular, the following near-field inverse scattering problem
for equation (1.1):

Problem 1.1. Given G+ on ∂Br × ∂Br for some fixed ω > 0 and r > r1, find
n on Br1 .
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We consider also the solutions ψ+(x, k), x ∈ R3, k ∈ R3, k2 = ω2, of
equation (1.1) specified by the following asymptotic condition:

ψ+(x, k) = eikx − 2π2 e
i|k||x|

|x|
f

(

k, |k|
x

|x|

)

+ o

(

1

|x|

)

as |x| → ∞

(

uniformly in
x

|x|

)

,

(1.4)

with some a priory unknown f .
The function f on Mω = {k ∈ R3, l ∈ R3 : k2 = l2 = ω2} arising in (1.4) is

the classical scattering amplitude for equation (1.1).
In addition to Problem 1.1, we consider also the following far-field inverse

scattering problem for equation (1.1):

Problem 1.2. Given f on Mω for some fixed ω > 0, find n on Br1 .

In [4] it was shown that the near-field data of Problem 1.1 are uniquely
determined by the far-field data of Problem 1.2 and vice versa.

Global uniqueness for Problems 1.1 and 1.2 was proved for the first time
in [17]; in addition, this proof is constructive. For more information on recon-
struction methods for Problems 1.1 and 1.2 see [2], [9], [16], [17], [19], [23] and
references therein.

Problems 1.1 and 1.2 can be also considered as examples of ill-posed prob-
lems: see [15], [5] for an introduction to this theory.

The main results of the present article consist of the following two theorems:

Theorem 1.1. Let Cn > 0, r > r1 be fixed constants. Then there exists a
positive constant C (depending only on m, ω, r1, r and Cn) such that for all
refractive indices n1, n2 satysfying ‖1 − n1‖Wm,1(R3), ‖1 − n2‖Wm,1(R3) < Cn,
supp (1− n1), supp (1 − n2) ⊂ Br1 , the following estimate holds:

||n1 − n2||L∞(R3) ≤ C
(

ln
(

3 + δ−1
))−s

, s =
m− 3

3
, (1.5)

where δ = ||G+
1 − G+

2 ||L2(∂Br×∂Br) and G+
1 , G

+
2 are the near-field scattering

data for the refractive indices n1, n2, respectively, at fixed frequency ω.

Remark 1.1. We recall that if n1, n2 are refractive indices satisfying (1.2), then
G+

1 − G+
2 is bounded in L2(∂Br × ∂Br) for any r > r1, where G

+
1 and G+

2 are
the near-field scattering data for the refractive indices n1 and n2, respectively,
at fixed frequency ω, see, for example, Lemma 2.1 of [9].

Theorem 1.2. Let Cn > 0 and 0 < ǫ < m−3
3 be fixed constants. Then there

exists a positive constant C (depending only on m, ǫ, ω, r1 and Cn) such that for
all refractive indices n1, n2 satysfying ‖1−n1‖Wm,1(R3), ‖1−n2‖Wm,1(R3) < Cn,
supp (1− n1), supp (1 − n2) ⊂ Br1 , the following estimate holds:

||n1 − n2||L∞(R3) ≤ C
(

ln
(

3 + δ−1
))−s+ǫ

, s =
m− 3

3
, (1.6)

where δ = ||f1 − f2||L2(Mω) and f1, f2 denote the scattering amplitudes for the
refractive indices n1, n2, respectively, at fixed frequency ω.
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For some regularity dependent s but always smaller than 1 the stability
estimates of Theorems 1.1 and 1.2 were proved in [9]. Possibility of estimates
(1.5), (1.6) with s > 1 was formulated in [9] as an open problem, see page 685
of [9]. Our estimates (1.5), (1.6) with s = m−3

3 give a solution of this problem.
Apparently, using the methods of [21], [22] estimates (1.5), (1.6) can be proved
for s = m−3. For more information on stability estimates for Problems 1.1 and
1.2 see [9], [11], [24] and references therein. In particular, as a corollary of [11]
estimates (1.5), (1.6) can not be fulfilled, in general, for s > 5m

3 .
The proofs of Theorem 1.1 and 1.2 are given in Section 3. These proofs use,

in particular:

1. Properties of the Faddeev functions for equation (1.1) considered as the
Schrödinger equation at fixed energy E = ω2, see Section 2.

