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STOCHASTIC MODEL AND GENERATOR FOR RANDOM FIELDS
WITH SYMMETRY PROPERTIES: APPLICATION TO THE
MESOSCOPIC MODELING OF ELASTIC RANDOM MEDIA∗

J. GUILLEMINOT AND C. SOIZE†

Abstract. This paper is concerned with the construction of a new class of generalized non-
parametric probabilistic models for matrix-valued non-Gaussian random fields. More specifically,
we consider the case where the random field may take its values in some subset of the set of real
symmetric positive-definite matrices presenting sparsity and invariance with respect to given orthog-
onal transformations. Within the context of linear elasticity, this situation is typically faced in the
multiscale analysis of heterogeneous microstructures, where the constitutive elasticity matrices may
exhibit some material symmetry properties and may then belong to a given subset Msym

n (R) of the
set of symmetric positive-definite real matrices. First of all, we present an overall methodology re-
lying on the framework of information theory and define a particular algebraic form for the random
field. The representation involves two independent sources of uncertainties, namely one preserving
almost surely the topological structure in Msym

n (R) and the other one acting as a fully anisotropic
stochastic germ. Such a parametrization does offer some flexibility for forward simulations and in-
verse identification by uncoupling the level of statistical fluctuations of the random field and the level
of fluctuations associated with a stochastic measure of anisotropy. A novel numerical strategy for
random generation is subsequently proposed and consists in solving a family of Itô stochastic differ-
ential equations. The algorithm turns out to be very efficient when the stochastic dimension increases
and allows for the preservation of the statistical dependence between the components of the simu-
lated random variables. A Störmer-Verlet algorithm is used for the discretization of the stochastic
differential equation. The approach is finally exemplified by considering the class of almost isotropic
random tensors.

Key words. Random field, Elasticity tensors, Itô stochastic differential equation, Material
symmetry, Maximum Entropy principle, Probabilistic model, Random matrix, Verlet scheme.
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1. Introduction. This paper is concerned with the construction of a class of
generalized nonparametric probabilistic models for matrix-valued non-Gaussian ran-
dom fields. More specifically, we consider the case where the random field, denoted by
{[C(x)],x ∈ Ω} and indexed by an open bounded domain Ω, may take its values in
some subset of the set M+

n (R) of all the symmetric positive-definite (n×n) real matri-
ces presenting invariance with respect to given orthogonal transformations (without
loss of generality, we may assume that n = 3 or n = 6 hereinafter). Specifically, such
an invariance property is stated as

∀x ∈ Ω, [C(x)] = [Q][C(x)][Q]T, (1.1)

in which [Q] is a deterministic (n × n) real matrix that belongs to a given subspace
of the special orthogonal group SO(n′,R) (which is the group of all the orthogonal
(n′ × n′) real matrices with unit determinant), with n′ = 2 (resp. n′ = 3) for n = 3
(resp. n = 6).

In linear elasticity, the random field {[C(x)],x ∈ Ω} may naturally be identi-
fied with the random field of apparent properties exhibited by random heterogeneous
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microstructures [36]. The consideration of such a random field is of particular inter-
est whenever the underlying microstructure cannot be properly described and recon-
structed in a computational framework (this may be the case for biological tissues
which often require a hierarchical random morphology to be defined, for instance),
or when the usual assumptions of homogenization theories (e.g. scale separation) are
not met. The invariance property defined by Eq. (1.1) then gives rise to sparsity and
well-known algebraic relationships between some components of the tensor [C(x)] [31].
Historically, the characterization of such a random field has been quite extensively ad-
dressed by first modeling some morphological parameters of the microstructure (such
as the size distribution of the heterogeneities, a n-points correlation function describ-
ing the spatial distribution of the inclusions and so on; see [41] and [56] for thorough
introductions to the field of random microstructure simulations) and then, by pro-
ceeding to a hierarchical upscaling towards a coarsest scale (note we do not discuss
below the use of multi-scale algorithms and we refer the reader to [60] and the ref-
erences therein for a survey, among others; see also [4]). When the latter turns out
to be (much) smaller than the macroscale - in the usual sense of micromechanics -,
one ends up with (realizations of) mesoscale random fields, the definition of which is
therefore based upon propagating parameter randomness from one scale to another
one. This kind of approach has been successfully applied in the 90’s in linear elasticity
[34] [35] and was fruitfully revisited since then by using more advanced representation
techniques (such as Karhunen-Loève and polynomial chaos expansions) and stochastic
solvers (such as the XFEM method [23] and its extension to the stochastic framework
- referred to as the XSFEM method [33]- when random geometries are involved),
both in the linear [62] [55] and non-linear frameworks [1] [8] [13]. While theoretically
appealing, such morphological methods have two important limitations. First of all,
they intrinsically depend on the parametric probabilistic description at the microscale,
which is intractable in most practical situations unless oversimplifying assumptions
are made. Indeed, digitalized experimental realizations of random microstructures
are often available in a too small amount and over too small domains to reasonably
(i.e. at a sufficiently large level of convergence) identify random fields of morpho-
logical characteristics. Besides this consideration, it is worth mentioning that such
parametric approaches do not allow the model uncertainties, induced by the choice of
the upscaling scheme and its parameters (such as the prescribed boundary conditions;
see [24] in elastostatics) for instance, to be accounted for. As far as predictive forward
simulations and robust inverse identification are concerned, alternative strategies may
then be investigated. In particular, model uncertainties may be also considered by
having recourse to the so-called non-parametric framework that has been introduced
to take into account both system-parameters and model uncertainties in structural
dynamics [45] [46]. Instead of constructing probabilistic models on some microscopic
random fields, the approach subsequently involves the definition of probability distri-
butions for mesoscale random fields. It is typically devoted to inverse identification
using a limited amount of experimental data (see e.g. [18] [50] for computational
examples) and can be used for characterizing the convergence towards the effective
properties as the size of the mesoscopic volume increases [49]. The probability distri-
butions are then defined by invoking the information theory introduced by Shannon
[42] and more specifically, by combining the theory of random matrices [32] with the
maximum entropy (MaxEnt) principle [25] introduced by Jaynes in 1957 [5]1. As the

1In this work, we consider Shannon’s differential entropy for continuous distributions, as opposed
to the invariant information measure defined later by Jaynes [26]. This choice is motivated by the
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latter requires the definition of some information available on the modeled quantity,
the probabilistic models thus constructed are typically referred to as prior proba-
bilistic models. Indeed, the selection of available information defining the constraints
integrated in the MaxEnt formulation is a cornerstone of the method, for it aims
at ensuring both the mathematical and the physical consistency of the derivations.
Undoubtedly, such a process of selection may introduce some discrepancy between
the physical random fields and their modeled counterparts. It is also worth notic-
ing that the class thus constructed may be (much) smaller than the class of all the
non-Gaussian tensor-valued random fields. Such a drawback may be circumvented
in part by combining polynomial chaos representations [61] (see also [12] and [52])
and the prior model (see [50] for the methodology and [51] for the use of Bayesian
posteriors on chaos expansion with random coefficients [2]), which seems to be one the
most promising way to describe multiscale physical properties from experiments to
simulations. Finally, it should be noticed for completeness that chaos representations
could have been used for modeling the mesoscale random tensor random field as well
(that is, without being coupled with a prior algebraic representation). Such functional
models have received a considerable attention during the past two decades, due to the
developments of stochastic solvers associated with the now popular stochastic finite
element method; see [12] and the recent survey [37]. Although they have been shown
to be very useful for uncertainty propagation (through Galerkin-type projections for
instance), their identification typically requires a very large amount of experimental
data which is seldom (if ever) available in practice.

From a mechanical point of view, mesoscopic elasticity tensors do not exhibit
a.s. (almost sure) material symmetries such as those expected or assumed at the
macroscale level [35]. Indeed, their stochastic anisotropy measure (defined with re-
spect to a given class of symmetry) presents statistical fluctuations whose level may
or may not depend on the level of fluctuations exhibited by the random tensor itself.
When the random elasticity tensor is modeled by using the random matrix ensemble
SE+ defined in [45] [46] (see also §2.3.1), it can be shown that the mean and variance
of the anisotropy measure increases almost linearly with the level of fluctuations of
the elasticity tensor [21]. This property follows from the fact that each material sym-
metry can be defined (as a necessary - but not sufficient- condition) by the algebraic
multiplicities of the elasticity tensor eigenvalues [40] [6], which are all equal to one
for random matrices belonging to SE+ and to other classical ensembles (because of
the repulsion phenomena [32]). Two types of methods have been proposed so far
in the literature for addressing the case when the two levels of fluctuations have to
be controlled apart from one another. A first approach consists in prescribing the
variances of selected random eigenvalues, in view of the previous definition of the
symmetry classes (see [17] and [18] for the random matrix and random field cases,
respectively). Such a strategy can be readily applied to all symmetry classes and
allows the mean of the anisotropy measure to be imposed within a given range which
depends on the mean value and level of statistical fluctuations of the elasticity tensor.
An alternative generalized approach for random matrices has been proposed in [53]
for the isotropic class and has been generalized to all symmetry classes in [19]. The
proposed model is obtained by introducing a particular algebraic representation for

fact that the later involves (and actually depends on) an additional measure – denoted by m in [26],
Eq. (63) –, the definition of which is still an open issue. As pointed out in [26], a typical (arbitrary)
choice is to take m as a uniform measure, so that the two above entropy definitions may only differ
by an irrelevant constant.
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the elasticity tensor, in which an anisotropic germ is combined with a germ taking
its values in the set Msym

n (R) ⊆ M+
n (R) of elasticity matrices exhibiting the desired

material symmetry (hence, the superscript “sym”) in a fixed reference coordinates
system. By construction, such a generalized approach does not present the limita-
tions induced by the repulsion phenomena but requires further developments in the
definition of the probability distributions for Msym

n (R)-valued random variables which
exhibit topological zeros (i.e. a.s. sparsity) and a.s. invariance with respect to some
orthogonal transformations.

