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Existence of solutions describing accumulation in a thin-film

flow

C. M. Cuesta∗, J. J. L. Velázquez†

Abstract

We consider a third order non-autonomous ODE that arises as a model of fluid accu-
mulation in a two dimensional thin-film flow driven by surface tension and gravity. With
the appropriate matching conditions, the equation describes the inner structure of solutions
around a stagnation point. In this paper we prove the existence of solutions that satisfy this
problem. In order to prove the result we first transform the equation into a four dimensional
dynamical system. In this setting the problem consists of finding heteroclinic connections
that are the intersection of a two dimensional centre-stable manifold and a three-dimensional
centre-unstable one. We then use a shooting argument that takes advantage of the information
of the flow in the far-field, part of the analysis also requires the understanding of oscillatory
solutions with large amplitude. The far-field is represented by invariant three-dimensional
subspaces and the flow on them needs to be understood, most of the necessary results in this
regard are obtained in [7]. This analysis focuses on the understanding of oscillatory solu-
tions and some results are used in the current proof, although the structure of oscillations is
somewhat more complicated.
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1 Introduction

In this paper is to prove the existence of solutions of

(

d3H

dξ3
+ ξ2 + a

)

H3 = 1 , a ∈ R . (1.1)

that satisfy the following behaviour

H ∼ 1

|ξ| 23
as |ξ| → ∞ . (1.2)

This equation has been deduced in [6] (see also [5]). It arises in a two dimensional model describing
steady coating of a bumpy surface by a thin-film approximation. In particular (1.1) results in the
particular case that the motion of the fluid is driven by a balance of capillarity and gravity effects.

In some regions the curvature of the substrate induces capillary forces of the same order of
magnitude than the gravitational ones. In the steady regime the model describing such flows has
the form (cf. ([6])):

∂

∂s

((

Q(s) + ε
∂3h

∂s3

)

h3

)

= 0 , ε > 0 (1.3)

where we have neglected some non-relevant terms. The variable s stands for the arc-length that
parametrises the substrate, and h is the height of the fluid over this surface. The parameter ε is
the ratio of the characteristic height of the fluid and the characteristic radius of curvature of the
substrate. The function Q(s) describes the balance between gravitational and the capillary forces
induced by the geometry of the substrate, it measures the tendency of the fluid to move in the
tangential direction to the substrate as a result of the afore mentioned forces.

If the function Q(s) has a constant sign, the motion of the fluid takes place always in the same
direction. In such case, (1.3) can be approximated by the leading order term of (1.3):

∂

∂s
(Q(s)h3) = 0 . (1.4)

However, this approximation breaks down and it cannot be uniformly valid for arbitrary values
of s if Q(s) changes sign. In such cases (1.4) predicts the onset of regions, where Q(s) is close
to zero, with infinite height h, i.e. the fluid accumulates in those regions. As a consequence, the
approximation (1.4) must be replaced by the model (1.3). In the particular case in which in most

of the substrate Q(s) is positive, but there exists a sufficiently small region (of size ε
3
17 to be

precise), where Q(s) = 0, a boundary layer analysis shows that, under suitable non-degeneracy
conditions, the height of the fluid can be approximated by means of (1.1), the height of the fluid

becoming of order ε−
2
17 . This asymptotic analysis shows also that the solutions of (1.1) describing

the stationary flows in those regions must satisfy (1.2).
Equations similar to (1.3) where the main driving terms are the gravity and the curvature of

the substrate, have been obtained, in a slightly different context, in [17] and [18]. This model
can be obtained also as a particular case of the ones considered in [21] for specific choices of
the parameters. See also [12] for a model that neglects gravity. Similar problems have been
investigated in relation with industrial applications, such as the drainage of (metal) foams (e.g.
[22]), manufacture of lenses (e.g. [12] and [13], although in the later case the effect of gravity can
be neglected. These works offer numerical as well as formal (using perturbation methods) results.

It is our aim to study the solutions of (1.1)-(1.2) rigorously. The main result of the paper is
the following:
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Theorem 1.1 For any a ∈ R there exists a solution of (1.1) satisfying (1.2).

We sketch the main ideas in the proof of Theorem 1.1. We first observe that the terms ξ2H3

and 1 in (1.1) give the natural scaling H ∼ |ξ|− 2
3Φ with Φ ∼ 1 (cf. (1.2)), which gives the leading

order behaviour of (1.1), namely,

(

|ξ|− 8
3
d3Φ

dξ3
+ 1 + a |ξ|−2

)

Φ3 = 1 , |ξ| ≫ 1 .

A change of variables with behaviour τ ∼ 9
17 ξ|ξ|

8
9 as |ξ| → ∞ gives the dominant balance problem

(

d3Φ

dτ3
+ 1

)

Φ3 ∼ 1 as |ξ| → +∞ , Φ → 1as |τ | → ∞ .

In such set of variables Φ and τ (1.1) becomes an autonomous dynamical system of the form

d3Φ

dτ3
+ 1 =

1

Φ3
− (a− 1)(cos θ)2 − F (θ) ,

dθ

dτ
= (cos θ)

26
9 ,

that we shall denote by (D), for the unknown (Φ, dΦ/dτ, d2Φ/dτ2, θ) ∈ R
+ × R

2 × [−π/2, π/2].
Here θ is defined by ξ = tan θ and the function F is a linear combination of Φ and its derivatives
with coefficients that depend only on θ and that vanish at θ = ±π/2. Thus, this system has the
property that the three dimensional subspaces {θ = ±π/2} are invariant and the flow on them is
described by the ODE

d3Φ

dτ3
+ 1 =

1

Φ3
. (1.5)

The system associated to (1.5) for the unknown (Φ, dΦ/dτ, d2Φ/dτ2) was studied in [7]. It has one
single critical point, Ps = (1, 0, 0) and therefore (D) has two critical points, p− = (1, 0, 0,−π/2)
and p+ = (1, 0, 0, π/2). Then, the solutions of (1.1) satisfying the matching conditions (1.2)
correspond to solutions of (D) contained in the trajectories that connect the critical point p− as
τ → −∞ to p+ as τ → ∞. Or equivalently, they are contained in heteroclinic orbits connecting
these two critical points.

The existence of a heteroclinic orbit for (D) is proved by means of a shooting argument in
the direction of decreasing τ . The shooting starts close to the invariant manifold {θ = π/2} and
the final argument will require information of the flow on the invariant manifold {θ = −π/2}.
For that reason we shall need the following information on (1.5). First, that the critical point Ps

is hyperbolic and has a one-dimensional stable manifold and a two-dimensional stable manifold.
Secondly, we proved in [7] that the only possible asymptotic behaviour of solutions on the stable
manifold correspond to either

lim
τ→−∞

Φ(τ) = ∞ (1.6)

or to
lim

τ→(τ∗)+
Φ(τ) = 0 with τ∗ > −∞ . (1.7)

We shall also recall later that (1.5) has a increasing Lyapunov function, and that this in particular
guarantees the non-existence of periodic orbits.

To start the shooting we first prove that there exists an invariant two-dimensional centre-
stable manifold V+ locally defined near the point p+. All the trajectories associated to (D) whose
starting initial data is contained in V+ converge to p+ as τ → ∞. We can parametrise the set
of trajectories in V+ by means of one real parameter ν taking values in some large interval. The
behaviours (1.6) and (1.7) define two sets of values ν. We prove that for very large values of ν the
corresponding trajectory satisfies (1.6). On the contrary, if ν is very negative we show that there
exists a τ∗ = τ∗(ν) such that (1.7).

It turns out that the sets of values ν such that the corresponding trajectories satisfy either
(1.6) or (1.7) are disjoint open sets. This implies, the existence of ν’s for which the corresponding
trajectory does not satisfy neither (1.6) nor (1.7).
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The final step is to show that the trajectories associated to such ν are globally defined in τ ∈ R

and that they satisfy

(

1

Φ
+ Φ

)

+

∣

∣

∣

∣

dΦ

dτ

∣

∣

∣

∣

+

∣

∣

∣

∣

d2Φ

dτ2

∣

∣

∣

∣

≤ C , for any τ ∈ R (1.8)

for some C > 0, and that

lim
τ→−∞

θ(τ) = −π

2
. (1.9)

The idea is that if (1.8) and (1.9) are satisfied we can use the fact that the dynamics of (D)
become close to the ones associated to the trajectories contained in the unstable manifold of Ps

for the system associated to (1.5) and the trajectories have no alternative but to approach p− as
τ → −∞.

The most technical part of the paper is the proofs of (1.8) and of (1.9). These require to show
that oscillatory behaviours with large amplitude for the solutions of (D) as τ → −∞ must have
a decreasing amplitude for decreasing τ if neither (1.6) nor (1.7) take place. The key point is
that the structure of oscillatory solutions can be identified by looking at the several asymptotic
regimes of (1.1). There are, in particular, two very distinctive ones. For instance, the balance
ξ2/3H ∼ ∞ for very negative ξ will be relevant in our analysis. In this case the behaviour of
solutions is described by

d3H

dξ3
= −ξ2 . (1.10)

This equation can be integrated giving that, in such regions, H behaves like a fifth order polyno-
mial. The solutions of (1.10) are in fact a two-parameter family of polynomials, as we shall see.
On the other hand, if ξ2/3H ∼ 0 on bounded intervals, the dominant balance there is given by the
equation

d3H

dξ3
=

1

H3
. (1.11)

The analysis of (1.11) plays a crucial role in our proofs and was already studied in [7]. The
possibility of alternating regions where either (1.10) or (1.11) dominates, builds up a scenario
where solutions with large oscillations exist: The bouncing region of the oscillations are described
by (1.11) and the maximum amplitude regions are close to solutions of (1.10). This phenomenon
has been already observed for (1.5) in [24] and explored rigorously in [7].

In order to prove (1.6) and (1.7) we exploit this mechanism of oscillation. We argue by
contradiction and assume first that (1.8) does not hold. This gives (after a number of technical
lemmas) that there exists a sequence {τ∗n} with limn→∞ τ∗n = −∞ such that Φ(τ∗n) is a local
maximum and limn→∞ Φ(τ∗n) = ∞. We use that the oscillatory solutions with very large amplitude
for very negative values of τ can be approximated, after a suitable rescaling, by a sequence of
functions |ξ|2/3Hn(ξ) where each Hn solves (1.10) in intervals [ξ(τmin

n+1 ), ξ(τ
min
n )]. The values τmin

n

being such that Φ(τmin
n ) is the minimum in (τ∗n , τ

∗
n−1). In particular, in such intervals Hn(ξ)

are close to a fifth order polynomial solving (1.10). The matching between two consecutive such
functions is done into the inner region where Φ and Hn become close to 0, as it turns out, this
inner regions lies around τmin

n . As we have mentioned the dynamics in such bouncing region are
dominated by (1.11) and the rigorous matching can be adapted from that performed for (1.5) (see
[7]): the study of (1.11) reduces to the one of a phase-plane analysis in which the bouncing can
be encoded into the behaviour of a separatrix. This object attracts trajectories for increasing ξ,
implying that its behaviour is generic. Reading off this behaviour into the functions Hn implies
that in the outer region they behave as a polynomial with a double zero near ξ(τmin

n+1 ). This
in particular reduces the family of polynomials that give the outer region around each τ∗n to a
one-parameter family. Moreover, this analysis allows to get information on the relative size of
consecutive maxima and minima, namely that the sequence of the maximum values decreases and
that the sequence of minimum values increases (as n → ∞) and these contradict the assumption
that (1.8) does not hold.

4



The paper is organised as follows. Section 2 is divided in three preliminary parts. First in
Section 2.1 we give some results concerning (1.5), most of which are proved in [7]. In Section 2.2
we reformulate (1.1) as a four dimensional dynamical system and reformulate Theorem 1.1 in this
setting. The third part is Section 2.3 where we prove the existence of the centre-unstable manifold
around p+. Section 3 is devoted to the analysis of the behaviours (1.6) and (1.7) for (D); in
Section 3.1 we show stability under small perturbations of solutions that satisfy either of these
properties, and in Section 3.2 we give necessary conditions on solutions of (1.1) to satisfy either
(1.6) or (1.7). With the analysis carried out up to here we can then prove in Section 4 that there
exist solutions on V+ that do not satisfy neither (1.6) nor (1.7). We continue by proving that these
trajectories of V+ do satisfy (1.8) and (1.9). In order to do that we first find in Section 5 that if
(1.8) is not satisfied the sequences {τ∗n} and {τmin

n }, described above, are well defined. Second,
in Section 6 we find the contradictory results that {Φ(τ∗n)} is decreasing and that {Φ(τmin

n )} is
increasing. This part is very technical and needs by itself a few steps. Thus, in Section 6.1 we
identify the scales of the outer region and the approximating polynomials near local maxima.
This is based on the analysis of the solutions of (1.10) that is carried out in Appendix B. In
Section 6.2 we perform the right scaling of the solutions under consideration and identify the
range in which they are approximated by the polynomials. In this section we also prove that the
approximating polynomials must have a double zero. This step requires the analysis of (1.11)
given in Appendix A as well as the matching lemma given in Appendix C (a result that has been
adapted from [7]). In Section 6.3, with detailed information of the matching regions, we derive an
(iterative) expression that relates the elements of the sequence of local maxima and another that
relates the local minima, and that contradict that (1.8) is not satisfied. Finally, in Section 7 we
finish the prove of Theorem 1.1.

Finally, we recall that equations similar to (1.5) have been studied intensively, see [4], [8],
[9], [11], [16], [17], [18], [19] and [23]), to mention a few, where similar equations arise in several
related physical situations. Rigorous results concerning such equations can be found also in [1]
and, concerning travelling wave solutions, in [2], [3], [14], [15] and [20]. It is interesting to note
that many of these models yield higher order ODEs describing oscillatory fluid interfaces. We
refer to [7], where this aspect and related works are put into context.

2 Preliminaries

2.1 A summary of results for (1.5)

We now summarise some properties of (1.5), most of which have been proved in [7] and will be
used later in the proof of Theorem 1.1. It is convenient to rewrite (1.5) in the equivalent form

dΦ

dτ
= W ,

dW

dτ
= Ψ ,

dΨ

dτ
=

1

Φ3
− 1 , (2.1)

we then have the following result.

Proposition 2.1 (i) There is a unique critical point for (2.1) in the domain {Φ > 0 , W ∈
R , Ψ ∈ R} given by:

Ps = (Φ,W,Ψ) = (1, 0, 0) .

(ii) The point Ps is hyperbolic. the stable manifold of (1.5) at the point Ps is tangent to the
vector:

v1 :=





3−
2
3

−3−
1
3

1





and the corresponding eigenvalue is λ1 := −3
1
3 .
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(iii) At Ps there is a two-dimensional unstable manifold locally spanned by the eigenvectors v2 :=

(−3
1
6 /6 , 3

2
3 /6 , 1)T and v3 := (3

5
6 /6 , 3

1
6 /2 , 0)T . The eigenvalues associated to the plane

spanned by {v2, v3} are λ2 := 3
1
3 (1 + i 3

1
2 )/2 and λ3 = λ2.

(iv) The trajectories associated to (2.1) that are contained in the stable manifold and satisfy
(Φ,W,Ψ) 6≡ Ps, behave in one of the two following ways for decreasing τ : Either they are
defined for all τ ∈ R and satisfy

lim
τ→−∞

(Φ,W,Ψ) = (∞,−∞,∞) (2.2)

or, alternatively, there exists a τ∗ > −∞ such that

lim
τ→(τ∗)+

Φ(τ) = 0 . (2.3)

Moreover, the points of the stable manifold associated to Ps with Φ > 1 satisfy (2.2) and
those with Φ < 1 satisfy (2.3).

(v) Suppose that there exist τ0 ∈ R and C0 > 1 such that

(Φ(τ),W (τ),Ψ(τ)) ∈
{

(Φ,W,Ψ) ∈ R
3 :

1

C0
≤ Φ ≤ C0, −C0 ≤ W ≤ C0 , −C0 ≤ Ψ ≤ C0

}

for all τ ≤ τ0, then
lim

τ→−∞
(Φ(τ),W (τ),Ψ(τ)) = Ps (2.4)

and the corresponding trajectory is contained in the unstable manifold of Ps.

