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Abstract.
One of the major challenges in neuroscience is to determine how noise that is present at the

molecular and cellular levels affects dynamics and information processing at the macroscopic level
of synaptically coupled neuronal populations. Often noise is incorprated into deterministic network
models using extrinsic noise sources. An alternative approach is to assume that noise arises intrinsi-
cally as a collective population effect, which has led to a master equation formulation of stochastic
neural networks. In this paper we extend the master equation formulation by introducing a stochastic
model of neural population dynamics in the form of a velocity jump Markov process. The latter has
the advantage of keeping track of synaptic processing as well as spiking activity, and reduces to the
neural master equation in a particular limit. The population synaptic variables evolve according to
piecewise deterministic dynamics, which depends on population spiking activity. The latter is char-
acterised by a set of discrete stochastic variables evolving according to a jump Markov process, with
transition rates that depend on the synaptic variables. We consider the particular problem of rare
transitions between metastable states of a network operating in a bistable regime in the deterministic
limit. Assuming that the synaptic dynamics is much slower than the transitions between discrete
spiking states, we use a WKB approximation and singular perturbation theory to determine the
mean first passage time to cross the separatrix between the two metastable states. Such an analysis
can also be applied to other velocity jump Markov processes, including stochastic voltage-gated ion
channels and stochastic gene networks.

Key words. neural networks, master equations, stochastic processes, singular perturbation
theory, metastability, WKB approximation, rare events
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1. Introduction. Noise has recently emerged as a key component of many bi-
ological systems including the brain. Stochasticity arises at multiple levels of brain
function, ranging from molecular processes such as gene expression and the opening
of ion channel proteins to complex networks of noisy spiking neurons that generate
behaviour [28]. For example, the spike trains of individual cortical neurons in vivo
tend to be very noisy, having interspike interval (ISI) distributions that are close to
Poisson [72]. At the network level, noise appears to be present during perceptual de-
cision making [79] and bistable perception, the latter being exemplified by perceptual
switching during binocular rivalry [51, 71, 81]. Noise also contributes to the generation
of spontaneous activity during resting states [23, 22]. At the level of large-scale neural
systems, as measured with functional MRI (fMRI) imaging, this ongoing spontaneous
activity reflects the organization of a series of highly coherent functional networks
that may play an important role in cognition. One of the major challenges in neuro-
science is to develop our understanding of how noise that is present at the molecular
and cellular levels affects dynamics and information processing at the macroscopic
level of synaptically coupled neuronal populations. Mathematical and computational
modeling are playing an increasing role in developing such an understanding [45].

Following studies of biochemical and gene networks [74, 28], it is useful to make
the distinction between intrinsic and extrinsic noise sources. Extrinsic noise refers
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to external sources of randomness associated with environmental factors, and is of-
ten modeled as a continuous Markov process based on Langevin equations. On the
other hand, intrinsic noise typically refers to random fluctuations arising from the
discrete and probabilistic nature of chemical reactions at the molecular level, which
are particularly significant when the number of reacting molecules N is small. Under
such circumstances, the traditional approach to modeling chemical reactions based
on the law of mass action is inappropriate. Instead, a master equation formulation
is necessary in order to describe the underlying jump Markov process. In the case of
single cortical neurons, the main source of extrinsic noise arises from synaptic inputs.
That is, cortical neurons are being constantly bombarded by thousands of synaptic
currents, many of which are not correlated with a meaningful input and can thus be
treated as background synaptic noise. The main source of intrinsic fluctuations at the
single cell level is channel noise, which arises from the variability in the opening and
closing of a finite number of ion channels. The resulting conductance–based model of a
neuron can be formulated as a stochastic hybrid system, in which a piecewise smooth
deterministic dynamics describing the time evolution of the membrane potential is
coupled to a jump Markov process describing channel dynamics [63, 15, 58].

It is not straightforward to determine how noise at the single cell level trans-
lates into noise at the population or network level. A number of methods involve
carrying out some form of dimension reduction of a network of synaptically-coupled
spiking neurons. These include population density methods [59, 61, 46], mean field
theories [1, 35, 14, 13, 2], and Boltzmann–like kinetic theories [20, 67, 19]. However,
such methods tend to consider either fully-connected or sparsely connected networks
and simplified models of spiking neurons such as the integrate-and-fire (IF) model.
Nevertheless, one interesting result that emerges from the mean-field analysis of IF
networks is that, under certain conditions, even though individual neurons exhibit
Poisson–like statistics, the neurons fire asynchronously so that the total population
activity evolves according to a mean–field rate equation with a characteristic acti-
vation or gain function [1, 35, 14, 13]. Formally speaking, the asynchronous state
only exists in the thermodynamic limit N →∞, where N determines the size of the
population. This then suggests a possible source of intrinsic noise at the network
level arises from fluctuations about the asynchronous state due to finite size effects
[50, 48, 73, 6]; this is distinct from intrinsic noise at the single cell level due to chan-
nel fluctuations and it is assumed that the latter is negligible at the population level.
The presence of finite-size effects has motivated developing a closer analogy between
intrinsic noise in biochemical and neural networks [7, 8], based on a rescaled version
of the neural master equation introduced by Buice et. al. [17, 18], see also [60].

In the Buice et al master equation [17, 18], neurons are partitioned into a set
of M local homogeneous populations. The state of the αth population at time t is
specified by the number Nα(t) of active (spiking) neurons in an infinite background
sea of inactive neurons. (This is reasonable if the networks are in low activity states).
Transitions between the states are given by a one-step jump Markov process, with the
transition rates chosen so that standard Wilson-Cowan or activity-based equations are
obtained in the mean-field limit, where statistical correlations can be ignored. One of
the features of the Buice et. al. master equation is that there does not exist a natural
small parameter, so that it is not possible to carry out a diffusion-like approximation
using, for example, a system-size expansion. Indeed, the network tends to operate in a
regime close to Poisson-like statistics. Neverthless, it is possible to solve the moment
hierarchy problem using either path-integral methods or factorial moments [17, 18].
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In contrast, the Bressloff master equation [7, 8] assumes that there is a finite number
N of neurons in each local population and characterizes the state of each population
in terms of the fraction of neurons Nα(t)/N that have spiked in an interval of width
∆t. The transition rates are rescaled so that in the thermodynamic limit N → ∞,
one recovers the Wilson-Cowan mean-field equations. For large, but finite N , the
network operates in a Gaussian-like regime that can be described in terms of an
effective neural Langevin equation [7, 8]. One of the advantages of this version of the
master equation from a mathematical perspective, is that a variety of well-established
methods from the analysis of chemical master equations can be generalized to the
neural case. For example, a rigorous analysis of the Langevin approximation can be
carried out [16] by extending the work of Kurtz [43] on chemical master equations.
Moreover WKB methods can be used to analyze rare transitions between metastable
states, for which the Langevin approximation breaks down [8]. For a discussion of the
differences between the two master equations from the perspective of corrections to
mean field theory, see [76].

In this paper we go beyond the neural master equations by formulating the net-
work population dynamics in terms of a stochastic hybrid system described by a “ve-
locity” jump Markov process. This generalization is motivated by a major limitation
of the neural master equations. That is, they neglect synaptic dynamics completely,
only keeping track of changes in spiking activity. This implies, for example, that
the relaxation time τ for synaptic dynamics is much smaller than the fundamental
time step ∆t for jumps in the number of active neurons. Our model associates with
each population two stochastic variables Uα(t) and Nα(t). The synaptic variables
Uα(t) evolve according to piecewise–deterministic dynamics describing, at the popu-
lation level, synapses driven by spiking activity. These equations are only valid be-
tween jumps in spiking activity, which are described by a jump Markov process whose
transition rates depend on the synaptic variables. Formally speaking, the resulting
stochastic dynamics can be modeled in terms of a differential Chapman-Kolmogorov
(CK) equation:

∂p

∂t
= −1

τ

M∑
α=1

∂

∂uα
(vα(u,n)p(u,n, t)) +

1

τa

∑
m

A(n,m; u)p(u,m, t). (1.1)

Here n = (n1, . . . , nM ), u = (u1, . . . , uM ), and p(u,n, t) is the state probability
density at time t. The drift “velocities” vα(u,n) for fixed n represent the piecewise-
deterministic synaptic dynamics according to

τ
duα
dt

= vα(u,n), α = 1, . . . ,M, (1.2)

and A represents the u–dependent transition matrix for the jump Markov process
with

∑
nA(n,m; u) = 0 for all m. Note that the transition rates are scaled by a

second time constant τa that characterizes the relaxation rate of population activity.
In the limit τ → 0 for fixed τa, equation (1.1) reduces to the neural master equation
[17, 18, 7] with u = u(n) such that vα(u(n),n) = 0. On the other hand, if τa → 0 for
fixed τ , then we obtain deterministic voltage or current-based mean-field equations

τ
duα
dt

= vα(u, 〈n〉), (1.3)

where 〈n〉 =
∑

n ρ(u,n)n with ρ(u,n) the steady-state density satisfying the equation∑
mA(n,m; u)ρ(u,m) = 0. It is straightforward to show using the Perron-Frobenius
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Theorem that the steady-state density exists and is unique. Note that the limit τa → 0
is analogous to the slow synapse approximation used by Ermentrout [25] to reduce
deterministic conductance-based neuron models to voltage-based rate models. Now
suppose that the network operates in the regime 0 < τa/τ ≡ ε � 1, for which there
are typically a large number of transitions between different firing states n while the
synaptic currents u hardly change at all. This suggests that the system rapidly con-
verges to the (quasi) steady state ρ(u,n), which will then be perturbed as u slowly
evolves. The resulting perturbations can be analyzed using a quasi-steady-state (QSS)
diffusion or adiabatic approximation [64, 33, 57], in which the CK equation (1.1) is
approximated by a Fokker-Planck equation. The latter captures the Gaussian-like
fluctuations within the basin of attraction of a fixed point of the mean-field equa-
tions, and can be used to investigate effects such as the noise-induced amplification
of subthreshold oscillations (quasicycles) along smililar lines to [8]. However, the
diffusion approximation for small ε breaks down when considering rare event transi-
tions between metastable states. (A similar problem arises in approximating chemical
master equations by a Fokker–Planck equation in the large N limit [38, 24]).

In this paper we will show how asymptotic methods recently developed to study
metastability in stochastic ion channels and gene networks [58, 53, 54] can be extended
to analyze metastability in stochastic neural networks. All of these systems are mod-
eled in terms of a stochastic hybrid system evolving according to a CK equation of
the form (1.1). For example, in the case of ion channels, nα would represent the
number of open channels of type α, whereas u would be replaced by the membrane
voltage v. The neural system is distinct, in that the numbers of discrete and contin-
uous variables are equal. The structure of the paper is as follows. In §2, we present
our stochastic network model and the associated neural CK equation, and carry out
the QSS diffusion approximation for small ε. We then analyze bistability in a one-
population model (§3), and a two-population model consisting of a pair of excitatory
and inhibitory networks (§4). In both cases, we carry out an eigenfunction expansion
of the probability density and equate the principal eigenvalue with the inverse mean
first pasage time from one metastable state to the other. The principal eigenvalue is
expressed in terms of the inner product of a quasistationary density and an adjoint
eigenfunction. The former is evaluated using a WKB approximation, whereas the
latter is determined using singular perturbation theory, in order to match an absorb-
ing boundary condition on the separatrix between the basins of attraction of the two
metastable states. In the two-population case, calculating the effective potential of
the quasistationary density requires identifying an appropriate Hamiltonian system,
which turns out to be non-trivial, since the system does not satisfy detailed balance.

