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Abstract

A convergence result for a discontinuous Galerkin multiscale method
for a second order elliptic problem is presented. We consider a heteroge-
neous and highly varying diffusion coefficient in L∞(Ω,Rd×d

sym) with uni-
form spectral bounds and without any assumption on scale separation or
periodicity. The multiscale method uses a corrected basis that is com-
puted on patches/subdomains. The error, due to truncation of corrected
basis, decreases exponentially with the size of the patches. Hence, to
achieve an algebraic convergence rate of the multiscale solution on a uni-
form mesh with mesh size H to a reference solution, it is sufficient to
choose the patch sizes as O(H | log(H−1)|). We also discuss a way to
further localize the corrected basis to element-wise support leading to a
slight increase of the dimension of the space. Improved convergence rate
can be achieved depending on the piecewise regularity of the forcing func-
tion. Linear convergence in energy norm and quadratic convergence in
L2-norm is obtained independently of the forcing function. A series of
numerical experiments confirms the theoretical rates of convergence.

Keywords: multiscale method, discontinuous Galerkin, a priori error esti-
mate, convergence
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1 Introduction

This work considers the numerical solution of second order elliptic problems
with heterogeneous and highly varying (non-periodic) diffusion coefficient. The

†Information Technology, Uppsala University, Box 337, SE-751 05, Uppsala, Sweden.
‡Department of Mathematics, University of Leicester, Leicester, UK.
§Institut für Mathematik, Humboldt-Universität zu Berlin, Berlin, Germany.
¶Supported by The Swedish Research Council and The Göran Gustafsson Foundation.
‖Supported by the DFG Research Center Matheon Berlin through project C33.

1

http://arxiv.org/abs/1211.5524v1


2

heterogeneities and oscillations of the coefficient may appear on several non-
separated scales. More specifically, let Ω ⊂ R

d be a bounded Lipschitz domain
with polygonal boundary Γ. The boundary Γ may be partitioned into some non-
empty closed subset ΓD (the Dirichlet boundary) and its complement ΓN :=
Γ\ΓD (the, possibly empty, Neumann boundary). We assume that the diffusion
matrix A ∈ L∞

(

Ω,Rd×d
sym

)

has uniform spectral bounds 0 < α, β < ∞, defined
by

0 < α := ess inf
x∈Ω

inf
v∈Rd\{0}

(A(x)v) · v
v · v ≤ ess sup

x∈Ω
sup

v∈Rd\{0}

(A(x)v) · v
v · v =: β < ∞. (1.1)

Given f ∈ L2(Ω), we seek the weak solution of the boundary-value problem

−∇ · A∇u = f in Ω,

u = 0 on ΓD,

ν · A∇u = 0 on ΓN ,

i.e., we seek u ∈ H1
D(Ω) := {v ∈ H1(Ω) | v|ΓD

= 0 in the sense of traces}, such
that

a (u, v) :=

∫

Ω

A∇u · ∇v dx =

∫

Ω

fv dx =: F (v) for all v ∈ H1
D(Ω). (1.2)

Many methods have been developed in recent years to overcome the lack
of performance of classical finite element methods in cases where A is rough,
meaning that A has discontinuities and/or high variation; we refer to [4, 2,
11, 9, 6] amongst others. Common to all the aforementioned approaches is
the idea to solve the problems on small subdomains and to use the results to
construct a better basis for some Galerkin method or to modify the coarse scale
operator. However, apart from the one-dimensional setting, the performance of
those methods correlates strongly with periodicity and scale separation of the
diffusion coefficient.

Other approaches [5, 16, 3] perform well without any assumptions of pe-
riodicity or scale separation in the diffusion coefficient at the price of a high
computational cost: in [5, 16] the support of the modified basis functions is
large and in [3] the computation of the basis functions involves the solutions of
local eigenvalue problems.

Only recently in [14], a variational multiscale method has been developed
that allows for textbook convergence with respect to the mesh sizeH , ‖u− uH‖H1(Ω) ≤
Cf,β/αH with a constant Cf,β/α that depends on f and the global bounds of
the diffusion coefficient but not its variations. This result is achieved by an
operator-dependent modification of the classical nodal basis based on the so-
lution of local problems on vertex patches of diameter O(H | log(H−1)|). The
method in [14] is an extension of the method presented in [13, 15].

In this work, we present a discontinuous Galerkin (dG) multiscale method
with similar performance. The method is a slight variation of the method [8],
in the sense that the boundary conditions for the local problems are now of
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Dirichlet type. The dG finite element method admits good conservation prop-
erties of the state variable, and also offers the use of very general meshes due
to the lack of inter-element continuity requirements, e.g., meshes that contain
several different types of elements and/or hanging nodes. Both those features
are crucial in many applications. In the context of multiscale methods the
discontinuous formulation allows for more flexibility in the construction of the
basis function e.g., allowing more general boundary conditions [8]. Although
the error analysis presented in this work is restricted to regular simplicial or
quadrilateral/hexahedral meshes, we stress that all the results appear to be ex-
tendable for the case of irregular meshes (i.e., meshes containing hanging nodes).
We refrained from presenting these extensions here for simplicity of the current
presentation. Under these assumptions, we provide a complete a priori error
analysis of this method including errors caused by the approximation of basis
functions.

In this dG multiscale method and in previous related methods [14, 8], the
accuracy is ensured by enlarging the support of basis functions appropriately.
Hence, supports of basis functions overlap and the communication is no longer
restricted to neighboring elements but is present also between elements at a
certain distance. We will prove that resulting overhead is acceptable in the
sense that it scales only logarithmically in the mesh size.

In order to retain the dG-typical structure of the stiffness matrix, we discuss
the possibility of localizing the multiscale basis functions to single elements. In-
stead of having O(1) basis functions per element with O(H | log(H−1)|) support,
we would then have O(| log(H−1)|) basis functions per element with element
support. The element-wise application of a singular value decomposition easily
prevents ill-conditioning of the element stiffness matrices, while simultaneously
achieving further compression of the multiscale basis.

The outline of the paper is as follows. In Section 2, we recall the dG finite
element method. Section 3 defines our multiscale method, which is then an-
alyzed in Section 4. Section 5 presents numerical experiments confirming the
theoretical developments.

Throughout this paper, standard notation on Lebesgue and Sobolev spaces
is employed. Let 0 ≤ C < ∞ be any generic constant that neither depends
on the mesh size nor the diffusion matrix A; a . b abbreviates an inequality
a ≤ C b and a ≈ b abbreviates a . b . a. Also, let the constant Cβ/α depend
on the minimum and maximum bound bound (α and β) of the diffusion matrix
A (1.1).