In this work, we build on the results obtained in [19] (for the random matrix
case) and address the construction of a class of prior generalized stochastic models
for elasticity tensor random fields. The main contributions are the derivation of a
stochastic model for non-Gaussian tensor-valued random fields exhibiting some sym-
metry properties and the construction of a new random generator able to perform
in high probabilistic dimensions. The rest of this paper is organized as follows. The
overall methodology is first introduced in §2. We put emphasis on the construction
of probability distributions for Msym

n (R)-valued random variables, for which a tensor
decomposition is introduced and allows for a systematic derivation for all material
symmetry classes. We also discuss strategies for random generation and propose a
new algorithm enabling the structure of statistical dependence (induced by the Max-
Ent formulation on the family of first-order marginal distributions) to be preserved.
In §3, we illustrate the methodology by considering the class of isotropic tensors.

Notations. For any vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) in Rn, we
denote as < x,y >=

∑n
i=1 xiyi the Euclidean inner product in Rn and as ‖ · ‖ the

associated norm, ‖x‖2 =< x,x >.
The determinant, trace and transpose of matrix [A] ∈ Mn(R) (Mn(R) being the

set of all the square (n× n) real matrices) are denoted by det([A]), tr([A]) and [A]T,
respectively. Let MS

n(R) be the set of all the symmetric (n × n) real matrices. We
denote by � ·, · � the inner product in MS

n(R) such that � [A], [B] �= tr([A][B])
∀([A], [B]) ∈ MS

n(R) ×MS
n(R). For any random matrix [A] with values in M+

n (R),
we further denote by δ[A] the parameter measuring the level of fluctuations of [A],
defined as:

δ[A] =
√

E{‖[A]− [A]‖2F}/‖[A]‖2F, (1.2)

where E is the mathematical expectation, ‖[A]‖2F = tr([A]2) for [A] in M+
n (R) and

[A] = E{[A]}. All inequalities between positive-definite matrices are defined with
respect to the usual positive definite (Loewner) ordering.

For any second-rank tensors [A] and [B], ⊗ denotes the usual symmetrized tensor
product defined by 2([A]⊗[B])ijk` = [A]ik[B]j` + [A]i`[B]jk.

We adopt the Kelvin matrix representation for fourth-order elasticity tensors [30].

2. Construction of a class of generalized random field models for elas-
ticity tensors.

2.1. Overview of the methodology. In this paper, we address the construc-
tion of a probabilistic model for a second-order elasticity tensor random field, de-
noted by {[C(x)],x ∈ Ω}, with values in M+

n (R), defined on some probability space
(Θ, T , P ) and indexed by an open bounded domain Ω in Rd, with 1 ≤ d ≤ 3. We
denote by x 7→ [C(x)] the mean function of {[C(x)],x ∈ Ω} and assume, for con-
struction purposes, that this mean field is known. In view of inverse identification
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and uncertainty propagation, we may assume that there exists a deterministic matrix
[C`] in M+

n (R) bounding almost surely (a.s.) [C(x)] from below, for all x in Ω. The
consideration of such a lower bound property allows a uniform ellipticity condition
(and hence, the well-posedness of the problem; see [3] and [47] for discussions in the
scalar and tensor cases) to be recovered and does not affect the construction of the
probabilistic model, since it only amounts to construct a stochastic model for the
M+
n (R)-valued random field {[C̃(x)],x ∈ Ω} defined as [C̃(x)] = [C(x)] − [C`] (for

all x in Ω) and for which the M+
n (R)-valued mean function x 7→ [C̃(x)] is given by

[C̃(x)] = [C(x)] − [C`]. Whenever required for physical consistency, an upper deter-
ministic bound can be accounted for as well, using the methodology introduced in
[16] and [20] (for the random field and random matrix cases respectively; see also [9]
for an alternative random matrix formulation).

The inverse problem of constructing a (memoryless or with memory) nonlinear
mapping T such that the stochastic process {T (G(t)), t ≥ 0}, where {G(t), t ≥ 0} is a
given Rq-valued Gaussian stochastic process, has some target probabilistic properties
(such as some statistical moments and/or a correlation function) has been discussed
quite extensively in the literature (see [11] [14] [15] [39] and the references therein).
However, the extension of such approaches to the case of tensor-valued random fields
satisfying as many algebraic constraints as the elasticity tensor random field does (e.g.
positive-definiteness) seems intractable with the currently available techniques. In
this work, we similarly address the construction of a non-Gaussian stochastic model
such that the random field {[C(x)],x ∈ Ω} can be expressed through a nonlinear
transformation of a Gaussian model and exhibits a family of first-order marginal
probability distributions that matches a target family. One may note that:

• As soon as the transformation is defined, the system of all the marginal
distributions, which is not explicitly prescribed while constructing the model,
is completely defined.

• The random field {[C(x)],x ∈ Ω} inherits a correlation function which is
induced by the nonlinear transformation and which depends on the correlation
functions retained for the underlying Gaussian model. As mentionned earlier,
it is worth pointing out that contrary to what is commonly done or sought in
the analysis of stochastic processes, we do not consider information related
to a target correlation structure while constructing the transformation.

Thus, the method essentially consists:
1. In considering a particular algebraic decomposition of the non-Gaussian ran-

dom field {[C(x)],x ∈ Ω}, namely:

∀x ∈ Ω, [C(x)] = [M(x)]1/2 [A(x)] [M(x)]1/2, (2.1)

where {[A(x)],x ∈ Ω} and {[M(x)],x ∈ Ω} are two auxiliary random fields with
values in M+

n (R) and Msym
n (R) respectively (see § 2.5). Such an algebraic representa-

tion does allow for some flexibility in terms of anisotropy modeling (see [19] [53] for
numerical evidences).

2. In introducing two sets of independent second-order centered homogeneous
mean-square continuous R-valued Gaussian random fields, denoted by

{
{ξ`(x),x ∈ Rd}

}
`

and
{
{Ξ`(x),x ∈ Rd}

}
`

respectively. Those Gaussian random fields will be referred
to as the stochastic germs of the non-Gaussian model.

3. In writing each of the aforementionned auxiliary non-Gaussian (and poten-
tially, non-homogeneous) tensor-valued random fields as a given nonlinear transfor-
mation of one of the sets of Gaussian germs.
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This philosophy of construction, pursued (to some extent) in [47] for fully anisotropic
tensor-valued non-Gaussian random fields, has motivated the derivations for the ran-
dom matrix case proposed in [19], which serve as a key ingredient for the extension
to the modeling of random fields which is addressed in this work. In §2.2, we address
the definition of the set of the stochastic germs, whereas the definition of the target
probability distributions and the construction of the associated random generators
will be addressed later in § 2.3 and § 2.4.

2.2. Definition of the set of Gaussian stochastic germs. Throughout this
paper, we denote by {

{ξ`(x),x ∈ Rd}
}`=n(n+1)/2

`=1

and {
{Ξ`

′
(x),x ∈ Rd}

}`′=N
`′=1

two sets of independent second-order centered homogeneous real-valued Gaussian ran-
dom fields, defined on a probability space (Θ, T , P ), indexed by Rd and with values
in R, such that for all x in Rd:

E{ξ`(x)2} = 1, E{Ξ`
′
(x)2} = 1. (2.2)

These sets of Gaussian random fields are defined by the associated sets {Rξ`}
`=n(n+1)/2
`=1

and {RΞ`′}`
′=N
`′=1 of normalized autocorrelation functions, which are such that

∀` ∈ {1, . . . , n(n+ 1)/2}, Rξ`(y) = E{ξ`(x+ y)ξ`(x)}, Rξ`(0) = 1 (2.3)

and

∀`′ ∈ {1, . . . , N}, RΞ`′ (y) = E{Ξ`
′
(x+ y)Ξ`

′
(x)}, RΞ`′ (0) = 1. (2.4)

For later use, we introduce the Rn(n+1)/2-valued and RN -valued Gaussian random
fields {ξ(x),x ∈ Rd} and {Ξ(x),x ∈ Rd} such that for all x in Ω:

ξ(x) = (ξ1(x), . . . , ξn(n+1)/2(x)), Ξ(x) = (Ξ1(x), . . . ,ΞN (x)). (2.5)

It is assumed that the correlation function retained for each stochastic germ is contin-
uous, hence implying that the random fields {ξ(x),x ∈ Rd} and {Ξ(x),x ∈ Rd} are
mean-square continuous on Rd. For a given germ, any type of normalized autocorrela-
tion function can be selected; see the remark below. For computational illustrations,
the set of autocorrelation functions that were considered in [47] is used hereinafter.
Consequently, each function y 7→ Rξ`(y) is now written as

Rξ`(y) =

d∏
j=1

r`j(yj), (2.6)

where

r`j(0) = 1,

r`j(yj) = (2L`j/(πyj))2 sin2(πyj/(2L`j))
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for yj 6= 0 and ∀j ∈ {1, . . . , d}, L`j > 0. Note that similar expressions are used for
each function y 7→ RΞ`′ (y). The power spectral density (PSD) function k 7→ Sξ`(k),
defined from Rd into R+ and such that