A number of general comments are in order before proceeding further.

(i) There does not currently exist a rigorous derivation of population rate-based mod-
els starting from detailed biophysical models of individual neurons. Therefore, the
construction of the stochastic rate-based model in §2 is heuristic in nature, in order
to motivate the neural rate equations used in this paper.

(ii) We use formal asymptotic methods rather than rigorous stochastic analysis to
determine the transition rates between metastable states in §3 and §4, and validate
our approach by comparing with Monte-Carlo simulations. Such methods have been
applied extensively to Fokker-Planck equations and master equations as reviewed in
[69], and provide useful insights into the underlying dynamical processes. In this
paper we extend these methods to a stochastic hybrid system. One could develop a
more rigorous approach using large deviation theory [30, 77], for example, although
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as far as we are aware this has not been fully developed for stochastic hybrid sys-
tems. Moreover, large deviation theory does not generate explicit expressions for the
prefactor, which we find can contribute significantly to the transition rates.

(iii) We focus on networks operating in the bistable regime, where the simpler QSS
diffusion approximation breaks down. There are a growing number of examples of
bistability in systems neuroscience, including transitions between cortical up and
down states during slow wave sleep [21, 65], working memory [37], and ambiguous
perception as exemplified by binocular rivalry [3, 51, 44, 12]. On the other hand,
in the case of oscillator networks, a diffusion approximation combined with Floquet
theory might be sufficient to capture the effects of noise, including the noise-induced
amplification of coherent oscillations or quasicycles [49, 4, 8]. An interesting issue
is whether or not the WKB method and matched asymptotics can be applied to a
network operating in an excitable regime, where there is a stable low activity resting
state such that non-infinitesimal perturbations can induce a large excursion in phase
space before returning to the resting state. One of the difficulties with excitable sys-
tems is that there does not exist a well-defined separatrix. Nertheless, it is possible to
extend the asymptotic methods developed here to the excitable case, as we will show
elsewhere within the context of spontaneous action potential generation in a model
of an excitable conductance-based neuron with stochastic ion channels.

2. Stochastic network model and the Chapman-Kolomogorov equation.
Suppose that a network of synaptically coupled spiking neurons is partitioned into a
set of M homogeneous populations with N neurons in each population, α = 1, . . . ,M .
(A straightforward generalization would be take to take each population to consist of
O(N) neurons). Let χ denote the population function that maps the single neuron
index i = 1, . . . , NM to the population index α to which neuron i belongs: χ(i) = α.
Furthermore, suppose the synaptic interactions between populations are the same
for all neuron pairs. (Relaxing this assumption can lead to additional sources of
stochasticity as explored in Ref. [29, 75]). Denote the sequence of firing times of the
jth neuron by {Tmj , m ∈ Z}. The net synaptic current into postsynaptic neuron i due
to stimulation by the spike train from presynaptic neuron j, with χ(i) = α, χ(j) = β,
is taken to have the general form N−1

∑
m Φαβ(t−Tmj ), where N−1Φαβ(t) represents

the temporal filtering effects of synaptic and dendritic processing of inputs from any
neuron of population β to any neuron of population α. For concreteness, we will take
exponential synapses so that

Φαβ(t) = wαβΦ(t), Φ(t) = τ−1e−t/τH(t) (2.1)

(A more general discussion of different choices for Φαβ(t) can be found in the reviews
of Ref. [26, 9]). Assuming that all synaptic inputs sum linearly, the total synaptic
input to the soma of the ith neuron, which we denote by ui(t), is

ui(t) =
∑
β

1

N

∑
j;χ(j)=β

Φαβ(t− Tmj ) =

∫ t

−∞

∑
β

Φαβ(t− t′) 1

N

∑
j;χ(j)=β

aj(t
′)dt′

(2.2)

for all χ(i) = α, where

aj(t) =
∑
m∈Z

δ(t− Tmj ). (2.3)
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That is, aj(t) represents the output spike train of the jth neuron in terms of a sum of
Dirac delta functions. (Note that in (2.2) we are neglecting any i-dependent transients
arising from initial conditions, since these decay exponentially for any biophysically
based model of the kernels Φαβ). In order to obtain a closed set of equations, we have
to determine threshold conditions for the firing times Tmi . These take the form

Tmi = inf{t, t > Tm−1
i |Vi(t) = κth,

dVi
dt

> 0}, (2.4)

where κth is the firing threshold and Vi(t) is the somatic membrane potential. The
latter is taken to evolve according to a conductance–based model

C
dVi
dt

= −Icon,i(Vi, . . .) + ui, (2.5)

which is supplemented by additional equations for a set of ionic gating variables [27].
(The details of the conductance-based model will not be important for the subsequent
analysis). Let aα(t) denote the output activity of the αth population:

aα(t) =
1

N

∑
j;χ(j)=α

aj(t), (2.6)

and rewrite equation (2.2) as

ui(t) =

∫ t

−∞

∑
β

Φαβ(t− t′)aβ(t′)dt′, χ(i) = α.

Since the right-hand side is independent of i, it follows that ui(t) = uα(t) for all
χ(i) = α with

uα(t) =

M∑
β=1

∫ t

−∞
Φαβ(t− t′)aβ(t′)dt′. (2.7)

In the case of exponential synapses (2.1), equation (2.7) can be converted to the
differential equation

τ
duα
dt

= −uα(t) +

M∑
β=1

wαβaβ(t). (2.8)

In general, equations (2.2)–(2.5) are very difficult to analyze. However, consider-
able simplification can be obtained if the total synaptic current ui(t) is slowly varying
compared to the membrane potential dynamics given by equation (2.5). This would
occur, for example, if each of the homogeneous subnetworks fired asynchronously
[34]. One is then essentially reinterpreting the population activity variables uα(t) and
aα(t) as mean fields of local populations. (Alternatively, a slowly varying synaptic
current would occur if the synapses are themselves sufficiently slow [25, 10]). These
simplifying assumptions motivate replacing the output population activity by an in-
stantaneous firing rate aα(t) = F (uα(t)) with F identified as the so–called population
gain function. Equation (2.7) then forms the closed system of integral equations

uα(t) =

∫ t

−∞

∑
β

Φαβ(t− t′)F (uβ(t′))dt′. (2.9)
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The basic idea is that if neurons in a local population are firing asynchronously then
the output activity aα is approximately constant, which means that the synaptic
currents are also slowly varying functions of time. A nonlinear relationship between
aα and constant input current uα can then be derived using population averaging in
order to determine the gain function F . One then assumes that the same relationship
aα = F (uα) also holds for time-dependent synaptic currents, provided that the latter
vary slowly with time. In certain cases F can be calculated explicitly [1, 35, 14, 13].
Typically, a simple model of a spiking neuron is used, such as the integrate–and–
fire model [34], and the network topology is assumed to be either fully connected or
sparsely connected. It can then be shown that under certain conditions, even though
individual neurons exhibit Poisson–like statistics, the neurons fire asynchronously so
that the total population activity evolves according to a mean–field rate equation with
a characteristic gain function F . In practice, however, it is sufficient to approximate
the firing rate function by a sigmoid:

F (u) =
F0

1 + e−γ(u−κ)
, (2.10)

where γ, κ correspond to the gain and threshold respectively.
One of the goals of this paper is to develop a generalization of the neural master

equation [17, 18, 7] that incorporates synaptic dynamics. We proceed by taking the
ouput activity of a local homogeneous population to be a discrete stochastic variable
Aα(t) rather than the instantaneous firing rate aα = F (uα):

Aα(t) =
Nα(t)

N∆t
, (2.11)

where Nα(t) is the number of neurons in the αth population that fired in the time
interval [t −∆t, t], and ∆t is the width of a sliding window that counts spikes. The
discrete stochastic variables Nα(t) are taken to evolve according to a one–step jump
Markov process:

Nα(t)→ Nα(t)± 1 : transition rate Ω±(Uα(t), Nα(t)), (2.12)

with the synaptic current Uα(t) given by (for exponential synapses)

τdUα(t) =

−Uα(t) +

M∑
β=1

wαβAβ(t)

 dt. (2.13)

The transition rates are taken to be (cf. [7])

Ω+(uα, nα)→ Ω+(uα) =
N∆t

τa
F (uα), Ω−(uα, nα)→ Ω−(nα) =

nα
τa
. (2.14)

The resulting stochastic process defined by equations (2.13), (2.11), (2.12) and (2.14)
is an example of a stochastic hybrid system based on a piecewise deterministic pro-
cess. That is, the transition rate Ω+ depend on Uα, with the latter itself coupled
to the associated jump Markov according to equation (2.13), which is only defined
between jumps, during which Uα(t) evolves deterministically. (Stochastic hybrid sys-
tems also arise in applications to genetic networks [82, 54] and to excitable neuronal
membranes [63, 15, 41]). It is important to note that the time constant τa cannot be
identified directly with membrane or synaptic time constants. Instead, it determines
the relaxation rate of a local population to the instantaneous firing rate.
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2.1. Neural master equation. Previous studies of the neural jump Markov
process have effectively taken the limit τ → 0 in equation (2.13) so that the continuous
variables Uα(t) are eliminated by setting Uα(t) =

∑
β wαβAα(t). This then leads to

a pure birth–death process for the discrete variables Nα(t). That is, let P (n, t) =
Prob[N(t) = n] denote the probability that the network of interacting populations
has configuration n = (n1, n2, . . . , nM ) at time t, t > 0, given some initial distribution
P (n, 0) with 0 ≤ nα ≤ N . The probability distribution then evolves according to the
birth–death master equation [17, 18, 7]

dP (n, t)

dt
=
∑
α

[
(Tα − 1)

(
Ω−α (n)P (n, t)

)
+ (T−1

α − 1)
(
Ω+
α (n)P (n, t)

)]
, (2.15)

where

Ω+
α (n) =

N∆t

τa
F

∑
β

wαβnα/N∆t

 , Ω−α (n) =
nα
τa
, (2.16)

and Tα is a translation operator: T±1
α F (n) = F (nα±) for any function F with nα±

denoting the configuration with nα replaced by nα ± 1. Equation (2.15) is supple-
mented by the boundary conditions P (n, t) ≡ 0 if nα = N +1 or nα = −1 for some α.
The birth–death master equation (2.15) can be analyzed by adapting various meth-
ods from the analysis of chemical master equations including system-size expansions,
WKB approximations, and path integral representations [18, 7, 8, 16]. First, suppose
that we fix ∆t = 1 so that we obtain the Bressloff version of the master equation.
Taking the thermodynamic limit N →∞ then yields the deterministic activity-based
mean–field equation

τα
dAα
dt

= −Aα(t) + F (
∑
β

wαβAα(t)). (2.17)

(For a detailed discussion of the differences between activity-based and voltage-based
neural rate equations, see Refs. [27, 9]). For large but finite N , the master equation
(2.15) can be approximated by a Fokker–Planck equation using a Kramers-Moyal
or system-size expansion, so that the population activity Aα evolves according to a
Langevin equation [7]. A rigorous probabilistic treatment of the thermodynamic limit
of the neural master equation has also been developed [16], extending previous work on
chemical master equations [42]. Although the diffusion approximation can capture the
stochastic dynamics of the neural population at finite times, it can break down in the
limit t→∞. For example, suppose that the deterministic system (2.17) has multiple
stable fixed points. The diffusion approximation can then account for the effects of
fluctuations well within the basin of attraction of a locally stable fixed point. However,
there is now a small probability that there is a noise–induced transition to the basin of
attraction of another fixed point. Since the probability of such a transition is usually
of order e−cN , c = O(1), except close to the boundary of the basin of attraction, such
a contribution cannot be analyzed accurately using standard Fokker–Planck methods
[78]. These exponentially small transitions play a crucial role in allowing the network
to approach the unique stationary state (if it exists) in the asymptotic limit t → ∞,
and can be analyzed using a WKB approximation of the master equation together
with matched asymptotics [8]. In other words, for a multistable neural system, the



NEURAL VELOCITY JUMP MARKOV PROCESS 9

limits t→∞ and N →∞ do not commute, as previously noted for chemical systems
[38].