Proof. All the statements of this proposition have been already proved in [7] except for (v). In
order to prove this, we use an argument similar to the one used to prove Lemma 2.4 in [7]. We
first recall that there exists an increasing Lyapunov functional E associated to (1.5):

E := ΨW +
1

2Φ2
+Φ ,

dE

dτ
= Ψ2 ≥ 0 .

This and the assumptions made imply that

∫ τ0

−∞

Ψ2(s)ds < ∞ . (2.5)

Using (2.1), it then follows that limτ→−∞ Ψ(τ) = 0. Indeed, arguing by contradiction, one can
construct a sequence τn → −∞ such that there exits a ε0 > 0 such that either Ψ(τn) ≥ ε0 or
Ψ(τn) ≤ −ε0. Then (2.1) implies that dΨ/dτ ≥ −1, so either Ψ(τ) ≥ ε0 + (τn − τ) for τ > τn or

Ψ(τ) ≤ −ε0+(τn−τ) for τ > τn. But this contradicts (2.5)) since either
∫ τn+ε0/2

τn
(Ψ(τ))2dτ ≥ ε3/8

or
∫ τn
τn−ε0/2

(Ψ(τ))2dτ ≥ ε3/8 for all n.

Now the second equation in (2.1) implies that W remains approximately constant as τ → −∞
in any finite interval of arbitrary fixed length L. Therefore, if there is a subsequence {τn} with
limn→∞ τn = −∞ satisfying limn→∞ W (τn) 6= 0, we obtain that infτ∈[τn,τn+L] |W (τ)| ≥ ε0 > 0 for

n sufficiently large. It then follows from the first equation in (2.1) that the condition 1
C0

≤ Φ ≤ C0

fails if L is assumed to be sufficiently large (integration on the interval (τn, τn +L) for sufficiently
large n gives that |Φ(τn + L)− Φ(τn)| > ε0L > 0, but |Φ(τn + L)− Φ(τn)| < (C2

0 − 1)/C0 for all
n and L). Therefore limτ→−∞ W (τ) = 0.

Using the last equation in (2.1) as well as the fact that limτ→−∞ Ψ(τ) = 0 it then follows in a
similar way that limτ→−∞ Φ(τ) = 1. This gives (2.4) and the result follows.

The next lemma gives the detailed asymptotic behaviour in both cases (2.2) and (2.3):
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Lemma 2.2 The trajectories associated to (2.1) that are contained in the stable manifold and
satisfy (Φ,W,Ψ) 6= Ps satisfy that either they are defined for all τ ∈ R and (2.2) holds with

lim
τ→−∞

Φ(τ)

τ3
= −1

6
, (2.6)

or, alternatively, there exists a τ∗ > −∞ such that (2.3) holds with

lim
τ→τ+

∗

Φ(τ)

(τ − τ∗)
3
4

=

(

64

15

)
1
4

. (2.7)

Proof. That either (2.2) or (2.3) hold is just the statement (iv) of Proposition 2.1. Then, (2.6)
follows from (2.2) and integrating the equation. Indeed, for all Φ0 > 0 there exist a τ0 with |τ0|
large enough so that for all τ < τ0, then

Φ(τ) > Φ0 > 0 ,
dΦ(τ0)

dτ
< −Φ0 < 0 ,

d2Φ(τ0)

dτ2
> Φ0 > 0 .

Thus

−1 <
d3Φ

dτ3
<

1

Φ3
0

− 1 .

and integrating this expression with τ < τ0 < 0 we obtain
(

1

Φ3
0

− 1

)

(τ − τ0)
3

6
< Φ(τ) < Φ(τ0)−

dΦ(τ0)

dτ
(τ0 − τ) +

d2Φ(τ0)

dτ2
(τ − τ0)

2

2
− (τ − τ0)

3

6
,

for |τ0| large enough. Then dividing by −τ3/6 and taking the limit τ → −∞ implies (2.6), since
τ0 can be made arbitrarily negative and Φ0 arbitrarily large.

In order to prove (2.7) we use the phase-plane analysis of the Appendix A.
We employ the transformation (A.4) with ζ replaced by τ for (2.1) (see also [7]) that gives the

system
dΦ

dz
= uΦ ,

du

dz
= v +

1

3
u2 ,

dv

dz
= 1 +

5

3
u v − Φ3 , (2.8)

which corresponds to (A.5) with Φ = 0 in the last equation. For further reference, the flow field of
the phase plane of (A.5) is also depicted in Figure 1 where, in particular, the direction of the field,
the critical point (ue, ve) and the attractive separatrix v = v̄(u) are shown. Using Lemma A.3
and the behaviour of trajectories of the system (A.5) entering the only critical point (ue, ve) as
z → −∞ it is easy to show that if

lim
z→−∞

Φ(z) → 0 , and ‖(u, v)‖ is uniformly bounded as z → −∞ , (2.9)

then, by a bootstrap argument, the trajectory (u, v) remains close to (ue, ve), in particular the
estimate (A.6) holds for z large enough. That (2.9) and that τ∗ = limz→−∞ τ(z) are satisfied is a
consequence of the proof of (2.3) in [7] and the transformation (A.4).

Using the first equation in (2.8) one obtains that there exists positive constants C1 and C2

such that
eC2e

λz

eue(z−z0)Φ(z0) < Φ(z) < eC1e
λz

eue(z−z0)Φ(z0) , (2.10)

with λ = Re(λ+) = (7/2)(1/(15
1
3 ) > 0, for all z < z0 where z0 < 0 and |z0| is sufficiently large.

And this in particular implies that

lim
z→−∞

Φ(z)e−uez = Φ(z0)e
−uez0 . (2.11)

Using now the last equation of (A.4) and (2.10) one can infer that, considering τ as a function of
z

lim
z→−∞

(τ(z)− τ∗)
3
4 e−uez =

(

15

64

)
1
4

Φ(z0)e
−uez0 ,

(where we use ue = (5/9)
1
3 to compute the explicit coefficient). Finally, this and (2.11) imply

(2.7).
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2.2 A dynamical systems approach

As anticipated in the Introduction, in this section we reformulate the main result in terms of a
Dynamical Systems approach. We first transform (1.1) into a suitable systems of four autonomous
ODEs, and (1.2) into its corresponding boundary conditions.

Since we are interested in solutions for which |ξ| 23H remains bounded for all ξ it is convenient
to introduce the following change of variables

H(ξ) =
1

(ξ2 + 1)
1
3

Φ(τ) (2.12)

where the variable τ is defined by means of

(ξ2 + 1)
4
9 dξ = dτ , τ =

∫ ξ

0

(η2 + 1)
4
9 dη . (2.13)

With this transformation, we have that

dH

dξ
= −2

3

ξ

(ξ2 + 1)
4
3

Φ + (ξ2 + 1)
1
9
dΦ

dτ
, (2.14)

d2H

dξ2
= −2

3

1− 5
3ξ

2

(ξ2 + 1)
7
3

Φ− 4

9

ξ

(ξ2 + 1)
8
9

dΦ

dτ
+ (ξ2 + 1)

5
9
d2Φ

dτ2
, (2.15)

and (1.1) becomes

d3Φ

dτ3
=

1

Φ3
− ξ(τ)2 + a

ξ(τ)2 + 1
− F (τ) , n ∈ N , s ∈ [−1, 0] (2.16)

with

F (τ) =
16

3

ξ

(ξ2 + 1)
10
3

(

1− 14

9

ξ2

ξ2 + 1

)

Φ+
1

(ξ2 + 1)
17
9

(

208

81

ξ2

ξ2 + 1
− 10

9

)

dΦ

dτ
+
2

3

ξ

(ξ2 + 1)
13
9

d2Φ

dτ2
,

(2.17)
where ξ is given as a function of τ by means of (2.13). In other words, we use τ as independent
variable, while ξ becomes a dependent one, making the system autonomous.

It is convenient to transform ξ further into a new variable that takes values in a compact set,
namely, we define the variable θ by

ξ = tan θ θ ∈
[

−π

2
,
π

2

]

. (2.18)

Finally, we can reformulate (2.13) and (2.16)-(2.17) as

dΦ

dτ
= W , (2.19)

dW

dτ
= Ψ , (2.20)

dΨ

dτ
=

1

Φ3
− 1− (a− 1)(cos θ)2 −

[(

16

3
sin θ − 224

27
(sin θ)3

)

(cos θ)
17
3 Φ

+

(

208

81
(sin θ)2 − 10

9

)

(cos θ)
34
9 W +

2

3
sin θ(cos θ)

17
9 Ψ

]

, (2.21)

dθ

dτ
= (cos θ)

26
9 , (2.22)

that has critical points

p− :=
(

1, 0, 0,−π

2

)

and p+ :=
(

1, 0, 0,
π

2

)

. (2.23)

We aim to prove the following theorem:
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Theorem 2.3 There exists a heteroclinic connection of the system (2.19)-(2.22) between the
points p− and p+ given in (2.23).

We notice that Theorem 1.1 is just a corollary of Theorem 2.3; this is implied by (1.2) and (2.12).
We point out that the system (2.19)-(2.22) reduces to (2.1) on the subspaces θ = −π/2 and

θ = +π/2. We shall take advantage of this fact in some of the arguments that follow.

2.3 Existence of the centre-stable manifold

We now proceed to describe in detail the construction of a centre-stable manifold at p+ that
we denote by V+. Let us first define a set of transformations Fτ (x), τ ∈ R for any given x ∈
R

+ × R
2 ×

[

−π
2 ,

π
2

]

by means of

(Φ(τ),W (τ),Ψ(τ), θ(τ)) = Fτ (x) (2.24)

where (Φ,W,Ψ, θ) solves (2.19)-(2.22) with (Φ(0),W (0),Ψ(0), θ(0)) = x. Classical ODE theory
ascertains that the family of transformations Fτ (·) is well defined in some suitable interval τ ∈
(τ1(x), τ2(x)). We have the following result.

Proposition 2.4 There exists a two-dimensional C1 manifold V+ contained in the ball Bδ(p+)∩
R

3 × [−π/2, π/2] for some δ > 0 sufficiently small, tangent to the subspace spanned by the vectors

ṽ1 =









3−
2
3

−3−
1
3

1
0









, ṽ4 =









0
0
0
1









. (2.25)

If x ∈ V+, the flow Fτ defined in (2.24) is defined for any τ > 0 and

Fτ (x) ∈ V+ for any τ ≥ 0 (2.26)

with
lim
τ→∞

Fτ (x) = p+ . (2.27)

Proof. In order to apply standard results it is convenient to extend the range of values of θ,
replacing cos θ by | cos θ|, where the system (2.19)-(2.22) is defined. The resulting system can

be defined in a neighbourhood of p+ and the right hand side of (2.19)-(2.22) is in C
17
9 (R3 ×

(−π/2, π/2)). Since 17
9 > 1 we can apply the results in [10]. In our setting, this means the

existence of a two-dimensional manifold V+ ∈ C
17
9 (R3 × (−π/2, π/2)) tangential to the plane

spanned by {ṽ1, ṽ4} at p+ that remains invariant under the flow Fτ if one can prove that the
corresponding trajectories on this manifold remain inside a ball Bδ(p+) for some small δ > 0. Let
us show that V+ is invariant.

Let us consider a four-dimensional cube Q = [1− δ/2, 1+ δ/2]× [−δ/2, δ/2]2× [π/2− δ/2, π/2]
contained in a ball Bδ(p+). The cube has four pairs of parallel -3 dimensional- sides. One pair
with normal direction ṽ1, another pair with normal direction ṽ4, the other two pairs of parallel
sides contain a plane parallel to the one spanned by ṽ1 and ṽ4. The set Q ∩ V+ gives four C1

curves and, due to the tangency of V+ to the plane spanned by ṽ1 and ṽ4, two are contained in
each of the parallel sides of the cube that are orthogonal to ṽ1, and the other two are contained
in parallel subspaces orthogonal to ṽ4. More specifically, one of later is contained in the subspace
R

3×{θ = π/2}. Notice that V+∩(R3×{θ = π/2}) gives a portion of the stable manifold associated
to (2.1) for δ small enough. Therefore, if x ∈ V+∩ (R3×{θ = π/2}), Fτ (x) ∈ Bδ(p+) for arbitrary
values of τ > 0. On the other hand, for the curve contained in a subspace with constant θ < π/2
and orthogonal to ṽ4, we use the fact that θ is increasing, thus trajectories could only scape the
cube through the other boundaries that intersect V+. But the points x on the other two boundary
curves satisfy ṽ1 · (x−p+) = ±cδ for some c > 0 (small or at most of order one). We then use that

d

dτ

( 〈ṽ1 · (Fτ (x) − p+)〉2
2

)∣

∣

∣

∣

τ=0

= 〈ṽ1 · (x− p+)〉
〈

ṽ1 ·
dFτ (x)

dτ

∣

∣

∣

∣

τ=0

〉

.
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Since the manifold V+ is tangent to the plane spanned by ṽ1 and ṽ4 it follows, using (iii) in
Proposition 2.1 as well as (2.25) that

d

dτ

( 〈ṽ1 · (Fτ (x)− p+)〉2
2

)∣

∣

∣

∣

τ=0

= −3
1
3 〈ṽ1 · (x − p+)〉2 + o

(

〈ṽ1 · (x− p+)〉2
)

. (2.28)

Therefore, if δ is sufficiently small this quantity is negative and the trajectories in V+ remain
always in the ball Bδ(p+) and (2.26) follows. It only remains to show (2.27). To this end, we
observe that (2.22) implies limτ→∞ θ(τ) = π/2. Using (2.28) we then obtain (2.27).

For further reference, let us denote by Π ⊂ R
4 the affine plane spanned by the stable eigenvec-

tors at p+, namely,

Π = {w = (ν, σ) ∈ p+ + R
4 : w − p+ = νṽ1 + σṽ4 ν , σ ∈ R} , (2.29)

with ṽ1 and ṽ4 as in (2.25). Every w ∈ Π can be identified by its coordinates, thus we write
w = (ν, σ) and p+ = (0, 0) with this set of coordinates. Since V+ is tangent to Π at p+, there exist
local differentiable parametrisation of V+.

Lemma 2.5 (Local parametrisation of V+) Let Π be given by (2.29). There exists a δ0 > 0
and a differentiable mapping Λ : Π → R

4 that maps a neighbourhood of Π into V+∩Bδ0(p+)∩{θ ≤
π/2}. Moreover, ∂νΛ(0, 0), ∂σΛ(0, 0) ∈ Π.

3 Analysis of the behaviours (1.6) and (1.7)

3.1 Stability

We now prove that both asymptotic behaviours (1.6) and (1.7) represent two disjoint open sets of
solutions of (2.19)-(2.22). More precisely, we have the following results:

Lemma 3.1 Suppose that Fτ (x) is a solution of (2.19)-(2.22) with x ∈ R
+ × R

2 × (−π/2, π/2).
Let us also assume that for such a solution limτ→−∞Φ(τ) = ∞. Then, there exists a δ =
δ(x) > 0 sufficiently small such that for any y ∈ Bδ(x) ∩ (R+ × R

2 × (−π/2, π/2)) Fτ (y) =
(Φ̃(τ), W̃ (τ), Ψ̃(τ), θ̃(τ)) satisfies

lim
τ→−∞

Φ̃(τ) = ∞ . (3.1)

Proof. It is convenient to use, in order to prove the result, the original equation (1.1) that is
equivalent in the set R+ × R

2 × (−π/2, π/2) to the system (2.19)-(2.22) by means of the change
of variables (2.12), (2.13).

We first recall that (2.22) implies that θ → −π/2 as τ → −∞. Therefore, by (2.18),
limτ→−∞ ξ = −∞. On the other hand our hypothesis on Φ as well as (2.12) and (2.13) imply that

lim
ξ→−∞

|ξ| 23H(ξ) = ∞ , (3.2)

then this and (1.1) yields the existence of a ξ0 = ξ0(x) < 0 with |ξ0| large enough such that

d3H

dξ3
≤ −ξ2

2
for all ξ ≤ ξ0 .