Rξ`(y) =

∫
R3

exp{i < y,k >} Sξ`(k) dk, (2.7)

is then given by

Sξ`(k) =

d∏
j=1

s`j(kj), (2.8)

in which for all j in {1, . . . , d}, the function kj 7→ s`j(kj) is defined as:

s`j(kj) =

 L`j
π

(1− |kjL`j/π|) if |kjL`j/π| < 1

0 otherwise
. (2.9)

It follows that the support Supp Sξ` of Sξ` is compact and is written as

Supp Sξ` = [− π

L`1
,
π

L`1
]× . . .× [− π

L`d
,
π

L`d
]. (2.10)

Each stochastic germ {ξ`(x),x ∈ Rd} is then entirely defined by the set of d spa-

tial correlation lengths {L`j}
j=d
j=1 [57] such the correlation length associated with the

coordinate xj writes:∫ +∞

0

|Rξ`(0, . . . , yj , . . . , 0)|dyj = πsj(0) = L`j . (2.11)

Eq. (2.11) shows that the support of the PSD function effectively controls the spa-
tial correlation lengths of the random field. Note that the latter do not need to be
equal, neither from one direction to another nor from one stochastic germ to another.
Further, one should note that the methodology and results provided below hold, re-
gardless of the type of correlation functions which is selected for the germs.

Remark 1. It should be emphasized that the autocorrelation functions are equiv-
alently defined by the associated set of PSD functions, the support of which should
preferably be compact for sampling constraints (see [38]). The main properties con-
trolling the spatial correlations turns out to be the normalization (in variance) and the
spatial correlation lengths (which are seen to be related to the supports of the PSD
functions in the example given above). In addition to these properties, the shape for
the normalized autocorrelation functions may be chosen by inferring a target shape
from homogenization procedures between the microscale and the mesoscale under
consideration (see [35] for instance). Specifically, let us assume that one is concerned
with the inverse identification of the set of correlation functions (or equivalently, of
the set of power spectral density functions) defining the above Gaussian stochastic
germs, so that the correlation function of the constructed random field matches a
target function. In the most general setting, one may represent the associated PSD
functions by some algebraic functions depending on some parameters (see Chapter
XII in [28] for linear filtering techniques of cylindrical Gaussian white noise for Gaus-
sian random fields). We denote by w ∈ Dw the vector-valued parameter gathering
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all these parameters, with Dw a given admissible set. For any fixed value of w, we
denote by [[Cov]] the fourth-order tensor-valued covariance function defined as:

[[Cov(x,x′;w)]] = E{([Cw(x)]− [Cw(x)])⊗ ([Cw(x′)]− [Cw(x′)])}, (2.12)

for any (x,x′) in Ω × Ω. In Eq. (2.12), the dependence of {[C(x)],x ∈ Ω} on w is
punctually made explicit for consistency – using the subscript “w”. We denote by
(x,x′) 7→ [[C̃ov(x,x′)]] the target covariance function. An appropriate choice of PSD
functions may then be obtained by determining an optimal value wopt of w such that

wopt = arg min
w∈Dw

E(w), (2.13)

where the L1-type cost function E is defined as

E(w) =
∑

i6j, k6`

∫
Ω×Ω

|[[C̃ov(x,x′)]]ijk` − [[Cov(x,x′;w)]]ijk`| dx dx′ (2.14)

and use has been made of the minor symmetries satisfied by the tensor-valued covari-
ance functions. It is assumed above that [[Cov]] and C̃ov are both integrable on Ω×Ω
(if not, the cost-function E must be adapted accordingly).

When all the correlation functions defining the Gaussian germs have the same
algebraic form, numerical results show that the overall shape of the input correlation
function is indeed preserved (see § 3.2.2 and Appendix D). This point is of special
interest in practice, since it allows for a substantial reduction of the computational cost
associated with the optimization problem defined by Eq. (2.13). Since the Gaussian
stochastic germs can be defined through any relevant type of PSD functions, the
model certainly offers some flexibility in finding such an optimal parametrization.
However, it is worth pointing out that the existence of a solution cannot be ensured
in all situations. Clearly, solving this inverse problem in the most general setting is a
challenging task that falls out of the scope of this study and is therefore left for future
works.

2.3. Construction of a prior probabilistic model for a non-Gaussian
random field with anisotropic fluctuations. In this section, we address the con-
struction of a prior stochastic model for a M+

n (R)-valued homogeneous non-Gaussian
random field {[A(x)],x ∈ Ω}. To this aim, we proceed in two steps. First, we con-
struct in § 2.3.1 a prior probabilistic model for the family {[A] 7→ p[A(x)]([A]; x)}x∈Ω

of first-order marginal p.d.f. of {[A(x)],x ∈ Ω}. In § 2.3.2, we built on such deriva-
tions to explicitly define {[A(x)],x ∈ Ω} as a memoryless nonlinear transformation
of the Rn(n+1)/2-valued Gaussian random field {ξ(x),x ∈ Rd} defined in § 2.1.

2.3.1. Construction of the family of first-order marginal probability
distributions. For x fixed in Ω, a prior model for the p.d.f. [A] 7→ p[A(x)]([A]; x) of
the M+

n (R)-valued random variable [A(x)] is defined by invoking the MaxEnt principle
under the normalization condition for p[A(x)] and the following constraints:

(i) E{[A(x)]} = [In].
(ii) E{log(det([A(x)]))} = ν[A](x), |ν[A](x)| < +∞.

It can be shown that the last constraint implies that both [A(x)] and [A(x)]−1 are
second-order random variables (see [45]). Such a construction has been carried out
in [45] [46], the set of random matrices thus defined being the so-called normalized
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positive ensemble SG+. After some algebra, the p.d.f. p[A(x)] of the random matrix
[A(x)] can be put in the form:

p[A(x)]([A]; x) = 1M+
n (R)([A]) cAx det([A])(n+1)(1−δ[A](x)2)/(2δ[A](x)2)

× exp{−((n− 1)/(2δ[A](x)
2
))tr([A])}

, (2.15)

in which cAx is the normalization constant (see Eq. (43) of [47] for its closed-form
expression) and δ[A](x) is the dispersion parameter associated with the random vari-
able [A(x)] (see Eq. (1.2)). It follows that the family {p[A(x)](·;x)}x∈Ω of first-order
marginal p.d.f. is parametrized by the deterministic field x 7→ δ[A](x) controlling the
level of statistical fluctuations of the random field {[A(x)],x ∈ Ω}.

2.3.2. Random generator and algebraic definition of {[A(x)],x ∈ Ω}. In
accordance with the properties given in the previous section, the second-order random
field {[A(x)],x ∈ Ω} is assumed to belong to the class SFG+ of random fields, the
construction of which has been carried out in [47]. The ensemble SFG+ is an ensemble
of homogeneous and normalized non-Gaussian positive-definite matrix-valued random
fields, indexed by Rd and with values in the random matrix ensemble SG+ introduced
in § 2.3.1. Following [45], the random matrix [A(x)] can be decomposed as

∀x ∈ Ω, [A(x)] = [H(x)]T [H(x)], (2.16)

wherein [H(x)] is an upper-triangular Mn(R)-valued random matrix such that for
1 ≤ i ≤ j ≤ n,

[H(x)]ij =


δ[A](x)
√
n+ 1

ξαij (x) if i < j

δ[A](x)
√
n+ 1

√
2F−1
G(βj(x),1)(FN (ξαjj (x))) if i = j

, (2.17)

in which αij = i + j(j − 1)/2, βj(x) = (n + 1)/(2δ[A](x)
2
) + (1 − j)/2, F−1

G(βj(x),1)

is the Gamma inverse cumulative distribution function with parameters βj(x) and
1, and FN is the standard normal cumulative distribution function. The probability
distributions for the entries of the random matrix [H(x)], as defined by Eq. (2.17),
result from the use of the MaxEnt principle applied to the random matrix [A(x)]
(note that the construction is not carried out by considering each component apart
from the others), under the constraints stated in § 2.5, and from the change of variable
given by Eq. (2.16) (see [45]). Thus, the combination of Eqs. (2.16) and (2.17) defines
a memoryless measurable nonlinear mapping H, defined from Rn(n+1)/2 into M+

n (R),
such that

[A(x)] = H(ξ(x)), ∀x ∈ Ω, (2.18)

where {ξ(x),x ∈ Rd} is the homogeneous Rn(n+1)/2-valued Gaussian random field
defined in § 2.1. Consequently, the random field {[A(x)],x ∈ Ω} inherits a correla-
tion structure which corresponds to the transformation of the correlation structure
of {ξ(x),x ∈ Rd} by the nonlinear transformation H. In practice, independent re-
alizations of the random field {[A(x)],x ∈ Ω} can then be readily obtained from
independent realizations of the Gaussian random field {ξ(x),x ∈ Ω} by combining
Eqs. (2.16) and (2.17). It should be noted that the random field {[A(x)],x ∈ Ω} is
homogeneous (on Rd for the translation in Rd) when δ[A](x) does not depend on x
(in which case it is simply denoted as δ[A]).
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2.4. Construction of a prior probabilistic model for a random field
exhibiting a.s. symmetry properties. Let {[M(x)],x ∈ Ω} be a non-Gaussian
Msym
n (R)-valued random field exhibiting, in some reference frame, some symmetry

properties. In order to construct a stochastic model for {[M(x)],x ∈ Ω}, we similarly
follow a two-step strategy, namely:

• In § 2.4.1, we are first interested in constructing a prior probabilistic model
for the family {[M] 7→ p[M(x)]([M]; x)}x∈Ω of first-order marginal p.d.f. of
{[M(x)],x ∈ Ω}. The analysis is performed through subsequent changes of
variables, the definitions of which are closely related to random generation
constraints and which finally result in the construction of a prior probabilistic
model for the family of first-order marginal p.d.f. of an additional random
field denoted by {G(x),x ∈ Ω}.