Now suppose that we take the limit N → ∞,∆t → 0 such that N∆t = 1.
We then recover the neural master equation of Buice et. al. [17, 18]. In this case
there is no small parameter that allows us to construct a Langevin approximation to
the master equation. Nevertheless, it is possible to determine the moment hierarchy
of the master equation using path integral methods or factorial moments, based on
the observation that the network operates in a Poisson-like regime. The role of the
sliding window size ∆t is crucial in understanding the difference between the two
versions of the master equation. First, it should be emphasized that the stochastic
models are keeping track of changes in population spiking activity. If the network
is operating close to an asynchronous state for large N , then one-step changes in
population activity could occur relatively slowly so there is no need to take the limit
∆t → 0. On the other hand, if population activity is characterized by a Poisson
process then it is necessary to take the limit ∆t→ 0 in order to maintain a one-step
process. However, given the existence of an arbitrarily small time-scale ∆t, it is no
longer clear that one is justified in ignoring synaptic dynamics by taking the limit
τ → 0 in equation (2.13). This observation motivates the approach taken in this
paper, in which we incorporate synaptic dynamics into the neural master equation.
In the following, we will assume that the network operates in the Poisson-like regime
in the absence of synaptic dynamics.

2.2. Neural Chapman-Kolmogorov equation. Let us now return to the full
stochastic hybrid system. Denote the random state of the full model at time t by the
vector X(t) = {(Uα(t), Nα(t));α = 1, . . . ,M}. Introduce the corresponding probabil-
ity density

Prob{Uα(t) ∈ (uα, uα + du,Nα(t) = nα;α = 1, . . . ,M} = p(u,n, t|u0,n0, 0)du,
(2.18)

with u = (u1, . . . , uM ) and x = (u,n). It follows from equations (2.13), (2.11), (2.12)
and (2.14) that the probability density evolves according to the Chapman-Kolmogorov
equation

∂p

∂t
+

1

τ

∑
α

∂[vα(x)p(x, t)]

∂uα
(2.19)

=
1

τa

∑
α

[
(Tα − 1) (ω−(nα)p(x, t)) + (T−1

α − 1) (ω+(uα)p(x, t))
]
,

with

ω+(uα) = F (uα), ω−(nα) = nα, vα(x) = −uα +
∑
β

wαβnβ . (2.20)

We have taken the limit N → ∞, ∆t → 0 with N∆t = 1. Note that equation (2.19)
can be expressed in the general form of equation (1.1). Thus, in the limit τ → 0 we
recover the master equation of Buice et. al. [17, 18], whereas in the limit τa → 0 we
obtain the mean-field equations

τ
duα
dt

= 〈vα〉(u(t)) ≡
∑
n

vα(u(t),n)ρ(u(t),n)

= −uα(t) +

M∑
β=1

wαβ
∑
n

nβρ(u(t),n). (2.21)
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It can be shown that ρ(u,n) is given by a compound Poisson process with rates F (uα),
consistent with the operating regime of the Buice et. al. master equation [17, 18].
Hence, in this limit,

〈nβ〉 = F (uβ), (2.22)

and (2.21) reduces to the standard voltage or current-based activity equation.

2.3. Quasi-steady-state (QSS) diffusion approximation. In this paper, we
will consider the regime in which the transitions between different firing states are
much faster than the synaptic dynamics. Hence, fixing the units of time by setting
τ = 1, we take τα/τ = ε � 1. Since ε � 1, there will typically be a large number
of transitions between different firing states n while the synaptic currents u hardly
change at all. This suggests that the system will rapidly converge to the steady-state
ρ(u,n) (if it exists) given by equation (2.24). The full probability density will then be
perturbed away from this steady-state density as u slowly evolves. However, if ε� 1
then these perturbations will be small and the solution will tend to remain close to the
steady state. The resulting perturbations can then be analyzed using a quasi-steady-
state (QSS) diffusion or adiabatic approximation, in which the CK equation reduces to
a Fokker–Planck (FP) equation. This method was first developed from a probabilistic
perspective by Papanicolaou [64], see also [33]. It has subsequently been applied to a
wide range of problems in biology, including cell movement [62, 39], traveling-wavelike
behavior in models of slow axonal transport [68, 31, 32], and molecular motor-based
models of random intermittent search [55, 57, 56, 11].

Consider a Chapman Kolmogrov equation of the general form (see equation (1.1))

∂p

∂t
= −

M∑
α=1

∂

∂uα
(vα(u,n)p(u,n, t)) +

1

ε

∑
m

A(n,m; u)p(u,m, t), (2.23)

with ε � 1. We assume that for fixed u, the tensor A(n,m; u) is equivalent to
a transition matrix. That is, suppose we relabel the discrete states according to
n→ I,m→ J with I, J = 0, 1, . . . , χ for χ = (N +1)M and set A(n,m; u) = AIJ(u),
p(u,n, t) = pI(u, t). Then the χ×χ matrix A(u) with elements AIJ(u) is taken to be
irreducible and to have a simple zero eigenvalue with corresponding left eigenvector
1 whose components are all unity. In other words,

∑
I AIJ(u) = 0 for all J . The

Perron-Frobenius Theorem then ensures that all other eigenvalues are negative and
the continuous-time Markov process for fixed u,

dpI
dt

=
1

ε

∑
J

AIJpJ(u, t),

has a globally attracting steady-state ρI(u) such that pI(u, t) → ρI(u) as t → ∞.
Here ρI(u) is the unique right eigenvector corresponding to the zero eigenvalue of
A(u), that is,

∑
J AIJ(u)ρJ(u) = 0. In terms of the original notation, we have∑

n

A(n,m; u) = 0,
∑
m

A(n,m; u)ρ(u,m) = 0. (2.24)

In the following it will be convenient to introduce the summation operator

[1T ◦ f ](u) =
∑
n

f(u,n) (2.25)
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for any function f(n,u).
The first step in the QSS reduction is to decompose the probability density as

p(u,n, t) = C(u, t)ρ(u,n) + εw(u,n, t), (2.26)

where ρ(u,n) is the steady-state density given by equation (2.24), and 1T ◦ p = C,
1T ◦ w = 0. Applying the summation operator to both sides of equation (2.23) and
using

∑
nA(n,m,u) = 0 gives

∂C

∂t
= −1T ◦

[
M∑
α=1

∂

∂uα
(vα[Cρ+ εw])

]
. (2.27)

Next substitute (2.26) into equation (2.23) to give

∂C

∂t
ρ+ ε

∂w

∂t
= A ◦ w −

M∑
α=1

∂

∂uα
(vα[Cρ+ εw]),

where

[A ◦ w](u,n, t) =
∑
m

A(n,m; u)w(u,m, t).

Combining with equation (2.27) shows that

ε
∂w

∂t
= A ◦ w + ρ1T ◦

[
M∑
α=1

∂

∂uα
(vα[Cρ+ εw])

]
−

M∑
α=1

∂

∂uα
(vα[Cρ+ εw]).

Collecting terms of leading order in ε yields

A ◦ w =

M∑
α=1

∂

∂uα
(vαCρ)− ρ1T ◦

[
M∑
α=1

∂

∂uα
(vαCρ)

]
. (2.28)

The Fredholm Alternative Theorem [66] ensures that this equation has a unique so-
lution for w subject to the constraint 1T ◦ w = 0; we formally denote this solution
as

w ∼ A† ◦
M∑
α=1

∂

∂uα
(vαCρ)− (A† ◦ ρ)1T ◦

[
M∑
α=1

∂

∂uα
(vαCρ)

]
, (2.29)

where A† is the pseudoinverse operator. Substituting for w back into equation (2.27)
and ignoring O(ε2) terms finally gives the Fokker–Planck equation

∂C

∂t
= −

M∑
α=1

∂

∂uα
(VαC) + ε

M∑
α=1

M∑
β=1

∂

∂uα

(
Dαβ

∂C

∂uβ

)
, (2.30)

where

Vα(u) =
∑
n

vα(u,n)ρ(u,n) (2.31)
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and

Dαβ =
∑
m,n

[vα(m,u)− Vα(u)]A†(m,n; u)[vβ(u,n)− Vβ(u)]ρ(u,n). (2.32)

Note that we have expressed Dαβ in a more symmetric form using the fact that∑
mA(m,n,u) = 0. Finally, let us introduce the function zα(u,m), which satisfies

the equation ∑
n

zα(u,n)A(n,m; u) = −[vα(u,m)− Vα(u)]. (2.33)

Since
∑

m ρ(u,m)[vα(u,m) − Vα(u)] = 0, it follows from the Fredholm alternative
that

zα(u,n) = −
∑

A†(m,n; u)[vα(u,m)− Vα(u)] (2.34)

and thus

Dαβ =
∑
n

zα(u,n)[vβ(u,n)− Vβ(u)]ρ(u,n). (2.35)

Hence, under the QSS approximation, the stochastic dynamics is characterized by
Gaussian fluctuations about the mean-field equations (2.21). However, as in the
case of the system-size expansion of the neural master equation (2.15) for large N
and ∆t = 1, approximating the Chapman-Kolmogorov equation (2.19) by a Fokker-
Planck equation for small ε breaks down when considering rare event transitions
between metastable states. This particular issue has recently been addressed within
the context of stochastic ion channels and Hodgkin-Huxley dynamics [41], as well as
gene networks [54], using asymptotic methods developed in [58, 53]. In the following
sections, we will extend such methods to the neural CK equation.

3. Metastable states in a one-population model. In order to develop the
basic analytical framework, consider the simple case of a single recurrent population
(M = 1) evolving according to the CK equation

∂p

∂t
+
∂[v(u, n)p(u, n, t)]

∂u
(3.1)

=
1

ε
[ω+(u)p(u, n− 1, t) + ω−(n+ 1)p(u, n+ 1, t)

−(ω+(u) + ω−(n))p(u, n, t)],

with boundary condition p(u,−1, t) ≡ 0, drift term

v(u, n) = −u+ wn, (3.2)

and transition rates

ω+(u) = F (u), ω−(n) = n. (3.3)

Following the general discussion in §2.3, we expect the finite-time behavior of the
stochastic population to be characterized by small perturbations about the stable
steady–state of the pure birth–death process

∂p

∂t
=

1

ε
[ω+(u)p(u, n− 1, t) + ω−(n+ 1)p(u, n+ 1, t)

−(ω+(u) + ω−(n))p(u, n, t)],
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with u treated as a constant over time-scales comparable to the relaxation time of
the birth-death process. The equation for the steady–state distribution ρ(u, n) can
be written as [33]

0 = J(u, n+ 1)− J(u, n),

with J(u, n) the probability current,

J(u, n) = ω−(n)ρ(u, n)− ω+(u)ρ(u, n− 1).