2 Fine scale discretization

2.1 Finite element meshes and spaces

Let T denote a subdivision of Ω into (closed) regular simplices or into quadri-
laterals (for d = 2) or hexahedra (for d = 3), i.e., Ω̄ = ∪T∈T T . We assume
that T is regular in the sense that any two elements are either disjoint or share
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exactly one face or share exactly one edge or share exactly one vertex.
Let E denote the set of edges (or faces for d = 3) of T ; E(Ω) denotes the

set of interior edges, E(Γ), E(ΓD) and E(ΓN )) refer to the set of edges on the
boundary of Ω, on the Dirichlet and on the Neumann boundary, respectively.
Let T̂ , denote the reference simplex or (hyper)cube and let Pp(T̂ ) and Qp(T̂ )
denote the spaces of polynomials of degree less than or equal to p in all or on
each variable, respectively. Then, we define the set of piecewise polynomials

Pp(T ) := {v : Ω → R | ∀T ∈ T , v|T ◦ FT ∈ Rp(T̂ )},

with Rp ∈ {Pp,Qp}, where FT : T̂ → T , T ∈ T is a family of element maps. Let
also Πp(T ) : L2(Ω) → Pp(T ) denote the L2-projection onto T -piecewise poly-
nomial functions of order p. In particular, we have (Π0(T )f)|T = |T |−1

∫

T
f dx,

T ∈ T for all f ∈ L2(Ω). Note that v ∈ Pp(T ) does not necessarily belong to
H1(Ω). The T -piecewise gradient ∇T v, with (∇T v)|T = ∇(v|T ) for all T ∈ T ,
is well-defined and ∇T v ∈ (Pp−1(T ))d.

For any interior edge/face e ∈ E(Ω) there are two adjacent elements T− and
T+ with e = ∂T− ∩ ∂T+. We define ν to be the normal vector of e that points
from T− to T+. For boundary edges/faces e ∈ E(Γ) let ν be the outward unit
normal vector of Ω.

Define the jump of v ∈ Pk(T ) across e ∈ E(Ω) by [v] := v|T− − v|T+ and
define [v] := v|e for e ∈ E(Γ). The average of v ∈ Pp(T ) across e ∈ E(Ω)
is defined by {v} := (v|T− + v|T+)/2 and for boundary edges e ∈ E(Γ) by
{v} := v|e.

In the remaining part of this work, we consider two different meshes: a coarse
mesh TH and a fine mesh Th, with respective definitions for the edges/faces EH
and Eh. We denote the TH -piecewise gradient by ∇Hv := ∇TH

v and, respec-
tively, ∇hv := ∇Th

v for the Th-piecewise gradient . We assume that the fine
mesh Th is the result of one or more refinements of the coarse mesh TH . The
subscripts h,H refer to the corresponding mesh sizes; in particular, we have
H ∈ P0(TH) with H |T = diam(T ) =: HT for all T ∈ TH , He = diam e, for all
e ∈ EH , h ∈ P0(Th), with h|T = diam(T ) =: hT for all T ∈ Th, and he = diam e
for all e ∈ Eh. Obviously, h ≤ H .

2.2 Discretization by the symmetric interior penalty method

We consider the symmetric interior penalty method (SIP) discontinuous Galerkin
method [7, 1, 10]. We seek an approximation in the space Vh := P1(Th). Given
some positive penalty parameter σ > 0, we define the symmetric bilinear form
ah : Vh × Vh → R by

ah(u, v) :=(A∇hu,∇hv)L2(Ω) −
∑

e∈Eh(Ω)∪Eh(ΓD)

(

({ν ·A∇u}, [v])L2(e)

+ ({ν ·A∇v}, [u])L2(e) −
σ

he
([u], [v])L2(e)

)

.

(2.1)
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The jump-seminorm associated with the space Vh, is defined by

| • |2h :=
∑

e∈Eh(Ω)∪Eh(ΓD)

σ

he
‖[•]‖2L2(e), (2.2)

while the energy norm in Vh is then given by

||| • |||h := (‖A1/2∇h • ‖2L2(Ω) + | • |2h)1/2. (2.3)

If the penalty parameter is chosen sufficiently large, the dG bilinear form (2.1)
is coercive and bounded with respect to the energy norm (2.3). Hence, there
exists a (unique) dG approximation uh ∈ Vh, satisfying

ah(uh, v) = F (v) for all v ∈ Vh. (2.4)

We assume that (2.4) is computationally intractable for practical problems,
so we shall never seek to solve for uh directly. Instead, uh will serve as a reference
solution to compare our coarse grid multiscale dG approximation with. The
underlying assumption is that the mesh Th is chosen sufficiently fine so that uh

is sufficiently accurate. The aim of this work is to devise and analyse a multiscale
dG discretization with coarse scale H , in such a way that the accuracy of uh

is preserved up to an O(H) perturbation independent of the variation of the
coefficient A.

3 Discontinuous Galerkin multiscale method

As mentioned above, the choice of the reference mesh Th is not directly related
to the desired accuracy, but is instead strongly affected by the roughness and
variation of the coefficient A. The corresponding coarse mesh TH , with mesh
width function H ≥ h, is assume to be completely independent of A. To en-
capsulate the fine scale information in the coarse mesh, we shall design coarse
generalized finite element spaces based on TH .

3.1 Multiscale decompositions

We introduce a scale splitting for the space Vh. To this end, let ΠH := Π1(TH)
and define VH := ΠHVh = P1(TH) and

V f := (1 −ΠH)Vh = {v ∈ Vh | ΠHv = 0}.
Lemma 1 (L2-orthogonal multiscale decomposition). The decomposition

Vh = VH ⊕ V f ,

is orthogonal in L2(Ω).

Proof. The proof is immediate, as any v ∈ Vh can be decomposed uniquely
into a coarse finite element function vH := ΠHv ∈ VH and a (possibly highly
oscillatory) remainder vf := (1 − ΠH)v ∈ V f , with ‖v‖2L2(Ω) = ‖vH‖2L2(Ω) +

‖vf‖2L2(Ω).
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We now orthogonalize the above splitting with respect to the dG scalar
product ah; we keep the space of fine scale oscillations V f and simply replace
VH with the orthogonal complement of V f in Vh. We define the fine scale
projection F : Vh → V f by

ah(Fv, w) = ah(v, w) for all w ∈ V f . (3.1)

Using the fine scale projection, we can define the coarse scale approximation
space by

Vms
H := (1− F)VH .