• In § 2.4.3, we specifically address the construction of a random generator for
the random field {G(x),x ∈ Ω}. The construction involves a novel strategy
which is based upon solving a family of Itô stochastic differential equations
indexed by Ω, for which the family of p.d.f. associated with the family of
invariant measures exactly matches the family of MaxEnt p.d.f. constructed
in § 2.4.1. For x fixed in Ω, we then build on the results derived in [48] and
we subsequently introduce the spatial dependencies in x through a family
{Wx(r), r ≥ 0}x∈Ω of RN -valued normalized Wiener processes defined in
§ 2.4.2.

2.4.1. Construction of the family of first-order marginal probability
distributions. In order to define the stochastic model for the random matrix [M(x)]
which exhibits some topological zeros, induced by the material symmetry properties,
we first make use of the usual representations for such symmetry properties and
decompose the random elasticity matrix as

∀x ∈ Ω, [M(x)] =

N∑
i=1

Mi(x)[Esym
(i)], (2.19)

in which {[Esym
(i)], i = 1, . . . , N} (with 2 ≤ N ≤ 21) is a basis of the matrix space

Msym
n (R) ⊆M+

n (R) (see [29] and [59] for the expressions of such basis in a tensor form,
among others) and {{Mi(x),x ∈ Ω}}i=1,...,N is a set of coefficients random fields on
this basis. Denoting by {M(x) = (M1(x), . . . ,MN (x)),x ∈ Ω} the vector-valued
random field of the coordinates, it follows that the family of first-order marginal
p.d.f. of random field {[M(x)],x ∈ Ω} (indexed by Ω) is completely defined by the
family {pM(x)(·;x)}x∈Ω of first-order marginal p.d.f. of {M(x),x ∈ Ω}. In addition,
it should be noted that the a.s. positive-definiteness of [M(x)] implies each element
pM(x) of the above family to be supported on a subset C, independent of x and
possibly unbounded, of RN :

C = {m ∈ RN ,m 6= 0 |
N∑
i=1

mi(x)[Esym
(i)] > 0}. (2.20)

In order to handle such a support constraint, we propose to define the random field
{[M(x)],x ∈ Ω} through a given nonlinear transformation acting on an auxiliary
random field, for which each element of the family of first-order p.d.f. is supported
over RN . More specifically, we first introduce the Msym

n (R)-valued random field
{[N (x)],x ∈ Ω} such that

∀x ∈ Ω, [M(x)] = [M(x)]1/2 [N (x)] [M(x)]1/2, (2.21)
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where [M(x)] = E{[M(x)]}. By construction, {[N (x)],x ∈ Ω} is a normalized
random field such that:

∀x ∈ Ω, E{[N (x)]} = [In]. (2.22)

In order to proceed further, we now state the

Proposition 2.1. Let [N ] ∈ Msym
n (R) and let {[Esym

(i)]}i=Ni=1 } be the matrix

basis of Msym
n (R), with [Esym

(i)] ∈ MS
n(R) for i ∈ {1, . . . , N}, derived in [59]. Then,

there exists a unique symmetric matrix [G] ∈ span
(
{[Esym

(i)]}i=Ni=1 }
)

such that

[N ] = expm([G]), (2.23)

where expm denotes the matrix exponential.

Using the above proposition (see Appendix A for the proof), it can be deduced
that for any x in Ω, there exists a unique symmetric random matrix [G(x)] such that

∀x ∈ Ω, [N (x)] = expm ([G(x)]) (2.24)

and which exhibits the same topological structure as [N (x)]. Equivalently, one has
∀x ∈ Ω, [G(x)] = logm ([N (x)]), with logm the matrix logarithm. It should be
pointed out that although [G(x)] can be expanded on the same basis,

∀x ∈ Ω, [G(x)] =

N∑
i=1

Gi(x)[Esym
(i)], (2.25)

it is no longer a positive-definite random matrix. We denote by {G(x),x ∈ Ω}, with
G(x) = (G1(x), . . . , GN (x)) for all x in Ω, the RN -valued random field gathering the
coordinates random fields of {[G(x)],x ∈ Ω} onto the matrix basis. In the sequel, we
are then interested in the construction of a prior probabilistic model for the family of
first-order marginal p.d.f. associated with the random field {G(x),x ∈ Ω}.

As for the anisotropic term, a prior probabilistic model for the random variable
G(x) (x being fixed) is sought within the maximum entropy paradigm. We then
assume that [N (x)] is a Msym

n (R)-valued random variable satisfying the two following
constraints:

E{[N (x)]} = [In], (2.26)

E {log(det([N (x)]))} = ν(x), |ν(x)| < +∞, (2.27)

in which the field x 7→ ν(x) is assumed to be known at any point x of the domain Ω.
Eq. (2.27) implies that both [N (x)] and [N (x)]−1 are second-order random variables:

E{‖[N (x)]‖2F} < +∞, E{‖[N (x)]−1‖2F} < +∞. (2.28)

It can then be shown that the two above properties imply that [G(x)] is also a second-
order random variable. Upon substituting Eqs. (2.24)-(2.25) in Eqs. (2.26)-(2.27), it
can be deduced that the random variable G(x) satisfies

E{expm

(
N∑
i=1

Gi(x)[Esym
(i)]

)
} = [In] (2.29)
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and

N∑
i=1

E {Gi(x)} t(i) = ν(x), |ν(x)| < +∞, (2.30)

with t(i) = tr([Esym
(i)]). It can then be deduced that the MaxEnt-based marginal

p.d.f. g 7→ pG(x)(g; x) of G(x) at point x writes

pG(x)(g; x) = cGx exp
(
− � [Λsolx ], expm

(∑N
i=1 gi[Esym

(i)]�

−λsolx
∑N
i=1 git

(i)
)
,

(2.31)

where cGx is the normalization constant, [Λsolx ] and λsolx are the Lagrange multipliers
such that the constraints respectively defined by Eq. (2.29) and Eq. (2.30) are satisfied.
A dimensional argument further shows that the Lagrange multiplier [Λsolx ] must have
the same topological form as [N (x)] and can therefore be written as:

[Λsolx ] =

N∑
i=1

(λsolx )(i)[Esym
(i)]. (2.32)

Furthermore, the Lagrange multipliers λsolx and
(
(λsolx )(1), . . . , (λsolx )(N)

)
belong to

some admissible sets, the definition of which ensures the integrability of pG(x) (see

remark 3 below). For latter use, we let λsolx =
(
(λsolx )(1), . . . , (λsolx )(N), λsolx

)
and we

denote by Dλx ⊂ RN+1 the admissible set of these multipliers. One may also note
that the p.d.f. defined by Eq. (2.31) may reduce to a simpler algebraic form whenever
the tensor basis exhibits some idempotence and commutativity properties. This is for
instance the case of the isotropic class that will be considered in § 3.

Remark 2. Since the associated compliance random field {[C(x)]−1,x ∈ Ω}
shares the same mathematical properties as {[C(x)],x ∈ Ω} – including the ten-
sor decomposition [59] –, it follows that it can also be modeled and generated using
the proposed stochastic representation and algorithms.

Remark 3. The proposed methodology essentially consists in relaxing the support
constraint (to be used in the MaxEnt approach) by introducing the change of variable
[N (x)] 7→ [G(x)] = logm([N (x)]) (x being fixed in Ω), while preserving the available
information on [N (x)]. The equivalence between the two constructions is therefore
worth investigating, and one may wonder whether or not it is equivalent to construct
a probabilistic model for the random matrix [N (x)] under the constraints given by
Eqs. (2.26)-(2.27), together with the support information (i.e. [N (x)] ∈M+

n (R) a.s.),
or to define [N (x)] as [N (x)] = expm([G(x)]), the prior model for [G(x)] being
constructed under the constraints given by Eqs.(2.29)-(2.30). In order to comment on
this issue, let us derive the p.d.f. of [N (x)] induced by the proposed construction. The
jacobian J of the matrix transformation M+

n (R) 3 [N ] 7→ [G] = logm([N ]) ∈ MS
n(R)

reads as

J =

(
n∏
i=1

1

ρi

)∏
i<j

∣∣∣∣ log(ρj)− log(ρi)

ρj − ρi

∣∣∣∣
 , (2.33)
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where ρ1 < . . . < ρn are the strictly positive real eigenvalues of [N ]. It can then be
deduced from Eq. (2.31) that the p.d.f. of [N (x)] writes, after some algebra:

p[N (x)]([N ]; x) = 1M+
n (R)([N ]) cNx det([N ])−λ

sol
x −1 exp

(
− � [Λsolx ], [N ]�

)︸ ︷︷ ︸
(?)

×
∏
i<j

∣∣∣∣ log(ρi)− log(ρj)

ρi − ρj

∣∣∣∣︸ ︷︷ ︸
(??)