Since ω−(0) = 0 and ρ(u,−1) = 0, it follows that J(u, 0) = 0 and J(u, n) = 0 for all
n ≥ 0. Hence,

ρ(u, n) =
ω+(u)

ω−(n)
ρ(u, n− 1) = ρ(u, 0)

n∏
m=1

ω+(u)

ω−(m)
(3.4)

with ρ(u, 0) = 1−
∑∞
m=1 ρ(u,m).

Substituting the explicit expressions (3.3) for the transition rates, we have

ρ(u, n) = ρ(u, 0)

n∏
m=1

F (u)

m
= ρ(u, 0)

(F (u))n

n!
. (3.5)

It follows that

ρ(u, 0) =
1

1 +
∑∞
n=1(F (u))n/n!

= e−F (u). (3.6)

so the steady-state density is given by a Poisson process,

ρ(u, n) =
[F (u)]ne−F (u)

n!
. (3.7)

The mean number of spikes is thus 〈n〉 = F (u), and the mean-field equation obtained
in the ε→ 0 limit is

du

dt
= −u+ wF (u) ≡ −dΨ

du
. (3.8)

The sigmoid function F (u) given by (2.10) is a bounded, monotonically increasing
function of u with F (u) → F0 as u → ∞ and F (u) → 0 as u → −∞. Moreover,
F ′(u) = γF0/[4 cosh2(γ(u− κ)/2)] so that F (u) has a maximum slope at u = κ given
by γF0/4. It follows that the function −u + wF (u) only has one zero if wγF0 < 4
and this corresponds to a stable fixed point. On the other hand, if wγF0 > 4 then,
for a range of values of the threshold κ, [κ1, κ2], there exists a pair of stable fixed
points u± separated by an unstable fixed point u∗ (bistability). A stable/unstable
pair vanishes via a saddle-node bifurcation at κ = κ1 and κ = κ2. This can also be
seen graphically by plotting the potential function Ψ(u), whose minima and maxima
correspond to stable and unstable fixed points of the mean-field equation. An example
of the bistable case is shown in Fig. 3.1.

The problem we wish to address is how to analyze the effects of fluctuations
(for 0 < ε � 1) on rare transitions between the metastable states u± of the under-
lying mean-field equation. As highlighted in §2.3, it is not possible to use a QSS
diffusion approximation, since this only captures finite-time fluctuations within the
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Fig. 3.1. Bistable potential Ψ for the deterministic network satisfying u̇ = −u+ F (u) =
−dΨ/du with F given by the sigmoid (2.10) for γ = 4, κ = 1.0, F0 = 2. There exist two
stable fixed points u± separated by an unstable fixed point u∗. As the threshold κ is reduced
the network switches to a monostable regime via a saddle-node bifurcation.

basin of attraction of a given metastable state. Therefore, we will proceed using
the asymptotic methods recently introduced to analyze spontaneous action poten-
tials in conductance-based single neuron model with stochastic ion channels [41].
As a first step, it is convenient to introduce the vector-valued probability density
p(u, t) = (p0(u, t), . . . , pn(u, t), . . . ) with pn(u, t) = p(u, n, t). Equation (2.19) can
then be rewritten in the matrix form1

∂p

∂t
= − ∂

∂u
(V(u)p) +

1

ε
Ap. (3.9)

For given u, the diagonal drift matrix V has non-zero entries

Vn,n(u) = vn(u) ≡ v(u, n) = −u+ wn, (3.10)

and the tridiagonal transition matrix A has entries

An,n−1 = ω+(u), An,n = −ω+(u)− ω−(n), An,n+1 = ω−(n+ 1). (3.11)

Since A is a transition matrix, its columns sum to zero, it has one zero eigenvalue,
and all other eigenvalues are negative. In particular,

1TA = 0, Aρ = 0 (3.12)

with 1T = (1, 1, . . .) and ρn = ρ(u, n), where ρ(u, n) is the steady state density (3.5).
In matrix notation, the mean-field equation (3.8) can be written as

du

dt
= v(u) · ρ(u). (3.13)

1Recall that we have taken the limit N →∞,∆t→ 0 such that N∆t = 1. Hence, we are dealing
with infinite matrices. However, this does not cause any problems. Indeed, we could equally well
proceed by assuming that N is finite and ∆t = 1/N , performing all calculations, and then taking the
limit N → ∞. The advantage of working with infinite N is that the steady-state density ρ is given
by a Poisson process and we don’t have to worry about boundary conditions at n = N .
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Finally, note that since vn(u) = −u+wn, it follows that if the initial synaptic current
u0 > 0 then u(t) > 0 for all t > 0.

3.1. Quasistationary approximation. Suppose that the neural population
starts in the left–hand well of the potential function Ψ(u), see Fig. 3.1, at the stable
low activity state u−. On short time scales the solution rapidly converges to a quasi
stationary solution that is only distributed across the left well. However, on a longer
time scale, probability slowly leaks into the right well until the full stationary solution
is reached. In order to estimate the exponentially small transition rate from the left
to right well, we place an absorbing boundary at the unstable fixed point u∗. (The
subsequent time to travel from u∗ to the high activity fixed point u+ is insignificant,
and can be neglected). Thus, the CK equation (3.9) is supplemented by the absorbing
boundary conditions

pn(u∗, t) = 0, forn = 0, . . . , k − 1, (3.14)

where 0 < k <∞ is the number of firing states for which the drift v(u∗, n) < 0. The
initial condition is taken to be

pn(u, 0) = δ(u− u−)δn,n0
. (3.15)

Let T denote the (stochastic) first passage time for which the system first reaches u∗,
given that it started at u−. The distribution of first passage times is related to the
survival probability that the system hasn’t yet reached u∗:

S(t) ≡
∞∑
n=0

∫ u∗

0

pn(u, t)du. (3.16)

That is, Prob{t > T} = S(t) and the first passage time density is

f(t) = −dS
dt

= −
∞∑
n=0

∫ u∗

0

∂pn
∂t

(u, t)du. (3.17)

Substituting for ∂pn/∂t using the CK equation (3.9) shows that

f(t) =

∞∑
n=0

∫ u∗

0

∂[v(u, n)pn(u, t)]

∂u
du =

∞∑
n=0

v(u∗, n)pn(u∗, t). (3.18)

We have used the fact that 1TA = 0 and p(0, t) = 0. The first passage time density
can thus be interpreted as the probability flux J(u∗, t) at the absorbing boundary,
since we have the conservation law

∞∑
n=0

∂pn
∂t

= −∂J
∂u

, J(u, t) =

∞∑
n=0

v(u, n)pn(u, t). (3.19)

The probability flux at the absorbing boundary can be approximated using a
spectral projection method [80, 40, 58, 41]. Consider an eigenfunction expansion of
the form

p(u, t) =

∞∑
j=0

Cje
−λjtφj(u), (3.20)
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where the eigenfunctions satisfy the equation

L̂φj ≡
d

du
(Vφj)−

1

ε
Aφj = λjφj , (3.21)

together with the boundary conditions

(φj)n(u∗) = 0, forn = 0, . . . , k − 1. (3.22)

If the absorbing boundary is replaced by a reflecting boundary, then there is a single
zero eigenvalue λ0, for which the resulting stationary density ps is the corresponding
eigenfunction. On the other hand, when there is an absorbing boundary, the station-
ary solution ceases to exist due to a nonzero probability flux through u∗. Moreover,
λ0 is perturbed away from zero but is exponentially small compared to the remaining
eigenvalues. In other words, λ0 = O(e−L/ε) for some L > 0 and λj = O(1), j ≥ 1.
It follows that all other eigenmodes decay to zero much faster than the perturbed
stationary density. Thus, at large times we have the quasistationary approximation

p(u, t) ∼ C0e−λ0tφ0(u). (3.23)

Substituting such an approximation into equation (3.18) implies that

f(t) ∼ v(u∗) · φ0(u∗)C0e−λ0t, λ1t� 1, (3.24)

The next step of the spectral projection method is to define a set of eigenfunctions
for the adjoint operator, which satisfy the equation

L̂∗ξj ≡ −V
d

du
(ξj)−

1

ε
AT ξj = λjξj , (3.25)

and the boundary conditions

(ξj)n(u∗) = 0, n ≥ k. (3.26)

The two sets of eigenfunctions form a biorthogonal set with respect to the underlying
inner product, which is taken to be

〈f ,g〉 =

∫ u∗

0

fT (u)g(u)du. (3.27)

Now consider the identity

〈φ0, L̂
∗ξ0〉 = λ0〈φ0, ξ0〉. (3.28)

Suppose that the exact eigenfunction φ0 satisfying the absorbing boundary conditions
can be approximated by a quasistationary solution φε for which L̂φε = 0 without any
absorbing boundaries. Under such an approximation, integrating by parts the left-
hand side of equation (3.28) picks up a boundary term so that

λ0 ∼ −
φTε (u∗)V(u∗)ξ0(u∗)

〈φε, ξ0〉
. (3.29)

The calculation of the principal eigenvalue λ0 thus reduces to the problem of deter-
mining the quasistationary density φε and the exact adjoint eigenfunction ξ0 using
perturbation methods (see below). Once λ0 has been evaluated, we can then identify
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the mean first passage time 〈T 〉 with λ−1
0 . In order to establish this, we derive an

alternative approximation for λ0 by starting from the identity 〈L̂φ0, ξ0〉 = λ0〈φ0, ξ0〉
and making the approximation ξ0(u) ∼ 1, which is valid outside a boundary layer
around the absorbing boundary. Integration by parts now yields

λ0 ∼
φT0 (u∗)V(u∗)1

〈φ0,1〉
∼ v(u∗) · φ0(u∗)

〈φ0,1〉
. (3.30)

Moroever, from the initial condition (3.15) and the quasistationary approximation
(3.23), we have

〈ξ0,p(0)〉 = (ξ0)n0
(u−) ∼ C0〈ξ0,φ0〉.

so that for ξ0(u) ∼ 1,

C0 ∼
1

〈1,φ0〉
. (3.31)

Equation (3.24) then shows that the first passage time density reduces to

f(t) ∼ λ0e−λ0t (3.32)

and 〈T 〉 =
∫∞

0
tf(t)dt ∼ 1/λ0.

3.2. WKB method and the quasi-stationary density. We now use the
Wentzel-Kramers-Brillouin (WKB) method [38, 52, 24, 47, 69] to compute an approx-
imation φε of φ0 that does not satisfy the absorbing boundary condition. (Although
such methods have been applied extensively to Fokker-Planck equations and master
equations, the extension to CK equations of the form (3.9) is relatively recent). We

thus seek an approximate solution of L̂φε = 0 of the WKB form

φε(u) = R(u) exp

(
−Φ(u)

ε

)
, (3.33)

where Φ(u) is a scalar potential. Substituting into equation (3.21) gives

(A + Φ′V)R = ε(Vr)′ + λ0R, (3.34)

where ′ denotes d/du. Introducing the asymptotic expansions R ∼ R0 + εR1 and
Φ = Φ0 + εΦ1, and using the fact that λ0 = O(e−L/ε), the leading order equation is

AR0 = −Φ′0VR0. (3.35)

The diagonal components of V(u) are invertible almost everywhere for u > 0. Thus
we can identify −Φ′0 and R0 as an eigenpair of the eigenvalue problem

Mψ = µψ, M ≡ V−1A. (3.36)

Positivity of the probability density φε requires positivity of the corresponding eigen-
function ψ. For fixed u, the matrix M has ρ as a right null vector and v as a left
nullvector. These results follow from Aρ = 0 and vTV−1A = 1TA = 0. Thus one
positive eigenfunction is ψ0 = ρ with corresponding eigenvalue µ0 = 0. However, such
a solution is not admissible since Φ′0 = 0 and Φ0 = constant. Since vn(u) for fixed
0 < u changes sign as n increases from zero, theorem 3.1 of [58] ensures that there
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exists one other positive eigenfunction, which we denote by ψ1, whose corresponding
eigenvalue µ1 varies with u in such a way that the corresponding WKB approximation
is valid. Here we will construct such an eigenfunction explicitly.