Integration this expression gives

d2H(ξ)

dξ2
≥ −ξ3

6
+

ξ30
6

+
d2H(ξ0)

dξ2
,

dH(ξ)

dξ
≤ − ξ4

24
+

ξ40
24

+

(

d2H(ξ0)

dξ2
+ ξ30

)

(ξ − ξ0) +
dH(ξ0)

dξ
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Therefore, there exist a ξ1 = ξ1(x) < 0 with |ξ1| large enough such that

d2H(ξ)

dξ2
> 0 ,

dH(ξ)

dξ
< 0 for ξ ≤ ξ1 . (3.3)

We assume, without loss of generality, that ξ21 + a > 0 by taking ξ1 even larger is necessary.
Now for Fτ (y) = (Φ̃(τ), W̃ (τ), Ψ̃(τ), θ̃(τ)) with y ∈ Bδ(x)∩ (R+ ×R

2× (−π/2, π/2)) we define
H̃(ξ) = (ξ2 + 1)−1/3Φ̃(τ). Since the changes of variables (2.12) and (2.13) are smooth, it follows,
using (3.2) and (3.3) and standard continuous dependence arguments for ODEs, that

H̃(ξ1) ≥
2

1
3

(ξ21 + a)
1
3

,
d2H̃(ξ1)

dξ2
> 0 ,

dH̃(ξ1)

dξ
< 0 . (3.4)

Integration of (1.1) for the unknown H̃ and (3.4) imply that for all ξ ≤ ξ1

H̃(ξ) ≥ 2
1
3

(ξ21 + a)
1
3

+

∫ ξ1

ξ

∫ ξ1

s1

∫ ξ1

s2

(s23 + a)ds3ds2ds1 −
∫ ξ1

ξ

∫ ξ1

s1

∫ ξ1

s2

ds3

(H̃(s3))3
ds2ds1 . (3.5)

Suppose that

H̃(s) ≥ 2
1
3

(s2 + a)
1
3

for ξ ≤ s ≤ ξ1 . (3.6)

Therefore, it would follow from (3.5) that:

H̃(ξ) ≥ 2
1
3

(ξ2 + a)
1
3

+
1

2

∫ ξ1

ξ

∫ ξ1

s1

∫ ξ1

s2

(s23 + a)ds3ds2ds1 (3.7)

where we use that ξ2 ≥ ξ21 . We can then extend the inequality (3.6) to a larger range of values
of ξ and therefore the inequality (3.7) also follows for all ξ ≤ ξ1 with ξ in the extended interval.
Since the integral term on the right-hand side of (3.7) tends to infinity as ξ → −∞, we obtain
(3.1) as well.

Lemma 3.2 Suppose that Fτ (x) is a solution of (2.19)-(2.22) with x ∈ R
+ × R

2 × (−π/2, π/2).
Let us also assume that there exists a τ∗ > −∞ such that limτ→(τ∗)+ Φ(τ) = 0. Then, there exists
a δ = δ(x) > 0 sufficiently small such that for any y ∈ Bδ(x) ∩ (R+ × R

2 × (−π/2, π/2)) there
exists a τ̃∗ > −∞ such that Fτ (y) = (Φ̃(τ), W̃ (τ), Ψ̃(τ), θ̃(τ)) satisfies

lim
τ→(τ̃∗)+

Φ̃(τ) = 0 .

Proof. As in the previous proof, it is more convenient to use the original formulation (1.1). We
again use the smooth transformations (2.12) and (2.13) to interpret the results between either
formulation. Thus let H be the solution of (1.1) associated to Fτ (x). Let also ξ∗ be defined by

τ∗ =
∫ ξ∗
0 (η2 + 1)

4
9 dη, We observe that τ∗ > −∞ implies that ξ∗ > −∞, and the hypothesis on Φ

becomes
lim
ξ→ξ∗

H(ξ) = 0 . (3.8)

Thus in regions close to ξ∗ we expect that the solutions are described by (1.11) and we employ
the change of variables(cf. Appendix A, (A.1) and (A.4)), namely,

dH

dξ
= H− 1

3 u ,
d2H

dξ2
= H− 5

3 v , H(ζ) = H(ξ) , ξ = Ω(z) (3.9)

where Ω(z) is defined by means of

z = −
∫ 0

Ω(z)

ds

(H(s))
4
3

. (3.10)
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Then, u(z) and v(z) are defined for any z > z∗ where z∗ is given by ξ∗ = Ω(z∗). Notice that |z∗|
may or may not be finite. Moreover, (H,u, v) satisfy

dH

dz
= uH ,

du

dz
= v +

u2

3
,

dv

dz
= 1 +

5

3
u v − (Ω2 + a)H3 (3.11)

where all functions, including Ω, are functions of z. The hypothesis on Φ translates into

lim
z→(z∗)+

((Ω(z))2 + a)(H(z))3 = 0 .

The phase-plane analysis associated to (3.11) with H(z) ≡ 0 is included in Appendix A.
Relevant to the current analysis are Lemma A.2 (where v = v̄(u) is defined) and Lemma A.3 that
describes the overall flow.

We claim that there is a sequence {zn} such that zn → (z∗)
+ as n → ∞ and that (u(zn), v(zn)) ∈

{(u, v) : u > 0 , v < 0} for all n large enough. Before we prove this we note that for any se-
quence {zn} such that zn → (z∗)

+ as n → ∞, the trajectory (u(z), v(z)) must be in the half-plane
{(u, v) : u > 0} for z < zn if n is large enough. Indeed, otherwise the first equation in (3.11)
implies that dH(ξ)/dξ ≤ 0 for all ξ near ξ∗ and this contradicts (3.8). Let us now prove that we
can select such a sequence and that it also satisfies v(zn) < 0 for all n large enough.

Let {zn} be such that zn → (z∗)
+ as n → ∞ and suppose that v(zn) = 0. Then, the third

equation in (3.11) implies that

dv

dz
(zn) = 1− ((Ω(zn))

2 + a)(H(zn))
3

and since the last term converges to zero as n → ∞, it follows that v(z) becomes negative for
some z < zn close to zn for n large enough. Thus we can construct another sequence {ẑn} with
ẑn < zn, ẑn → (z∗)

+ as n → ∞ and such that v(ẑn) < 0 for n large enough.
Suppose now that v(zn > 0 for large enough n. Then, the second equation in (3.11) implies

that (u(z), v(z)) arrives to the half-line {u = 0 , v > 0} at some z̄n < zn. For otherwise, the
last equation in (3.11) implies that (u(z), v(z)) crosses the line {v = 0}, and the argument of the
previous case applies. Therefore, there exists a sequence {ẑn} with ẑn → z∗ as n → ∞ such that
one of the following possibilities take place:

lim
n→∞

v(ẑn) > v̄(0) , , (3.12)

lim
n→∞

v(ẑn) < v̄(0) , , (3.13)

lim
n→∞

v(ẑn) = v̄(0) . . (3.14)

In the case (3.12), we can approximate the evolution of (u(z), v(z)) in intervals of the form
z ∈ [z̄n−L, z̄n] by the system (A.5) using standard continuous dependence results and Lemma A.3
implies that (u(z), v(z)) enters {(u, v) : u > 0, v < 0} at some z < z̄n for n large enough, and
the claim follows.

Suppose now that (3.13) takes place. Using again continuous dependence we obtain that
(u(z), v(z)) ∈ {(u, v) : 1 + 5uv/3 < 0 , u < 0 , v > 0} = R5 for some z < z̄n and n large enough.
In this region, and with z close to z∗, then v increases for decreasing z. Therefore, d2H(ξ)/dξ2

remains positive and dH(ξ)/dξ is negative as long as (u(z), v(z)) stays in R5. Moreover, due to
the second equation in (3.11) |u(z)| increases for decreasing z. This implies that the inequality
1 + 5uv/3 < 0 remains valid during all the evolution until z = z∗, thus also the inequalities
d2H(ξ)/dξ2 > 0, dH(ξ)/dξ < 0 remain valid. However, this contradicts (3.8) and (3.13) cannot
hold.

It remains to study the case (3.14). In this case there exist a small L such that for z ∈
(z̄n − L, z̄n) (u(z), v(z)) remains close to the separatrix v = v̄(u). On the other hand, (u(z), v(z))
must return to {(u, v) : u > 0} infinitely often as zn → z∗. Thus the trajectory must remain close
to v̄ for z close to z∗, or otherwise the trajectory enters R5 giving a contradiction as before, or it
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enters the region {(u, v) : v < −u2

3 } which contradicts (3.14). Then Lemma A.2 (i) implies that
d2H(ξ)/dξ2 > 0 and dH(ξ)/dξ < 0 remain valid during all the evolution for decreasing z < ẑn for
n large enough, and this contradicts (3.8).

As in the proof of Lemma 3.1 for Fτ (y) = (Φ̃(τ), W̃ (τ), Ψ̃(τ), θ̃(τ)) with y ∈ Bδ(x) ∩ (R+ ×
R

2 × (−π/2, π/2)) we define H̃(ξ) = (ξ2 +1)−1/3Φ̃(τ) and the transformed functions (ũ(z̃)), ṽ(z̃))
by means of the transformations (3.9) and (3.10) with the obvious changes of notation.

We then notice that, by continuous dependence of solutions on the initial data, if δ > 0 is
chosen sufficiently small then (ũ(z̄), ṽ(z̄)) enters the region {(u, v) : u > 0 , v < 0} for some z̄
close to z∗ and therefore dH̃(ξ̄)/dξ > 0 and d2H̃(ξ̄)/dξ2 < 0 for some ξ̄ close to ξ∗ with ξ̄ > ξ∗.
We have that H̃(ξ̄) is small and d3H̃/dξ3 > 0 as long as H̃(ξ̄) is small. Integrating this inequality

for ξ < ξ̄ we obtain that dH̃
dξ (ξ) > 0, d2H̃

dξ2 (ξ) < 0 and H̃(ξ) remains small for ξ < ξ̄ as long as H̃ is

defined. Then, H̃(ξ) vanishes for some ξ̃∗ > −∞, so the lemma follows.

3.2 Characterisation

We now give necessary conditions for the solutions of (1.1) to either satisfy that

lim
ξ→−∞

H(ξ) = +∞ (3.15)

or that
lim

ξ→(ξ∗)+
H(ξ) = 0 for some ξ∗ > −∞ . (3.16)

Observe that these behaviours imply (1.6) and (1.7) respectively, for the corresponding function
Φ(τ) given by (2.12) and (2.13). We start by giving necessary conditions for (3.15), but first we
need the following auxiliary calculus result.

Lemma 3.3 Given the polynomials

P1(Y ) = −Y 5

60
+

Y 4

12
− Y 3

6
and P2(Y ) = −Y 3

6
,

then, they are strictly decreasing and positive for Y < 0. Moreover, if λ ∈ R satisfies 1 + 2λ > 0,
then

P1(Y ) + λP2(Y ) ≥ 1

2
P1(Y ) , for Y < 0 . (3.17)

If 1 + 2λ ≤ 0 then

P1(Y ) + 2λP2(Y ) > −4

5
3

3
2 max{|1 + 2λ| 52 , 1} (3.18)

for Y < 0, but P1(Y ) + 2λP2(Y ) ≥ 0 if Y ≤ 5/2−
√

25− 40(1 + 2λ)/2.

Proof. The monotonicity properties of P1 and P2 are just an elementary calculus exercise. The

inequality (3.17) is a consequence of the fact that the polynomial−Y 5

60 + Y 4

12 − cY
3

6 = P1(Y )+ (c−
1)P2(Y ) is non-negative and decreasing if c ≥ 0, in particular

1

2
P1(Y ) + λP2(Y ) =

1

2

[

−Y 5

60
+

Y 4

12
− (1 + 2λ)

Y 3

6

]

is non-negative if (1 + 2λ) ≥ 0, thus (3.17) holds.
If c < 0 (i.e. 1 + 2λ < 0) then P1(Y ) + (c− 1)P2(Y ) < 0 in Y ∈ ((5 −

√
25− 40c)/2, 0). But

there the polynomial is larger than or equal than the value of the minimum in Y < 0, namely,

P1(Y ) + (c− 1)P2(Y ) ≥
(

1

30
− (4 − 6c)

1
2

60
− c

15

)

(2− (4− 6c)
1
2 )3 > −4(1− 2c)

5
2

15

and (3.18) follows.
We now give necessary conditions for (3.15) to hold.
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Proposition 3.4 Let us assume that there exists a positive constant c1 = c1(a) > 0 and some
ξ0 ∈ R with

c1 >

(

24

5

)3

|a|5(1 + 3|a|) if |ξ0|2 < −2a (a < 0) (3.19)

and
c1 > 16(2 + |a|) if |ξ0|2 > −2a , (3.20)

such that a solution of (1.1) satisfies ((ξ0)
2+1+|a|)(H(ξ0))

3 ≥ c1, dH(ξ0)/dξ < 0 and d2H(ξ0)/dξ
2 >

0. Then (3.15) holds.

Proof. Integrating (1.1) three times for ξ < ξ0 we obtain:

H(ξ) ≥ H(ξ0) +

∫ ξ0

ξ

∫ ξ0

s1

∫ ξ0

s2

(

(s23 + a)− 1

(H(s3))3

)

ds3ds2ds1 . (3.21)

Given the polynomials defined in Lemma 3.3 and letting, for every ξ < ξ0,

Y =

{

ξ
|ξ0|

− 1 if ξ0 > 0
ξ

|ξ0|
+ 1 if ξ0 < 0

then, we can write

∫ ξ0

ξ

∫ ξ0

s1

∫ ξ0

s2

(s23 + a)ds3ds2ds1 = |ξ0|5
[

P1(Y ) +
a

|ξ0|2
P2(Y )

]

. (3.22)

Clearly ξ/|ξ0| < −1 if ξ < ξ0 and ξ0 < 0 and ξ/|ξ0| < 1 if ξ < ξ0 and ξ0 > 0, thus in either
case Y < 0 and the polynomials are in the range of values considered in Lemma 3.3. We can now
distinguish two cases.

Suppose first that ξ20 < −2a. Then a Gronwall type of argument shows that for any ξ < ξ0
with ξ ∈ [−

√

2|a|,
√

2|a|] then H(ξ) > 1 > 0. Indeed, as long as H(ξ) > 1 then (3.21) can be
estimated from below by

H(ξ) ≥ c
1
3

1

(3|a|+ 1)
1
3

+ |ξ0|5
[

P1(Y ) +

(

a

|ξ0|2
− 1

)

P2(Y )

]

(3.23)

(using (3.22)). Then we can apply (3.18) with 2λ = a/|ξ0|2 − 1(≤ −1), hence

P1(Y ) +

(

a

|ξ0|2
− 1

)

P2(Y ) > −4

5
3

3
2 max

{

|a| 52
|ξ0|5

, 1

}

using this in (3.23) yields

H(ξ) >
c
1
3
1

(3|a|+1)
1
3

− 4
53

3
2 |a| 52

and (3.19) implies the claim by a continuity argument.
Let us assume now that ξ20 > −2a. Using (3.22) we obtain

∫ ξ0

ξ

∫ ξ0

s1

∫ ξ0

s2

(s23 + a)ds3ds2ds1 >
|ξ0|5
2

P1(Y )

by Lemma 3.3. Applying now this inequality to (3.21) we obtain the following estimate for
ξ20 > −2a:

H(ξ) ≥ H(ξ0) +
|ξ0|5
2

P1(Y )−
∫ ξ0

ξ

∫ ξ0

s1

∫ ξ0

s2

ds3
(H(s3))3

ds2ds1 , ξ ≤ ξ0 . (3.24)
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Now, we can use a Gronwall type of argument to prove that if c1 satisfies (3.20) then (3.24)
implies

(H(ξ))3 ≥ c1
2(|ξ0|2 + 1 + |a|) for ξ ≤ ξ0 . (3.25)

We observe that (3.25) holds by hypothesis and that it also holds for ξ close to ξ0 by continuity.
Then, as long as (3.25) is satisfied, (3.24) implies that

H(ξ) ≥
(

c1
|ξ0|2 + 1 + |a|

)
1
3

+
|ξ0|5
2

P1(Y )− 2(|ξ0|2 + 1 + |a|)
c1

|ξ0|3P2(Y ) . (3.26)

We can apply Lemma 3.3, and this implies that the last term in (3.26) can be estimated by
the previous one for any ξ < ξ0 if c1, a and ξ0 satisfy

c1 > 8(|ξ0|2 + 1 + |a|)/|ξ0|2 (3.27)

and (3.25) follows. Let us then prove (3.27).
If |ξ0| ≥ 1, (3.20) implies (3.27). If |ξ0| < 1 we consider two further cases. For |ξ − ξ0| ≤ 2 we

obtain that the last two terms in (3.26) can be bounded from below by −8(2 + |a|)/(3c1). But

this quantity can be absorbed by the first term if c1 > (40)
3
4 (2+ |a|), which is satisfied if (3.20) is

satisfied. Therefore (3.25) holds for this range of values.
On the other hand, if |ξ− ξ0| > 2, then the second term of (3.26) can be estimated from below

by (24/15)|ξ − ξ0|3, while the last term in (3.26) can be estimated by −(2 + |a|)|ξ − ξ0|3/(3c1).
Then, we can absorb the last term in (3.26) into the second one if c1 > 5(2 + |a|)/24 which is
guaranteed by (3.20).