2. The results of [9] consisting in Lemma 3.1 and in reducing (via Lemma
3.2) estimates of the form (1.6) for Problem 1.2 to estimates of the form
(1.5) for Problem 1.1.

In addition in the proofs of Theorem 1.1 and 1.2 we combine some of the
aforementioned ingredients in a similar way with the proof of stability estimates
of [13].

2 Faddeev functions

We consider (1.1) as the Schrödinger equation at fixed energy E = ω2:

−∆ψ + v(x)ψ = Eψ, x ∈ R
3, (2.1)

where v = ω2(1− n), E = ω2.
For equation (2.1) we consider the Faddeev functions G, ψ, h (see [7], [8],

[10], [17]):

G(x, k) = eikxg(x, k), g(x, k) = −(2π)−3

∫

R3

eiξxdξ

ξ2 + 2kξ
, (2.2)

ψ(x, k) = eikx +

∫

R3

G(x− y, k)v(y)ψ(y, k)dy, (2.3)

where x ∈ R3, k ∈ C3, k2 = E, Im k 6= 0,

h(k, l) = (2π)−3

∫

R3

e−ilxv(x)ψ(x, k)dx, (2.4)

where
k, l ∈ C

3, k2 = l2 = E, Im k = Im l 6= 0. (2.5)

One can consider (2.3), (2.4) assuming that

v is a sufficiently regular function on R
3

with suffucient decay at infinity.
(2.6)
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For example, in connection with Problems 1.1 and 1.2, one can consider (2.3),
(2.4) assuming that

v ∈ L
∞(Br1), v ≡ 0 on R

3 \Br1 . (2.7)

We recall that (see [7], [8], [10], [17]):

• The function G satisfies the equation

(∆ + E)G(x, k) = δ(x), x ∈ R
3, k ∈ C

3 \ R3, E = k2; (2.8)

• Formula (2.3) at fixed k is considered as an equation for

ψ = eikxµ(x, k), (2.9)

where µ is sought in L∞(R3);

• As a corollary of (2.3), (2.2), (2.8), ψ satisfies (2.1) for E = k2;

• The Faddeev functions G, ψ, h are (non-analytic) continuation to the
complex domain of functions of the classical scattering theory for the
Schrödinger equation (in particular, h is a generalized ”‘scattering”’ am-
plitude).

In addition, G, ψ, h in their zero energy restriction, that is for E = k2 = 0,
were considered for the first time in [3]. The Faddeev functions G, ψ, h were,
actually, rediscovered in [3].

Let
ΣE =

{

k ∈ C
3 : k2 = k21 + k22 + k23 = E

}

,

ΘE = {k ∈ ΣE , l ∈ ΣE : Im k = Im l} ,

|k| = (|Re k|2 + |Im k|2)1/2.

(2.10)

Let

W
m,q(R3) = {w : ∂Jw ∈ L

q(R3), |J | ≤ m}, m ∈ N ∪ 0, q ≥ 1,

J ∈ (N ∪ 0)3, |J | =

3
∑

i=1

Ji, ∂
Jv(x) =

∂|J|v(x)

∂xJ1

1 ∂x
J2

2 ∂x
J3

3

,

||w||m,q = max
|J|≤m

||∂Jw||Lq(R3).

(2.11)

Let the assumptions of Theorems 1.1 and 1.2 be fulfilled:

(1− n) ∈ W
m,1(R3) for some m > 3,

Imn(x) ≥ 0, x ∈ R
3,

supp (1− n) ⊂ Br1 ,

‖1− n‖m,1 ≤ Cn.