Using the explicit expressions for V and A, equations (3.10) and (3.11), the
eigenvalue equation can be written in component form as

F (u)ψn−1 − (F (u) + n)ψn + (n+ 1)ψn+1 = µ(−u+ wn)ψn (3.37)

Trying a solution for ψ1 of the form

(ψ)n =
Λn

n!
, (3.38)

yields the following equation relating Λ and the corresponding eigenvalue µ1:[
F (u)

Λ
− 1

]
n+ Λ− F (u) = µ1(−u+ wn).

We now collect terms independent of n and linear in n to obtain the pair of equations

µ1 =
1

w

[
F (u)

Λ
− 1

]
, Λ = F (u)− µu.

We hence deduce that

Λ =
u

w
, µ1 =

1

w

[
wF (u)

u
− 1

]
, (3.39)

and

(ψ1)n =M 1

n!

( u
w

)n
, (3.40)

where M is a normalization factor. Note that µ1(u) vanishes at the fixed points
u−, u∗ of the mean-field equation (3.8) with µ1(u) > 0 for 0 < u < u− and µ1(u) < 0
for u− < u < u∗. Moreover, comparing equation (3.5) with (3.40) establishes that
ψ1(u) = ρ(u) at the fixed points u∗, u±. In conclusion R0 = ψ1 and the effective
potential Φ0 is given by

Φ0(u) = −
∫ u

u−

µ1(y)dy. (3.41)

The effective potential is defined up to an arbitrary constant, which has been fixed
by setting Φ0(u−) = 0.

Proceeding to the next order in the asymptotic expansion of equation (3.34), we
have

(A + Φ′0V)R1 = (VR0)′ − Φ′1VR0. (3.42)

Since R0 = ψ1 and Φ′0 = −µ1, it follows from the Fredholm alternative that

Φ′1 =
ηT (Vψ1)′

ηTVψ1
, (3.43)
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where η is the left null vector of A − µ1V. Using equations (3.10) and (3.11), the
components of η satisfy the explicit equation

F (u)ηm+1 − (F (u) +m)ηm +mηm−1 = µ1[−u+mw]ηm. (3.44)

Trying a solution of the form ηm = Γm yields

(F (u))Γ− (F (u) +m) +mΓ−1 = µ1[−u+mw]. (3.45)

Γ is then determined by canceling terms linear in m, which finally gives

ηn =

(
u

wF (u)

)n
. (3.46)

Combining the various results, and defining

k(u) = exp

(
−
∫ u

u−

Φ′1(y)dy

)
, (3.47)

gives to leading order in ε,

φε(u) ∼ Nk(u) exp

(
−Φ0(u)

ε

)
ψ1(u), (3.48)

where
∑∞
n=0(ψ1)n = 1 and N is a normalization factor,

N =

[∫ u∗

0

k(u) exp

(
−Φ0(u)

ε

)]−1

. (3.49)

The latter can be approximated using Laplace’s method to give

N ∼ 1

k(u−)

√
|µ′1(u−)|

2πε
exp

(
Φ0(u−)

ε

)
=

√
|µ′1(u−)|

2πε
. (3.50)

3.3. Perturbation analysis of the adjoint eigenfunction. Following Refs.
[58, 41, 53], the adjoint eigenfunction ξ0 can be approximated using singular per-
turbation methods. Since λ0 is exponentially small in ε, equation (3.25) yields the
leading order equation

εV(u)
dξ0

du
+ AT (u)ξ0 = 0, (3.51)

supplemented by the absorbing boundary condition

(ξ0)n(u∗) = 0, n ≥ k (3.52)

A first attempt at obtaining an approximate solution that also satisfies the boundary
conditions is to construct a boundary layer in a neighborhood of the unstable fixed
point u∗ by performing the change of variables u = u∗ − εz and setting Q(z) =
ξ0(u∗ − εz). Equation (3.51) then becomes

V(u∗)
dQ

dz
+ AT (u∗)Q = 0. (3.53)
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This inner solution has to be matched with the outer solution ξ0 = 1, which means
that

lim
z→∞

Q(z) = 1. (3.54)

Recall from equation (3.36) that the (u–dependent) matrix M = V−1A has eigen-

values µj . Hence, introducing the similarity transform M̂ = VMV−1 and taking

the transpose shows that M̂T = V−1AT has the same eigenvalues. Denoting the
corresponding eigenvectors by ζj we introduce the eigenfunction expansion

Q(z) = c01 +

∞∑
j=1

cjζj(u∗)e
µj(u∗)z, (3.55)

where

µj(u)V(u)ζj(u) + AT (u)ζj(u) = 0. (3.56)

In order that the solution remains bounded as z → ∞ we require that cj = 0 if
µj(0) > 0. The boundary conditions (3.52) generate a system of linear equations
for the coefficients cj with codimension k. One of the unknowns in determined by
matching the outer solution, which suggests that there are k− 1 positive eigenvalues.
The eigenvalues are ordered so that µj(0) > 0 for j ≥ k − 1.

There is, however, one problem with the above eigenfunction expansion, namely,
that µ1(u∗) = 0 so that the zero eigenvalue is degenerate. Hence, the solution needs
to include a secular term involving the generalized eigenvector ζ0,

AT (u∗)ζ0 = −V(u∗)1 = −v(u∗). (3.57)

The Fredholm alternative ensures that ζ0 exists, since ρ(u∗) is the right null vector
of A and ρ(u∗) · v(u∗) = 0, see equation (3.13). In component form with (ζ0)n = ζn,

F (u∗)ζn+1 + nζn−1 − (F (u∗) + n)ζn = u∗ − wn. (3.58)

It is straightforward to show that this has the solution (up to an arbitrary constant
that doesn’t contribute to the principal eigenvalue)

ζn = wn. (3.59)

The solution for Q(z) is now

Q(z) = c01 + c1(ζ0 − z1) +
∑
j≥2

cjζj(u∗)e
µj(u∗)z. (3.60)

The presence of the secular term means that the solution is unbounded in the limit
z → ∞, which means that the inner solution cannot be matched with the outer
solution. One way to remedy this situation is to introduce an alternative scaling in
the boundary layer of the form u = u∗ + ε1/2z, as detailed in Ref. [53]. Here we
simply state the results of the analysis. The full inner solution takes the form

ξ0(u) ∼

[
1− ĉ1

(√
π

2|µ′1(u∗)|
−
∫ u/ε1/2

u∗

eµ
′
1(u∗)y

2

dy

)]
1

−ε1/2ĉ1eµ
′
1(u∗)(u−u∗)2/2εζ0 +

∑
j≥2

ĉje
µj(u∗)(u−u∗)/εζj . (3.61)
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The remaining coefficients ĉ1, c2, . . . are determined by the boundary conditions (3.52),
which reduce to

ĉ1

(√
π

2|µ′1(u∗)|
1 + ε1/2ζ0

)
n

−
∑
j≥2

ĉj(ζj)n = 1 (3.62)

for n ≥ k. We thus find that

ĉ1 ∼
√

2|µ′1(u∗)|
π

+O(ε1/2), ĉj = O(ε1/2) for j ≥ 2 (3.63)

3.4. Principal eigenvalue. It turns out that we only require the first coefficient
c1 in order to evaluate the principal eigenvalue λ0 using equation (3.29). This follows
from the observation that Vηj is an eigenfunction of the matrix ATV−1, which are
biorthogonal to the set of eigenvectors ψj of V−1A. Since the WKB approximation
φε is proportional to ψ1, see equation (3.48), it follows that φε is orthogonal to all
eigenvectors ζj , j 6= 1. Simplifying the denominator of equation (3.29) by using the
outer solution ξ0 ∼ 1, we obtain

λ0 ∼ −
ξ0(u∗)

TV(u∗)φε(u∗)

〈φε,1〉

∼ c1k(u∗)B(u∗)

√
|µ′1(u−)|

2π
exp

(
−Φ0(u∗)

ε

)
, (3.64)

with

B(u∗) = ζT0 V(u∗)ρ(u∗) =

∞∑
n=0

ζnvn(u∗)ρn(u∗) (3.65)

Substituting for c1 and using the relation µ′1(u) = Φ′′0(u),

λ0 ∼
1

π
k(u∗)B(u∗)

√
Φ′′0(u−)|Φ0(u∗)| exp

(
−Φ0(u∗)

ε

)
, (3.66)

Finally note that B(u∗) can be evaluated using equations (3.5) and (3.59):

B(u∗) = w

∞∑
n=0

ρn(u∗)
[
−u∗n+ wn2

]
= w

[
−u∗〈n〉+ w〈n2〉

]
. (3.67)

Recall that ρn(u) is given by a Poisson density with rate F (u), which implies that
〈n2〉 = 〈n〉+ 〈n〉2 with 〈n〉 = F (u∗). Therefore,

B(u∗) = w [wF (u∗) + F (u∗)(wF (u∗)− u∗)] = w2F (u∗). (3.68)

It is instructive to compare the effective potential Φ0 obtained using the WKB
approximation with the potential obtained using the FP equation (2.30) based on the
QSS approximation. In the one-population case, equations (2.35) and (2.33) reduce
to

D =
∑
n

zn(u)[vn(u)− V (u)]ρn(u), (3.69)
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and ∑
n

zn(u)Anm(u) = −[vm(u)− V (u)]. (3.70)

Here vn and A are given by equations (3.10) and (3.11), ρn is the Poisson distribution
(3.7), and V (u) = −u + wF (u). At a fixed point, the equation for zn reduces to
equation (3.57), and we find that zn = wn even away from fixed points. Substituting
into equation (3.69) shows that

D = 〈w2n[n− F (u)]〉 = w2F (u) ≡ B(u) (3.71)

with B given by equation (3.68). The steady-state solution of the FP equation (2.30)

takes the form C(u) ∼ exp−Φ̂0(u)/ε with stochastic potential

Φ̂0(u) = −
∫ u V (y)

D(y)
dy = −

∫ u −y + wF (y)

w2F (y)
dy. (3.72)

Note that Φ̂ differs from the potential Φ0, equation (3.41), obtained using the more
accurate WKB method. Equations (3.39) and (3.41) show that the latter has the
integral form

Φ0(u) = −
∫ u 1

w

[
wF (y)

y
− 1

]
dy. (3.73)

Thus, there will be exponentially large differences between the steady-states for small
ε. However, it gives the same Gaussian-like behavior close to a fixed point u∗, that is,

∂Φ0

∂u

∣∣∣∣
u=u∗

=
∂Φ̂0

∂u

∣∣∣∣∣
u=u∗

= 0,
∂2Φ0

∂u2

∣∣∣∣
u=u∗

=
∂2Φ̂0

∂u2

∣∣∣∣∣
u=u∗

=
1− wF ′(u)

wu

∣∣∣∣
u=u∗

(3.74)
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Fig. 3.2. Comparison of the double-well potentials Φ0(u) and Φ̂0(u) obtained using the quasis-
tationary approximation and the QSS diffusion approximation, respectively. Parameter values are
chosen so that deterministic network is bistable: F0 = 2, γ = 4, κ = 1, and w = 1.15.
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3.5. Results. In Fig. 3.2, we plot the potential function Φ0 of equation (3.73),
which is obtained using the quasistationary approximation in a parameter regime for
which the underlying deterministic network is bistable. We also plot the correspond-
ing potential function Φ̂0 of equation (3.72), under the QSS diffusion approximation.
The differences between the two lead to exponentially large differences in estimates
for the mean exit times when ε is small. The mean exit time from the left and right
well is shown in Fig. 3.3. Solid curves show the analytical approximation T ∼ 1/λ0,
where λ0 is given by (3.64), as a function of 1/ε. For comparison, the mean exit time
computed from averaged Monte-Carlo simulations of the full stochastic system are
shown as symbols. From (3.64), we expect the log of the mean exit time to be an
asymptotically-linear function of 1/ε, and this is confirmed by Monte-Carlo simula-
tions. The slope is determined by the depth of the potential well, and the vertical shift
is determined by the prefactor. Also shown is the corresponding MFPT calculated
using the QSS diffusion approximation (dashed curves), which is typically several
orders of magnitude out, and validates the relative accuracy of the quasistationary
approximation.