Thus, the inequality (3.26) holds for arbitrary values of ξ ≤ ξ0, and this implies (3.15) by
taking the limit ξ → −∞.

We end this section by giving necessary conditions for (3.16) to hold

Proposition 3.5 Let us assume that there exist positive constants c2 and c3, depending on a, and
some ξ0 ∈ R with

c
1
3

2

c3
(|ξ0|2 + 1 + |a|) 4

3 <
1

10
(3.28)

such that a solution of (1.1) satisfies 0 < ((ξ0)
2+1+|a|)(H(ξ0))

3 ≤ c2, (|ξ0|+1+|a|) 5
3 dH(ξ0)/dξ >

c3 and d2H(ξ0)/dξ
2 < 0. Then there exists ξ∗ ∈ (−∞, ξ0) such that (3.16) holds.

Proof. Suppose that c2 is sufficiently small. Then, as long as 0 < ((ξ)2+1+ |a|)(H(ξ))3 ≤ 2c2 we
obtain from (1.1) that d3H(ξ)/dξ3 > 0. Integrating this equation over (ξ, ξ0) once we obtain that,
as long as (ξ2 +1+ |a|)(H(ξ))3 ≤ 2c2 is satisfied for ξ < ξ0, then d2H(ξ)/dξ2 < 0 and, integrating

a second time, also that dH(ξ)/dξ > c3(|ξ0|2 + 1+ |a|)− 5
3 . Then this concavity implies that H(ξ)

vanishes at some ξ = ξ∗. But a third integration implies that

H(ξ) ≤ H(ξ0)−
dH(ξ0)

dξ
(ξ0 − ξ) ≤

(

2
1
3 − c3(ξ0 − ξ)

c
1
3

2 (|ξ0|2 + 1 + |a|) 4
3

)

(

c2
|ξ0|2 + 1 + |a|

)
1
3

thus ξ∗ ≥ ξ0 − c
1
3
2

c3
(|ξ0|2 +1+ |a|) 4

3 . Finally the condition (3.28) implies that we can replace ξ0 by

ξ ∈ (ξ∗, ξ0), thus (ξ2 + 1 + |a|)(H(ξ))3 ≤ 2c2 follows in this interval and the result follows by a
classical continuation argument.

4 Shooting argument

In this section we apply a standard shooting argument to prove the existence of solutions of
(2.19)-(2.22) such that (1.9) holds, and such that Φ remains positive and bounded for all τ ∈ R.
Specifically, the main result of this section is:
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Proposition 4.1 There exists a solution of (2.19)-(2.22) (Φ(τ),W (τ),Ψ(τ), θ(τ)) defined for all
τ ∈ (−∞,∞) such that limτ→∞(Φ(τ),W (τ),Ψ(τ), θ(τ)) = (1, 0, 0, π/2) and satisfying Φ(τ) > 0
for all τ ∈ R, (1.9) and

lim inf
τ→−∞

Φ(τ) < ∞ . (4.1)

The proof of Proposition 4.1 is divided in several steps. First we prove that points placed in
the curve V+ ∩R

3 ×{θ = π
2 − ε} with ε > 0 sufficiently small, yield solutions of the equation (1.1)

satisfying the hypotheses of Proposition 3.4 if ν > 0 and those of Proposition 3.5 if ν < 0:

Lemma 4.2 Let δ0 and Λ(ν, σ) be as in Lemma 2.5. Then there exist ν0 > 0 and ε > 0, such
that for w = (ν, σ) ∈ Π with ν0 ≤ ν ≤ δ0/4 and σ = −ε the trajectory associated to (2.19)-(2.22)
starting at Λ(ν, σ) satisfies (1.6). Moreover, if −δ0/4 ≤ ν ≤ −ν0 and σ = −ε the corresponding
trajectory of (2.19)-(2.22) satisfies (1.7).

Proof. The dynamics induced by the system (2.19)-(2.22) on the invariant subspace R
3 × {θ =

π/2} have been summarised in Proposition 2.1 and Lemma 2.2. In particular, the trajectory
starting at Λ(ν, 0) with ν > 0 sufficiently small satisfies (2.6) and, as it can be easily deduced, also
that

lim
τ→−∞

W (τ)

τ2
= −1

2
and lim

τ→−∞

Ψ(τ)

τ
= −1 .

Then, classical continuous dependence results for ODEs imply that for any ρ0 > 0 arbitrarily
small and ν0 > 0 small enough there exists ε sufficiently small such that, for ν0 ≤ ν ≤ δ0/4 the
trajectory starting at Λ(ν,−ε) at τ = 0 satisfies:

∣

∣

∣

∣

Φ(τ0) +
τ30
6

∣

∣

∣

∣

≤ ρ0|τ0|3 ,
∣

∣

∣

∣

W (τ0) +
τ20
2

∣

∣

∣

∣

≤ ρ0 |τ0|2 , |Ψ(τ0) + τ0| ≤ ρ0|τ0| (4.2)

for some τ0 < 0. Using (4.2) and (2.12)-(2.15) to get H , dH/dξ and d2H/dξ2 at the value ξ0
(given by (2.13)), we obtain

H(ξ0) ≥ c1|ξ0|−
2
3 ,

dH(ξ0)

dξ
< 0 ,

d2H(ξ0)

dξ2
> 0

where c1 > 0 can be made arbitrarily large choosing ε sufficiently small and |τ0| sufficiently large
to guarantee that (3.20) is satisfied. Then we apply Proposition 3.4 to obtain (3.15) and hence
(1.6) follows.

On the other hand the trajectories starting at Λ(ν̃, 0) with ν̃ < 0 satisfy limτ→τ+
∗

Φ(τ) = 0, for

some τ+∗ > −∞. Moreover, (2.7) is satisfied, as well as

lim
τ→τ+

∗

(τ − τ∗)
1
4W (τ) =

3

4

(

64

15

)
1
4

and lim
τ→τ+

∗

(τ − τ∗)
5
4Ψ(τ) = − 3

16

(

64

15

)
1
4

.

Suppose now that −δ0/4 ≤ ζ ≤ −ν0, σ = −ε. Assuming again that ε is sufficiently small we
obtain that the numbers

Φ(τ0)

(τ0 − τ∗)
3
4

−
(

64

15

)
1
4

, (τ0 − τ∗)
1
4W (τ0)−

3

4

(

64

15

)
1
4

, (τ0 − τ∗)
5
4Ψ(τ0) +

3

16

(

64

15

)
1
4

can be made arbitrarily small for τ0 close to τ∗, τ0 > τ∗. We can use this approximation to obtain
that

H(ξ0) ≤ c2|ξ0|−
2
3 ,

dH(ξ0)

dξ
> c3 ,

d2H(ξ0)

dξ2
< 0

where c2 ∝ (τ0 − τ∗)
1/4 and c3 ∝ (τ0− τ∗)

−1/4, thus they can be chosen to satisfy (3.28) by taking
ε > 0 sufficiently small. We can now apply Proposition 3.5 to conclude the proof of the result.

Next we prove that if for every compact set K ⊂ (−∞,∞) we have that lim infτ→(τ∗)+ Φ(τ) = 0
for some τ∗ > −∞, then limτ→(τ∗)+ Φ(τ) = 0. Therefore, we will be in the situation stated in
Lemma 3.2 and it will be possible to prove continuity of this behaviour for small changes of the
initial values.
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Lemma 4.3 Let Φ(τ) be a solution of (2.16)-(2.17) defined in some interval (τ∗, τ
∗) with τ∗ >

−∞, τ∗ ≤ ∞, Φ(τ) > 0 for τ > τ∗. Then

lim inf
τ→(τ∗)+

Φ(τ) = 0 . (4.3)

implies (1.7) for this value τ = τ∗.

Proof. It is easier to work with the original equation (1.1), observe that then, (4.3) is equivalent
to

lim inf
ξ→(ξ∗)+

H(ξ) = 0 (4.4)

for ξ∗ given by τ∗ =
∫ ξ∗
0

(η2 + 1)
4
9 dη. Let us then prove that (4.4) implies (3.16), and therefore

(1.7) will follow.
We argue by contradiction. We then assume that (4.4) is satisfied, but (3.16) does not hold,

this means that also
lim sup

ξ→(ξ∗)+
H(ξ) > 0 . (4.5)

On the one hand (4.4) gives the existence a decreasing sequence {ξ̄n} such that ξ̄n → ξ∗ as n → ∞,
H(ξ̄n+1) < H(ξ̄n) and limn→∞ H(ξ̄n) = 0. And (4.5) implies the existence of a sequence with
elements ξ̃n ∈ (ξ∗, ξ̄n+1) such that H(ξ̃n) = H(ξ̄n). Then there exists another sequence {ξn} with
ξn ∈ (ξ̃n, ξ̄n) and limn→∞ ξn = ξ∗, where local minima are attained, i.e. satisfying

H(ξn) = min
ξ∈(ξ̃n,ξ̂n)

H(ξ) , lim
n→∞

H(ξn) = 0 ,
dH(ξn)

dξ
= 0 ,

d2H(ξn)

dξ2
≥ 0 . (4.6)

Let also {ξ̂n} be the sequence where local maxima are attained, such that ξn+1 < ξ̂n < ξn and
satisfying

H(ξ̂n) = max
ξ∈(ξn+1,ξn)

H(ξ) , lim sup
n→∞

H(ξ̂n) > 0 ,
dH

dξ
(ξ̂n) = 0 ,

d2H

dξ2
(ξ̂n) ≤ 0 . (4.7)

Let us now show that

lim
n→∞

(∣

∣

∣

∣

∣

d2H(ξ̂n)

dξ2

∣

∣

∣

∣

∣

1

H(ξ̂n)

)

> 0 . (4.8)

Indeed, from (1.1) we obtain that d3H/dξ3 ≥ −C1 if ξ ∈ [ξn+1, ξn] and integrating this inequality,
we also obtain

H(ξn) ≥ H(ξ̂n) +
d2H(ξ̂n)

dξ2
(ξn − ξ̂n)

2

2
− C1

(ξn − ξ̂n)
3

6
.

Now, if (4.8) fails, it follows that H(ξn) >
H(ξ̂n)

2 for some subsequence, and this contradicts (4.6)
and (4.7). Thus (4.8) holds.

We now claim that (4.8) implies that H(ξ) vanishes for some ξ ∈ [ξn+1, ξ̂n]. Indeed, since
d3H/dξ3 ≥ −C1 we then have that, for n large enough,

d2H(ξ)

dξ2
≤ d2H(ξ̂n)

dξ2
+ C1(ξ̂n − ξn+1) ≤

1

2

d2H(ξ̂n)

dξ2
< 0 , ξ ∈ [ξn+1, ξ̂n] .

This implies that dH(ξ)/dξ > 0 for n large enough with ξ ∈ [ξn+1, ξ̂n], but this contradicts the

definition of ξn+1, and so for n large enough there is a first value ξ ∈ [ξn+1, ξ̂n] such that H(ξ) = 0,
i.e. (3.16) holds.

Remark 4.4 Notice that a classical Gronwall argument implies that any solution Φ(τ) can be
extended for arbitrary negative values of τ as long as Φ(τ) remains away from zero. More precisely,
if lim infτ→τ+

0

Φ(τ) > 0 for any τ0 ≥ τ∗ > −∞, it is possible to extend Φ(τ) as a solution of (2.19)-

(2.22) for times τ > τ∗ − δ and some δ > 0. Reciprocally, the maximal existence time, due to
Lemma 4.3, is finite and it is given by τ∗ > −∞ if lim infτ→τ∗ Φ(τ) = 0.
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We are now ready to prove Proposition 4.1.
Proof of Proposition 4.1. We consider the one-dimensional family of solutions of (2.19)-(2.22)
obtained choosing in Lemma 4.2 the parameters σ = ε > 0 with ε > 0 small enough and ν ∈
(−δ0/4, δ0/4). We define as U+ the set of values of ν such that the corresponding solution of
(2.19)-(2.22) satisfies (1.6). On the other hand, we denote by U− the set of values of ν such that
the corresponding solution of (2.19)-(2.22) satisfy (1.7) for some τ∗ > −∞. Due to Lemma 4.2 we
have that U+ 6= ∅ and U− 6= ∅. Moreover, by definition U+∩U− = ∅. Due to lemmas 3.1 and 3.2
we have that the sets U+ and U− are open sets. Therefore, there exists ν̄ ∈

(

− δ0
4 ,

δ0
4

)

such that
ν̄ /∈ U+ ∪ U−.

The corresponding solution of (2.19)-(2.22) associated to the parameter ν̄ has the property
that, for any τ0 > −∞ we have infτ∈(τ0,∞)Φ(τ) ≥ C−(τ0) > 0, since otherwise ν̄ ∈ U− due to
Lemma 4.3. This implies also that supτ∈(τ0,∞) Φ(τ) ≤ C+(τ0) < ∞ because the right-hand side
of (2.19)-(2.22) is bounded in compact sets if Φ(τ) ≥ C−(τ0). Therefore, this solution is globally
defined for τ ∈ (−∞,∞). Moreover, (4.1) holds, since otherwise ν̄ ∈ U+ and the result follows.

5 Oscillatory solutions

We recall that the final aim is to prove that the solutions found in Proposition 4.1 have no
alternative but to approach the invariant subspace θ = −π/2 as τ → −∞ and they remain
uniformly bounded while Φ stays positive (see (1.8)-(1.9)). The argument is by contradiction and
in this section we prove the following lemma that is the first step in the argument.

Proposition 5.1 Suppose that (Φ(τ),W (τ),Ψ(τ), θ(τ)) is a solution of (2.19)-(2.22) defined for
all τ ∈ (−∞,∞) and satisfying

lim inf
τ→−∞

Φ(τ) < ∞ (5.1)

and that

lim sup
τ→−∞

(

Φ(τ) +

∣

∣

∣

∣

dΦ(τ)

dτ

∣

∣

∣

∣

+

∣

∣

∣

∣

d2Φ(τ)

dτ2

∣

∣

∣

∣

)

= ∞ . (5.2)

Then, there exists a decreasing sequence {τ∗n} with limn→∞ τ∗n = −∞ and a sequence {εn} with
εn > 0 small enough such that

Φ(τ∗n) = max
τ∈[τ∗

n−εn,τ∗

n+εn]
Φ(τ) (5.3)

and that
lim sup

n→∞
Φ(τ∗n) = ∞ . (5.4)

Before we prove this result prove three auxiliary lemmas. First we show that there exists a
decreasing sequence of local minima attained at certain τ = τn with limn→∞ τn = −∞.

Lemma 5.2 Let (Φ(τ),W (τ),Ψ(τ), θ(τ)) satisfy the assumptions of Proposition 5.1. Then, there
exists a decreasing sequence {τn} such that limn→∞ τn = −∞ and that

lim
n→∞

Φ(τn) ≤ 1 and
dΦ(τn)

dτ
= 0 ,

d2Φ(τn)

dτ2
≥ 0 for all n . (5.5)

Proof. First, we claim that

lim inf
τ→−∞

Φ(τ) ≤ 1 , lim sup
τ→−∞

Φ(τ) ≥ 1 . (5.6)

Indeed, suppose first that lim infτ→−∞Φ(τ) > 1. Then, there exists ε0 > 0 and τ0 sufficiently
negative, such that Φ(τ) ≥ 1+2ε0 for τ ≤ τ0. Then, (2.12) and (2.13) imply H(ξ) ≥ (1+ε0)|ξ|−2/3

for ξ ≤ ξ0, where ξ0 is related to τ0 by means of (2.13). This inequality applied to (1.1) gives

d3H

dξ3
=

1

H3
− (ξ2 + a) ≤ −ε1ξ

2 (5.7)
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for ξ ≤ ξ0 and some ε1 > 0 (by taking a more negative τ0 if necessary). Integrating (5.7)
three times for ξ ≤ ξ0 gives H(ξ) > ε1|ξ0|5P1(1 + ξ/|ξ0|) (where P1 is as in Lemma 3.3). Thus
limξ→−∞ H(ξ) = ∞, but this contradicts (5.1).