,

(2.34)
Formally, the first part of the above p.d.f., denoted by (?), coincides with the form
that would be obtained by constructing the prior stochastic model for [N (x)], taking
into account both the support constraint and Eqs. (2.26)-(2.27). The second part
(??) arises from the change of variable and shows that the two constructions are
not exactly equivalent to each other. Upon introducing a further change of variable
between [N (x)] and its random eigenvalues and eigenvectors, it can finally be shown
that there exists an admissible range for parameter λsolx such that the p.d.f. defined
by Eq. (2.34) is integrable (see Appendix B).

2.4.2. Definition of a family of normalized Wiener processes. Let W =

{Wx(r) = (W
(1)
x (r), . . . ,W

(N)
x (r)), x ∈ Ω, r ∈ R+} be a RN -valued centered second-

order Gaussian random field such that:
• for all x in Ω, Wx(0) = 0 a.s.;
• the generalized time-derivative (i.e. in the sense of generalized stochastic

processes) DtW of W is the cylindrical normalized Gaussian white noise B
(see e.g. Chapters XI and XII in [28] – see in particular the sections XII.4.3
and XII.4.5).

The covariance generalized function [CB] of B then reads

∀(x,x′) ∈ Ω× Ω, ∀τ ∈ R, [CB(x,x′, t+ τ, t)] = δ0(τ)[RB(x,x′)], (2.35)

where δ0 is the Dirac generalized function at the origin of R. In Eq. (2.35), [RB]
denotes the continuous MN (R)-valued function defined on Ω× Ω as

∀ 1 6 `, `′ 6 N, [RB(x,x′)]``′ := δ``′RΞ`′ (x− x′), (2.36)

where δ``′ is the Kronecker delta and RΞ`′ is the correlation function of Gaussian

random field {Ξ`′(x),x ∈ Rd} defined in § 2.2. Consequently, for all x fixed in Ω,
Wx = {Wx(r), r ≥ 0} is a normalized RN -valued Wiener process, that is, {Wx(r), r ≥
0} satisfies the following properties:

• the real-valued stochastic processes W
(1)
x , . . ., W

(N)
x are mutually indepen-

dent;
• one has Wx(0) = 0 a.s.;
• the process Wx has independent increments;
• for all 0 6 s < t < +∞, the increment ∆W st

x := Wx(t) −Wx(s) is a RN -
valued second-order random variable which is Gaussian, centered and with
covariance matrix [C∆W st

x
] = (t − s)[IN ] (with [IN ] the (N × N) identity

matrix).
In the next two sections, we make use of such a construction to derive a new random
generation algorithm for random field {G(x),x ∈ Ω}.
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2.4.3. Random generator and definition of {G(x),x ∈ Ω}. For λx fixed in
Dλx , we denote by Φ the potential function defined from RN into R by:

Φ(u;λx) =�
N∑
i=1

λ(i)
x [Esym

(i)], expm

(
N∑
i=1

ui[Esym
(i)]

)
� +λx

N∑
i=1

uit
(i). (2.37)

Let Zλx be the RN -valued random variable defined by the p.d.f. pλx : RN → R+

given by

∀u ∈ RN , pλx(u; x) = cλx exp (−Φ(u;λx)) , (2.38)

where cλx is the normalization constant. Consequently, one has

∀g ∈ RN , pG(x)(g; x) = pλsol
x

(g; x), (2.39)

with cλsol
x

= cGx , and

G(x) = Zλsol
x

(2.40)

for the convergence in probability distribution.
For x fixed in Ω, let {(Ux(r),Vx(r)), r ∈ R+} be a Markov stochastic process,

defined on probability space (Θ, T ,P), with values in RN × RN and satisfying the
following Itô stochastic differential equation (ISDE):

∀r ∈ R+,

 dUx(r) = Vx(r)dr

dVx(r) = −∇uΦ(Ux(r);λx)dr − f0
x

2
Vx(r)dr +

√
f0
xdWx(r)

, (2.41)

wherein {f0
x}x∈Ω is a family of free R+-valued parameters and {Wx(r), r ≥ 0}

is the RN -valued normalized Wiener process defined in § 2.4.2. The initial con-
ditions associated with Eq. (2.41) are given by Ux(0) = U0

x and Vx(0) = V 0
x

a.s., where the probability distribution PU0
x, V

0
x

(du,dv;x) of (U0
x,V

0
x ) is indepen-

dent of the stochastic process {Wx(r), r ≥ 0} and does not need to be equal to
the invariant measure. If deterministic initialization vectors (u0

x,v
0
x) are used, then

PU0
x, V

0
x

(du,dv;x) = δ0(u − u0
x) ⊗ δ0(v − v0

x). Let us first assume the above ISDE
admits a unique solution that is defined almost surely for all r ≥ 0, implying that
there is no explosion of the solution (see the Theorems 4 and 5 in Chapter 9 of [44]).
In addition, we assume that for r → +∞, there is an asymptotic stationary solu-
tion denoted as {(U stat

x (r),V stat
x (r)), r ∈ R+}. Let PS(du,dv;λx) be the invariant

measure associated with the aforementioned unique stationary solution which can be
obtained by taking PU0

x, V
0
x

(du,dv;x) = PS(du,dv;λx). It follows that whenever
the probability distribution PU0

x, V
0
x

(du,dv;x) is different from the invariant mea-
sure PS(du,dv;λx), the stochastic process {(Ux(r),Vx(r)), r ∈ R+} asymptotically
converges in probability to the stationary process {(U stat

x (r),V stat
x (r)), r ∈ R+} as

r → +∞. Note that the dissipative term generated by the family {f0
x}x∈Ω allows one

to shorten the transient regime while solving the ISDE. In practice, the value of this
field must be deduced beforehand from a parametric analysis on the rate of conver-
gence towards the stationary solution (see § 3 for an illustration). Let us introduce
the probability density function (u,v) 7→ ρS(u,v;λx) (with respect to du dv) such
that:

PS(du,dv;λx) = ρS(u,v;λx) du dv. (2.42)
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It can be shown that ρS is a solution of a steady-state Fokker-Planck equation (FKPE;
see [44] and the references therein for a survey, as well as [43] for illustrative examples
in the case of nonlinear Hamiltonian dynamical systems) which explicitly depends on
the potential function (see Eq. (21) of [48]) and which admits a unique solution (that
can be related to the unique invariant measure of the ISDE), provided that Φ satisfies
the following properties [48]:

u 7→ Φ(u;λx) is continuous on RN , (2.43)

u 7→ ‖∇uΦ(u;λx)‖RN is a locally bounded function on RN , (2.44)

inf
‖u‖RN>R

Φ(u;λx)→ +∞ as R→ +∞, (2.45)

inf
u∈RN

Φ(u;λx) = Φmin, Φmin ∈ R, (2.46)

∫
RN

‖∇uΦ(u;λx)‖RN pλx(u;x)du < +∞. (2.47)

It is worth stressing that these properties must be checked carefully in practice, tak-
ing into account that the Lagrange multipliers belong to a given admissible set Dλx .
Consequently, the associated FKPE admits a unique solution, which implies the ex-
istence and uniqueness of the invariant measure PS associated with the ISDE defined
by Eq. (2.41) [44]. Furthermore, one has

∀u ∈ RN , pλx(u;x) =

∫
RN

ρS(u,v;λx)dv (2.48)

and

lim
r→+∞

Ux(r) = Zλx (2.49)

in probability distribution [48]. From Eq. (2.40) and Eq. (2.49), it is seen that the
above construction amounts to define the random field {G(x),x ∈ Ω} as

G(x) = T ({Wx(r), r > 0},x) ∀x ∈ Ω, (2.50)

where T is a measurable nonlinear operator.

2.4.4. Discretization scheme. In this work, the ISDE is discretized by using a
Störmer-Verlet algorithm. Such a scheme is well suited and efficient for Hamiltonian
dynamical systems [58] (see [10] [22] for reviews about this scheme in the deterministic
framework; see [7] and the references therein for the stochastic case; see [27] and
[54] for general surveys on discretization schemes for stochastic differential equations,
among others). Such a choice is motivated by the fact that we are considering the
perturbation (by a dissipative term) of a Hamiltonian system. For k = 1, . . . ,M − 1,
we let Uk

x = Ux(rk), V k
x = Vx(rk) and rk = (k − 1)∆r, where ∆r denotes the

sampling step. For k = 1, . . . ,M − 1, the scheme writes
Uk+1/2
x = Uk

x +
∆r

2
V k
x

V k+1
x =

1− a
1 + a

V k
x +

∆r

1 + a
Lk+1/2
x +

√
f0
x ∆W k+1

x

Uk+1
x = Uk+1/2

x +
∆r

2
V k+1
x

, (2.51)
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where a = f0
x∆r/4, ∆W k+1

x = Wx(rk+1) −Wx(rk) is the increment of the Wiener
process between rk+1 and rk, U1

x = u0
x and V 1

x = v0
x (u0

x and v0
x being arbitrary

deterministic vectors) for all x in Ω. The RN -valued random variable Lkx is defined
as (

Lkx
)
j

= −
{
∂Φ(u;λx)

∂uj

}
u=Uk

x

, j = 1, . . . , N, (2.52)

where the partial derivatives can analytically be evaluated using Eq. (2.37). Two
very important properties of this scheme are worth mentioning. First, the algorithm
turns out to be explicit (and thus, conditionally stable) in the present case, as the
random variable Lkx does not depend on any time-evaluation of the velocity Vx. In
practice, the equality (in probability distribution) stated by Eq. (2.49) can be written
as

G(x) = lim
∆r↓0

(
lim

k→+∞
Ux(rk)

)
, (2.53)

so that the convergence towards the target stationary solution must be investigated as
∆r ↓ 0, either in the sense of probability distribution (whenever an unbiased reference
solution for the marginal distribution is available, for instance) or by comparing the
convergence of some statistical moments for a given mapping acting on Ux (see § 3).
Secondly, the proposed method allows for the preservation of the statistical depen-
dence between the components of random vectorM(x), regardless of the probabilistic
dimension N .