4. Metastable states in a two population model. The same basic analyti-
cal steps as §3 can also be used to study multipopulation models (M > 1). One now
has M piecewise-deterministic variables Uα and M discrete stochastic variables Nα
evolving according to the CK equation (2.19). The mean first passage time is again
determined by the principal eigenvalue λ0 of the corresponding linear operator. As
in the one-population model, λ0 can be expressed in terms of inner products involv-
ing a quasi stationary density φε, obtained using a multidimensional WKB method,
and the principal eigenvector ξ0 of the adjoint linear operator, calculated using sin-
gular perturbation theory. One of the major differences between the one-population
model and multi-dimensional versions is that the latter exhibit much richer dynamics
in the mean-field limit, including oscillatory solutions. For example, consider a two-
population model (M = 2) consisting of an excitatory population interacting with
an inhibitory population as shown in Fig. 4.1. This is one of the simplest determin-
istic networks known to generate limit cycle oscillations at the population level [5],
and figures as a basic module in many population models. For example, studies of
stimulus–induced oscillations and synchrony in primary visual cortex often take the
basic oscillatory unit to be an E-I network operating in a limit cycle regime [70, 36].
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Fig. 3.3. Mean exit time from the left and right well calculated using the quasistationary
approximation (solid line) and the QSS diffusion approximation (dashed line). The open circles
represent data points obtained by numerically solving the corresponding jump velocity Markov process
using the Gillespie algorithm. Parameter values are the same as in Fig. 3.2.
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Here the E-I network represents a cortical column, which can synchronize with other
cortical columns either via long-range synaptic coupling or via a common external
drive. In this paper, we will focus on parameter regimes where the two-population
model exhibits bistability.

E I

wEE

wII

wIE

wEI

hE

hI

Fig. 4.1. Two–population E-I network with both intrasynaptic connections wEE , wII and
intersynaptic connections wIE , wEI . There could also be external inputs hE , hI , which can
be incorporated into the rate functions of the two-populations by shifting the firing threshold
κ.

Let u1 = x and u2 = y denote the synaptic variables of the excitatory and
inhibitory networks, respectively, and denote the corresponding spiking variables by
nx and ny. The CK equation (2.19) can be written out fully as

∂p

∂t
= −∂(vp)

∂x
− ∂(ṽp)

∂y
(4.1)

+
1

ε
[ω−(nx + 1)p(x, y, nx + 1, ny, t) + ω−(ny + 1)p(x, y, nx, ny + 1, t)]

+
1

ε
[ω+(x)p(x, y, nx − 1, ny, t) + ω+(y)p(x, y, nx, ny − 1, t)]

−1

ε
[ω−(nx) + ω−(ny) + ω+(x) + ω+(y)] p(x, y, nx, ny, t),

where

v(x, nx, ny) = −x+ [wEEnx − wEIny] , (4.2)

ṽ(y, nx, ny) = −y + [wIEnx − wIIny] , (4.3)

and

ω+(x) = F (x), ω−(n) = n. (4.4)

Thus the synaptic coupling between populations occurs via the drift terms v, ṽ. As
in the case of the one–population model, we expect the finite-time behavior to be
characterized by small Gaussian fluctuations about the stable steady-state of the
corresponding pure birth-death process. We now show that in the limit N → ∞
and ∆τ → 0 with N∆t = 1 and ε fixed, the steady-state distribution reduces to a
multivariate Poisson process. First, introduce the generating function (for fixed (x, y))

G(r, s) =

∞∑
ny=0

∞∑
ny=0

rnxsnyp(x, y, nx, ny). (4.5)
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Setting all derivatives in equation (4.1) to zero, multiplying both sides by rnx and rny

and summing over nx, ny gives the quasilinear equation

0 = (1− r)∂G
∂r

+ (1− s)∂G
∂s

+ [(r − 1)ω+(x) + (s− 1)ω+(y)]G. (4.6)

This can be solved using the method of characteristics to give

G(r, s) = exp ([r − 1]ω+(x) + [s− 1]ω+(y)] , (4.7)

which is the generating function for the steady–state Poisson distribution

ρ(x, y, nx, ny) =
ω+(x)nxe−ω+(x)

nx!
· ω+(y)nye−ω+(y)

ny!
. (4.8)

Since 〈nx〉 = ω+(x), 〈ny〉 = ω−(y), it immediately follows that in the limit ε→ 0, we
obtain the standard voltage-based mean-field equations for an E-I system:

dx

dt
= −x+ wEEF (x)− wEIF (y), (4.9)

dy

dt
= −y + wIEF (x)− wIIF (y) (4.10)

It is well known that the dynamical system (4.9) exhibits multistability and limit
cycle oscillations [5]. We will assume that it is operating in a parameter regime for
which there is bistability as illustrated in Fig. 4.2. For example, if wEE − wEI =
wIE − wII = w then x = y is an invariant manifold on which x evolves according to
the one-population equation (3.8). Varying the threshold κ then leads to a pitchfork
bifurcation and the emergence of bistability.

-0.8 0 0.8 1.6 2.4 3.2 4 4.8 5.6

2.5

Fig. 4.2. Deterministic limit of the two population model, showing bistability. Red curves
show the x-nullclines, and blue curve show the y-nullcline. The red nullcline through the
saddle is its stable manifold and acts as the separatrix Γ between the two stable fixed points.
Two deterministic trajectories are shown (black curves), starting from either side of the
unstable saddle and ending at a stable fixed point. Parameter values are F0 = 1, γ = 3,
κ = 2, wEE = 5, wEI = 1, wIE = 9, and wII = 6.

In order to analyze the effects of fluctuations for 0 < ε� 1, we rewrite equation
(4.1) in a more compact form by introducing some tensor notation. First, we introduce
the probability 1-tensor p(x, y, t) with components

pnx,ny
(x, y, t) = p(x, y, nx, ny, t) (4.11)
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the diagonal drift 2-tensors V(x), Ṽ(y) with diagonal components

Vnx,ny ;nx,ny
(x) = v(x, nx, ny), Ṽnx,ny ;nx,ny

(y) = ṽ(y, nx, ny), (4.12)

and the transition 2-tensor A(x, y) with non-zero components

Anx,ny ;nx−1,ny
(x, y) = F (x), Anx,ny ;nx,ny−1(x, y) = F (y), (4.13)

Anx,ny ;nx+1,ny (x, y) = nx + 1, Anx,ny ;nx,ny+1(x, y) = ny + 1, (4.14)

and

Anx,ny ;nx,ny
(x, y) = −[F (x) + F (y) + nx + ny]. (4.15)

Second, we rewrite the CK equation as

∂p

∂t
= − ∂

∂x
(V ◦ p)− ∂

∂y
(Ṽ ◦ p) +

1

ε
A ◦ p, (4.16)

where

[A ◦ p]nx,ny
=

∑
mx,my

Anx,ny ;mx,my
pmx,my

, (4.17)

etc. The tensor A satisfies the null constraints (cf. equation (3.12)

1T ◦A = 0, A ◦ ρ = 0, (4.18)

with 1nx,ny = 1 for nx, ny and ρnx,ny (x, y) = ρ(x, y, nx, ny) with the density ρ given
by the Poisson distribution (4.8). In tensor notation, the mean-field equations (4.9)
can be written as

dx

dt
= V ◦ ρ, dy

dt
= Ṽ ◦ ρ. (4.19)

Finally, note that as in the one-population model, we can restict the domain of the
stochastic dynamics in the (x, y)–plane. In order to show this, multiply both sides of
equations (4.2) and (4.3) by wII and wEI respectively, and add the resulting equations.
Setting

x̂ = [wIIx− wEIy]/det[w] (4.20)

with det[w] = wEEwII − wEIwIE , we have the transformed drift term

v̂(x̂, nx) = −x̂+ nx. (4.21)

Similarly, multiplying both sides of equations (4.2) and (4.3) by wIE and wEE respec-
tively, and adding the resulting equations yields

ˆ̃v(ŷ, ny) = −ŷ + ny. (4.22)

with

ŷ = [wIEx− wEEy]/ det[w]. (4.23)

It follows that the dynamics can be restricted to the domain x̂ > 0, ŷ > 0.
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4.1. Quasi-stationary approximation. In order to investigate rare transitions
between the metastable states shown in Fig. 4.2, we introduce an absorbing boundary
along the separatrix Γ separating the two states:

p(x, y, t) = 0, (x, y) ∈ Γ (4.24)

for all components (nx, ny) for which

(v(x, nx, ny), ṽ(y, nx, ny)) · ŝ < 0, (4.25)

where ŝ is the unit normal of Γ pointing into the domain D of the initial metastable
state, which we take to be (x−, y−). Following identical arguments to the one-
population model, we can expand the probability density as

p(x, y, t) =

∞∑
j=0

cjφj(x, y)e−λjt (4.26)

with (λj ,φj) determined from the eigenvalue equation

L̂φj ≡
∂

∂x
(V ◦ φj) +

∂

∂y
(Ṽ ◦ φj)−

1

ε
A ◦ φj = λjφj , (4.27)

together with the boundary conditions

(φj)(x, y, nx, ny) = 0, for all (x, y) ∈ Γ, and (nx, ny) (4.28)

for which equation (4.25) is satisfied. The principal eigenvalue λ0 again determines the
first passage time density according to f(t) ∼ λ0e−λ0t. Moreover, λ0 can be approx-
imated using a spectral projection method that makes use of the adjoint eigenvalue
equation

L̂∗ξj ≡ −V ◦ ∂

∂x
(φj)− Ṽ ◦ ∂

∂y
(φj)−

1

ε
A ◦ ξj = λjξj , (4.29)

with 〈φi, ξj〉 = δi,j and the inner product defined for 1-tensors according to

〈f , g〉 =

∫
D
f(x, y)T ◦ g(x, y)dxdy,

=
∑
nx,ny

∫
D
f(x, y, nx, ny)g(x, y, nx, ny)dxdy. (4.30)

Now suppose that we replace φ0 by the quasi-stationary density φε, for which L̂φε = 0
without satisfying the absorbing boundary conditions. Application of the divergence
theorem shows that

〈φε, L̂∗ξ0〉 = 〈L̂φε, ξ0〉+

∫
Γ

(
ξT0 ◦V ◦ φε, ξT0 ◦ Ṽ ◦ φε

)
· n̂ds. (4.31)

It follows that

λ0 =

(
ξT0 ◦V ◦ φε, ξT0 ◦ Ṽ ◦ φε

)
· n̂ds∫

D ξ
T
0 ◦ φεdA

. (4.32)
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4.2. WKB method and the quasi-stationary density. Following along sim-
ilar lines to the one-population model, we approximate the quasi-stationary density
φε(x, y) of the CK equation (4.16) using the WKB method. That is, we seek an

approximate solution of L̂φε = 0 of the WKB form

φε(u) = [R0(x, y) + εR1(x, y)] exp

(
−Φ0(x, y) + εΦ1(x, y)

ε

)
, (4.33)

Here R0 and R1 are 1-tensors and Φ0,Φ1 are scalars. Substituting into equation
(4.16) and collecting leading-order terms in ε gives

[A + PxV + PyṼ] ◦R0 = 0, (4.34)

where

Px =
∂Φ0

∂x
, Py =

∂Φ0

∂y
. (4.35)

Given the explicit form of the diagonal tensors V, Ṽ, see equation (4.12), P1V+P2Ṽ
for (x, y) ∈ D has at least two components of opposite sign. This is a necessary
condition for the existence of a non-trivial positive solution for R0 in the domain D
according to Theorem 3.1 of [58] .