We now prove the second inequality in (5.6). Suppose on the contrary that lim supτ→−∞Φ(τ) <
1, then Φ(τ) ≤ 1 − ε0 for some ε0 > 0 and for τ ≤ τ0 if τ0 < 0 with |τ0| large enough. The
transformation (2.13)-(2.12), with the obvious correspondence in notation, implies that H(ξ) ≤
(1− ε0)|ξ|−

2
3 for ξ ≤ ξ0, whence (1.1) yields

d3H

dξ3
=

1

H3
− (ξ2 + a) ≥ ε2ξ

2 (5.8)

for some ε2 > 0 and ξ ≤ ξ0. Integrating (5.8) for ξ ≤ ξ0 we obtain H(ξ) < −ε1|ξ0|5P1(1 + ξ/|ξ0|).
This implies the existence of a ξ∗ > −∞ such that limξ→(ξ∗)+ H(ξ) = 0. This contradicts the
assumption that ξ∗ = −∞ (see Remark 4.4) and (5.6) follows.

Suppose now that

lim inf
τ→−∞

Φ(τ) = lim sup
τ→−∞

Φ(τ) = lim
τ→−∞

Φ(τ) = 1 . (5.9)

We define a sequence of functions {Φn(s)} with s ∈ [−1, 0] as follows. For every n ∈ N the variable
ξn(s) is given by, cf. (2.12),

s = −
∫ −n

ξn(s)

(1 + η2)
4
9 dη , n ∈ N , (5.10)

then, each Φn(s) is defined by, cf. (2.13),

Φn(s) =
(

1 + |ξn(s)|2
)

1
3 H(ξn(s)) , s ≤ 0 , n ∈ N .

We observe that then

Φn(s) = Φ(s− sn) , where sn =

∫ 0

−n

(1 + η2)
4
9 dη ,

where Φ solves (2.16)-(2.17). Also, for every s ∈ [−1, 0] the corresponding sequence τn = s − sn
converges to −∞ as n → ∞, since limn→∞(sn) = ∞. On the other hand, the functions Φn(s)
solve (cf. (2.16)-(2.17))

d3Φn

ds3
=

1

Φ3
n

−
(

ξ2n + a
)

ξ2n + 1
− Fn(s) , n ∈ N , s ∈ [−1, 0] (5.11)

where Fn(s) is given by the expression of F in (2.17) with Φ and ξ replaced by Φn and ξn,
respectively.

Consider now the result of integrating (5.11):

Φn(s) = Φn(0) +
dΦn(0)

ds
s+

d2Φn(0)

ds2
s2

2

−
∫ 0

s

∫ 0

s1

∫ 0

s2

[

1

(Φn(s3))3
− |ξn(s3)|2 + a

|ξn(s3)|2 + 1

]

ds3ds2ds1

−
∫ 0

s

∫ 0

s1

∫ 0

s2

Fn(s3)ds3ds2ds1 .

(5.12)

We now pass to the limit in the integral terms. Observe that the assumption (5.9) implies that
limn→∞ Φn(s) = 1 uniformly on [−1, 0]. Moreover, (5.10) yields limn→∞ ξn(s) = −∞ uniformly
on [−1, 0]. The first term in (5.12) can be seen to converge to zero using the limit properties of
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Φn(s) and ξn(s). In the last term we integrate by parts where necessary in order to get integrands
with Φn(s) as a coefficient (this gives boundary terms with a double or single integral, but these
are estimated similarly, because s ∈ [−1, 0]). The resulting integrands have Φn(s) multiplied
by a function of ξn(s) and its derivatives, which can be computed using (5.10): dξn(s)/ds =
(|ξn(2)|2 + 1)−4/9 and d2ξn(s)/ds

2 = −4(|ξn(2)|2 + 1)−17/9/9. Then, one can conclude that the
limit of the last term in (5.12) tends also to zero as n → ∞, and we are left with

lim
n→∞

(∣

∣

∣

∣

dΦn(0)

ds

∣

∣

∣

∣

+

∣

∣

∣

∣

d2Φn(0)

ds2

∣

∣

∣

∣

)

= 0 ,

but this contradicts (5.2 and (5.9) cannot hold. Then lim infτ→−∞ Φ(τ) < lim supτ→−∞Φ(τ).
We can now construct a sequence that satisfies (5.5). We first take the following quantity

α :=
1

2

(

lim sup
τ→−∞

Φ(τ) + lim inf
τ→−∞

Φ(τ)

)

(that might be infinite if lim supτ→−∞Φ(τ) = ∞). Due to the continuity of Φ, there exist
decreasing sequences {τ̃n} and {τ̂n} such that limn→∞ τ̃n = limn→∞ τ̂n = −∞, τ̃n < τ̂n and
that maxτ∈(τ̃n,τ̂n) Φ(τ) ≤ α. We define another sequence {τn} by

Φ(τn) = min
τ∈[τ̃n,τ̂n]

Φ(τ) ,

and this one satisfies (5.5).
We continue with another consequence of assuming (5.2), namely,

Lemma 5.3 Suppose that (Φ(τ),W (τ),Ψ(τ), θ(τ)) satisfies the assumptions of Proposition 5.1.
Then, at least one of the following identities holds:

lim inf
τ→−∞

Φ(τ) = 0 , lim sup
τ→−∞

Φ(τ) = ∞ .

Proof. We argue by contradiction. Suppose that

lim inf
τ→−∞

Φ(τ) > 0 and lim sup
τ→−∞

Φ(τ) < ∞ ,

then, there exists a C0 > 0 and a τ0 sufficiently negative such that

1

C0
≤ Φ(τ) ≤ C0 , τ ≤ τ0 . (5.13)

Then, (5.2) implies the existence of a sequence {τ̂n} with τ̂n → −∞ and such that

lim
n→∞

(∣

∣

∣

∣

dΦ(τ̂n)

dτ

∣

∣

∣

∣

+

∣

∣

∣

∣

d2Φ(τ̂n)

dτ2

∣

∣

∣

∣

)

= ∞ . (5.14)

We now define a sequence of functions Φn(z) by means of Φn(z) = Φ(z + τ̂n) and observe that
they solve (2.16)-(2.17) with the obvious changes in notation and with ξn(z) defined by

z + τ̂n = −
∫ 0

ξn(z)

(1 + η2)
4
9 dη , n ∈ N .

They also satisfy, due to (5.14), that

lim
n∞

(∣

∣

∣

∣

dΦn(0)

dz

∣

∣

∣

∣

+

∣

∣

∣

∣

d2Φn(0)

dz2

∣

∣

∣

∣

)

= ∞ .

This allows us to introduce, for every n, the length scale

γn =

(

∣

∣

∣

∣

dΦn(0)

dz

∣

∣

∣

∣

+

√

∣

∣

∣

∣

d2Φn(0)

dz2

∣

∣

∣

∣

)−1

,
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which clearly satisfies limn→∞ γn = 0. We now set z = γnz̄, ξ̄n(z̄) = ξn(γnz̄), Φ̄n(z̄) = Φn(γnz̄)
and F̄n(z̄) = Fn(γnz̄), to obtain that Φ̄n satisfies

d3Φ̄n

dz̄3
= (γn)

3

[

1

Φ̄3
n

− ξ̄2n + a

ξ̄2n + 1

]

+ (γn)
3F̄n(z̄) , n ∈ N .

It is clear that there exists a C̄ > 0 such that for n large enough
∣

∣

∣

∣

(

Φ̄n(0),
dΦ̄n(0)

dz̄
,
d2Φ̄n(0)

dz̄2

)∣

∣

∣

∣

≤ C̄ and

∣

∣

∣

∣

(

dΦ̄n(0)

dz̄
,
d2Φ̄n(0)

dz̄2

)∣

∣

∣

∣

≥ 1

C̄
. (5.15)

We can now use classical continuous dependence results for ODEs. Let Φ̄∞ denote a function that
solves the limiting problem d3Φ̄∞/dz̄3 = 0 with initial conditions close to (Φ̄n(0), dΦ̄n(0)/dz̄, d

2Φ̄n(0)/dz̄
2)

for n large enough, and thus also satisfying (5.15) (with n = ∞), then

Φ̄n(z̄) → Φ̄∞(z̄) as n → ∞ ,

as well as its derivatives, uniformly in compact sets of z̄.
Since Φ̄∞ is a polynomial at most of second order that is not identically constant, there exist

values of s̄ such that either Φ̄∞(z̄) = 0 or Φ̄∞(z̄) ≥ 2M . But this contradicts (5.13).
The third auxiliary lemma is the following:

Lemma 5.4 Suppose that (Φ(τ),W (τ),Ψ(τ), θ(τ)) satisfies is the assumptions of Proposition 5.1.
Then,

lim sup
τ→−∞

Φ(τ) = ∞ .

Proof. Suppose that
lim sup

τ→−∞
Φ(τ) < ∞ . (5.16)

Then, due to Lemma 5.3 we have lim infτ→−∞Φ(τ) = 0, and there exists a sequence of points {τn}
such that (5.5) and that limn→∞ Φ(τn) = 0. For every n we introduce the changes of variables

εn := Φ(τn) , s = ε
− 4

3
n (τ − τn) and Φ(τ) = εnϕ(s) . (5.17)

Observe that if ξn is related to τn by means of (2.13). In particular, this reflects that when |τ−τn|
remains bounded as n → ∞, then |ξ| → ∞ as n → ∞, a fact that we shall apply below.

We write (2.16) in the new variables, then ϕ solves

d3ϕ

ds3
=

1

ϕ3
− ε3n

ξ2 + a

ξ2 + 1
− ε

4
3
nFn(s) (5.18)

with (cf. 2.17)

Fn(s) = ε
8
3
n
16

3

ξ

(ξ2 + 1)
10
3

[

1− 14

9

ξ2

ξ2 + 1

]

ϕ(s)

+ ε
4
3
n

1

(ξ2 + 1)
17
9

[

208

81

ξ2

ξ2 + 1
− 10

9

]

dϕ(s)

ds
+

2

3

ξ

(ξ2 + 1)
13
9

d2ϕ(s)

ds2
,

and subject to

ϕ(0) = 1 ,
dϕ(0)

ds
= 0 ,

d2ϕ(0)

ds2
≥ 0 . (5.19)

The coefficients involving ξ are functions of s; ξ(τ) = ξ(τn + ε
4
3
ns). Then, since εn → 0, we can use

classical continuous dependence results for ODEs to approximate the solutions of (5.18)-(5.19) by
the solutions ϕ̄ of the limiting problem (with εn = 0)

d3ϕ̄

ds3
− 1

ϕ̄3
= 0

ϕ̄(0) = 1 ,
dϕ̄(0)

ds
= 0 ,

d2ϕ̄(0)

ds2
=

d2ϕ(0)

ds2
≥ 0
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on compact sets of s. Clearly, d2ϕ̄(s)/ds2 is increasing for s > 0, and there exists a δ > 0 such that
d2ϕ̄(s)/ds2 ≥ δ > 0 for all s ≥ 1. Thus, dϕ̄(s)/ds increases at least linearly for s large enough and
one can find a value s0 > 0 such that dϕ̄(s0)/ds ≥ 2. Continuous dependence results then imply
that dϕ(s0)/ds ≥ 1 if n is sufficiently large (see (5.18)). We now return to the original variables
and get estimates on Φ(τ) for every n in an interval around the local minimum. Using (5.17),
(5.16) and the notation

τ̄n = τn + ε
4
3
ns0 ,

we obtain that

lim
n→∞

Φ(τ̄n) = 0 , lim
n→∞

dΦ(τ̄n)

dτ
= ∞ , lim

n→∞

d2Φ(τ̄n)

dτ2
= ∞ .

For n large enough and τ such that |τ − τ̄n| ≤ 1, there exists a positive sequence {Bn} with
limn→∞ Bn = ∞ and such that

Bn <
1

Φ(τ)3
− ξ(τ)2 + a

ξ(τ)2 + 1
< Bn+1 .

Let us denote by

Gn(τ) =

∫ τ

τ̄n

∫ τ1

τ̄n

∫ τ2

τ̄n

F (τ3)dτ3dτ2dτ1 ,

where the function F (τ) is given by (2.17), and let also

pn(τ) = Φ(τ̄n) +
dΦ(τ̄n)

dτ
(τ − τ̄n) +

d2Φ(τ̄n)

dτ2
(τ − τ̄n)

2

2
.

Then, integrating (2.16) we can write for τ ∈ [τ̄n − 1, τ̄n + 1] that

Bn

3

dk(τ − τ̄n)
3

dτk
<

dk(Φ− pn −Gn)(τ)

dτk
<

Bn+1

3

dk(τ − τ̄n)
3

dτk
, k = 0, 1, 2 . (5.20)

Then, taking n large enough and combining the inequalities (5.20) we obtain that

|Φ(τ)| < Φ(τ̄n) + 2
dΦ(τ̄n)

dτ
|τ − τ̄n|+ 2

d2Φ(τ̄n)

dτ2
|τ − τ̄n|2 + |Gn(τ)| ,

∣

∣

∣

∣

dΦ(τ)

dτ

∣

∣

∣

∣

< 2
dΦ(τ̄n)

dτ
+ 2

d2Φ(τ̄n)

dτ2
|τ − τ̄n|+

∣

∣

∣

∣

dGn

dτ

∣

∣

∣

∣

, (5.21)

∣

∣

∣

∣

d2Φ(τ)

dτ2

∣

∣

∣

∣

< 2
d2Φ(τ̄n)

dτ2
+

∣

∣

∣

∣

d2Gn

dτ2

∣

∣

∣

∣

,

and that

Φ(τ) ≥ Φ(τ̄n) +
dΦ(τ̄n)

dτ
(τ − τ̄n) +

d2Φ(τ̄n)

dτ2
(τ − τ̄n)

2

2
+ B̄n(τ − τ̄n)

3 +Gn(τ) (5.22)

for some sequence B̄n > 0 with limn→∞ B̄n = ∞ and for all τ ∈ [τ̄n − 1, τ̄n + 1]. We now observe
that F has the form F (τ) = f1(τ)Φ(τ) + f2(τ)dΦ(τ)/dτ + f3(τ)d

2Φ(τ)/dτ2 where the functions
f1(τ), f2(τ) and f3(τ) converge uniformly to zero on sets |τ − τ̄n| ≤ 1 for every n (cf. (2.13) and
(2.17)). This allows to get estimates on the integral terms (those involving Gn) as follows:

|Gn(τ)| ,
∣

∣

∣

∣

dGn(τ)

dτ

∣

∣

∣

∣

,

∣

∣

∣

∣

d2Gn(τ)

dτ2

∣

∣

∣

∣

≤ ε̃n

(

sup
|τ−τ̄n|≤1

Φ(τ) + sup
|τ−τ̄n|≤1

∣

∣

∣

∣

dΦ(τ)

dτ

∣

∣

∣

∣

+ sup
|τ−τ̄n|≤1

∣

∣

∣

∣

d2Φ(τ)

dτ2

∣

∣

∣

∣

)

for all n with τ such that |τ − τ̄n| ≤ 1 and where ε̃n → 0+. Applying this to (5.21) and to (5.22)
we obtain, taking n sufficiently large, that

Φ(τ) ≥ dΦ(τ̄n)

dτ

(τ − τ̄n)

2
+

d2Φ(τ̄n)

dτ2
(τ − τ̄n)

2

4
+ B̄n(τ − τn)

3
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for |τ − τ̄n| ≤ 1. Choosing, say τ − τ̄n = 1, we obtain that limn→∞ Φ(τ̄n + 1) = ∞, but this
contradicts (5.16), whence the lemma follows.