(2.12)

Let
v = ω2(1− n), N = ω2Cn, E = ω2. (2.13)

Then we have that:
µ(x, k) → 1 as |k| → ∞ (2.14)
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and, for any σ > 1,

|µ(x, k)| ≤ σ for |k| ≥ λ1(N,m, σ, r1), (2.15)

where x ∈ R3, k ∈ ΣE ;

v̂(p) = lim
(k, l) ∈ ΘE , k − l = p
|Imk| = |Im l| → ∞

h(k, l) for any p ∈ R
3, (2.16)

|v̂(p)− h(k, l)| ≤
c1(m, r1)N

2

(E + ρ2)1/2
for (k, l) ∈ ΘE, p = k − l,

|Im k| = |Im l| = ρ, E + ρ2 ≥ λ2(N,m, r1),

p2 ≤ 4(E + ρ2),

(2.17)

where

v̂(p) = (2π)−3

∫

R3

eipxv(x)dx, p ∈ R
3. (2.18)

Results of the type (2.14), (2.15) go back to [3]. For more information concerning
(2.15) see estimate (4.11) of [12]. Results of the type (2.16), (2.17) (with less
precise right-hand side in (2.17)) go back to [10]. Estimate (2.17) follows, for
example, from formulas (2.3), (2.4) and the estimate

‖Λ−sg(k)Λ−s‖L2(Rd)→L2(Rd) = O(|k|−1)

as |k| → ∞, k ∈ C
3 \ R3,

(2.19)

for s > 1/2, where g(k) denotes the integral operator with the Schwartz kernel
g(x − y, k) and Λ denotes the multiplication operator by the function (1 +
|x|2)1/2. Estimate (2.19) was formulated, first, in [14]. This estimate generilizes,
in particular, some related estimate of [25] for k2 = E = 0. Concerning proof
of (2.19), see [26].

In addition, we have that:

h2(k, l)− h1(k, l) = (2π)−3

∫

R3

ψ1(x,−l)(v2(x) − v1(x))ψ2(x, k)dx

for (k, l) ∈ ΘE, |Im k| = |Im l| 6= 0,

and v1, v2 satisfying (2.6),

(2.20)

and, under the assumptions of Theorems 1.1 and 1.2,

|v̂1(p)− v̂2(p)− h1(k, l) + h2(k, l)| ≤
c2(m, r1)N‖v1 − v2‖L∞(Br1

)

(E + ρ2)1/2

for (k, l) ∈ ΘE, p = k − l, |Im k| = |Im l| = ρ,

E + ρ2 ≥ λ3(N,m, r1), p2 ≤ 4(E + ρ2),

(2.21)

where hj , ψj denote h and ψ of (2.4) and (2.3) for vj = ω2(1 − nj), j = 1, 2,
N = ω2Cn, E = ω2.

Formula (2.20) was given in [18], [20]. Estimate (2.21) was given e.g. in [13].
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3 Proofs of Theorem 1.1 and Theorem 1.2

3.1. Preliminaries. In this section we always assume for simplicity that r1 = 1.
We consider the operators Ŝj , j = 1, 2, defined as follows

(Ŝjφ)(x) =

∫

∂Br

G+
j (x, y, ω)φ(y)dy, x ∈ ∂Br, j = 1, 2. (3.1)

Note that
‖Ŝ1 − Ŝ2‖L2(∂Br) ≤ ‖G+

1 −G+
2 ‖L2(∂Br)×L2(∂Br). (3.2)

To prove Theorems 1.1 and 1.2 we use, in particular, the following lemmas (see
Lemma 3.2 and proof of Theorem 1.2 of [9]):

Lemma 3.1. Assume r1 = 1 < r < r2. Moreover, n1, n2 are refractive indices
with supp (1− n1), supp (1− n2) ⊂ B1. Then, there exists a postive constant c3
(depending only on ω, r, r2) such that for all solutions ψ1 ∈ C2(Br2)∩L2(Br2)
to ∆ψ + ω2n1ψ = 0 in Br2 and all solutions ψ2 ∈ C2(Br2) ∩ L

2(Br2) to ∆ψ +
ω2n2ψ = 0 in Br2 the following estimate holds:

∣

∣

∣

∣

∣

∣

∫

B1

(n1 − n2)ψ1ψ2dx

∣

∣

∣

∣

∣

∣

≤ c3‖Ŝ1 − Ŝ2‖L2(∂Br)‖ψ1‖L2(Br2
)‖ψ2‖L2(Br2

). (3.3)

Note that estimate (3.3) is derived in [9] using an Alessandrini type identity,
where instead of the Dirichlet-to-Neumann maps the operators Ŝ1, Ŝ2 are used,
see [1], [9].