From a computational point of view, solving the ISDE at point x requires the
generation of independent copies of a RN -valued centered Gaussian random variable
with covariance ∆r[IN ]. Taking into account Eqs. (2.36–2.35), it is seen that the
cornerstone of the algorithm consists in defining the aforementionned copies as the
independent copies of a second-order normalized Gaussian random variable Ξx :=
Ξ(x) (recall that x is fixed in Ω). In other words, the Gaussian increment ∆W k+1

x

is set to be

∆W k+1
x = Wx(rk+1)−Wx(rk) :=

√
∆r Ξk+1

x ∀k > 1, (2.54)

where Ξk+1
x denotes the (k+ 1)-th independent copy of random variable Ξx (which is

associated with the (k + 1)-th independent copy of the random field {Ξ(x), x ∈ Rd}
defined in § 2.2). The random field {G(x),x ∈ Ω} is then equivalently defined as

G(x) = T̃ ({Ξ(k)(x), k > 1},x) ∀x ∈ Ω, (2.55)

with T̃ a measurable operator. For all x in Ω and within the asymptotic regime
corresponding to the stationary solution, such a strategy generates through the spatial
correlations of the Gaussian random field {Ξ(x),x ∈ Rd} the spatial dependencies
for the random field {G(x),x ∈ Ω} (and then, for {M(x),x ∈ Ω} and {S(x),x ∈
Ω}) that may be required while modeling the elasticity tensor random field (see § 3
for numerical illustrations). It is worth pointing out that by proceeding this way,
the random field {M(x),x ∈ Ω} then inherits spatial dependencies (and thus, a
correlation structure) which is a priori unknown and which depends on the choice of
the correlation functions retained for the Gaussian stochastic germs. The proposed
class of prior stochastic models therefore depends on a family of correlation functions
which may be calibrated through an inverse identification, as indicated in § 2.2.
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2.5. Prior stochastic representation for the random field {[C(x)],x ∈
Ω}. In order to obtain some flexibility with respect to the probabilistic modeling of
material symmetries, we propose to decompose the random matrix [C(x)] as follows
[19]:

∀x ∈ Ω, [C(x)] = [S(x)][A(x)][S(x)], (2.56)

where
1. The random variables [S(x)] and [A(x)] are statistically independent.
2. [S(x)] is the unique positive-definite square root of the symmetric random

matrix [M(x)], with {[M(x)],x ∈ Ω} the Msym
n (R)-valued random field

defined in § 2.4.
3. {[A(x)],x ∈ Ω} the random field (exhibiting anisotropic statistical fluctua-

tions) defined in § 2.3.
As {[S(x)],x ∈ Ω} and {[A(x)],x ∈ Ω} are independent random fields, it follows

that the marginal p.d.f. p[C(x)] of [C(x)] at point x is completely defined by the p.d.f.
p[S(x)] and p[A(x)], or equivalently by the p.d.f. p[M(x)] of [M(x)] and p[A(x)]. From
the above set of properties, it can be easily deduced that:

• The random matrix [C(x)] is positive-definite a.s., with

E{log(det([C(x)]))} = ν(x) + ν[A](x), |ν(x)|+ |ν[A](x)| < +∞. (2.57)

• The mean function of random field {[C(x)],x ∈ Ω} is such that

∀x ∈ Ω, E{[C(x)]} = [M(x)]. (2.58)

• {[C(x)],x ∈ Ω} and {[C(x)]−1,x ∈ Ω} are second-order random fields,

∀x ∈ Ω, E{‖[C(x)]‖2F} < +∞ and E{‖[C(x)]−1‖2F} < +∞. (2.59)

• The correlation structure of the random field {[C(x)],x ∈ Ω} is induced by
the transformation of the correlation structures of the Gaussian stochastic
germs by the nonlinear mappings H and T̃ .

From Eq. (2.56), it can be inferred that the overall level of statistical fluctuations ex-
hibited by the elasticity tensor random field {[C(x)],x ∈ Ω} depends on and increases
together with the level of fluctuations exhibited by the random fields {[A(x)],x ∈ Ω}
and {[M(x)],x ∈ Ω}. Such a property also follows from Eq. (2.57), since the pa-
rameters δ[A](x) and δ[M ](x) are nonlinear functions of ν[A](x) and ν(x) respectively
(see [19] for numerical evidences). It should be noticed that by construction, setting
δ[A](x) → 0 allows realizations of [C(x)] belonging a.s. to Msym

n (R) to be obtained
(since this implies that [A(x)] → [In] in probability; see [45]). Finally, note that
the probabilistic model can handle a non-homogeneous system of first-order marginal
probability distributions, so that it can be used for modeling mesoscopic fields asso-
ciated with a non-stationary microstructure (e.g. functionally graded materials). In
the next section, we exemplify the approach on the class of almost isotropic tensors.

3. Application to almost isotropic elasticity tensor random fields. For
illustration purposes, we consider a one-dimensional domain Ω ⊂ R and assume that
the mean function, x 7→ δ[A](x) and x 7→ ν(x) are constant over Ω. Consequently,
the first-order marginal p.d.f. of the auxiliary random fields do not depend on x
either and any related subscript emphasizing spatial indexation is then dropped off
from now on. Furthermore, we set f0

x = f0 = 9.5 for all x in Ω and all the correlation
lengths associated with {ξ(x),x ∈ Ω} (resp. with {Ξ(x),x ∈ Ω}) are set to the same
value Lani (resp. Lsym).
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3.1. Problem statement. We denote as [J ] and [K] the matrix representations
of the fourth-order symmetric tensors j and k, defined as jijk` = (1/3)δijδk` and
kijk` = (δikδj` + δi`δjk)/2 − jijk`, constituting the classical basis of Miso

n (R). In this
application, we set [M(x)] = 3M1[J ] + 2M2[K], where the mean bulk and shear
moduli are respectively given by M1 = 1.5 and M2 = 1 (both in [GPa]), whereas we
take ν = −0.2.

The random matrix [G(x)] can then be decomposed as:

[G(x)] = G1(x)[J ] +G2(x)[K] ∀x ∈ Ω. (3.1)

Note that

[N (x)] = exp{G1(x)}[J ] + exp{G2(x)}[K] ∀x ∈ Ω (3.2)

and then,

[M(x)] = 3M1 exp{G1(x)}[J ] + 2M2 exp{G2(x)}[K] ∀x ∈ Ω. (3.3)

Owing to the fact that [J ] and [K] are commutating projectors (with tr([J ]) = 1 and
tr([K]) = 5), it can be shown that Eq. (2.31) reduces to

pG(g) = cG exp
(
−λ(1) exp{g1} − λg1 − 5(λ(2) exp{g2}+ λg2)

)
,

:= pG1
(g1)× pG2

(g2)
(3.4)

with

pG1
(g1) = cG1 exp

(
−λ(1) exp{g1} − λg1

)
∀g1 ∈ R (3.5)

and

pG2
(g2) = cG2 exp

(
−5(λ(2) exp{g2}+ λg2)

)
∀g2 ∈ R, (3.6)

cG1 and cG2 being the two normalization constants. Eq. (3.4) shows that {G1(x),x ∈
Ω} and {G2(x),x ∈ Ω} are statistically independent random fields whose first-order
p.d.f. depend in part on the same parameter λ. Note that this independence property
stems from the second-order constraints that are integrated within the MaxEnt for-
mulation and from the orthogonality of the tensor basis. In addition, the integrability
of the above p.d.f. implies that λ(1) > 0, λ(2) > 0 and λ < −1. The gradient of the
potential function is equal to:

∀u ∈ R2, ∇uΦ(u;λ) =
(
λ(1) exp{u1}+ λ, 5(λ(2) exp{u2}+ λ)

)
. (3.7)

The proof of existence for the stationary solution associated with such a potential
function is provided in Appendix C. The constraints can then be written as:

E{exp(G1)} = 1, (3.8)

E{exp(G2)} = 1, (3.9)

E{G1}+ 5E{G2} = ν. (3.10)
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In order to compute the Lagrange multipliers, we introduce the cost function λ 7→
J (λ) (with λ = (λ(1), λ(2), λ) ∈ Dλ) defined as:

Jα(λ) = (1− α)
‖ê(λ)− e‖2

‖e‖2
+ α

(ν̂(λ)− ν)2

ν2
∀λ ∈ Dλ, (3.11)

where 0 < α < 1 and e = (1, 1). In Eq. (3.11), ê(λ) and ν̂(λ) are the following
ergodic estimators related to the mathematical expectations involved in Eqs. (3.8-
3.9) and Eq. (3.10) respectively:

ê(λ) ' 1

M −M0 + 1

M∑
k=M0

(exp(Uk1 (λ)), exp(Uk2 (λ))), (3.12)

ν̂(λ) ' 1

M −M0 + 1

M∑
k=M0

Uk1 (λ) + 5Uk2 (λ), (3.13)

where M0 denotes any iteration number within the stationary regime, M is such that
M �M0 and the dependence of {Uk}k>1 on λ has been made explicit. In practice,
the values of M0 and M must be determined from a probabilistic convergence analysis
(see below), whereas the value of parameter α must be tuned in order to balance the
contribution of the mean constraint in the cost function.