We are now ready to prove Proposition 5.1.
Proof of Proposition 5.1. The assumptions imply that we can use the statements of lemmas 5.2
and 5.4. In particular, by Rolle’s theorem, we can guarantee the existence of local maxima in each
interval (τn+1, τn) where {τn} is the sequence of minima defined in Lemma 5.2. We then observe
that the regularity of a solution Φ of (2.16) guarantees that the points at which Φ attains local
maxima or minima are isolated. Otherwise Φ would take constant values on closed intervals, but
constants are not solutions of (2.16). Hence, we can define the sequence such that (5.3) holds. On
the other hand, Lemma 5.4 implies (5.4).

6 Properties of oscillatory solutions

In this section we proof the following proposition:

Proposition 6.1 Let the assumptions of Proposition 5.1 hold and let {τ∗n} be the sequence found
in this proposition. Then there exists n0 ∈ N large such that for all n > n0

Φ(τ∗n−1) > Φ(τ∗n) . (6.1)

We observe that this result is in contradiction with (5.4). We now define a sequence {τmin
n } as

follows

Φ(τmin
n ) = min

τ∈(τ∗

n,τ
∗

n−1
)
Φ(τ) ,

dΦ(τmin
n )

dτ
= 0 ,

d2Φ(τmin
n )

dτ2
≥ 0 , (6.2)

i.e. Φ reaches the minimum in the interval (τ∗n , τ
∗
n−1) at τ = τmin

n . Then as part of the construction
necessary to prove (6.1) it will follow that:

Proposition 6.2 Let the assumptions of Proposition 5.1 hold. Then the sequence {τmin
n } given

in (6.2) is well-defined, limn→∞ τmin
n = −∞ and there exists n0 such that for all n > n0 then

Φ(τmin
n−1 ) < Φ(τmin

n ) . (6.3)

The proofs of these propositions are divided in several steps that we outline below for clarity.
We first identify a two-parameter family of polynomials that approximateH near a large maximum
of Φ. Most part of this analysis is done in Appendix B, where we identify and give some properties
of the polynomials that solve (1.10) (with the reverse sign). Then for each n and around τ∗n we
identify a length scale that transform these polynomials into polynomials of order one. We then
translate the properties found into the rescaled polynomials. We also rescale accordingly the
function H near each ξ∗n defined by (2.12) for τ = τ∗n and give the approximating lemma that
in particular implies that H will get close to 0 in a linear decreasing way. Next we adapt the
matching lemma, Lemma C.1 in Appendix C, that gives the behaviour of the solutions in the
inner regions near each ξmin

n = ξ(τmin
n ). From this result we can conclude that the approximating

polynomial in the outer region must have a double zero in order to match. This, in particular,
reduces the class of approximating polynomials to a one-parameter family. We finally derive an
iterative relation between the elements of the sequence {Φ(τ∗n)} if n is large enough that implies
Proposition 6.1, as well as a relation for the elements of {Φ(τmin

n )} that implies Proposition 6.2.

6.1 The outer variables and the auxiliary polynomials

Given the sequence of {τ∗n} found in Proposition 5.1, see (5.3), and the sequence of local minima
{τmin

n } defined in (6.2), we define the sequences {ξ∗n}, {ξmin
n }, {Mn} and {βn} by means of (see

(B.5) and (B.4)):

τ∗n =

∫ ξ∗n

0

(η2 + 1)
4
9 dη , τmin

n =

∫ ξmin
n

0

(η2 + 1)
4
9 dη , (6.4)
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Mn =
1

|ξ∗n|
17
3

Φ(τ∗n) , βn =
((ξ∗n)

2 + 1)
8
9

|ξ∗n|
11
3

d2Φ(τ∗n)

dτ2
. (6.5)

Observe that the definition of τ∗n implies that βn < 0, that limn→∞ ξ∗n = −∞ and that limn→∞ ξmin
n =

−∞.
Observe that Mn is the value of the maximum of Φ at each τ∗n rescaled appropriately with

the position of the maximum in the variable ξ, ξ∗n (this scaling near a maximum resembles that

Φ ∼ |ξ| 23H there and that H is approximated by a fifth order polynomial, cf. (B.3) and (B.4)
in Appendix B). The definition of βn results from similar considerations, but is a parameter that
captures the value of the second derivative of Φ at τ∗n .

Following Appendix B, associated to every τ∗n we construct the two-parameter family of poly-
nomials

P (Zn;Mn, βn) with Zn =
ξ

ξ∗n
that solve (B.3) with Z replaced by Zn, and that are given by (B.6). We recall that they satisfy
that P (1;Mn, βn) = Mn. We shall see later that these polynomials are close to −(ξ∗n)

5H(ξ) for ξ
close to ξ∗n in an interval contained in [ξmin

n+1, ξ
min
n ]. Thus we have to consider Zn in some interval

containing Zn = 1 and where P stays positive. Moreover, since ξ∗n → −∞ the approximation will
be applicable for Zn > 0 only. In this regard, for each n, we have derived a number of properties
that are outlined in lemmas B.1, B.2, B.3 and B.4. These give, in particular, that the largest root
of P (Zn;Mn, βn) in Zn < 1 is attained at a value Zn = Z0(Mn, βn) for every Mn > 0 and every
βn < 0. It is also shown that for every Mn > 0 there exists a unique value βn = β∗(Mn) such that
P (Zn;Mn, β∗(Mn)) has a double zero at some Zn = Z∗(Mn) > 1.

In these lemmas the asymptotic behaviour as Mn → 0 and as Mn → ∞ of β∗(Mn), Z∗(Mn)
and Z0(Mn) = Z0(Mn, β∗(Mn)) is also given. But, as we shall see later and assume now, the
sequence {Mn} is bounded.

Taking these considerations into account, we now introduce a rescaling of P (Zn;Mn, βn) for
every n in order to have values of order one in the relevant range of parameters. Namely, we set

P̄ (ζn;Mn, βn) =
P (Zn;Mn, βn)

Mn
, ζn = − 1

M
1
3
n

(

ξ

ξ∗n
− 1

)

. (6.6)

Observe that now the variable ζn is meaningful in an interval around ζn = 0 and with ζn < 1/M
1/3
n .

We note that M
1
3
n is a characteristic length scale which measures the distance between Zn = 1 and

Zn = Z∗(Mn), relevant if Mn is very small, see Lemma B.2. We also observe that the polynomials
P̄ (ζn;Mn, βn) are explicitly given by

P̄ (ζn;Mn, βn) = − ζ3n
60

(

M
2
3
n ζ2n − 5M

1
3
n ζn + 10

)

+

(

5

9
M

2
3
n ζ2n +

2

3
M

1
3
n ζn + 1

)

+
βn

M
1
3
n

ζ2n
2

. (6.7)

It is natural to define the following values of ζn:

ζ0(Mn, βn) = −Z0(Mn, βn)− 1

M
1
3
n

, (6.8)

(see Lemma B.3, (B.14)), thus clearly ζ0(Mn, βn) = min{ζn > 0 : P̄ (ζn;Mn, βn) = 0}. And if
βn = β∗(Mn) we define also

ζ∗(Mn) = −Z∗(Mn)− 1

M
1
3
n

, (6.9)

therefore P̄ has a double zero at this value (see Lemma B.1). When βn = β∗(Mn) and for simplicity
of notation, we shall write:

P̄ (ζn;Mn) = P̄ (ζn;Mn, β∗(Mn))

and
ζ0(Mn) = ζ0(Mn, β∗(Mn)) .

The following result follows easily:
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Lemma 6.3 For every n and Mn the polynomial P̄ (ζn;Mn, βn) solves

d3P̄ (ζ;Mn, βn)

dζ3
+ (1−M

1
3
n ζ)2 = 0 (6.10)

with initial conditions

P̄ (0;Mn, βn) = 1 ,
dP̄ (0;Mn, βn)

dζ
=

2M
1
3
n

3
,

d2P̄ (0;Mn, βn)

dζ2
=

βn

M
1
3
n

+
10M

2
3
n

9
. (6.11)

We now reformulate the results of Appendix B for these approximating functions:

Lemma 6.4 Let P̄ (ζn;Mn, βn) be given by (6.7). They satisfy that if βn > β∗(Mn), then P̄ (ζn;Mn, βn) >
0 in ζn < 0 and if βn < β∗(Mn) then there are two zeros of P̄ (ζn;Mnβn) in ζn < 0. The derivative
of P̄ (ζn;Mn, βn) with respect to ζn is positive at the largest root in ζn < 0. If βn = β∗(Mn) there
is only one double zero in ζn < 0 and is placed at ζn = ζ∗(Mn). Moreover,

ζ∗(Mn) ∼ −12
1
3 (1 +M

1
3
n ) , β∗(Mn) ∼ −

(

3Mn

2

)
1
3

as Mn → 0 (6.12)

∂2P̄ (ζ∗(Mn);Mn)

∂ζ2n
∼
(

3

2

)
1
3

as Mn → 0 . (6.13)

Also, the value (6.8) is well-defined for every n and Mn, and if βn = β∗(Mn), then

ζ0(Mn) ∼
(

3

2

)
1
3

,
∂P̄ (ζ0(Mn);Mn)

∂ζn
∼ −

(

3

2

)
5
3

as Mn → 0 . (6.14)

Finally, we have also that

Lemma 6.5 The value ζ0(Mn, βn) is the unique root of P̄ (ζn;Mn, βn) in ζn ≥ 0. Moreover, if

ζ0(Mn, βn) ≤ 2/M
1
3
n , there exists a positive constant c0 independent of Mn and βn such that

dP̄ (ζ0(Mn, βn);Mn, βn)

dζ
≤ −c0 max{1,M

1
3
n } .

Remark 6.6 We point out that the case M0 → 0 corresponds to the the approximating polynomials
obtained for (1.5) in [7]. The asymptotics (6.14) are in agreement with this observation.

6.2 The sequence of rescaled H(ξ) near each ξ∗
n

In order to compare H with a polynomial P̄ (ζn;Mn, βn) we need to apply the scaling (6.6) to H
around ξ = ξ∗n. We then obtain:

Lemma 6.7 Let us assume that Φ satisfies the assumptions of Proposition 5.1, so that the se-
quence (5.3) is well-defined. Let H(ξ) be the solution of (1.1) related to Φ by means of (2.12) and
(2.13). Let the sequence of functions {Hn(ζn) , ζn ∈ R} be defined by

H(ξ) = |ξ∗n|5MnHn(ζn) , ζn = − 1

M
1
3
n

(

ξ

ξ∗n
− 1

)

, (6.15)

then, for each n, Hn solves
d3Hn

dζ3n
+Rn(ζn;Mn) =

δn
(Hn)3

, (6.16)

where

δn =
1

|ξ∗n|17M3
n

, Rn(ζn;Mn) =

(

(1−M
1
3
n ζn)

2 +
a

(ξ∗n)
2

)

, (6.17)
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with initial conditions

Hn(0) =
|ξ∗n|

2
3

(1 + |ξ∗n|2)
1
3

,
dHn(0)

dζn
=

2

3
M

1
3
n

|ξ∗n|
8
3

(|ξ∗n|2 + 1)
4
3

(6.18)

and

d2Hn(0)

dζ2n
=

βn

M
1
3
n

|ξ∗n|
2
3

(|ξ∗n|2 + 1)
1
3

+
2M

2
3
n

3

(

(

5
3 |ξ∗n|2 − 1

)

|ξ∗n|
8
3

(|ξ∗n|2 + 1)
7
3

)

. (6.19)

Proof. That each Hn solves (6.16) follows by changing variables in (1.1). The initial conditions
follow from (5.3) and (6.5).

The following lemma will be used in the following to approximate the functions Hn(·) by
polynomials P̄ (·;Mn, βn).

Lemma 6.8 For each n let Hn(ζn) solve (6.16)-(6.19). Then, for every ε > 0 there exists n0 ∈ N

such that for all n > n0 the estimates

Hn(ζn) ≥
ζ0(Mn, βn)− ζn
2ζ0(Mn, βn)

, (6.20)

∣

∣Hn(ζn)− P̄ (ζn;Mn, βn)
∣

∣ ≤ ε
∣

∣P̄ (ζn;Mn, βn)
∣

∣

∣

∣

∣

∣

dHn(ζn)

dζn
− dP̄ (ζn;Mn, βn)

dζn

∣

∣

∣

∣

≤ ε

(∣

∣

∣

∣

dP̄ (ζn;Mn, βn)

dζn

∣

∣

∣

∣

+ 1

)

∣

∣

∣

∣

d2Hn(ζn)

dζ2n
− d2P̄ (ζn;Mn, βn)

dζ2n

∣

∣

∣

∣

≤ ε

(∣

∣

∣

∣

d2P̄ (ζ;Mn, βn)

dζ2n

∣

∣

∣

∣

+ 1

)

hold in ζn > 0 and as long as
ζ0(Mn, βn)− ζn
2ζ0(Mn, βn)

≥ ε .

Proof. The proof of this result is a standard bootstrap argument similar to the ones that has
been used repeatedly. The idea is that the initial conditions (6.18) and (6.19) tend to the ones for
P̄ as n → ∞, see (6.11). Also the term δn/(Hn)

3 in (6.16) is negligible if n is sufficiently large
since δn → 0 as n → ∞ (observe that Φ(τ∗n) = δ−1

n ). On the other hand, the term Rn(ζn;Mn) can

be approximated by (1 −M
1
3
n ζn)

2 as n → ∞. The resulting limiting equation is then (6.10) and
the values of Hn and of its derivatives can be approximated at ζn = 0 by those of P̄ (·;Mn, βn) and
its derivatives there. The difference between Hn(ζn) and P̄ (ζn;Mn, βn) can then be approximated
arguing as in, for example, Lemma 3.1 as well as in Lemma 4.3 of [7]. We observe that, as in [7],
(6.20) implies upon integration of (6.16), that a condition on ζ0(Mn, βn)− ζn of the form

ζ0(Mn, βn)− ζn
2ζ0(Mn, βn)

≥ δn

∣

∣

∣

∣

log

(

ζ0(Mn, βn)− ζn
2ζ0(Mn, βn)

)∣

∣

∣

∣

+
a

|ξ∗n|2

must be satisfied for n large enough. Then for every ε we can choose n0 large enough to obtain
that the ε is larger than the solution of δn0

| log(x)| + ζ0a/|ξ∗n0
|2 = x/2 and that the initial data

are close enough to those of P̄ .
We now prove that βn ∼ β∗(Mn) as n → ∞. The idea is to use the fact that the derivative

of the approximating polynomial P̄ (ζn;Mn, βn) at ζ0(Mn, βn) is of order one (and negative) by
Lemma 6.5. Then, we can use Lemma C.1 of Appendix C that gives the behaviour in the boundary
layer where Hn becomes small (near ξ = ξmin

n+1)), to conclude that the next polynomial in the outer
region is close to one having a double zero in the matching region near ξ = ξmin

n+1).