Lemma 3.2. Let r > r1 = 1, ω > 0, Cn > 0, µ > 3/2 and 0 < θ < 1. Let
n1, n2 be refractive indices such that ‖(1−nj)‖Hµ(R3) ≤ Cn, supp(1−nj) ⊂ B1,
j = 1, 2, where Hµ = Wµ,2. Then there exist positive constants T and η such
that

‖G+
1 −G+

2 ‖
2
L2(∂B2r×∂B2r)

≤ η2 exp

(

−

(

− ln
‖f1 − f2‖L2(Mω)

Tη

)θ
)

(3.4)

for sufficiently small ‖f1 − f2‖L2(Mω), where G+
j , fj are near and far field

scattering data for nj, j = 1, 2, at fixed frequency ω.

3.2. Proof of Theorem 1.1. Let

L
∞
µ (R3) = {u ∈ L

∞(R3) : ‖u‖µ < +∞},

‖u‖µ = ess sup
p∈R3

(1 + |p|)µ|u(p)|, µ > 0. (3.5)

Note that
w ∈ W

m,1(R3) =⇒ ŵ ∈ L
∞
µ (R3) ∩ C(R3),

‖ŵ‖µ ≤ c4(m)‖w‖m,1 for µ = m,
(3.6)

where Wm,1, L∞
µ are the spaces of (2.11), (3.5),

ŵ(p) = (2π)−3

∫

R3

eipxw(x)dx, p ∈ R
3. (3.7)
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Let
N = ω2Cn, E = ω2, vj = ω2(1− nj), j = 1, 2. (3.8)

Using the inverse Fourier transform formula

w(x) =

∫

R3

e−ipxŵ(p)dp, x ∈ R
3, (3.9)

we have that

‖v1 − v2‖L∞(D) ≤ sup
x∈B̄1

∣

∣

∣

∣

∣

∣

∫

R3

e−ipx (v̂2(p)− v̂1(p)) dp

∣

∣

∣

∣

∣

∣

≤

≤ I1(κ) + I2(κ) for any κ > 0,

(3.10)

where

I1(κ) =

∫

|p|≤κ

|v̂2(p)− v̂1(p)|dp,

I2(κ) =

∫

|p|≥κ

|v̂2(p)− v̂1(p)|dp.

(3.11)

Using (3.6), we obtain that

|v̂2(p)− v̂1(p)| ≤ 2c4(m)N(1 + |p|)−m, p ∈ R
3. (3.12)

Using (3.11), (3.12), we find that, for any κ > 0,

I2(κ) ≤ 8πc4(m)N

+∞
∫

κ

dt

tm−2
≤

8πc4(m)N

m− 3

1

κm−3
. (3.13)

Due to (2.21), we have that

|v̂2(p)− v̂1(p)| ≤ |h2(k, l)− h1(k, l)|+
c2(m)N‖v1 − v2‖L∞(B1)

(E + ρ2)1/2
,

for (k, l) ∈ ΘE, p = k − l, |Im k| = |Im l| = ρ,

E + ρ2 ≥ λ3(N,m), p2 ≤ 4(E + ρ2).

(3.14)

Let
r2 be some fixed constant such that r2 > r,

δ = ||G+
1 −G+

2 ||L2(∂Br×∂Br),

c5 = (2π)−3

∫

Br2

dx.
(3.15)

Combining (2.20), (3.2), (3.3) and (3.8), we get that

|h2(k, l)− h1(k, l)| ≤

≤ c3c5ω
2‖ψ1(·,−l)‖L∞(Br2

) δ ‖ψ2(·, k)‖L∞(Br2
),

(k, l) ∈ ΘE , |Im k| = |Im l| 6= 0.

(3.16)
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Using (2.15), we find that

‖ψj(·, k)‖L∞(Br2
) ≤ σ exp

(

|Im k|r2

)

, j = 1, 2,

k ∈ ΣE , |k| ≥ λ1(N,m, σ).

