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Abstract. Model reduction methods often aim at an identification of slow invariant manifolds
in the state space of dynamical systems modeled by ordinary differential equations. We present a
predictor corrector method for a fast solution of an optimization problem the solution of which is
supposed to approximate points on slow invariant manifolds. The corrector method is either an
interior point method or a generalized Gauss–Newton method. The predictor is an Euler prediction
based on the parameter sensitivities of the optimization problem. The benefit of a step size strategy
in the predictor corrector scheme is shown for an example.

Key words. nonlinear optimization, continuation, Euler prediction, slow invariant manifold,
model reduction

AMS subject classifications. 37N40, 90C90, 80A30, 92E20

1. Introduction. Models including multiple time scales arise in many applica-
tions as e.g. combustion chemistry and biochemistry. The models under consideration
are described by a system of ordinary differential equations (ODE). Model reduction
methods for stiff multiple time scale ODE aim at an identification of the slow direc-
tions in the phase space of the system. After a short relaxation phase, the dynamics
of the ODE model are mainly determined by the slow modes.

The slow dynamics are often described by so-called slow invariant manifolds
(SIM). In the phase space of the dynamical system under consideration, trajectories
bundle on those SIM being attractors of nearby trajectories. These are hierarchically
ordered with decreasing dimension towards stable equilibrium, and the dimension cor-
responds to the set of slow (large) time scales. Fenichel analyzes slow manifolds in
context of singular perturbed systems of ODE in a series of articles [11, 12, 13, 14].
It is shown there that for a sufficiently large separation of time scales (a sufficiently
small singular perturbation parameter) there exists a mapping from a compact subset
of the subspace of slow variables into the subspace of fast variables. The graph of this
mapping is the slow manifold.

Many model reduction methods identify or approximate such SIM. The quasi
steady state approximation identifies the slow manifold of singular perturbed systems
of ODE by setting the singular perturbation parameter to zero [7, 9, 35]. The dynamics
are only described by the differential algebraic equation that consists of the ODE
for the slow variables and the implicit function relating the fast variables to the
slow ones and defining the slow manifold. The ILDM method identifies a local SIM
approximation based on an eigenvalue decomposition of the Jacobian of the right
hand side of the ODE [29]. The CSP method identifies a local basis where fast and
slow dynamics in the phase space are separated [23]. Many more methods for model
reduction based on an analysis of a separation of time scales exist, see e.g. the review
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[21].
In this article, we discuss the development of an efficient application of a model

reduction method based on optimization of trajectories to models including realistic
detailed chemical combustion mechanisms. In Section 2, we review the optimization
problem for model reduction. The numerical optimization method to solve this op-
timization problem is explained in Section 3. A continuation method including the
optimization method as corrector is introduced in Section 4. Existence of a homotopy
path is regarded as well as a step size strategy for efficient progress. In Section 5,
results of an application to example problems are shown. The article is summarized
in Section 6 and an outlook is given.

2. Optimization based model reduction. An approach for model reduction
based on optimization of trajectories is raised in [24]. The idea is to identify cer-
tain trajectories along which a criterion takes its minimum value that represents a
mathematical characterization of slowness and attraction of nearby trajectories. This
relaxation criterion is minimized subject to the constraints of the dynamics, the fixed
parameters for parametrization of the SIM, and eventual conservation laws.

2.1. Optimization problem. In [27], it is shown for two specific models that
the method identifies asymptotically the correct SIM. Here we stick near to the for-
mulation chosen there. We denote the ODE that describe the dynamics of the kinetic
system with

Dz(t) = S(z(t)), (2.1)

where D is the derivative of state vector z(t) at time t w.r.t. t. The function S : D→
Rn is assumed sufficiently smooth in an open domain D ∈ Rn. Conservation relations
are valid for many models. Typically, these are restrictions to an initial value z(t0)
for an initial value problem with the dynamics (2.1) and represent the conservation
of the mass of chemical elements in the system.

A subset of state variables is usually chosen for parametrization of the SIM ap-
proximation. In our formulation, these variables zj(t∗), j ∈ Ipv, which are called
reaction progress variables or represented species, are fixed at t∗ to a certain value
zt∗j , j ∈ Ipv with |Ipv| < n. The aim of a model reduction method that allows for
species reconstruction is the computation of the corresponding unrepresented variables
zj(t∗), j /∈ Ipv, at t∗ leading to a local representation of the SIM.