Lemma 2 (ah-orthogonal multiscale decomposition). The decomposition

Vh = Vms
H ⊕ V f ,

is orthogonal with respect to ah, i.e., any function v in Vh can be decomposed
uniquely into some function vms

H ∈ Vms
H plus vf ∈ V f with |||v|||2h ≈ |||vms

H |||2h +
|||vf |||2h. The functions vms

H ∈ Vms
H and vf ∈ V f are the Galerkin projections of

v ∈ Vh onto the subspaces Vms
H and V f , i.e.,

ah(v
ms
H , w) = ah(v, w) = F (w) for all w ∈ Vms

H ,

ah(v
f , w) = ah(v, w) = F (w) for all w ∈ V f .

The unique Galerkin approximation ums
H ∈ Vms

H of u ∈ V solves

ah(u
ms
H , v) = F (v) for all v ∈ Vms

H . (3.2)

We shall see in the error analysis (cf. Theorem 8) that the orthogonality yields
error estimates for the Galerkin approximation ums

H ∈ Vms
H of (3.2) that are

independent of the regularity of the solution and of the diffusion coefficient A.
However, the space Vms

H is not suitable for practical computations as a local
basis for this space is not easily available. Indeed, given a basis of VH , e.g.,
the element-wise Lagrange basis functions {λT,j | T ∈ TH , j = 1, . . . , r} where
r = (1 + d) for regular simplices or r = 2d for quadrilaterals/hexahedra. The
space Vms

H may be spanned by the corrected basis functions (1 − F)λT,j , T ∈
TH , j = 1, . . . , r. Although λT,j has local support suppλT,j = T , its corrected
version (1−F)λT,j may have global support in Ω, as (3.1) is a variational problem
on the whole domain Ω. Fortunately, as we shall prove later, the corrector
functions φT,j decay quickly away from T (cf. previous numerical results in
[8] and a similar observation for the corresponding conforming version of the
method [14]). This decay motivates the local approximation of the corrector
functions, at the expense of introducing small perturbations in the method’s
accuracy.

3.2 Discontinuous Galerkin multiscale method

The localized approximations of the corrector functions are supported on ele-
ment patches in the coarse mesh TH .
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Figure 1: Example of a one layer patch ω1
T , two layer patch ω2

T , and a three
layer patch ω3

T , on a quadrilateral mesh.

Definition 3. For all T ∈ TH , define element patches with size L as

ω1
T := int(T ),

ωL
T := int(∪{T ′ ∈ TH | T ′ ∩ ω̄L−1

T 6= ∅}), k = 1, 2, . . . .

We refer to Figure 3.2 for an illustration.

We introduce a new discretization parameter L > 0 ∈ N and define localized
corrector functions φL

T,j ∈ V f(ωL
T ) := {v ∈ V f | v|Ω\ωL

T

= 0} by

ah(φ
L
T,j , w) = ah(λT,j , w) for all w ∈ V f(ωL

T ). (3.3)

Further, we define the multiscale approximation space

Vms,L
H = span{λT,j − φL

T,j | T ∈ TH , j = 1, . . . , r},

The dG multiscale method seeks ums,L
H ∈ Vms,L

H such that

ah(u
ms,L
H , v) = F (v) for all v ∈ Vms,L

H . (3.4)

Since Vms,L
H ⊂ Vh, this method is a Galerkin method in the Hilbert space Vh

(with scalar product ah) and, hence, inherits well-posedness from the reference
discretization (2.4).

Moreover, the proposed basis {λT,j − φL
T,j | T ∈ TH , j = 1, . . . , r} is stable

with respect to the fine scale parameter h, as we shall see in Lemma 7 below.

3.3 Compressed discontinuous Galerkin multiscale method

The basis functions in the above multiscale method have enlarged supports
(element patches) when compared with standard dG methods (elements). We
can decompose the corrector functions into its element contributions

φL
T,j =

∑

T ′∈TH :T ′⊂ωL

T

φL
T,jχT ′ ,
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where χT ′ is the indicator function of the element T ′ ∈ TH .
This motivates the coarse approximation space

Wms,L
H =span

(

{λT,j |T ∈ TH , j = 1, . . . , r}
∪ {φL

T,jχT ′ |T, T ′ ∈ TH , T ′ ⊂ ωL
T , j = 1, . . . , r},

This space offers the advantage of a known basis with element-wise support
which leads to improved (localized) connectivity in the corresponding stiffness
matrix. This is at the expense of a slight increase in the dimension of the space

dim(Wms,L
H ) ≈ Ld dim(Vms,L

H ).

The corresponding localized dG multiscale method seeks wms,L
H ∈ Wms,L

H

such that
ah(w

ms,L
H , v) = F (v) for all v ∈ Wms,L

H . (3.5)

Since Vms,L
H ⊂ Wms,L

H ⊂ Vh, Galerkin orthogonality yields

|||uh − wms,L
H |||h ≤ |||uh − ums,L

H |||h, (3.6)

i.e., the new localized version (3.5) is never worse than the previous multiscale
approximation in terms of accuracy. However, it may lead to very ill-conditioned
element stiffness matrices (cf. Lemma 10 which shows that φL

T,jξT ′ may be very
small if the distance between T and T ′ relative to their sizes is large).

To circumvent ill-conditioning, one may choose a reduced local approxima-
tion space on the basis of a singular value decomposition. Since the dimension of
the local approximation space is small (at most proportional to Ld), the cost for
this additional preprocessing step is comparable with the cost for the solution
of the local problems for the corrector functions.

To determine an acceptable level of truncation of the localized basis func-
tions, we can use the the a posteriori error estimator contribution of the local
problem from [8], which is an estimation of the local fine scale error. This pro-
cedure may additionally lead to large reduction of the dimension of the local
approximation spaces.

4 Error analysis

We present an a priori error analysis for the proposed multiscale method (3.4).
In view of (3.6), this analysis applies immediately to the modified versions
presented in Section 3.3. The error analysis will be split into a number of steps.
First, in Section 4.1, we present some properties of the coarse scale projection
operator ΠH . In Section 4.2, an error bound for dG multiscale method ums

H

from (3.2) (Theorem 8) is shown, whereby the corrected basis functions are
solved globally. Results for the decay of the localized corrected basis function
(Lemma 10 and Lemma 11) are shown, along with an error bound for the dG

multiscale method ums,L
H from (3.4) (Theorem 12) ,where the corrected basis
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functions are solved locally on element patches. Finally, in Section 4.3, we show
an error bound given a quantity of interest (Theorem 14), leading to an error
bound in L2-norm (Corollary 15).