We now make the ansatz

[R0]nx,ny
=

Λnx
x

nx!
· Λ

ny
y

ny!
. (4.36)

Substituting into equation (4.34) and using the explicit expressions for A, V and Ṽ,
we find that[

F (x)

Λx
− 1

]
nx +

[
F (y)

Λy
− 1

]
ny + Λx + Λy − F (x)− F (y)

= −Px[−x+ wEEnx − wEIny]− Py[−y + wIEnx − wIIny]. (4.37)

The variables Px and Py can be determined by cancelling terms in nx and ny. This
yields the pair of simultaneous equations

F (x)

Λx
− 1 = −[wEEPx + wIEPy],

F (y)

Λy
− 1 = wEIPx + wIIPy. (4.38)

Substituting back into equation (4.37) gives

xPx + yPy = Λx + Λy − F (x)− F (y). (4.39)

Solving for Λx,Λy in terms of Px and Py, equation (4.39) can be rewritten as

H(x, y,Px,Py) ≡ −xPx − yPy − F (x)− F (y) + Λx(x,Px,Py) + Λy(y,Px,Py) = 0,
(4.40)

where

Λx =
F (x)

1− wEEPx − wIEPy
, Λy =

F (y)

1 + wEIPx + wIIPy
(4.41)

Mathematically speaking, equation (4.40) is identical in form to a stationary Hamilton
Jacobi equation for a classical particle moving in the domain D, with H identified as
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the Hamiltonian. A trajectory of the particle is given by the solution of Hamilton’s
equations

dx

dt
=

∂H
∂Px

,
dy

dt
=

∂H
∂Py

,

dPx
dt

= −∂H
∂x

,
dPy
dt

= −∂H
∂y

(4.42)

Here t is treated as a parameterization of trajectories rather than as a real time
variable. Given a solution curve (x(t), y(t)), known as a ray, the potential Φ0 can be
determined along the ray by solving the equation

dΦ0

dt
≡ ∂Φ0

∂x

dx

dt
+
∂Φ0

∂y

dy

dt
= Px

dx

dt
+ Py

dy

dt
. (4.43)

Thus, Φ0 can be identified as the action along a zero energy trajectory. One can then
numerically solve for Φ0 by considering Cauchy data in a neighborhood of the stable
fixed point (x−, y−) [53]. We find that Hamilton’s equations take the explicit form

dx

dt
= −x+ wEEF (x)− wEIF (y) +

wEEPx + wIEPy
[1− wEEPx − wIEPy]2

wEEF (x)

− wEIPx + wIIPy
[wEIPx + wIIPy + 1]2

wEIF (y) (4.44)

dy

dt
= −y + wIEF (x)− wIIF (y) +

wEEPx + wIEPy
[1− wEEPx − wIEPy]2

wIEF (x)

− wEIPx + wIIPy
[wEIPx + wIIPy + 1]2

wIIF (y) (4.45)

dPx
dt

= Px −
wEEPx + wIEPy

1− wEEPx − wIEPy
F ′(x) (4.46)

dPy
dt

= Py +
wEIPx + wIIPy

wEEPx + wIEPy + 1
F ′(y) (4.47)

Note that we recover the mean-field equations along the manifold Px = Py = 0 with
Λx = F (x),Λy = F (y).

It remains to specify Cauchy data for the effective Hamiltonian system. At the
stable fixed point, the value of each variable is known with Px = Py = 0 and (x, y) =
(x−, y−). However, data at a single point is not sufficient to generate a family of rays.
Therefore, as is well known in the application of WKB methods [52, 47, 69], it is
necessary to specify data on a small ellipse surrounding the fixed point. Thus, Taylor
expanding Φ0 around the fixed point yields, to leading order, the quadratic form

Φ0(x, y) ≈ 1

2
zTZz, z =

(
x− x−
y − y−

)
. (4.48)

where Z is the Hessian matrix

Z =

(
∂2Φ0

∂x2
∂2Φ0

∂x∂y
∂2Φ0

∂y∂x
∂2Φ0

∂y2

)
, (4.49)
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and we have chosen Φ0(x−, y−) = 0. Cauchy data are specified on the θ-parameterized
ellipse

1

2
zT (θ)Zz(θ) = χ, (4.50)

for a suitably chosen parameter χ that is small enough to generate accurate numerical
results, but large enough so that the ellipse can generate trajectories that cover the
whole domain D. On the elliptical Cauchy curve, the initial values of Px and Py are(

Px,0(θ)
Py,0(θ)

)
= Z

(
x0(θ)− x−
y0(θ)− y−

)
. (4.51)

It can be shown that the Hessian matrix satisfies the alebraic Riccati equation [47]

ZBZ + ZC + CTZ = 0, (4.52)

where

B =

(
∂2H
∂P2

x

∂2H
∂Px∂Py

∂2H
∂Py∂Px

∂2H
∂P2

y

)
, C =

(
∂2H
∂Px∂x

∂2H
∂Px∂y

∂2H
∂Py∂x

∂2H
∂Py∂y

)
(4.53)

are evaluated at Px = Py = 0 and (x, y) = (x−, y−). In order to numerically solve
the Ricatti equation it is convenient to transform into a linear problem by making the
substitution Q = Z−1:

B + CQ + QCT = 0. (4.54)

Proceeding to the next order in the WKB solution of equation (4.16), we find
that

[A +PxV +PyṼ] ◦R1 =
∂[V ◦R0]

∂x
+
∂[Ṽ ◦R0]

∂y
−
(
∂Φ1

∂x
V +

∂Φ1

∂y
Ṽ

)
◦R0. (4.55)

Since the 2-tensor M ≡ A + PxV + PyṼ has the unique right null 1-tensor R0, it’s
left null-space is also one-dimensional spanned by η, say. The Fredholm alternative
theorem then requires that

ηT ◦

[
∂[V ◦R0]

∂x
+
∂[Ṽ ◦R0]

∂y
−
(
∂Φ1

∂x
V +

∂Φ1

∂y
Ṽ

)
◦R0

]
= 0. (4.56)

Using the fact that (ηT ◦V ◦R0)dy/dt = (ηT ◦ Ṽ ◦R0)dx/dt along trajectories of
the Hamiltonian system, we can rewrite the above equation as (cf. equation (3.43))

dΦ1

dt
≡ ∂Φ1

∂x

dx

dt
+
∂Φ1

∂y

dy

dt
=

dx/dt

ηT ◦V ◦R0
ηT ◦

(
∂[V ◦R0]

∂x
+
∂[Ṽ ◦R0]

∂y

)
. (4.57)

As shown in appendix A of [53], an equation of this form can be numerically integrated
along the trajectories of the underlying Hamiltonian system.

However, η may be solved explicitly by substituting the ansatz

ηnx,ny
= Γnx

x · Γny
y (4.58)
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into the equation ηT ◦M = 0, and using the explicit expressions for A,V, Ṽ. One
finds that

F (x)[Γx − 1] + F (y)[Γy − 1] + nx

[
1

Γx
− 1

]
+ ny

[
1

Γy
− 1

]
= −Px[−x+ wEEnx − wEIny]− Py[−y + wIEnx − wIIny]. (4.59)

Cancelling the terms in nx and ny yields

1

Γx
− 1 = −[wEEPx + wIEPy], (4.60)

1

Γy
− 1 = wEIPx + wIIPy (4.61)

Comparison with equation (4.38) shows that

Γx =
Λx
F (x)

, Γy =
Λy
F (y)

, (4.62)

so that

ηnx,ny =

(
Λx
F (x)

)nx

·
(

Λy
F (y)

)ny

. (4.63)

In summary, the quasi-stationary approximation takes the form

φε(x, y) ∼ N e−Φ1(x,y)e−Φ0(x,y)/εR0. (4.64)

The normalization factor N can be approximated using Laplace’s method to give

N =

[∫
D

exp

[
−Φ0(x, y)

ε
− Φ1(x, y)

]]−1

∼
√

det(Z(x−, y−))

2πε
, (4.65)

where Z is the Hessian matrix

Z =

(
∂2Φ0

∂x2
∂2Φ0

∂x∂y
∂2Φ0

∂y∂x
∂2Φ0

∂y2

)
, (4.66)

and we have chosen Φ0(x−, y−) = 0 = Φ1(x−, y−).

4.3. Perturbation analysis of the adjoint eigenfunction. Since λ0 is expo-
nentially small, the leading-order equation for the adjoint 1-tensor ξ0 is

ε

[
V
∂

∂x
+ Ṽ

∂

∂y

]
◦ ξ0 + AT ◦ ξ0 = 0, (4.67)

supplemented by the absorbing boundary conditions (with (ξ0)nx,ny
≡ ξnx,ny

)

ξnx,ny
(x, y) = 0, (x, y) ∈ Γ (4.68)

for all (nx, ny) such that

(v(x, nx, ny), ṽ(y, nx, ny)) · ŝ > 0. (4.69)
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Following along similar lines to [53], we introduce a new coordinate system τ =
τ(x, y), σ = σ(x, y) such that τ parameterises the separatrix (x, y) ∈ Γ and σ is a
local coordinate along the normal ŝ of Γ. We scale σ so that (∂x/∂σ, ∂y/∂σ) = ŝ at
σ = 0. Equation (4.67) becomes

ε

[
Vτ

∂

∂τ
+ Vσ

∂

∂σ

]
◦ ξ0 + AT ◦ ξ0 = 0, (4.70)

where

Vτ =
∂τ

∂x
V +

∂τ

∂y
Ṽ, Vσ =

∂σ

∂x
V +

∂σ

∂y
Ṽ, (4.71)

and all terms are rewritten as functions of τ, σ. Thus, A(σ, τ) = A(x(σ, τ), y(σ, τ))
etc. As a first attempt at obtaining an approximation for ξ0, we introduce a boundary
layer around Γ by setting σ = εz and Q(z, τ) = ξ0(εz, τ). To leading-order, equation
(4.70) becomes [

Vσ(0, τ)
∂

∂z

]
◦Q(z, τ) + AT (0, τ) ◦Q(z, τ) = 0. (4.72)

The inner solution has to be matched with the outer solution ξ0 = 1, which means

lim
z→∞

Q(x, τ) = 1. (4.73)

We now introduce the eigenfunction expansion (cf. equation (3.55))

Q(z, τ) = c0(τ)1 +
∑
j≥1

cj(τ)ζj(0, τ)eµj(0,τ)z, (4.74)

where 1 has a zero eigenvalue, and

µj(σ, τ)Vσ(σ, τ) ◦ ζj(σ, τ) + AT (σ, τ) ◦ ζj(σ, τ) = 0, j 6= 0. (4.75)

In order that the solution remain bounded as z → ∞ and fixed τ , we require that
cj(τ) = 0 if µj(0, τ) > 0. Suppose that the boundary conditions (4.68) for fixed τ
generate a system of linear equations for the unknown coefficients cj(τ) of codimension
k. One of the coefficients is determined by matching the outer solution, which suggests
that there are k − 1 positive eigenvalues for each τ . The eigenvalues are ordered so
that for each τ , µj(0, τ) > 0 for j > k − 2.