3.2. Numerical results.

3.2.1. Convergence analysis and computation of the solution Lagrange
multipliers. In this section, we address the computation of the Lagrange multipliers
and denote by λ̃ = (λ̃1, λ̃2, λ̃) the initial guess that is used within the optimization
procedure. Matching the modes of the p.d.f. with the known mean values, it is found
that the components of λ̃ may be such that

λ̃1 = λ̃2 = −λ̃, (3.14)

hence allowing for a parametric analysis in terms of a single parameter, say λ̃. For
any value of λ̃, the convergence towards the stationary solution of the ISDE must be
characterized. In this work, such a convergence is inferred from the convergence of the
ergodic estimator for the second-order moment E{‖U‖2} of ‖U‖. From a practical
point of view, such a strategy amounts to analyse the convergence of the mapping
Niter 7→ ConvMes(Niter) defined as:

ConvMes(Niter) =
1

Niter

Niter∑
k=1

‖Uk‖2. (3.15)

Meanwhile, the convergence of the diffusion w.r.t. ∆r must be characterized (see
Eq. (2.53)). Below, we perform such a convergence analysis by characterizing the
convergence of the mapping Niter 7→ ErrConv(Niter) given by

ErrConv(Niter) =

∣∣∣∣ConvMes(Niter)−mRef
2

mRef
2

∣∣∣∣ , (3.16)

where mRef
2 is the reference value for the second-order moment of ‖U‖ which is ob-

tained (for a given value of the Lagrange multipliers) using a standard explicit Euler-
Maruyama scheme [27] with ∆r = 10−5 and M = 109. The graphs of mappings
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Fig. 3.1. Convergence towards the stationary solution of the ISDE: graph of Niter 7→
ConvMes(Niter) for ∆r = 10−3.
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Fig. 3.2. Convergence of the ergodic estimator of ‖U‖2: graph of error function Niter 7→
ErrConv(Niter) for ∆r = 10−3.

Niter 7→ ConvMes(Niter) and Niter 7→ ErrConv(Niter) are displayed in Figs. 3.1 and

3.2 for λ̃ = 5 and ∆r = 10−3. It is seen that the stationary regime is reached for
M0 > 106, whereas a good convergence of the diffusion is obtained for ∆r = 10−3

(with a relative error for the second-order moment of about 0.3% for M = 107).

Note that this value of λ̃ has been deduced from a preliminary optimization run with
M0 = 106 and M = 5 × 106. We now set ∆r = 10−3, M0 = 106 and M = 107

for subsequent analysis. The convergence of the active-set optimization algorithm for
λ̃ = 5 is shown in Fig. 3.3 in semilog scale for α = 0.6. It is seen that the algorithm
converges very fast (the computation time being about 355 seconds on a 2.8 GHz
single-core processor). The solution Lagrange multipliers are found to be:

λ1 = 5.0924, λ2 = 5.0697, λ = −5.0712. (3.17)
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Fig. 3.3. Convergence of the optimization algorithm for the computation of the Lagrange mul-
tipliers.

The associated value of the cost function is 1.51 × 10−7, corresponding to ê =
(1.0002, 1.0008) and ν̂ = −0.2. The p.d.f. of G1 and G2 are shown in Fig. 3.4,
where the densities have been obtained by using a classical kernel estimator and
10 000 independent realizations.
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Fig. 3.4. Plot of the marginal p.d.f.: graphs of g 7→ pG1
(g) (dashed line) and g 7→ pG2

(g) (solid
line).

3.2.2. Random field application. In this section, we finally provide a few
results that illustrate the random field case. To this aim, we set Ω =]0, 100[ (in
[mm]) and the spatial correlation lengths are chosen as Lani = Lsym = 20 [mm]. The
marginal p.d.f. are those calibrated in the previous section. A few samples of the nor-
malized random fields {G1(x), x ∈ Ω} and {G2(x), x ∈ Ω} are shown in Fig. 3.5. Fig.
3.6 shows the mean functions x 7→ E{G1(x)}, x 7→ E{G2(x)}, x 7→ E{C11(x)} and
x 7→ E{C44(x)} (which have been estimated by using 1 000 independent realizations).
This figure illustrates in part the fact that both {G(x), x ∈ Ω} and {[C(x)], x ∈ Ω}
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can be seen as the restrictions to Ω of stationary random fields, since the mean value,
ν (for the random field with values in Miso

n (R)) and δ (for the anisotropic germ) do
not depend on x. Let Corr : R→ R be the correlation function associated with the
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Fig. 3.5. Samples of random fields {G1(x), x ∈ Ω} (left) and {G2(x), x ∈ Ω} (right).
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Fig. 3.6. Plot of mean functions. Left: x 7→ E{G1(x)} (dashed line) and x 7→ E{G2(x)} (solid
line). Right: x 7→ E{C11(x)} (solid line) and x 7→ E{C44(x)} (dashed line).

elasticity tensor random field and defined as:

∀x ∈ R, Corr(x) =
tr E {([C(x0 + x)]− [M])([C(x0)]− [M])}

E{‖[C(x0)]− [M]‖2F}
, (3.18)

where x0 is any point in Ω. Fig. 3.7 displays the plot of x 7→ Corr(x). Other graphs
of function Corr obtained for different input correlation functions are reported in
Appendix D. In all cases, it is seen that the overall shape of the input correlation
function is preserved, whereas a slight modification (typically of less than 10%) of the
correlation length is observed. Note that the same conclusion holds for the correlation
functions associated with the components of the elasticity tensor random field. Finally,
some joint p.d.f. for the components (1, 1) and (4, 4) of the random elasticity tensor
at some points of the domain Ω are shown in Figs. 3.8, 3.9 and 3.10.

4. Conclusion. We have addressed the construction of a class of generalized
non-parametric probabilistic models for matrix-valued non-Gaussian random fields
which exhibit statistical fluctuations around a subset of the set of real symmetric
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Fig. 3.7. Correlation function of the elasticity tensor random field: plot of x 7→ Corr(x).
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Fig. 3.8. Plot of the joint p.d.f. between C11(0) and C11(20).

positive-definite matrices presenting sparsity and invariance with respect to given
orthogonal transformations. This issue naturally arises in multiscale analysis, where
the mesoscale modeling of heterogeneous microstructures typically requires taking
heed of both randomness and material symmetry constraints.

First, we have presented a methodology relying on the framework of information
theory and defined a particular algebraic form for the random field. This repre-
sentation involves two matrix-valued stochastic germs and offers some flexibility for
forward simulations and inverse identification by uncoupling the levels of statistical
fluctuations exhibited by the random field and by an associated stochastic anisotropy
measure. Subsequently, we have proposed a novel stochastic modeling and an associ-
ated numerical strategy for the simulation of the random field. The approach consists
in solving a family of Itô stochastic differential equations, indexed by the domain over
which the realizations have to be simulated. The proposed algorithm allows for the
preservation of the statistical dependence, at no additional computational cost, as the
probabilistic dimension increases. A Störmer-Verlet discretization scheme is further
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Fig. 3.9. Plot of the joint p.d.f. between C11(0) and C44(20).
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Fig. 3.10. Plot of the joint p.d.f. between C44(0) and C44(20).

formulated. This scheme is very efficient and turns out to converge much faster than
an explicit euler scheme for instance. We then exemplified the approach and some
related technicalities in the case of an elasticity tensor random field exhibiting some
fluctuations around the class of isotropic tensors. In particular, it is shown that the
model is able to generate correlation functions that are typically exhibited by elasticity
tensor random fields (e.g. exponential-type and sinc-type correlation functions).

The approach and algorithm are both general and can be readily applied to the
modeling of other non-Gaussian tensor-valued random fields exhibiting the same kind
of symmetry properties, provided that a deterministic basis can span the associated
subset of M+

n (R).
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Appendix A. Proof of proposition 2.1. In order to derive the proof for the
proposition 2.1, we might distinguish two groups of material symmetries, namely the
one where Msym

n (R) is spanned by commutating projectors and for which closed-form
expressions can be obtained (this is the case of the isotropic and cubic symmetries),
and the one gathering the other symmetry classes (apart from the triclinic case). For
each group, we provide a proof for a specific class which can be generalized, in a
straightforward manner, to all classes of the same group2.