We shall make use of the following (semi)norms. The jump-seminorm and
energy norms, associated with the coarse space VH , are defined by

| • |2H :=
∑

e∈EH (Ω)∪EH(ΓD)

σ

He
‖[•]‖2L2(e),

||| • |||H := (‖A1/2∇H • ‖2L2(Ω) + | • |2H)1/2,

respectively, along with a localized version of the local jump and energy norms
(2.2) and (2.3) on a patch ω ⊆ Ω, where ω is aligned with the mesh Th, given
by

| • |2h,ω :=
∑

e∈E(Ω)∪E(ΓD):
e∩ω̄ 6=0

σ

he
‖[•]‖2L2(e),

||| • |||h,ω := (‖A1/2∇h • ‖2L2(ω) + | • |2h,ω)1/2.
The shape-regularity assumptions hT ≈ he for all e ∈ ∂T : T ∈ Th and HT ≈ He

for all T ∈ ∂T : T ∈ TH will also be used.

4.1 Properties of the coarse scale projection operator ΠH

The following lemma gives stability and approximation properties of the oper-
ator ΠH .

Lemma 4. For any v ∈ Vh, the estimate

H−1‖v −ΠHv‖L2(T ) . α−1/2|||v|||h,T ,

is satisfied for all T ∈ TH . Moreover, it holds

β−1/2|||ΠHv|||H + ‖H−1(v −ΠHv)‖L2(Ω) . α−1/2|||v|||h.

Proof. Theorem 2.2 in [12], implies that for each v ∈ Vh, there exists a bounded
linear operator Ic

h : Vh → Vh ∩H1(Ω) such that

β−1/2‖A1/2∇H(v − Ic
hv)‖L2(Ω) + ‖h−1(v − Ic

hv)‖L2(Ω) . α−1/2|v|h. (4.1)

Split v = vc + vd ∈ Vh into a conforming, vc = Ic
hv, and non-conforming,

vd = v − Ic
hv, part. We obtain

H−1‖v −ΠHv‖L2(T ) ≤ H−1(‖vc −ΠHvc‖L2(T ) + ‖vd −ΠHvd‖L2(T ))

. ‖∇hv‖ + ‖∇h(v − vc)‖L2(T ) +H−1‖vd‖L2(T ))

. α−1/2|||v|||h,T
(4.2)
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using the triangle inequality, stability of the L2-projection, and (4.1). Also,

|||ΠHv|||2H =
∑

T∈TH

‖
√
A∇(ΠHv −Π0(TH)v)‖2L2(T ) +

∑

e∈Γ

σ

H
‖[vc −ΠHv]‖2L2(e)

.
∑

T∈TH

β

(

1

H2
‖v −Π0(TH)v‖2L2(T ) +

1

H2
‖vc −ΠHv‖2L2(T )

)

.C2
β/α|||v|||2h,

using the triangle inequality, (4.1), and (4.2) which concludes the proof.

The operator ΠH is surjective. The next lemma shows that, given some vH ∈
VH in the image of ΠH there exists aH1-conforming pre-image v ∈ Π−1

H vH ⊂ Vh

with comparable support.

Lemma 5. For each vH ∈ VH , there exists a v ∈ Vh ∩H1(Ω) such that ΠHv =
vH , |||v|||h . Cβ/α|||vH |||H , and supp(v) ⊆ supp(vH).

Proof. Using (4.1) but on space VH gives, for each v ∈ VH , there exists a
bounded linear operator Ic

H : VH → VH ∩H1(Ω) such that

β−1/2‖A1/2∇H(v − Ic
Hv)‖L2(Ω) + ‖H−1(v − Ic

Hv)‖L2(Ω) . α−1/2|v|H . (4.3)

We define
v := Ic

HvH +
∑

T∈TH , j=1,...,r

(vH(xj)− Ic
HvH(xj)) θT,j ,

where θT,j ∈ Vh ∩ H1
0 (T ) are bubble functions, supported on each element

T , with ΠHθT,j = λT,j and |||θT,j |||h . β(T )Hd−2. Observe that supp(v) ⊆
supp(vH). The interpolation property follows from

ΠHv = Ic
HvH +ΠH

∑

T∈TH , j=1,...,r

(vH(xj)− Ic
HvH(xj)) θj ,

= Ic
HvH + vH − Ic

HvH = vH .

To prove stability, we estimate |||v|||h as follows:

|||v|||2h ≤ ‖A1/2∇Ic
HvH‖2L2(Ω) +

∑

T∈TH , j=1,...,r

|vH(xj)− Ic
HvH(xj)|2 |||θj |||2h

. ‖A1/2∇HIc
HvH‖2L2(Ω) + β‖H−1(vH − Ic

HvH)‖2L2(Ω)

. C2
β/α|||vH |||2H

using the inverse estimate ‖v‖L∞(T ) ≤ H−d/2‖v‖L2(T ) for all v ∈ VH , and the
estimate (4.3).

Remark 6. Note that θT,j ∈ Vh ∩H1
0 (T ) for all T ∈ TH (fulfilling the conditions

in Lemma 5) can be constructed using two (or more) refinements of the coarse
scale parameter H . We can let θT,j ∈ Vh′ ∩H1

0 (T ) where Vh′ ⊂ Vh and h ≤ h′ ≤
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2−2H . This does not put a big restriction on h since the mesh Th is assumed
to be sufficiently fine to resolve the variation in the coefficient A, while the
parameter H does not need to resolve A.

The following lemma says that the corrected basis is stable with respect to
the fine scale parameter h in the energy norm (2.3), this is not a trivial result
since the basis function {λT,j |T ∈ TH , j = 1, . . . , r} are discontinuous.

Lemma 7 (Stability of the corrected basis functions). For all, T ∈ TH , j =
1, . . . , r and L > 0 ∈ N, the estimate

|||λT,j − φL
T,j |||h . Cβ/α|||λT,j |||H ,

is satisfied, independently of the fine scale parameter h.

Proof. For any T ∈ TH , j = 1, . . . , r, by Lemma 5 there exists a b such that
v = λT,j − b ∈ Vf

h (ω
L
T ), and |||b|||h . Cβ/α|||λT,j |||H . We have

|||λT,j − φL
T,j |||2h . ah(λT,j − φL

T,j , λT,j − φL
T,j) = ah(λT,j − φL

T,j , λT,j − v),

. ah(λT,j − φL
T,j , b) . Cβ/α|||λT,j − φL

T,j |||h|||λT,j |||H ,

which concludes the proof.

4.2 A priori estimates

The following theorem gives an error bound for the idealized dG multiscale
method, whereby the correctors for the basis are solved globally.