A general formulation of the optimization problem (similar to [27]) to compute
an approximation of a SIM is given by

min
z

Ψ(z) (2.2a)

subject to

Dz(t) = S(z(t)) (2.2b)

0 = C̄(z(t)) (2.2c)

0 = zj(t∗)− zt∗j , j ∈ Ipv (2.2d)

0 6 z(t) (2.2e)

and

t ∈ [t0, tf ] (2.2f)

t∗ ∈ [t0, tf ] (fixed). (2.2g)
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This means, a trajectory (piece) z has to be identified on an interval [t0, tf ] such that
the trajectory obeys the ODE (2.2b) and necessary conservation relations (2.2c). The
reaction progress variables are fixed to the desired values zt∗j , j ∈ Ipv at a point in
time t∗ in the interval [t0, tf ] in Eq. (2.2d). In some applications, positivity of the
state variables has to be demanded explicitly to guarantee physical feasibility in the
iterative solution algorithm for problem (2.2) as it is done in (2.2e).

2.1.1. Objective function. Various suggestions for a suitable objective func-
tional Ψ have been made, especially in [25]. In [27], the objective function

Ψ(z) :=

∫ tf

t0

Φ (z(t)) dt (2.3)

with the integrand

Φ(z(t)) = ‖JS(z(t)) S(z(t))‖22

in the Lagrange term is used, where JS denotes the Jacobian of S.

This might be motivated by the estimate

‖JS S‖2 6 ‖JS‖2 ‖S‖2,

where a small spectral norm ‖JS‖2 relates to the attraction property of the SIM and
a small ‖S‖2 relates to slowness.

2.1.2. Local formulation. The approximation of points on the SIM computed
as solution of optimization problem (2.2) is often used e.g. in computational fluid
dynamics (CFD) and other applications. In this context, a large number of approx-
imation points of the SIM for different values of the reaction progress variables is
needed. This means, problem (2.2) has to be solved repeatedly for a range of values
of zt∗j , j ∈ Ipv. This is generally very time consuming.

In this case, a local formulation (in time) can be used. It is given by (cf. [20])

min
z(t∗),T (t∗)

‖JS(z(t∗)) S(z(t∗))‖22 (2.4a)

subject to

0 = C(z(t∗)) (2.4b)

0 = zj(t∗)− zt∗j , j ∈ Ipv (2.4c)

0 6 z(t∗). (2.4d)

In the case of the objective function Ψ in (2.3), optimization problem (2.2) is semi-
infinite. A discretization method such as a collocation of orthogonal polynomials or a
shooting approach has to be applied to project it into a finite nonlinear programming
(NLP) problem. If (2.4) is used, the optimization problem is a finite dimensional
NLP problem, and the solution of the system dynamics (2.2b) is dispensable. This
problem can be solved directly with standard NLP software as sequential quadratic
programming [31] or interior point [19] methods.
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2.2. Parametric optimization. In the optimization problem which is solved
for model reduction purposes, there is a parameter dependence in terms of the fix-
ation of the reaction progress variables. Therefore, we consider parametric finite
dimensional NLP problems in the following. The standard problem is given as

min
x∈Rn

f(x, r) (2.5a)

subject to

g(x, r) = 0 (2.5b)

h(x, r) > 0, (2.5c)

where the objective function f : D × D̃ → R, the equality constraint function g :
D× D̃ → Rn2 , and the inequality constraint function h : D× D̃ → Rn3 depend on the
parameter vector r ∈ D̃ with both D ⊂ Rn, D̃ ⊂ Rnr open. The Lagrangian function
can be written as

L(x, λ, µ, r) := f(x, r)− λTg(x, r)− µTh(x, r).

First order sensitivity results are given by the following theorem of Fiacco [16].
These results are used in context of real-time optimization, see e.g. [8], and nonlinear
model predictive control, e.g. in [15, 40], for embedding of neighboring solutions of a
function of a parameter r.

Theorem 2.1 (Second-order sufficient conditions [30]). Let x∗ be a feasible point
of (2.5) for which the KKT conditions are satisfied with Lagrange multipliers (λ∗, µ∗).
Suppose further that

vT∇2
xxL(x∗, λ∗, µ∗, r)v > 0 ∀v ∈ C(x∗, λ∗, µ∗), v 6= 0,

where C is the critical cone. Then x∗ is a strict local minimizer for (2.5).
Proof. See e.g. [17, 30].
Theorem 2.2 (Parameter sensitivity [16]). Let the functions f , g, and h in

problem (2.5) be twice continuously differentiable in a neighborhood of (x∗, 0). Let
the second order sufficient conditions hold (see Theorem 2.1) for a local minimum of
(2.5) at x∗ with r = 0 and Lagrange multipliers λ∗, µ∗. Furthermore, let linear inde-
pendence constraint qualification (LICQ) be valid in (x∗, 0) and strict complementary
slackness, i.e. µ∗i > 0 if hi(x