Analogous to the one-population model, an additional eigenvalue µ1, say, vanishes
at the saddle point (0, τ∗) on the separatrix. In order to shows this, suppose that

µ1 =
1T ◦ [PxV + PyṼ] ◦ ζ1

1T ◦Vσ ◦ ζ1
=
∂Φ0

∂σ
, (4.76)

where the last expression follows from equations (4.35) and (4.71). Substitution into
equation (4.75) for j = 1 then gives

[AT + PxV + PyṼ] ◦ ζ1 = 0, (4.77)

which has the unique solution ζ1 = η, the adjoint of R0. Since Px and Py vanish at
(0, τ∗) and Vσ ◦ η 6= 0, it follows that µ1(0, τ∗) = 0. Hence, the solution at τ∗ has to
include a secular term involving the generalized eigenvector ζ0, where

AT (0, τ∗) ◦ ζ0 = −Vσ(0, τ∗) ◦ 1 = −ŝ · (V, Ṽ) ◦ 1. (4.78)
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The Fredholm alternative theorem ensures that a solution exists, since ρ(0, τ∗) is the

left null 1-tensor of AT (0, τ∗) and ρ(0, τ∗) ◦V(0, τ∗) = ρ(0, τ∗) ◦ Ṽ(0, τ∗) = 0. More
explictly, setting [ζ0]nx,ny

= ζ(nx, ny), we have

F (x)ζ(nx + 1, ny) + F (y)ζ(nx, ny + 1) + nxζ(nx − 1, ny) + nyζ(nx, ny − 1)

−[F (x) + F (y) + nx + ny]ζ(nx, ny)

= sx[x− wEEnx + wEIny] + sy[y − wIEnx + wIIny]. (4.79)

This has a solution of the form ζnx,ny
= Axnx + Ayny, with the coefficients Ax,Ay

determined by canceling linear terms in nx, ny. Thus

ζnx,ny = [wEEsx + wIEsy]nx − [wEIsx + wIIsy]ny. (4.80)

Given ζ0, equation (4.74) becomes

Q(z, τ∗) = c0(τ∗)1 + c1(τ∗)(ζ0 − z1) +
∑
j≥2

cj(τ∗)ζj(0, τ∗)e
µj(0,τ∗)z, (4.81)

The presence of the secular term implies that the solution is unbounded so it has
to be eliminated using a modified stretch variable σ =

√
εz [54, 53]. As in the one-

population case, we find that

c1(τ∗) ∼ −
√

2ε|∂σµ1(0, τ∗)|
π

. (4.82)

4.4. Principal eigenvalue. We now return to the expression for the principal
eigenvalue λ0 given by equation (4.32). Simplifying the denominator by using the
outer solution ξ0 ∼ 1 and using the WKB approximation of φε, equation (4.64), gives

λ0 = N
∫

Γ

e−Φ1(x,y)e−Φ0(x,y)/ε
(
ξT0 ◦V ◦R0, ξ

T
0 ◦ Ṽ ◦R0

)
· n̂ds. (4.83)

Changing to the (σ, τ) coordinate system and evaluating the line integral by applying
Laplace’s method around the saddle point (0, τ∗) then gives

λ0 ∼ NB(τ∗)c1(τ∗)e
−Φ1(0,τ∗)e−Φ0(0,τ∗)/ε

∫
Γ

exp

(
− 1

2ε
∂ττΦ0(0, τ∗)(τ − τ∗)2

)
dτ,

∼ B(τ∗)c1(τ∗)e
−Φ1(0,τ∗)e−Φ0(0,τ∗)/ε

√
2π

∂ττΦ0(0, τ∗)

√
det(Z(x−, y−))

2πε

∼ 1

π
B(τ∗)e

−Φ1(0,τ∗)e−Φ0(0,τ∗)/ε

√
∂σσΦ0(0, τ∗) det(Z(x−, y−))

∂ττΦ0(0, τ∗)
, (4.84)

where we have used equations (4.65), (4.81), (4.82), and

B(τ∗) =
(
ξT0 ◦V ◦R0(0, τ∗), ξ

T
0 ◦ Ṽ ◦R0(0, τ∗)

)
· n̂. (4.85)

4.5. Results. The rays (x(t), y(t)) (i.e., solutions to the Hamilton’s equations
(4.44) in the (x, y) plane) have an important physical meaning. The trajectory of
the ray is the most likely trajectory or path leading away from a stable fixed point
[24]. Under this interpretation, one can describe the stochastic dynamics using the
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Fig. 4.3. (a) Characteristic paths of maximum likelihood for the 2D model. Rays originating
from the left (right) stable fixed point are shown in orange (cyan), with the ray connecting to the
saddle shown in red (blue). The grey curve is the separatrix Γ. Level curves of constant Φ(x, y) are
shown as black dots. Each ray has four dots for different values of Φ(x, y). Rays originating from
the left fixed point have dots at Φ = 0.1, 0.2,Φ∗+0.01,Φ∗+0.02, and rays originating from the right
fixed point have dots at Φ = 0.19, 0.23, 0.28, 0.30, where Φ∗ = Φ(x∗, y∗) = 0.28. All rays terminate
at Φ = Φ∗+0.02. (b) Sample trajectories of the two-population velocity jump Markov process, whose
associated probability density evolves according to (4.1), are computed using the Gillespie algorithm
with ε = 0.05 and N∆t = 1. (The maximum likelihood paths are independent of epsilon). Other
parameter values are the same as in Fig. 4.2.

metastable dynamical trajectories (rays) along with deterministic trajectories. The
rays (x(t), y(t)) shown in Fig. 4.3 are obtained by integrating the characteristic equa-
tions (4.44) and (4.45). These trajectories are only valid in one direction: away from
the stable fixed points. The most likely trajectory leading toward stable fixed points
are given by deterministic dynamics (see Fig. 4.2). For parameter values considered
in Fig. 4.3, rays originating from each stable fixed point cover separate regions, so
that most likely paths between points in each region are connected by deterministic
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trajectories starting at the boundary between the two regions. Note that this bound-
ary is not the separatrix (grey curve). For example, a trajectory initially at the left
fixed point which crosses the separatrix at the saddle would most likely follow a ray
toward the saddle and then follow a deterministic trajectory to the right fixed point.
If a trajectory crosses the separatrix away from the saddle, it is most likely to cross
the separatrix above the saddle when starting from the left fixed point and below the
saddle when starting from the right fixed point (see Fig. 4.4). At first glance, this
suggests that if the trajectory starts at the left fixed point, say, it is more likely to
cross above the saddle, continue along a deterministic trajectory to the right fixed
point, and then cross the separatrix below the saddle than it is to directly cross below
the saddle. This is counter to intuition because it would seem more likely for a single
rare, metastable crossing event to lead to a point near the separatrix than two rare
events occurring in sequence. However, as shown in [47], rays can also originate from
the saddle point that cross the separatrix in the direction oposite those originating
at the stable fixed points. In Fig. 4.5, the probability density function for the y
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Fig. 4.4. Maximum-liklihood trajectories crossing the separatrix.

coordinate of the point on the separatrix reached by an exit trajectory is shown for
each well (square symbols show the histogram for exit from the left well and likewise,
’o’ symbols for the right well). Each density function is peaked away from the saddle
point, showing a phenomena known as saddle point avoidance [47, 69]. As ε→ 0, the
two peaks merge at the saddle point. Although we expect the saddle point to be the
most likely exit point since it the point on the separatrix where the potential Φ takes
its minimum value, our results show that this is not necessarily true.

Even though the most likely exit point is shifted from the saddle, the value of
potential at the saddle point still dominates the mean first exit time. In Fig. 4.6, the
mean exit time from each of the 2D potential wells (see Fig. 4.3) is shown. Solid lines
show the analytical approximation T ∼ 1/λ0, where λ0 is given by (4.84), and symbol
show averaged Monte-Carlo simulations. As in Fig. 3.3, the slope T on a log scale as
a function of 1/ε is determined by Φ evaluated at the saddle point.

5. Discussion. In this paper we developed a generalization of the neural master
equation [17, 7, 18], based on a velocity jump Markov process that couples synaptic
and spiking dynamics at the population level. There were two distinct time-scales in
the model, corresponding to the relaxation times τ and τa of the synaptic and spiking
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Fig. 4.5. The probability density for the exit point (y coordinate) where the separatrix is crossed
by an exiting trajectory. Results are obtained by 102 Monte-Carlo simulation with the same param-
eters as used in Fig. 4.2, with ε = 0.08. The square symbols show trajectories from the left well, and
’o’ symbols show trajectories from the right well.
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Fig. 4.6. Mean exit time from the left and right well. Parameter values are the same as in
Fig. 4.2. Solid lines show the analytical approximation T ∼ 1/λ0, where λ0 is given by (4.84), and
symbol show 80 averaged Monte-Carlo simulations.

dynamics, respectively. In the limit τ → 0, we recovered the neural master equation
operating in a Poisson-like regime, whereas in the limit τa → 0 we obtained determistic
mean field equations for the synaptic currents. Hence, one additional feature of our
model is that it provides a prescription for constructing a stochastic population model
that reduces to a current-based model, rather-than an activity-based model, in the
mean-field limit.

We focused on the particular problem of escape from a metastable state, for which
standard diffusion–like approximations break down. We showed how WKB methods
and singular perurbation theory could be adapted to solve the escape problem for
a velocity jump Markov process, extending recent studies of stochastic ion channels.
For concreteness, we assumed that the network operated in the regime τa/τ = ε� 1,
which meant that transitions between different discrete states of population spiking
activity were relatively fast. In this regime, the thermodynamic limit N → ∞ was
not a mean-field limit, rather it simplified the analysis since the quasi-steady-state
density was Poisson. It would be interesting to consider other parameter regimes in
subsequent work. First, we could model the discrete Markov process describing the
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spiking dynamics using the Bressloff version of the master equation [7]. There would
then be two small parameters in the model, namely ε and 1/N , so one would need to
investigate the interplay between the system size expansion for large but finite N and
the quasi-steady–state approximation for small ε. Another possible scenario (though
less plausible physiologically speaking) would be fast synaptic dynamics with τ � τa.
In this case, mean-field equations are obtained in the thermodynamic limit. Finally,
it would be interesting to extend our methods to analyze the effects of noise when the
underlying deterministic sytstem exhibite more complicated dynamics such as limit
cycle oscillations. As we commented in the main text, the two-population model of
excitatory and inhibitory neurons is a canonical circuit for generating population-level
oscillations.

Finally, it is important to emphasize that the neural master equation and its gen-
eralizations are phenomenological models of stochastic neuronal population dynamics.
Although one can give a heuristic derivation of these models [9], there is currently no
sytematic procedure for deriving them from physiologically-based microscopic models,
except in a few special cases. Nevertheless, stochastic hybrid models are emerging in
various applications within neuroscience, so that the analytical techniques presented
in this paper are likely to be of increasing importance.
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