Theorem 8. Let uh ∈ Vh solve (2.4) and ums
H ∈ Vms

H solve (3.4), then the
estimate

|||uh − ums
H |||h ≤ C1α

−1/2||H(f −ΠHf)||L2(Ω),

is satisfied, where C1 neither depends on the mesh (h or H) size nor the diffusion
matrix A.

Proof. Let e := uh − ums
H = uf ∈ V f , then

|||e|||2h . ah(e, e) = (f, e)L2(Ω) = (f −ΠHf, e−ΠHe)L2(Ω)

≤ ||H(f −ΠHf)||L2(Ω)||H−1(e −ΠHe)||2L2(Ω)

.
1√
α
||H(f −ΠHf)||L2(T )|||e|||h,

using Lemma 2, Lemma 1, Cauchy-Schwarz inequality, and Lemma 4, respec-
tively.

Definition 9. The cut off functions ζd,DT ∈ P0(Th) are defined by the conditions

ζd,DT |ωd

T

= 1,

ζd,DT |Ω\ωD

T

= 0,

‖[ζd,DT ]‖L∞(T ) .
hT

(D − d)HT
for all T ∈ TH ,
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and that ζd,DT is constant on the boundary ∂(ωD
T \ ωd

T ).

The next lemma shows the exponential decay in the corrected basis, which
is a key result in the analysis.

Lemma 10. For all T ∈ TH , j = 1, . . . , r, the estimate

|||(λj − φT,j)− (λj − φL
T,j)|||h = |||φT,j − φL

T,j |||h ≤ C3γ
L|||φT,j − λ|||h,

is satisfied, with C3 = CC3
β/α, 0 < γ < 1 given by γ := (C2

ℓ )
k−1
2ℓ , C2 = C′C2

β/α,

and L = kℓ, k, ℓ ≥ 2 ∈ N, noting that C and C′ are positive constants that
are independent of the mesh (h or H), of the patch size L, and of the diffusion
matrix A.

Proof. Define e := φT,j − φL
T,j = φT,j − φℓk

T,j . We have

|||e|||2h . ah(e, φT,j − φℓk
T,j) = ah(e, φT,j − v) . |||e|||h · |||φT,j − v|||h, (4.4)

for v ∈ Vf
h (ω

ℓk
T ). Let ζ := ζℓk−1,ℓk

T ; then by Lemma 5 there exists a b such that

v = ζφT,j − b ∈ Vf
h (ω

ℓk
T ), ΠHb = ΠHζφT,j , |||b|||h . Cβ/α|||ΠHζφT,j |||H , and

supp(b) ⊆ supp(ΠHζφT,j). Then, we have

|||φT,j − v|||h = |||φT,j − (ζφT,j − b)|||h
≤ |||φT,j − ζφT,j |||h + |||b|||h
. |||φT,j − ζφT,j |||h + Cβ/α|||ΠH(ζφT,j − φT,j)|||H
. C2

β/α|||φT,j − ζφT,j |||h.

(4.5)

Furthermore, using the properties of ζ we have

‖
√
A∇h(1 − ζ)φT,j‖L2(Ω),≤ ‖

√
A∇hφT,j‖L2(Ω\ωℓk−1

T
), (4.6)

and

|(1− ζ)φT,j |2h =
∑

e∈E(Ω)∪E(ΓD)

σ

he
‖[(1− ζ)φT,j ]‖2L2(e)

≤
∑

e∈E(Ω)∪E(ΓD)

σ

he

(

‖{1− ζ}[φT,j ]‖2L2(e) + ‖{φT,j}[1− ζ]‖2L2(e)

)

≤
∑

e∈E(Ω)∪E(ΓD):

e∩Ω\ωℓk−1
T

6=0

(

σ

he
‖[φT,j ]‖2L2(e) +

σhT

heH2
T

‖{φT,j}‖2L2(e)

)

≤
∑

e∈E(Ω)∪E(ΓD):

e∩Ω\ωℓk−1
T

6=0

σ

he
‖[φT,j ]‖2L2(e) +

σ

H2
T

‖φT,j −ΠHφT,j‖2L2(Ω\ωℓk−1
T

)

. C2
β/α|||φT,j |||h,Ω\ωℓk−1

T

,

(4.7)
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using a trace inequality and Lemma 4, respectively. Combining (4.4), (4.5),
(4.6), and (4.7) yields

|||φT,j − ζφT,j |||h . C3
β/α|||φT,j |||h,Ω\ωℓk−1

T

. (4.8)

To simplify notation, let m := ℓ(k−1)−1 and M := ℓk−1. For ηT := 1−ζm,M
T ,

we obtain

|||φT,j |||2h,Ω\ωM

T

≤ |||ηTφT,j |||2h . ah(ηTφT,j , ηTφT,j), (4.9)

where

ah(ηTφT,j , ηTφT,j) = (A∇hηTφT,j ,∇hηTφT,j)L2(Ω)

+
∑

e∈E(Ω)∪E(ΓD)

(

−2({ν ·A∇ηTφT,j}, [ηTφT,j ]) +
σ

he
([ηTφT,j ], [ηTφT,j ])

)

.

(4.10)
For the first term on the right-hand side of (4.10), we have

(A∇hηTφT,j ,∇hηTφT,j)L2(Ω) = (A∇hφT,j ,∇hη
2
TφT,j)L2(Ω), (4.11)

since ηT is constant on each element T ∈ Th; for the other terms we use (A.3)
and (A.4) (with v = ηT , w = ν ·A∇φT,j and u = φT,j). We can, thus, arrive to

|||φT,j |||2h,Ω\ωM

T

≤ ah(ηTφT,j , ηTφT,j) = ah(φT,j , η
2
TφT,j)

+
∑

e∈E(Ω)

(

1/2({ν · A∇φT,j}, [ηT ]2[φT,j ])L2(e) − 1/4([ν · A∇φT,j ], [ηT ]
2{φT,j})L2(e)

− σ

4he
([ηT ]

2, [φT,j ]
2)L2(e) +

σ

he
([ηT ]

2, {φT,j}2)L2(e)

)

,

(4.12)
using (4.9), (4.10), and (4.11). Note that,

∑

e∈E(Ω)

(

1/2({ν ·A∇φT,j}, [ηT ]2[φT,j ])L2(e) − 1/4([ν · A∇φT,j ], [ηT ]
2{φT,j})L2(e)

− σ

4he
([ηT ]

2, [φT,j ]
2)L2(e) +

σ

he
([ηT ]

2, {φT,j}2)L2(e)

)

.
∑

e∈E(Ω):

e∩ωM

T
\ωm

T
6=0

h2
T

ℓ2H2
T

(

‖{ν ·A∇φT,j}‖L2(e)‖[φT,j ]‖L2(e) + ‖[ν · A∇φT,j ]‖L2(e)‖{φT,j}‖L2(e)

+ σ
(

‖[φT,j ]‖2L2(e) + ‖{φT,j}‖2L2(e)

))

.
∑

e∈E(Ω):

e∩ωM

T
\ωm

T
6=0

( hT

ℓ2H2
T

‖A∇φT,j‖L2(T+∪T−)‖φT,j‖L2(T+∪T−) +
σ

ℓ2H2
T

‖φT,j‖2L2(T+∪T−)

)

. βℓ−2‖H−1
T (φT,j −ΠHφT,j)‖2L2(ωM

T
\ωm

T
) ≤ C2

β/αℓ
−2|||φT,j |||2h,ωM

T
\ωm

T

.