∗, 0) = 0, i = 1, . . . , n3. Then the following holds:
(i) The point x∗ is a isolated local minimizer of (2.5) with r = 0, and the associated

Lagrange multipliers λ∗, µ∗ are unique.
(ii) For r in a neighborhood of 0, there exists a unique once continuously differen-

tiable function (x(r), λ(r), µ(r)) satisfying the second order sufficient conditions
for a local minimum of (2.5) such that

(x(0), λ(0), µ(0)) = (x∗, λ∗, µ∗),

and x(r) is a isolated local minimizer of (2.5) with Lagrange multipliers λ(r)
and µ(r).

(iii) Strict complementarity with respect to µ(r) and LICQ hold at x(r) for r near 0.
Proof. See [16].
Numerically, the inequality constraints (2.5c) can be treated with either an active

set (AS) strategy or an interior point (IP) method. In an AS strategy, the AS is
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updated in each iteration. Active constraints are considered as equality constraints,
inactive constraints are omitted. By contrast, the objective function is modified with
a barrier term eliminating the inequality constraints in an IP framework. Therefore,
we only regard equality constraints in the following.

The necessary optimality (KKT) conditions (stationarity of the Lagrangian func-
tion, feasibility, and complementarity) for problem (4.1) can shortly be written as

K(x, λ, µ, r) = 0. (2.6)

with e.g. for an active set method

K(x, λ, µ, r) :=


∇f(x, r)−∇x g(x, r)λ−∇x h(x, r)µ

g(x, r)

hi(x, r), i ∈ A(x),

We are interested in the derivative of the solution (x∗(r), λ∗(r), µ∗(r)) of (2.6)
with respect to the parameters. The implicit function theorem yields

D(x,λ,µ)K(x∗, λ∗, µ∗, r) Dr(x, λ, µ) = −DrK(x∗, λ∗, µ∗, r).

The symbol Dxf denotes the partial derivative of f w.r.t. x. The same equation in
matrix notation is

[
DxK DλK DµK

] Drx
Drλ
Drµ

 = −DrK. (2.7)

The KKT matrix [
DxK DλK DµK

]
(2.8)

is nonsingular if LICQ and second order sufficient optimality conditions [17, 30] are
fulfilled.

3. Numerical solution of the optimization problem (2.4). The optimiza-
tion problem (2.4) is a constrained nonlinear least squares (CNLLS) problem of the
form

min
x∈Rn

1
2‖F1(x)‖22 (3.1a)

subject to

F2(x) = 0 (3.1b)

where the functions Fi : D → Rni , i = 1, 2, are supposed to be at least twice
continuously differentiable in their open domain D ⊂ Rn. The problem is solved
iteratively: xk+1 = xk + tkdk, where dk ∈ Rn is the increment and tk ∈ (0, 1] the step
length.

In order to solve this CNLLS problem, we use a generalized Gauss–Newton (GGN)
method as described in [6, 37], where the step direction (increment) is computed as
solution of the linearized optimization problem

min
d∈Rn

1
2‖F1(xk) + J1(xk)d‖22 (3.2a)
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subject to

F2(xk) + J2(xk)d = 0 (3.2b)

where Ji is the Jacobian matrix of Fi for i = 1, 2.
An AS strategy is used to treat inequality constraints. For globalization, we

employ a filter method [18]. The filter is implemented as in [38, 39]. The most
important feature of a filter is the fact, that a step is accepted if it improves the value
of the objective function or the constraint violation. The combination of a GGN
method with a filter method for globalization of convergence is new to our knowledge.

To prevent the Maratos effect [30], we use a second order correction (SOC) as in
[38, 39]. The SOC increment is computed as solution of the least squares problem, cf.
[30]:

min
ď
‖ď‖22

subject to

F2(x+ d) + J2(x)ď = 0.

If a trial point is not accepted by the filter after several reductions of the step size,
a feasibility restoration phase is necessary. This can be done efficiently in context of a
Gauss-Newton method. The aim of the feasibility restoration phase is the computation
of a feasible point that is “near” to the last accepted iterate and acceptable to the
updated filter.

The goal to find a feasible point that is “near” to the last iterate x = xk can be
written in context of GGN methods as the following CNLLS problem

min
x̄

1
2‖x̄− x‖

2
2 (3.4a)

subject to

F2(x̄) = 0 (3.4b)

Problem (3.4) can be solved iteratively with an increment d̄kl with the new iteration
index l as solution of a CLLS optimization problem

min
d̄

1
2‖x̄k − x+ d̄‖22 (3.5a)

subject to

F2(x̄k) + J2(x̄k)d̄ = 0 (3.5b)

and initial value x̄0 := x. The only difference between (3.5) and problem (3.2) is the
objective function, matrix factorizations, e.g. of J2, can be reused.