Let us consider the first group and address the case of the isotropic symmetry.
Any matrix [N ] ∈Miso

n (R) can then be written as

[N ] = N1[J ] +N2[K], (A.1)

with N1 > 0, N2 > 0 (in a mechanical context, N1/3 and N2/2 correspond to the bulk
and shear moduli, respectively) and where the matrices [J ] and [K] have been defined
in § 3.1. Let [A] be any symmetric matrix spanned by [J ] and [K]: [A] = A1[J ] +
A2[K], with (A1, A2) ∈ R2. Since [J ] and [K] are commutating orthogonal projectors,
it can be deduced that: expm([A]) = exp{A1}[J ] + exp{A2}[K]. Consequently, and

since (N1, N2) ∈ R+
∗

2
by definition, there exists a unique symmetric matrix [G],

defined as

[G] = log{N1}[J ] + log{N2}[K], (A.2)

such that [N ] = expm([G]).
Moving on to the other group, let us consider for instance the case of transversely

isotropic elasticity matrices. We denote by n the unit vector normal to the plane
of isotropy. Let [p] and [q] be the two second-rank (idempotent) symmetric tensors

defined by [p] = n⊗n and [q] = [I]− [p], with [I]ij = δij . The basis {[Et.i.
(i)]}i=5

i=1} of
Mt.i.
n (R) then corresponds to the Kelvin matrix representation of the following tensor

basis:

e(1) = [p]⊗ [p], e(2) =
1

2
[q]⊗ [q], e(3) =

1√
2

([p]⊗ [q] + [q]⊗ [p]),

e(4) = [q]⊗[q]− e(2), e(5) = i− e(1) − e(2) − e(4),

where i is the fourth-rank symmetric identity tensor given by 2iijk` = δikδj` + δi`δjk.
Any matrix [N ] ∈Mt.i.

n (R) can then be expanded as

[N ] = N1[Et.i.
(1)] +N2[Et.i.

(2)] +N3[Et.i.
(3)] +N4[Et.i.

(4)] +N5[Et.i.
(5)], (A.3)

where the coefficients N1, . . ., N5 belong to a subspace of R5 such that [N ] is positive-
definite. Eq. (A.3) can be rewritten in a symbolic form as

[N ] = {[N123], N4, N5} , (A.4)

in which N4 > 0, N5 > 0 and [N123] is the positive-definite (2× 2) real matrix given
by

[N123] =

(
N1 N3

N3 N2

)
. (A.5)

2There is a restriction for the monoclinic system, for which the proof holds provided that the
system is defined with respect to three mutually orthogonal vectors. However, this does not appear
as a severe limitation, since engineered or biological materials are unlikely to exhibit such a material
symmetry property.
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The representation defined by Eq. (A.4) allows for simple algebraic calculations in

Mt.i.
n (R), as shown in [59]. Let [A] be any symmetric matrix spanned by {[Et.i.

(i)]}i=5
i=1}:

[A] = A1[Et.i.
(1)] +A2[Et.i.

(2)] +A3[Et.i.
(3)] +A4[Et.i.

(4)] +A5[Et.i.
(5)], (A.6)

in which (A1, . . . , A5) ∈ R5. Upon using the algebraic properties of the matrix basis,
it is easily seen (with obvious notations) that:

expm([A]) = {expm([A123]), exp{A4}, exp{A5}} . (A.7)

Since [N123] > 0, N4 > 0 and N5 > 0 by construction, it can then be deduced that
there exists a unique symmetric matrix [G] such that [N ] = expm[G] and which is
defined, in the symbolic form introduced above, as:

[G] = {logm([N123]), log{N4}, log{N5}} . (A.8)

Appendix B. Sketch of proof for the integrability of p[N (x)]. Let x

be fixed in Ω. The p.d.f. p[N (x)] of [N (x)] with respect to the measure d̃N =

2n(n−1)/4
∏

16i6j6n dNij reads as:

p[N (x)]([N ]; x) = 1M+
n (R)([N ]) cNx det([N ])−λ

sol
x −1 exp

(
− � [Λsolx ], [N ]�

)
×
∏
i<j

∣∣∣∣ log(ρj)− log(ρi)

ρj − ρi

∣∣∣∣,
(B.1)

where ρ1 < . . . < ρn are the strictly positive eigenvalues of [N ]. For any matrix
[N ] in M+

n (R), we introduce the spectral decomposition [N ] = [Φ] [ρ] [Φ]T, where
[ρ] is the diagonal matrix gathering the eigenvalues of [N ] and [Φ] is the orthogonal
matrix of associated eigenvectors. Upon introducing the classical representation of
the orthogonal matrix [Φ], namely

[Φ] = [Φ(α, r)] = expm(α [H(r)]), (B.2)

with α > 0 and [H(r)] ∈ Mn(R) skew-symmetric such that ‖[H(r)]‖2F = 1, it can be
shown that [45]:

p[N (x)]([N ]; x) d̃N = p[N (x)]([Φ(α, r)] [ρ] [Φ(α, r)]T)

×2n(n−1)/4 g(α, r)
∏
i<j

|ρj − ρi| dρ dα dr, (B.3)

in which (α, r) 7→ g(α, r) is a positive bounded function [32] and (ρ, α, r) ∈ Dρ ×
Dα × Dr. Owing to a proper definition of the admissible set of [Λsolx ] such that �
[Λsolx ], [Φ(α, r)] logm[ρ] [Φ(α, r)]T �> 0 and upon substituting Eq. (B.1) in Eq. (B.3),
it can be deduced that p[N (x)] is integrable if and only if∫

‖ρ‖<ε
det([N ])−λ

sol
x −1

∏
i<j

| log(ρj)− log(ρi)| dρ < +∞ (B.4)

for any ε, with 0 < ε� 1. Let I(ρ;λsolx ) be the integrand defined in Eq. (B.4):

I(ρ;λsolx ) = det([N ])−λ
sol
x −1

∏
i<j

| log(ρj)− log(ρi)|. (B.5)
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Since det([N ]) =
∏
i ρi and ρi < ρj for i < j, it follows that

I(ρ;λsolx ) 6 2n(n−1)/2

(∏
i

ρi

)β ∏
26i6n

| log ρi|i−1, (B.6)

in which β = −λsolx − 1 and use has been made of the inequality |x− y| 6 |x|+ |y| for
(x, y) ∈ R2. It can be deduced that:∫

‖ρ‖<ε
I(ρ;λsolx ) dρ 6 2n(n−1)/2

∫
‖ρ‖<ε

ρβ1
∏

26i6n

|ρβ/(i−1)
i log ρi|i−1 dρ. (B.7)

Provided that β > 0 (i.e. λsolx < −1), it is clear that the right hand side of Eq. (B.7)
is finite, and so is the left-hand side of Eq. (B.4). �

Appendix C. Proof of existence for the stationary solution associated
the numerical application. We examine in this appendix the existence of the
stationary solution for the potential function introduced in § 3.1:

∀u ∈ R2, Φ(u;λ) = λ(1) exp{u1}+ λu1 + 5(λ(2) exp{u2}+ λu2). (C.1)

Let us decompose Φ as

∀u ∈ R2, Φ(u;λ) := Φ1(u1;λ(1), λ) + Φ2(u2;λ(2), λ), (C.2)

with Φ1(u1;λ(1), λ) = λ(1) exp{u1}+λu1 and Φ2(u2;λ(2), λ) = 5(λ(2) exp{u2}+λu2).
It follows that the two-dimensional ISDE consists of two uncoupled one-dimensional
ISDE’s. The existence and uniqueness of a stationary solution can then be proven
by checking that either Φ1 or Φ2 satisfies the properties given by Eqs. (2.43–2.47)
(since these potentials only differ by a multiplicative constant). Let us consider Φ1

and note first that λ(1) > 0 and λ < 0. One has limu1→+∞ inf Φ1(u1;λ(1), λ) = +∞.
Furthermore, it is clear that ∇Φ1(u1;λ(1), λ) = λ(1) exp{u1} + λ is locally bounded
on R, so that the conditions given by Eqs. (2.43–2.45) are all trivially satisfied. One
has infu1∈R Φ1(u1;λ(1), λ) = Φ1(log{−λ/λ(1)};λ(1), λ), which is well defined since
λ/λ(1) < 0. Therefore, and since −λ < +∞ and −λ/λ(1) ≈ 1 in practice (see § 3.2.1),
one has:

inf
u1∈R

Φ1(u1;λ(1), λ) = λ
(

log{−λ/λ(1)} − 1
)
< +∞. (C.3)

Hence, the condition stated by Eq. (2.46) is also satisfied. Finally, one has∫
R
|∇Φ1(u1;λ(1), λ)| exp{−Φ1(u1;λ(1), λ)} du1 = 2 exp{λ(1− log(−λ/λ(1)))} < +∞,

which concludes the proof related to the existence and uniqueness of the stationary
measure for the application. �

Appendix D. Additional correlation graphs for exponential-type corre-
lation functions. Here, we characterize – in a purely numerical way – the correlation
function x 7→ Corr(x) defined by Eq. (3.18) when other types of input correlation func-
tions (that are, those of the Gaussian stochastic germs) are introduced. Specifically,
we consider the one-dimensional application discussed in § 3.2.2, in which the corre-
lation functions associated the two family of germs have a similar algebraic form for
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simplicity. For notational convenience, we further drop the supercripts ` and `′ and
denote the “generic” correlation function by r. We then take either an exponential
correlation function, defined as

∀y ∈ R, r(y) = exp (−|y|/L) , (D.1)

or a squared exponential function, given by:

∀y ∈ R, r(y) = exp
(
−(π/4)× (y/L)2

)
. (D.2)

In each case, the strictly positive parameter L corresponds to the spatial correlation
length as defined by the left-hand side of Eq. (2.11). The plot of x 7→ Corr(x)
(estimated from 1 000 independent realizations) for each of this correlation type is
shown in Fig. D.1, where all the stochastic germs are parametrized using L = 20
[mm].
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Fig. D.1. Plot of x 7→ Corr(x) for different types of correlation function r (associated with
the Gaussian random fields) and L = 20 [mm]. Dashed line: exponential type; solid line: squared-
exponential type.
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