(4.13)
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Now we bound the term

ah(φT,j , η
2
TφT,j) = ah(φT,j , η

2
TφT,j − b) + ah(φT,j , b) = ah(φT,j , b)

. |||φT,j |||h,ωM

T
\ωm

T

|||b|||h,ωM

T
\ωm

T

≤ Cβ/α|||φT,j |||h,ωM

T
\ωm

T

|||ΠHη2TφT,j |||H,ωM

T
\ωm

T

.

(4.14)

Furthermore, we have that

|||ΠHη2TφT,j |||H,ωM

T
\ωm

T

= |||ΠH(η2T −Π0(TH)η2T )φT,j |||H,ωM

T
\ωm

T

= ‖
√
A∇HΠH(η2T −Π0(TH)η2T )φT,j‖2L2(ωM

T
\ωm

T
)

+
∑

e∈E(Ω)∪E(ΓD):

e∩ωM

T
\ωm

T
6=0

σ

He
‖[ΠH(η2T −Π0(TH)η2T )φT,j ]‖2L2(e)

. β‖H−1
e ΠH(η2T −Π0(TH)η2T )φT,j‖2L2(ωM

T
\ωm

T
)

. β‖H−1
e (η2T −Π0(TH)η2T )‖L∞(T )‖φT,j‖2L2(ωM

T
\ωm

T
)

. βℓ−2‖H−1
e (φT,j −ΠHφT,j)‖2L2(ωM

T
\ωm

T
)

. C2
β/αℓ

−2|||φT,j |||2h,ωM

T
\ωm

T

,

(4.15)

using a trace inequality, inverse inequality, and Lemma 4, respectively. Com-
bining the inequalities (4.12), (4.13), (4.14), and (4.15) yields

|||φT,j |||2h,Ω\ωM

T

≤ C2

ℓ
|||φT,j |||2h,ωM

T
\ωm

T

≤ C2

ℓ
|||φT,j |||2h,Ω\ωm

T

.

where C2 = C′C2
β/α. Substituting back to ℓ and k and using a cut off function

with a slightly different argument, yields

|||φT,j |||2h,Ω\ωℓk−1
T

≤ C2

ℓ
|||φT,j |||2h,Ω\ω

ℓ(k−1)−1
T

≤ (
C2

ℓ
)2|||φT,j |||2h,Ω\ω

ℓ(k−2)−1
T

≤ · · · ≤ (
C2

ℓ
)k−1|||φT,j |||2h,ωℓ\ωℓ−1

T

.

which concludes the proof together with (4.8).

Lemma 11. For all, T ∈ TH , j = 1, . . . , r, the estimate

|||
∑

T∈TH , j=1,...,r

vj(φT,j − φL
T,j)|||2h ≤ C4L

d
∑

T∈TH , j=1,...,r

|vj |2|||φT,j − φL
T,j |||2h.

is satisfied, with C4 = CC3
β/α and C positive constant independent of the mesh

(h or H), of the patch size L, and of the diffusion matrix A.

Proof. Let w =
∑

T∈TH , j=1,...,r vj(φT,j − φL
T,j), and note that

ah(φT,j − λT,j , w − ζTw + b) = 0,

ah(φ
L
T,j − λT,j , w − ζTw + b) = 0,

(4.16)
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where ζT := ζL+1,L+2
T , using Lemma 5 and the property of the cut-off function.

From (4.16) follows that ah(w, (1 − ζT )w + bT ) = 0 for all w ∈ V f . We obtain

|||
∑

T∈TH , j=1,...,r

vj(φT,j − φL
T,j)|||h .

∑

T∈TH , j=1,...,r

vjah(φT,j − φL
T,j , w)

=
∑

T∈TH , j=1,...,r

vjah(φT,j − φL
T,j , ζTw − b)

.
∑

T∈TH , j=1,...,r

|vj | · |||φT,j − φL
T,j |||h (|||ζTw|||h + |||b|||h)

.
∑

T∈TH , j=1,...,r

|vj | · |||φT,j − φL
T,j |||h

(

|||ζTw|||h + Cβ/α|||ΠHζTw|||H
)

.
∑

T∈TH , j=1,...,r

|vj | · |||φT,j − φL
T,j |||hC2

β/α|||ζTw|||h

(4.17)

From (4.6) and (4.7), we have

|||ζTw|||h = |||ζTw|||h,ωL+2
T

. Cβ/α|||w|||h,ωL+2
T

. (4.18)

Then, further estimation of (4.17) can be achieved using (4.18) and the discrete
Cauchy-Schwarz inequality:

|||
∑

T∈TH , j=1,...,r

vj(φT,j − φL
T,j)|||h

≤ C3
β/α





∑

T∈TH , j=1,...,r

|vj |2|||φT,j − φL
T,j |||2h





1/2



∑

T∈TH , j=1,...,r

|||w|||2
h,ωL+2

T





1/2

≤ C3
β/αL

d/2 ·





∑

T∈TH , j=1,...,r

|vj |2|||φT,j − φL
T,j |||2h





1/2

· |||w|||h.

Dividing by w on both sides concludes the proof.

The following theorem gives an error bound for the dG multiscale method.

Theorem 12. Let u ∈ H1
D(Ω) solve (1.2) and ums,L

H ∈ Vms,L
H solve (3.4). Then,

the estimate

|||u− ums,L
H |||h ≤|||u− uh|||h + C1α

−1/2||H(f −ΠHf)||L2(Ω)

+ C5‖H−1‖L∞(Ω)L
d/2γL‖f‖L2(Ω),

is satisfied, with 0 < γ < 1, L from Lemma 10, C1 from Theorem 8, C5 =

CC2
β/αC

1/2
4 C3 where C3 is from Lemma 10 and C4 is from Lemma 11. C a

positive constant independent of the mesh (h or H), of the patch size L, and of
the diffusion matrix A.
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Remark 13. To counteract the factor ‖H−1‖L∞(Ω) in the error bound in Theo-
rem 12, we can choose the localization parameter as L = ⌈C log(||H−1||L∞(Ω))⌉.
On adaptively refined meshes it is recommended to choose L = ⌈C log(H−1)⌉.