Lemma 6.9 Suppose that the Φ and its derivatives satisfy the assumptions of Proposition 5.1 and
let {τ∗n} be the sequence found there. Let the sequences {ξ∗n}, {Mn} and {βn} be defined by means

26



of (6.4) and (6.5), and let the functions β∗(Mn) be as in (6.9) and the sequence of functions Hn

be given by (6.15). Then, for any ε > 0, there exists a L = L(ε) > 0 and a n0 large enough such
that if Φ(τ∗n) ≥ L and n ≥ n0 then

|βn − β∗(Mn)| ≤ ε |β∗(Mn)| . (6.21)

Also, for all n > n0

Hn(ζn) ≃ −Kn(ζn − ζ0(Mn)) as ζn → (ζ0(Mn))
− (6.22)

with Kn = −dP̄ (ζ0(Mn))

dζn
> 0 (6.23)

and

Hn(ζn) ≃
Dn

δn
(ζn − ζ0(Mn))

2 as ζn → (ζ0(Mn))
+ , (6.24)

where Dn is proportional to K5
n by a constant of order one, and there exist α1 and α2 ∈ R

independent of Mn such that 0 < α1 ≤ Kn ≤ α2.
Moreover, for all n > n0 there exists ε0 > 0 small enough an ξcrit,n ∈ (ξmin

n − ε0, ξ
min
n + ε0)

such that

ζ0(Mn) = − 1

M
1
3
n

(

ξcrit,n
ξ∗n

− 1

)

and ζ∗(Mn−1) = − 1

M
1
3

n−1

(

ξcrit,n
ξ∗n−1

− 1

)

(6.25)

and
Hn−1(ζn−1) ≃ Γn−1(ζn−1 − ζ∗(Mn−1))

2 as ζn−1 → (ζ∗(Mn−1))
+ (6.26)

with Γn−1 =
1

2

d2P̄ (ζ∗(Mn−1);Mn−1)

dζ2n−1

> 0 . (6.27)

Proof. Suppose that n is very large. We apply Lemma 6.8 for n, thus starting ζn = 0 or at
ξ = ξ∗n. It then follows that we can approximate Hn by the polynomial P̄ (ζn;Mn, βn) in intervals
of the form ζn ∈ [0, ζ0(Mn, βn)− ε1] with ε1 > 0 small but fixed and n large enough. This in
particular implies (6.22) and (6.23). The fact that Kn is bounded from above and below follows
from Lemma 6.5. Using then Lemma C.1 we obtain thatHn(ζ) can be approximated as a quadratic
polynomial for ζn = ζ0(Mn, βn) + ε1. This implies

∣

∣

∣

∣

Hn(ζn)−
AK5

n

δn
(ζn − ζ0(Mn))

2

∣

∣

∣

∣

≤ ε2K
5
n

δn
(ζn − ζ0(Mn))

2 ,

for some ε2 > 0 small enough and A of order one, and thus (6.24) follows. We can then replace
the variables ζn by ζn−1 and Hn by Hn−1 using (6.15) and applying again Lemma 6.8 we can
then approximate the function Hn−1(ζ) by one polynomial which has a double root at the value
of ζn−1 corresponding to ζn = ζ0(Mn, βn) + ε1. This implies (6.24), but also (6.21) follows by the
definition of β∗, and therefore also (6.25), (6.26) and (6.27) follow.

6.3 Proof of propositions 6.1 and 6.2

In order to prove the propositions we derive information from Lemma 6.9 in the matching region
around ξmin

n for n large enough. Let us then assume that Φ satisfies the assumptions of Propo-
sition 5.1, so that the sequence (5.3) is well-defined. Let H(ξ) be defined by means of (2.12) and
(2.13), and satisfies (1.1). Let the sequence of functions Hn be defined by (6.15), so that, by
Lemma 6.7, each such function satisfies (6.16) with initial conditions (6.18) and (6.19).

We further assume in the following that the approximating polynomials have βn = β∗(Mn)
thus they are as described in Lemma 6.4 and we drop the dependency on βn in the notation.

Lemma 6.9 (6.25) and the definition of the variables Zn give

Z0(Mn)ξ
∗
n = Z∗(Mn−1)ξ

∗
n−1 . (6.28)
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Remark 6.10 We can now argue that {Mn} is a bounded sequence. Indeed, if Mn is very large,
(B.16) implies that Z0(Mn) is very negative. This would imply, using (6.28) that ξ∗n−1 > 0 (notice
that Z∗(Mn−1) > 0 by definition). However, we cannot have ξ∗n−1 > 0 for large n, because
ξ∗n → −∞.

Using now the definition of ζn (see (6.15)) and (6.25) we can compute (ζn − ζ0(Mn)) and
(ζn−1 − ζ∗(Mn−1)) to get

M
1
3
n ξ∗n(ζn − ζ0(Mn)) = M

1
3

n−1ξ
∗
n−1(ζn−1 − ζ∗(Mn−1)) . (6.29)

On the other hand, the definition of the sequence Hn (in (6.15)) gives

|ξ∗n|5MnHn(ζn) = |ξ∗n−1|5Mn−1Hn−1(ζn−1) . (6.30)

We then change variables according to (6.29) and (6.30) in (6.24) in order to write it in terms of
the variables ζn−1 and Hn−1. This gives the asymptotic formula, for n large enough,

Hn−1(ζn−1) ∼
Dn

δn

|ξ∗n|3Mn

|ξ∗n−1|3Mn−1

M
2
3

n−1

M
2
3
n

(ζn−1 − ζ∗(Mn−1))
2 , ζn−1 → (ζ∗(Mn−1))

+ .

But comparing this to (6.26) implies that the approximation

Γn−1M
1
3

n−1|ξ∗n−1|3 = Dn|ξ∗n|20M
10
3

n

is valid for n large enough (here we have also used (6.17)).
Using the fact that Mn is bounded, and also that Dn can be estimated from above and below

by a constant independent on n, we obtain:

C1|ξ∗n|20M
10
3

n ≤ Γn−1M
1
3

n−1|ξ∗n−1|3 ≤ C2|ξ∗n|20M
10
3

n

for 0 < C1 ≤ C2. Using (6.5), then

C1
|ξ∗n|

10
9

|ξ∗n−1|
10
9

(Φ(ξ∗n))
10
3 ≤ Γn−1(Φ(ξ

∗
n−1))

1
3 ≤ C2

|ξ∗n|
10
9

|ξ∗n−1|
10
9

(Φ(ξ∗n))
10
3 .

Using now (6.28) as well as the fact that Z0(Mn) and Z∗(Mn−1) are bounded from above
and below for Mn and Mn−1 bounded (cf. (B.9), (B.15)), we obtain, for different C1 and C2 if
necessary, that

C1(Φ(ξ
∗
n))

10
3 ≤ Γn−1(Φ(ξ

∗
n−1))

1
3 ≤ C2(Φ(ξ

∗
n))

10
3 .

Using now (6.13) for n− 1 we can estimate Γn−1 from above and below by positive constants
independent on n. Then:

Φ(ξ∗n−1) ≃ C(Φ(ξ∗n))
10 (6.31)

for some C > 0.
We are now in the position of proving Proposition 6.1.

Proof of Proposition 6.1. Due to Lemma 6.9 we can assume that (6.21) holds for n large. In
a similar fashion as in [7] we can make rigorous the argument outlined above by combining the
lemmas C.1 and 6.8 and prove indeed that (6.31) hold. Since by hypothesis Φ(ξ∗n) → ∞ as n → ∞
it then follows that Φ(ξ∗n) < Φ(ξ∗n−1) and this gives Proposition 6.1.

For each n, let now τmin
n be the value of τ at which Φ reaches the minimum in the interval

(τ∗n , τ
∗
n−1) as defined in (6.2). We can now prove Proposition 6.2:

Proof of Proposition 6.2. As before, we only give the formal steps of the proof and refer to [7]
for details. Let ξmin

n = ξ(τmin
n ) be defined by means of (2.12). Then, by Lemma 6.8, the fact that

δn ≪ 1 and Lemma C.1 we can write, to leading order for n large enough,

ξmin
n = ξ∗nZ0(Mn)
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and that,
Φ(τmin

n ) = |ξmin
n | 23 |ξ∗n|5MnHn(ζ0(Mn))

It is clear that for n large enough Φ(τmin
n ) approaches 0 by Lemma 6.8 and employing the scaling

Hn = δnhn , ζn − ζ0(Mn) = δn sn

(that is analogous to the one used in the proof of Lemma C.1), give that the following is a valid
approximation

Φ(τmin
n ) =

∣

∣

∣

∣

ξmin
n

ξ∗n

∣

∣

∣

∣

2
3 1

(Φ(τ∗n))
2
hn(0)

for n large enough. Here we also use that de definition of Mn (see 6.5) and that δn = (Φ(τ∗n)
−3)

(see (6.17)). Thus for n large enough one also has, by (6.31), that

Φ(τmin
n−1 ) ≃

∣

∣

∣

∣

ξmin
n−1

ξ∗n−1

∣

∣

∣

∣

2
3 C

(Φ(τ∗n))
20
hn−1(0)

for some order one constant C > 0.
We finally observe that the values hn(0) are of order one if n is large enough, by Lemma C.1.

Also, we can approximately write the quotients |ξmin
n |/|ξ∗n| = Z0(Mn). But each Z0(Mn) is an

order one constant, since the sequence Mn is uniformly bounded. Then, since Φ(τ∗n) → ∞, we
have that Φ(τmin

n ) → 0. Moreover, there exists a constant C > 0 (different from the one above)
such that, for n large enough,

Φ(τmin
n−1 ) ≃ C(Φ(τmin

n ))10 ,

and thus (6.2) follows.

7 Convergence to the equilibrium point p−

In this section we finish the proof of Theorem 2.3. First we prove the following

Proposition 7.1 Suppose that (Φ(τ),W (τ),Ψ(τ), θ(τ)) is a solution of (2.19)-(2.22) as found in
Proposition 4.1 and satisfying (5.1). Then, there exist positive constants C1 and C2 depending
only on a such that

lim sup
τ→−∞

(

Φ(τ) +

∣

∣

∣

∣

dΦ(τ)

dτ

∣

∣

∣

∣

+

∣

∣

∣

∣

d2Φ(τ)

dτ2

∣

∣

∣

∣

)

≤ C1 , (7.1)

and lim inf
τ→−∞

Φ(τ) ≥ C2 > 0 . (7.2)

Proof. We recall that the solutions found in Proposition 4.1 are defined for all τ ∈ (−∞,∞) and
satisfy limτ→∞(Φ(τ),W (τ),Ψ(τ), θ(τ)) = (1, 0, 0, π/2). Moreover, limτ→−∞ θ(τ) = −π

2 , Φ(τ) > 0
for any τ ∈ (−∞,∞) and lim infτ→−∞ Φ(τ) < ∞. We now claim that (7.1) holds for some
C1 > 0. Indeed, otherwise, due to Proposition 5.1 and Proposition 6.1 there would exist a
sequence {τ∗n} such that limn→∞ τ∗n = −∞ and limn→∞ Φ(τ∗n) = ∞ but such that there exits n0

with Φ(τ∗n−1) > Φ(τ∗n) for all n > n0. Then, since lim supn→∞ Φ(τ∗n) = ∞ (cf. (5.4)) it follows
that Φ(τ∗n0

) = ∞, this yields a contradiction and, therefore, (7.1) is satisfied.
Suppose now that (7.2) is not satisfied, then in particular this implies, probably taking a

subsequence, that limn→∞ Φ(τmin
n ) = 0 but this contradicts (6.3) of Proposition 6.2.

We can now finish the proof of the main result.
Proof of Theorem 2.3. Due to Proposition 4.1 there exists a solution of (2.19)-(2.22) de-
fined for all τ ∈ (−∞,∞) such that limτ→∞(Φ(τ),W (τ),Ψ(τ), θ(τ)) = (1, 0, 0, π/2). Moreover,
limτ→−∞ θ(τ) = −π

2 , Φ(τ) > 0 for any τ ∈ (−∞,∞) and lim infτ→−∞ Φ(τ) < ∞. Then Proposi-
tion 7.1 gives that (7.1) and (7.2) hold.
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We now define a sequence of functions:

Φn(τ) = Φ(τ − n) , Wn(τ) = W (τ − n) , Ψn(τ) = Ψ(τ − n) n = 1, 2, 3, . . .

Using (2.19)-(2.22), (7.1), (7.2), standard compactness arguments and the fact that limτ→−∞ θ(τ) =
−π

2 we can show that there exists a subsequence {nj} satisfying limj→∞ nj = ∞ and such that
{(Φnj

(τ),Wnj
(τ),Ψnj

(τ))} converges uniformly in compact sets of τ to a bounded solution of
(2.1), say (Φ∞(τ),W∞(τ),Ψ∞(τ)). Moreover, we have Φ∞(τ) ≥ C1 > 0, τ ∈ (−∞,∞). Due
to Proposition 2.1 it follows that (Φ∞(τ),W∞(τ),Ψ∞(τ)) is close to Ps if τ < 0 and |τ | is
large enough. Using the Stable Manifold Theorem it then follows that (Φ∞(τ),W∞(τ),Ψ∞(τ))
is contained in the unstable manifold of Ps. However, due to Proposition 2.1(v) it follows
that the only bounded trajectory contained in the unstable manifold of Ps is the is the crit-
ical point itself, thus (Φ∞(τ),W∞(τ),Ψ∞(τ)) ≡ Ps. This implies that the sequence Pj =
(Φnj

(0),Wnj
(0),Ψnj

(0)), θnj
(0)) converges to the equilibrium p− as j → ∞. Therefore the points

Pj are contained in the centre-unstable manifold of p−, whence limτ→−∞(Φ(τ),W (τ),Ψ(τ), θ(τ)) =
p− and the result follows.
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Appendix

A Analysis of the solutions of (1.11)

We recall here the results concerning the following equation

d3Φ

dτ3
=

1

Φ3
(A.1)

(cf. (1.11)) that have been shown in [7]. For simplicity, we henceforth use the same notation for
the dependent and independent variables as for (1.5). The following holds.

Theorem A.1 There exists a unique solution of (A.1) with the matching condition:

Φ(τ) ∼ −Kτ + o(1) as τ → −∞ .

Moreover, the asymptotics of Φ(τ) for large τ is given by:

Φ(τ) ∼ Γτ2 as τ → ∞ for some Γ > 0 . (A.2)

Finally, the exists a unique solution of (A.2) with matching condition

Φ(τ) ∼ −K̃τ + o(1) as τ → ∞ for some K̃ > 0 .

It also satisfies that there exists a finite τ∗ such that

Φ(τ) → 0 as τ → (τ∗)
+ . (A.3)

All other solutions satisfy (A.2) for increasing τ , and, for decreasing τ , either (A.3) or

Φ(τ) ∼ Γ̃τ2 as τ → −∞ for some Γ̃ > 0

holds.

The proof of Theorem A.1 is done by a series of lemmas. The crucial step is to apply the
transformation

dΦ

dτ
= Φ− 1

3 u ,
d2Φ

dτ
= Φ− 5

3 v , dτ = Φ
4
3 dz , (A.4)
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that reduces (A.1) to the system

dΦ

dz
= uΦ ,

du

dz
= v +

1

3
u2 ,

dv

dz
= 1+

5

3
u v . (A.5)

The lemmas then give the behaviour of the corresponding trajectories and are given below for
reference.

The last two equations in (A.5) can be studied independently by means of a phase-plane
analysis. The isoclines of this system are Γ1 = {(u, v) : v + 1

3u
2 = 0}, that has du/dz = 0, and

Γ2 = {(u, v) : 1 + 5
3v u = 0}, that has dv/dz = 0. The only critical point is pe = (ue, ve) =

((9/5)
1
3 ,−(1/3)(9/5)

2
3 ), and linearisation gives two complex eigenvalues with positive real part,

namely λ± = (1/2)(1/15)
1
3 (7 ±

√
11i).

We distinguish five regions, R1 to R5, in the phase plane that are separated by the isoclines.
These are depicted in Figure 1 where the direction field is also shown.

v

u

Γ1

R2

R1R3

R5

Γ2

Γ2

R4

R4

Figure 1: Phase portrait associated to (A.5) showing the direction field. The thick solid lines
represent the isoclines and the dashed ones the separatrices.

Standard arguments imply that any orbit on the phase plane eventually crosses the isoclines
into the region R4 forwardly in z. We recall that R4 = {(u, v) : −u2/3 < v < −3/(5u) if u <
0 , v > max(−u2/3,−3/5u) if u > 0} and the field in it satisfies du/dv > 0. If, however, an orbit
has (u, v) ∈ R4 at some value of z, it is possible to discern from which of the regions is coming
from for smaller values of z by identifying the separatrices of the system. We have the following
result.

Lemma A.2 (Separatrices) (i) There exists a unique orbit v = v̄(u) in the phase plane as-
sociated to system (A.5) that is contained in R4 for all u ∈ R. Moreover, v̄(u) has the
following asymptotic behaviour

v̄(u) =
u2

2
+O

(

u
4
5

)

as u → ∞ , v̄(u) = − 1

2u
(1 + o(1)) as u → −∞

(ii) There exists a unique orbit v = v̂(u) in the phase plane associated to system (A.5) that has
the following asymptotic behaviour

v̂(u) = − 1

2u
(1 + o (1)) as u → +∞

and
|(u, v̂)− (ue, ve)| ≤ CeRe(λ+)z as z → −∞ . (A.6)
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Lemma A.3 All orbits associated to solutions of (A.5) enter R4. Those that are below the sep-
aratrix v = v̄(u) come from the critical point pe as z → −∞ and satisfy (A.6). All other orbits,
except for v̄, come from the region R5.