4. Continuation strategy. It is useful to follow the homotopy path of the
zero of the KKT conditions in dependence of the reaction progress variables to solve
families of optimization problems alike (2.2) for different parameters.

In the following, we consider the finite dimensional parametric optimization prob-
lem

min
x∈Rn

f(x) (4.1a)
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subject to

0 = g(x) (4.1b)

0 = xj(i) − ri, i = 1, . . . , nr (4.1c)

where the functions f : D → R and g : D → Rn2 are C2(D) in the open domain
D ⊂ Rn. The fixed values of the reaction progress variables in (4.1c) are denoted by
the parameter vector r ∈ Rnr , ri = zt∗j(i), i = 1, . . . , nr, nr < n−n2 with the notation

of Equation (2.2d), where j : {1, . . . , nr} → Ipv, i 7→ j(i) is a bijective map to the
index set Ipv ⊂ {1, . . . , n} of the reaction progress variables.

4.1. Parameter sensitivities in the GGN method. If Newton’s method
together with an active set method is used to find a candidate solution of (4.1),
i.e. the computation of a root of K, the KKT matrix D(x,λ,µ)K(xk, λk, µk) has to
be computed in every iteration k. This is different if a generalized Gauss–Newton
method is employed.

We return to the notation used in Section 3: The objective function is written
as f(x) = ‖F1(x)‖22 with a sufficiently smooth function F1 : D ⊂ Rn → Rn1 . The
constraints are given as F2 : D ⊂ Rn → Rn̄2 , n̄2 = n2 + nr + |A(x)| with

F2(x) =


g(x)

xj(i) − ri, i = 1, . . . , nr

xi, i ∈ A(x)

and the active set A(x) in x. The Jacobian matrices of F1 and F2 are denoted as J1

and J2, respectively.
In every iteration, the equation system[

JT
1 J1 JT

2

J2 0

] [
d
−λ

]
= −

[
JT

1 F1

F2

]
(4.2)

is solved in the GGN method (where the argument xk is omitted and the vector λ is
used for all equality and active inequality constraints); that is the KKT system of the
CLLS problem (3.2), see Section 3. By contrast,[

Lxx −JT
2

J2 0

] [
∆x
∆λ

]
= −

[
∇xL
F2

]
(4.3)

is solved if Newton’s method is applied to find a KKT point of the original CNLLS
problem (3.1). The derivative of the Lagrangian function of the CNLLS problem
is ∇xLT = F1(x)TJ1(x) − λTJ2(x). The difference in the KKT matrices in Equa-
tions (4.3) and (4.2) is the difference in the Hessians of the different Lagrangian
functions: In the GGN method, JT

1 J1 is used; whereas Newton’s method applied to
the KKT conditions of the original CNLLS problem (3.1) exploits

Lxx = ∇xx 1
2‖F1(x)‖22 −

n̄2∑
i=1

λi∇xxF i2(x)

= JT
1 J1 +

(
DxJ

T
1

)
F1 −

n̄2∑
i=1

λi∇xxF i2(x),

(4.4)
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where F i2 is the i-th component of F2.
In our application in chemical kinetics, the constraints F2 are given via conser-

vation relations. In this case, the second derivative ∇xxF i2 of F i2 typically is zero.
This might not be true, if an entry in F2 is a nonlinear equation in x representing
an energy conservation law, see also [26]. This means, the effort for computing Lxx
instead of JT

1 J1 is mainly the effort to compute the expression
(
DxJ

T
1

)
F1. This can

be evaluated using automatic differentiation [22] as a directional derivative of J1 with
respect to direction F1.

4.2. Euler predictor. If the approximation of points on the SIM is used in
simulations in computational fluid dynamics, approximations of the tangent vectors
of the SIM in these points are needed, too, see e.g. [34]. These are given via the

parameter sensitivities Drix
∗ = dz∗(t∗)

dzt∗
j(i)

at the solution x∗ and z∗ of the optimization

problems (4.1) and (2.2), respectively. As these derivatives are available, we use the
Euler prediction in a predictor corrector scheme for initialization of the optimization
algorithm (corrector) to solve neighboring problems. In our case, this is the compu-
tation of a solution with the optimization algorithm for various parameter values of
the reaction progress variables r.