Proof. We define ũms,L
H :=

∑

T∈TH , j=1,...,r u
ms
H,T (xj)φ

L
T,j . Then, we obtain

|||u− ums,L
H |||h ≤ |||u− ũms,L

H |||h
≤ |||u− uh|||h + |||uh − ums

H |||h + |||ums
H − ũms,L

H |||h
≤ |||u− uh|||h + |||uh − ums

H |||h + |||
∑

T∈TH , j=1,...,r

ums
H,T (xj)(φT,j − φL

T,j)|||h.

(4.19)
Now, estimating the terms in (4.19), we have

|||uh − ums
H |||h ≤ C1α

−1/2‖H(f −ΠHf)‖L2(Ω),

using Theorem 8, and

|||
∑

T∈TH , j=1,...,r

ums
H,T (xj)(φT,j − φL

T,j)|||2h

≤ C4L
d

∑

T∈TH , j=1,...,r

|ums
H,T (xj)|2|||φT,j − φL

T,j |||2h.

≤ C4C
2
3L

dγ2L
∑

T∈TH , j=1,...,r

|ums
H,T (xj)|2|||φT,j − λj |||2h,

(4.20)

using Lemma 11 and Lemma 10, respectively. Further estimation, using Lemma 7,
yields

∑

T∈TH , j=1,...,r

|ums
H,T (xj)|2|||φT,j − λT,j |||2h

. C2
β/α

∑

T∈TH , j=1,...,r

|ums
H,T (xj)|2|||λT,j |||2H

. C2
β/αβ

∑

T∈TH , j=1,...,r

|ums
H,T (xj)|2H−2

T ‖λT,j‖2L2(T )

= C2
β/αβ

∑

T∈TH , j=1,...,r

‖H−1
T ums

H,T (xj)λT,j‖2L2(T )

. C2
β/αβ‖

∑

T∈TH , j=1,...,r

H−1
T ums

H,T (xj)λT,j‖2L2(Ω).

(4.21)

Furthermore, using a Poincare-Friedrich inequality for piecewise H1 functions,
we deduce

‖
∑

T∈TH , j=1,...,r

H−1
T ums

H,T (xj)λT,j‖2L2(Ω)

. ‖
∑

T∈TH , j=1,...,r

H−1
T ums

H,T (xj)ΠH(λT,j − φT,j)‖2L2(Ω)

. α−1|||H−1ums
H |||2h

. α−1‖H−1‖2L∞(Ω)‖f‖2L2(Ω).

(4.22)
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Combining (4.20), (4.21) and (4.22), we arrive to

|||ums
H − ums,L

H |||h . C2
β/αC

1/2
4 C3‖H−1‖L∞(Ω)L

d/2γL‖f‖L2(Ω).

4.3 Error in a quantity of interest

In engineering applications, we are often interested in a quantity of interest,
usually a functional g ∈ L2(Ω) of the solution. To this end, consider the dual
reference solution (2.4): find φh ∈ Vh such that

ah(v, φh) = g(v) for all v ∈ Vh, (4.23)

and the dual multiscale solution (3.4): find φL
H,h ∈ VL

H,h such that

ah(v, φ
ms,L
H,h ) = g(v) for all v ∈ VL

H,h. (4.24)

Theorem 14. Let u ∈ H1
D(Ω) solve (1.2), ums,L

H ∈ Vms,L
H solve (3.4), and let

g ∈ L2(Ω) be the quantity of interest. Then, the estimate

|g(u)− g(uL
H,h)| . |g(u)− g(uh)|+ |||uh − ums,L

H |||h|||φh − φms,L
H |||h,

is satisfied.

Proof. From (4.23) and (4.24), we obtain the Galerkin orthogonality

ah(v, φh − φms,L
H ) = 0 for all v ∈ Vms,L

H . (4.25)

Using the triangle inequality, we have

|g(u)− g(ums,L
H )| ≤ |g(u)− g(uh)|+ |g(uh)− g(ums,L

H )|.

Finally, observing that

|g(uh − uL
h,H)| = |ah(uh − uL

h,H , φh)|
= |ah(uh − uL

h,H , φh − φL
H,h)|

. |||uh − uL
h,H |||h|||φh − φL

H,h|||h,

using (4.25), concludes the proof.

Corollary 15. For g(v) = (uh − uL
H,h, v)L2(Ω), the following L2-norm error

estimates hold:

‖u− uL
H,h‖L2(Ω) . ‖u− uh‖L2(Ω) + |||uh − ums,L

H |||1/2h |||φh − φms,L
H |||1/2h ,

and
‖u− uL

H,h‖L2(Ω) . ‖u− uh‖L2(Ω) +H |||uh − ums,L
H |||h, (4.26)

for L = ⌈C log(H−1)⌉ with C sufficiently large positive constant independent of
the mesh parameters.
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Remark 16. As expected, if we are interested in a smoother functional, a
higher convergence rate is obtained for |g(uh − ums,L

H )|. For example, given
the forcing function for the primal problem f ∈ Hm(TH), a quantity of interest
g ∈ Hn(TH) (with H0(TH) denoting the standard L2(Ω) space), and choosing
L = ⌈C log(H−1)⌉ with large enough C, gives

|g(u− ums,L
H )| . |g(u)− g(uh)|+H2+m+n(

∑

T∈TH

|f |Hm(T ))(
∑

T∈TH

|g|Hn(T )).

5 Numerical Experiments

Let Ω where be an L-shaped domain (constructed by removing the lower right
quadrant in the unit square) and let the forcing function be f = 1+cos(2πx) cos(2πy)
for (x, y) ∈ Ω. The boundary Γ is divided into the Neumann boundary ΓN :=
Γ ∩ ({(x, y) : y = 0} ∪ {(x, y) : x = 1}) and the Dirichlet boundary ΓD =
Γ \ ΓN . We shall consider three different permeabilities: constant A1 = 1,
A2 = A2(x), which is piecewise constant with periodic values of 1 and 0.01 with
respect to a Cartesian grid of width 2−6 in the x-direction, and A3 = A3(x, y)
which piecewise constant with respect to a Cartesian grid of width 2−6 both
in the x- and y-directions and has a maximum ratio β/α = 4 · 106. The
data for A3 are taken from layer 64 in the SPE benchmark problem, see
http://www.spe.org/web/csp/. The permeabilities A2 and A3 are illustrated
in Figure 2. For the periodic problem many of the corrected basis functions

(a) β/α = 102 (b) β/α ≈ 4 · 106

Figure 2: The permeability structure of A2 (a) and A3 (b) in log scale.

will be identical. For instance, all the local corrected basis in the interior are
solved on identical patches, thereby reducing the computational effort consid-
erably. In the extreme case of a problem with periodic coefficients on a unit
hypercube, with period boundary conditions, the correctors φT,j , j = 1, . . . , r,
will be identical for all T ∈ TH .