B Analysis of the polynomial solutions of (1.10)

We identify the functions giving the leading order behaviour of the solutions of (1.1) if |ξ|2/3H(ξ)
becomes large on a bounded interval around some negative value ξ = ξ∗ that gives a large local
maximum of Φ (after the change of variables (2.12)).

Due to (2.13), these approximating functions, if ξ → −∞ and |ξ|2/3H is large, are

Φ̄(ξ) = |ξ| 23 H̄(ξ) , (B.1)

where H̄(ξ) solves (1.10).
Let ξ = ξ∗ < 0 be such that Φ̄(ξ∗) is a local maximum. We shall derive in the following some

properties of these functions, such us conditions to ensure that they have a double zero at a point
ξmin < ξ∗. But first we need to normalise them in an adequate way.

We can readily integrate (1.10) with given initial conditions at ξ = ξ∗. This gives a family
of fifth order polynomials that depend on ξ∗, H̄(ξ∗) and the first and second derivatives of H̄
evaluated at ξ = ξ∗. Using that dΦ̄(ξ∗)/dξ = 0 we can write

|ξ∗|dH̄(ξ∗)

dξ
=

2

3
H̄(ξ∗)

thus we can eliminate one parameter and obtain that

H̄(ξ) = − (ξ − ξ∗)3

60

(

(ξ − ξ∗)2 + 5ξ∗(ξ − ξ∗) + 10(ξ∗)2
)

+ H̄(ξ∗)

(

1 +
2(ξ − ξ∗)

3ξ∗

)

+
d2H̄(ξ∗)

dξ2
(ξ − ξ∗)2

2
. (B.2)

We want to characterise the functions Φ̄ in terms of the parameters ξ∗, Φ̄(ξ∗) and d2Φ̄(ξ∗)/dξ2,
however. In order to do that we first compute

Φ̄(ξ∗) = |ξ∗| 23 H̄(ξ∗) ,
d2Φ̄(ξ∗)

dξ2
= −10

9
|ξ∗|− 4

3 H̄(ξ∗) + |ξ∗| 23 d
2H̄(ξ∗)

dξ2

and then define a family of polynomials P that normalises H̄ as follows:

H̄(ξ) = |ξ∗|5P (Z;M,β) , Z =
ξ

ξ∗
,

thus P solves
d3P

dZ3
= Z2 , (B.3)

and the parameters M and β are defined by

M = P (1;M,β) and β =
1

|ξ∗| 113
d2Φ̄(ξ∗)

dξ2
. (B.4)

Then, (B.1) implies that

Φ̄(ξ) = |ξ∗| 173 (Z)
2
3P (Z;M,β) . (B.5)

Changing to these variables in (B.2) we obtain

P (Z;M,β) =
(Z − 1)3

60
(Z2 + 3Z + 6) +

M

9
(5Z2 − 16Z + 20) +

β

2
(Z − 1)2 . (B.6)

We point out that Z has the opposite sign as ξ and thus we shall be interested in the region
Z ≥ 1, or that one ahead of the local maximum of (Z)2/3P . We next show the existence, for each
M > 0, of a unique β∗(M) such that P (Z;M,β) has a unique and double root in {Z > 1}.
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Lemma B.1 Let P (Z;M,β) be as in (B.6) with M > 0 as in (B.4). Then, there exists a β∗(M) <
0 such that

(i) If β > β∗(M), P (Z;M,β) is strictly positive in Z ≥ 1.

(ii) If β < β∗(M) there exists a unique Zr = Zr(M,β) > 1 such that P (Z;M,β) > 0 in
1 ≤ Z < Zr, P (Zr;M,β) = 0 and dP (Zr;M,β)/dZ < 0.

(iii) If β = β∗(M) there exists Z∗(M) > 1 that is a double zero of P (Z;M,β), and P (Z;M,β) > 0
for 1 ≤ Z 6= Z∗(M).

Proof. The polynomial P (Z;M,β) is monotonically increasing in β. Since (59Z
2− 16

9 Z+ 20
9 ) > 0,

it follows that P (Z;M,β) > 0 if Z ≥ 1 and β ≥ 0. On the other hand given M > 0 and Z > 1,
P (Z;M,β) < 0 for negative values of β if |β| is large enough.

For each M we define

β∗(M) = sup {β < 0 : P (Z;M,β) < 0 for some Z ≥ 1} . (B.7)

Then, by continuity in β there exists a Z∗(M) such that P (Z∗(M);M,β∗(M)) = 0. Moreover,
dP (Z∗(M);M,β∗(M))/dZ = 0, since otherwise there would exists β > β∗(M) and Z ≥ 1 such
that P (Z;M,β) < 0.

We now claim that d2P (Z∗(M);M,β∗(M))/dZ2 6= 0. Indeed, otherwise the definition of β∗(M)
would imply that Z = Z∗(M) is a zero of P (Z;M,β∗(M)) of order four and, in particular, that
d3P (Z∗(M);M,β∗(M))/dZ3 = 0. But P solves (B.3), thus

d3P (Z;M,β∗(M))

dZ3
> 0 for any Z 6= 0 . (B.8)

Suppose that β < β∗(M). The monotonicity of P (Z;M,β) in β, combined with the fact that
P (1;M,β) = M > 0 and limZ→∞ P (Z;M,β) = ∞ imply that there exists at least two zeros of
P (Z;M,β) in {Z ≥ 1}. Actually, there are exactly two zeros of P (Z;M,β) in {Z ≥ 1}. For
otherwise, there would be four zeros in {Z ≥ 1} counting multiplicities, and this would imply, by
Rolle’s Theorem, the existence of three zeros of dP (Z;M,β)/dZ in {Z ≥ 1}, and iterating the
argument, also the existence of two zeros of d2P (Z;M,β)/dZ2 in {Z ≥ 1} and at least one zero
of d3P (Z;M,β)/dZ3 in {Z ≥ 1}. But this contradicts (B.8).

Therefore, P (Z;M,β) has exactly two zeros in {Z ≥ 1}. The smallest of which, Zr, satisfies
dP (Zr;M,β)/dZ < 0 (by continuity since M > 0).

We now compute the asymptotic behaviour of β∗(M) in the limits M → 0 and M → ∞.

Lemma B.2 For every M > 0 let β∗(M) and Z∗(M) be as in Lemma B.1. Then, they satisfy
that 1 < Z∗(M) < 4 and β∗(M) < 0, and have the following asymptotic behaviour:

Z∗(M) ∼ 1 + (12M)
1
3 , β∗(M) ∼ −

(

3M

2

)
1
3

,

d2P (Z∗;M,β∗(M))

dZ2
∼
(

3M

2

)
1
3

as M → 0

(B.9)

and

Z∗(M) → 4 , β∗(M) ∼ −8M

9
,

d2P (Z∗;M,β∗(M))

dZ2
∼ 2M

9
as M → ∞ .

(B.10)
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Proof. In order to determine Z∗(M) and β∗(M) we have to solve the system that results from
imposing that P (Z;M,β) has a double zero:

(Z − 1)3

60
(Z2 + 3Z + 6) +

M

9

(

5Z2 − 16Z + 20
)

+
β

2
(Z − 1)2 = 0 , (B.11)

(Z − 1)2

12
(Z2 + 2Z + 3) +

2M

9
(5Z − 8) + β(Z − 1) = 0 . (B.12)

Subtracting the second equation of (B.12) multiplied by (Z − 1)/2 to (B.11) we obtain

(Z − 1)3(3Z2 + 4Z + 3) = 40(4− Z)M , (B.13)

the solution of which gives Z∗(M), the position of the double zero. Now β∗(M) can be computed
from either (B.11) or (B.12) by substituting Z = Z∗(M). It is clear that Z∗(M) ∈ (1, 4) for any
M > 0, since the left-hand side of (B.13) is positive for Z > 1.

It then follows from (B.13) that, if M → 0, (Z∗(M)−1) is of order M
1
3 and that, using (B.11),

β∗(M) behaves like M
1
3 . On the other hand, if M → ∞, we obtain that Z∗(M) → 4− and that

β∗(M) is of orderM . The precise asymptotic behaviours stated in (B.9) and in (B.10) follow easily
from (B.13) and (B.11) by using the leading order behaviour of Z∗(M) in both limits M → 0 and
M → ∞.

Finally, we identify the largest root of P in the region Z < 1:

Lemma B.3 For all M > 0 and β ∈ R the following value is well defined

Z0(M,β) := max{Z < 1 : P (Z;M,β) = 0} . (B.14)

If β = β∗(M) then, setting Z0(M) := Z0(M,β∗(M))

Z0(M) ∼ 1− (12M)
1
3

2
,

dP (Z0;M)

dZ
∼
(

3

2

)
5
3

M
2
3 as M → 0 , (B.15)

and

Z0(M) ∼ −
(

20M

3

)
1
3

,
dP (Z0;M)

dZ
∼ 1

3

(

20

3

)
1
3

M
4
3 as M → ∞ . (B.16)

Moreover, in this case, Z0(M) is the only real root in Z < 1.

The proof follows by continuity, Lemma B.1 and the Implicit Function Theorem.
We need to derive some information concerning the derivative of the polynomial P (Z;M,β)

at Z = Z0(M,β).

Lemma B.4 The value Z0(M,β) is the unique root of P (Z;M,β) in {Z ≤ 1}. Moreover, if
Z0(M,β) ≥ −1, there exists a positive c0 independent of M and β such that

dP (Z0(M,β);M,β)

dZ
≥ c0 max{M 2

3 ,M} . (B.17)

Proof. Using (B.3), and differentiating P (Z;M,β) then

d2P (Z;M,β)

dZ2
=

1

3
(Z3 − 1) +

(

10M

9
+ β

)

and we obtain that P (Z;M,β) is strictly concave for Z < 1 if 10M/9+β ≤ 0. On the other hand,

if 10M/9+β > 0 we obtain that P (Z;M,β) is strictly concave for Z < Z̃ := −(1−3(10M/9+β))
1
3

and strictly convex if Z > Z̃. Then, since dP (1;M,β)/dZ = −2M/3 it follows that there exists a
Ẑ(M,β) < 1 such that dP (Z;M,β)/dZ > 0 if Z < Ẑ(M,β) and dP (Z;M,β)/dZ < 0 if Ẑ(M,β) <
Z ≤ 1. Using now that P (1;M,β) = M > 0 it then follows that P (Z;M,β) attains a positive
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maximum in the interval Z ∈ (−∞, 1) at Z = Ẑ(M,β). Therefore, since limZ→−∞ P (Z;M,β) =
−∞ and the concavity, the function P (·;M,β) has a unique zero Z0(M,β) ∈ (−∞, 1).

It is easy to prove that for M bounded dP (Z;M,β)/dZ ≥ K0 > 0 uniformly for β ≤ 0,
uniformly on Z ∈ (−1, 1) (differentiating (B.6)). In fact, one can actually show that for M small

enough there exists a positive constant c0 such that dP (Z;M,β)/dZ > c0M
2
3 if Z ∈ (−1, 1).

In order to obtain (B.17) for large M we first consider the case |β| ≤ ε0M with ε0 sufficiently
small, and then (B.17) follows easily Z ∈ (−1, 1) Suppose then that β ≤ −ε0M . Then, if M is
large we can approximate P (Z;M,β) and its derivatives in the interval Z ∈ (−1, 1) by

M

9
(5Z2 − 16Z + 20) +

β

2
(Z − 1)2 = MWM (Z)

and its derivatives respectively. Observe that thenWM (Z) is a quadratic polynomial with bounded
coefficients satisfying WM (1) = 1. Suppose that Z0 = Z0(M,β) ∈ (−1, 1). Notice that we cannot
have any other zero of WM (Z) in the region Z < 1 because then, by continuity, P (Z;M,β) would
have more than one zero in the domain {Z < 1} and this would contradict the statement above.
Then, using also that WM (1) = 1, we can write

WM (Z) =
(Z − Z0)(Z − Z1)

(1− Z0)(1 − Z1)

with 1
(1−Z0)(1−Z1)

bounded and Z1 > 1. Therefore min{(1 − Z0), (Z1 − 1)} ≥ K1 > 0, uniformly

for large M . It then follows that (Z1 − Z0) ≥ 2K1. Then, since Z0 ≥ −1,

dWM (Z0)

dZ
=

(Z0 − Z1)

(1− Z0)(1 − Z1)
=

(Z1 − Z0)

(1− Z0)(Z1 − 1)
≥ 1

2

(Z1 − Z0)

(Z1 − 1)
≥ c1 > 0 .

And the result follows.

Z = 1
Z = Z0 Z = Z∗

Figure 2: Schematic depiction of the polynomials P (Z;M,β) for fixed M and different values of
β. The solid line represents a polynomial with β = β∗, the dashed line one with β > β∗ and the
dashed-dotted line one with β < β∗. The figure also reflects the fact that dP (1;M,β)/dZ < 0 for
any β < 0 and M > 0.

C Analysis of the bouncing region

We seek to reformulate the results concerning the region of very small H (or Φ) that can be
approximated by (1.11), that were obtained in [7]. The result here is more general, namely the
class of equations under consideration is

d3H
dζ3

+R(ζ) =
δ

H3
, δ > 0 (C.1)

where, if ζ belongs to some given bounded interval, then

|R(ζ)|+
∣

∣

∣

∣

dR

dζ
(ζ)

∣

∣

∣

∣

≤ C0 . (C.2)
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Lemma C.1 Suppose that the equation (C.1) is satisfied in an interval ζ ∈ (ζ0 − ε1, ζ0 + ε1) for
some ε1 > 0 independent of δ and where R satisfies (C.2). Suppose that:

|H(ζ) +K(ζ − ζ0)| ≤ ε2K |ζ − ζ0| ,
∣

∣

∣

∣

dH
dζ

(ζ) +K

∣

∣

∣

∣

≤ ε2K ,

∣

∣

∣

∣

d2H
dζ2

(ζ)

∣

∣

∣

∣

≤ ε2 (C.3)

for ζ ∈ (ζ0 − ε1, ζ0 − ε1/2), K ≥ c0 > 0 and some ε2 > 0. For any ε3 > 0, there exists ε0 > 0
independent of δ and K, but in general depending on c0, and a real constant A > 0 such that if
ε1 + ε2 ≤ ε0 there exists a δ0 = δ0(ε1, ε3, c0) > 0 such that for δ ≤ δ0 we have:

∣

∣

∣

∣

H(ζ)− AK5

δ
(ζ − ζ0)

2

∣

∣

∣

∣

≤ ε3K
5

δ
(ζ − ζ0)

2 ,

∣

∣

∣

∣

dH
dζ

(ζ) − 2AK5

δ
(ζ − ζ0)

∣

∣

∣

∣

≤ ε3K
5

δ
(ζ − ζ0) , (C.4)

∣

∣

∣

∣

d2H
dζ2

(ζ) − 2AK5

δ

∣

∣

∣

∣

≤ ε3K
5

δ
,

for ζ ∈ (ζ0 + ε1/2, ζ0 + ε1).

Proof. This result can be adapted from the results proved in [7]. More precisely, the result follows
from arguing as in the proof of the lemmas 4.4, 4.5, 4.6 and 4.7 of this article. We recall the main
ideas of the argument here.

We introduce the variables h(s) = K3H(ζ)/δ and s = K4(ζ − ζ0)/δ and obtain that h satisfies
the equation

d3h

ds3
+O

(

δ2

K9

)

=
1

h3
(C.5)

with the matching condition
h(s) = −s as s → −∞ .

We can then reformulate (C.5) by the transformation (A.4) of Appendix A, thus, to leading order
of approximation and due to the assumption (C.3), the solution of the resulting perturbation of
(A.5) follows the separatrix v̄(u) (see Lemma A.2). A key point in the argument is that the system
of ODEs (A.5) is integrated forward, the direction for which the separatrix is stable. This allows
to prove that h(s) ∼ As2 as s → ∞ for some A > 0 (see Theorem A.1), thus the asymptotics of
the resulting solution for ζ > ζ0 can be described by means of (C.3).
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