(3.17)

Here and bellow in this section the constant σ is the same that in (2.15).
Combining (3.16) and (3.17), we obtain that

|h2(k, l)− h1(k, l)| ≤ c3c5ω
2σ2e2ρr2δ,

for (k, l) ∈ ΘE , ρ = |Im k| = |Im l|,

E + ρ2 ≥ λ21(N,m, σ).

(3.18)

Using (3.14), (3.18), we get that

|v̂2(p)− v̂1(p)| ≤ c3c5ω
2σ2e2ρr2δ +

c2(m)N‖v1 − v2‖L∞(B1)

(E + ρ2)1/2
,

p ∈ R
3, p2 ≤ 4(E + ρ2), E + ρ2 ≥ max{λ21, λ3}.

(3.19)

Let

ε =

(

3

8πc2(m)N

)1/3

(3.20)

and λ4(N,m, σ) > 0 be such that

E + ρ2 ≥ λ4(N,m, σ) =⇒















E + ρ2 ≥ λ21(N,m, σ),

E + ρ2 ≥ λ3(N,m),
(

ε(E + ρ2)
1

6

)2

≤ 4(E + ρ2).

(3.21)

Using (3.11), (3.19), we get that

I1(κ) ≤
4

3
πκ3

(

c3c5ω
2σ2e2ρr2δ +

c2(m)N‖v1 − v2‖L∞(B1)

(E + ρ2)1/2

)

,

κ > 0, κ2 ≤ 4(E + ρ2),

E + ρ2 ≥ λ4(N,m, σ).

(3.22)

Combining (3.10), (3.13), (3.22) for κ = ε(E + ρ2)
1

6 and (3.21), we get that

‖v1 − v2‖L∞(B1) ≤ c6(N,m, ω, σ)
√

E + ρ2 e2ρr2δ+

+c7(N,m)(E + ρ2)−
m−3

6 +
1

2
‖v1 − v2‖L∞(B1),

E + ρ2 ≥ λ4(N,m, σ).

(3.23)

Let τ ∈ (0, 1) and

β =
1− τ

2r2
, ρ = β ln

(

3 + δ−1
)

, (3.24)
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where δ is so small that E+ρ2 ≥ λ4(N,m, σ). Then due to (3.23), we have that

1

2
‖v1 − v2‖L∞(D) ≤

≤ c6(N,m, ω, σ)
(

E +
(

β ln
(

3 + δ−1
))2
)1/2

(

3 + δ−1
)2βr2

δ+

+c7(N,m)
(

E +
(

β ln
(

3 + δ−1
))2
)−m−3

6

=

= c6(N,m, ω, σ)
(

E +
(

β ln
(

3 + δ−1
))2
)1/2

(1 + 3δ)
1−τ

δτ+

+ c7(N,m)
(

E +
(

β ln
(

3 + δ−1
))2
)−m−3

6

,

(3.25)

where τ, β and δ are the same as in (3.24).
Using (3.25), we obtain that

‖v1 − v2‖L∞(B1) ≤ c8(N,m, ω, σ, τ)
(

ln
(

3 + δ−1
))−m−3

3 (3.26)

for δ = ||G+
1 − G+

2 ||L2(∂Br×∂Br) ≤ δ1(N,m, ω, σ, τ), where δ1 is a sufficiently
small positive constant. Estimate (3.26) in the general case (with modified c8)
follows from (3.26) for δ ≤ δ1(N,m, ω, σ, τ) and the property that

‖vj‖L∞(B1) ≤ c9(m)N, j = 1, 2. (3.27)

Taking into account (3.8), we obtain (1.5).
3.2. Proof of Theorem 1.2. According to the Sobolev embedding theorem, we
have that

W
m,1(R3) ⊂ H

m−3/2(R3), (3.28)

where Hµ = Wµ,2.
Combining (1.2), (1.5), (3.4) with θ satisfying θm−3

3 = m−3
3 − ǫ, and (3.28),

we obtain (1.6) for sufficiently small ‖f1−f2‖L2(Mω) (analogously with the proof
of Theorem 1.2 of [9]). Using also (3.27) and (3.8), we get estimate (1.6) in the
general case.
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