Consider the uniform (coarse) quadrilateral mesh TH with size H = 2−i,
i = 1, . . . , 6. The convergence rate−p/2 corresponds to O(Hp) since the number
degrees of freedom ≈ H−2. The corrector functions (3.3) are solved on a subgrid
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of a (fine) quadrilateral mesh Th with mesh size 2−8. The mesh Th will also act
as a reference grid for which we shall compute a reference solution uh ∈ Vh (2.4)
on. Note that the mesh Th is chosen so that it resolves the fine scale features
for Ai, i = 1, 2, 3, hence we assume that the solution uh is sufficiently accurate.

5.1 Localization parameter

If f ∈ Hm(TH) we have the bound

||H(f −ΠHf))||L2(Ω) .
∑

T∈TH

Hk+1|f |Hk(T ), (5.1)

where k = 0 for m = 0, k = 1 for m = 1, and k = 2 for m > 1. Hence, to
balance the error in between the terms on the right-hand side of the estimate in
Theorem 12, different constant C has to be used for the localization parameter,
L = ⌈C log(H−1)⌉, depending on the element-wise regularity of the forcing
function f on TH . Figure 3 shows the relative error in the energy norm
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Figure 3: Diffusion coefficient A1 = 1. Relative energy-norm error against Ndof,
for different values of C for the localisation parameter L.

|||uh − ums,L
H |||h/|||uh|||h and Figure 4 the relative error in the L2-norm ‖uh −

ums,L
H ‖L2(Ω)/‖uh‖L2(Ω) between uh and ums,L

H against the number of degrees of
freedom Ndof ≈ O(H−2), using different constants C = 1, 3/2, 2, 5/2. With the
chose C = 5/2, the errors due to the localization can be neglected compared to
the errors from the forcing function, both for the energy- and for the L2-norm.
For f 6∈ H1(Th), C = 3/2 is sufficient since (5.1) gives linear convergence. In the
following numerical experiments we shall use C = 2, since this value seems to
balance the error sufficiently. Note that the numerical overhead increases with
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Figure 4: Diffusion coefficient A1 = 1. Relative L2-norm error against Ndof, for
different values of C for the localisation parameter L.

C as the sizes of the patches ωL
T T ∈ TH , increases with L = ⌈C log(H−1)⌉.

This results in both increased computational effort to compute the corrector
functions and reduced sparseness in the coarse scale stiffness matrix.

5.2 Energy-norm convergence

Let the localization parameter be
L = ⌈2 log(H−1)⌉. Figure 5 shows the relative error in the energy norm plotted
against the number of degrees of freedom. The different permeabilities Ai,
i = 1, 2, 3, and the singularity arising from the L-shaped domain do not appear
to have a substantial impact on the convergence rate, which is about 3/2, as
expected. We note in passing that using standard dG on the coarse mesh only
admits poor convergence behaviour for A2 and for A3. This is to be expected,
since standard dG on the coarse mesh does not resolve the fine scale features.

5.3 L
2-norm convergence

Again, set L = ⌈2 log(H−1)⌉. Figure 6 and Figure 7, shows the relative L2-norm
error again the number of degrees of freedom between, uh and uL

H,h and between

uh and ΠHuL
H,h, viz., ‖uh−ΠHums,L

H ‖L2(Ω)/‖uh‖L2(Ω), respectively. In Figure 6

we see that the L2-norm error between uh and ums,L
H converges at a faster rate

than in the energy norm (convergence rate −2 compared to −3/2, respectively,)

as expected from (4.26). In Figure 7 only the coarse part of ums,L
H is used (i.e.

ΠHums,L
H ); nevertheless it appears to have a faster convergence rate than −1/2,
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Figure 5: Relative energy-norm error against Ndof, for C = 2 in the localisation
parameter L for the the diffusion coefficients A1, A2, and A3.

except for the case of the permeability A3.
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Figure 6: Relative L2-norm error against Ndof, for C = 2 in the localisation
parameter L for the the diffusion coefficients A1, A2, and A3.
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Figure 7: Relative L2-norm error against Ndof, for C = 2 in the localisation
parameter L for the the diffusion coefficients A1, A2, and A3.
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galerkin multiscale method for elliptic problems, Submitted for publication
(2012).

[9] T. Y. Hou and X.-H. Wu, A multiscale finite element method for elliptic
problems in composite materials and porous media, J. Comput. Phys. 134
(1997), no. 1, 169–189.
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A Equalities for averages and jump operators

We derive equalities for averages and jump operators across interfaces where
the functions v and w have discontinuities. Using [vw] = {v}[w] + [v]{w} and
{v}{w} = {vw} − 1/4[v][w], we have

{vw}[vu] ={w}{v}[vu] + 1/4[v][w][vu]

={w}[v2u]− {w}[v]{vu}+ 1/4[v][w][vu]

={w}[vu]− [v]{w}{v}{u} − 1/4[v]{w}[v][u]
+ 1/4[v]2[w]{u}+ 1/4[v]{v}[w][u]

(A.1)
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and
{vw}[vu] ={v}{vw}[u] + {vw}[v]{u}

={v2w}[u]− 1/4[v][vw][u] + {vw}[v]{u}
={v2w}[u]− 1/4[v]2{w}[u]− 1/4[v]{v}[w][u]

+ [v]{v}{w}{u}+ 1/4[v]2[w]{u}

(A.2)

Combining (A.1) and (A.2) we obtain

2{vw}[vu] = {w}[v2u] + {v2w}[u] + 1/2[v]2[w]{u} − 1/2[v]2{w}[u] (A.3)

Also,
[vu][vu] =[u]{v}[vu] + [v]{u}[vu]

=[u][v2u]− [v][u]{vu}+ [v]{u}[vu]
=[u][v2u])− [v][u]{v}{u} − 1/4[v][u][v][u]

+ [v]{u}[v]{u}+ [v]{u}{v}[u]
=[u][v2u]− 1/4[v]2[u]2 + [v]2{u}2

(A.4)
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