The prediction can be used in a homotopy method with a step size strategy. An
effective step size strategy is published in [10] and extensively discussed and modified
in [3, 4, 5]. We use the method as discussed in [4]. The aim of the step length strategy
of den Heijer and Rheinboldt [10] is to achieve a desired number of iterations for the
corrector step. The strategy allows for the computation of a step length based on the
contraction rate of the latest corrector iterations and an error model for the corrector
such that the desired number of iterations is achieved.

We define a curve c as a mapping from the parameter space to the space of the
primal and dual variables of (4.1)

c : Rnr → Rn+n2

r 7→ c(r) :=

(
x∗(r)
λ∗(r)

)
.

For each value of the parameter vector r, c(r) is the solution (x∗(r), λ∗(r)) of (4.1).
We denote the Euler predictor step

c0i+1(hi) = ci + hi(ri+1 − ri)T d
dr ci(ri), i = 0, . . . (4.5)

The prediction c0i is used as initialization of the corrector to compute the solution of
(4.1). The corrector iterations are denoted

cj+1
i (hi) = C(cji (hi)), j = 0, . . .

with the corrector C. It is assumed that the corrector iterations converge to the
solution

c∞i (hi) := lim
j→∞

cji (hi) ∈ K
−1(0).

The sophisticated aspect in the work of den Heijer and Rheinboldt [10] is the
error model φ. This error model estimates the error of the iterates

εj(hi) = ‖c∞i (hi)− cji (hi)‖2
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Table 5.1
Simplified mechanism as used in [33]. Collision efficiencies M: αH = 1.0, αH2

= 2.5, αOH =
1.0, αO = 1.0, αH2O = 12.0, αN2 = 1.0; [33].

Reaction A / (cm,mol, s) b Ea / kJ mol−1

O + H2 
 H + OH 5.08× 1004 2.7 26.317
H2 + OH 
 H2O + H 2.16× 1008 1.5 14.351
O + H2O 
 2 OH 2.97× 1006 2.0 56.066
H2 + M 
 2 H + M 4.58× 1019 −1.4 436.726
O + H + M 
 OH + M 4.71× 1018 −1.0 0.000
H + OH + M 
 H2O + M 3.80× 1022 −2.0 0.000

independently of h via an expression of the form

εj+1(hi) 6 φ(εj(hi)).

The formula for the error model depends on the contraction rate of the corrector, see
[4, p. 53ff.], where we use the error model for the quadratically convergent Newton’s
method and for the linearly convergent GGN method.

Linear step. Optimization problem (4.1) has to be solved many times for different
values of the parameter r. Especially if the approximation of points on a SIM is needed
in situ, e.g. in a CFD simulation, it is necessary to compute the solution of neighboring
optimization problems fast.

If the values rnew for the reaction progress variables, for which a SIM approxima-
tion is needed, are near to the values r∗

‖rnew − r∗‖2 < εtol (4.6)

for which the optimization problem is already solved, it can save computing time to
use zlin as approximation of the SIM. This is defined (in analogy to (4.5)) as

zlin := z∗(t∗) + (rnew − r∗)T dz∗(t∗)

dr
(r∗) (4.7)

where the notation is in accordance with the notation in (2.2), ri = zt∗j(i), i = 1, . . . , nr,

nr = |Ipv|, j is the bijection, and ri is the i-th component of r.

5. Numerical results. For numerical validation of our method, we use a test
model for model reduction purposes. The reaction mechanism is given in Table 5.1.
We use thermodynamical data in form of coefficients of NASA polynomials we received
from J. M. Powers and A. N. Al-Khateeb, which they use in [1, 2].

The mechanism is published originally in [28]. The simplified version shown in
Table 5.1 is used by Ren et al. in [33]. The mechanism consists of five reactive species
and inert nitrogen, where in comparison to a full hydrogen combustion mechanism the
species O2, HO2, and H2O2 are removed. The species are involved in six Arrhenius
type reactions, where three combination/decomposition reactions require a third body
for an effective collision. The reaction system is considered under isothermal and
isobaric conditions at a temperature of T = 3000 K and a pressure of p = 101 325 Pa.
Hence, the state of the system is sufficiently described by the specific moles of the
chemical species zi, i = 1, . . . , nspec in mol kg−1.
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Conservation relations for the elemental mass in this model are given in terms of
amount of substance as [33]

nH + 2nH2
+ nOH + 2nH2O = 1.25× 10−3 mol

nOH + nO + nH2O = 4.15× 10−4 mol

2nN2
= 6.64× 10−3 mol.

(5.1)

The total mass in the system can be computed with the values in Equation (5.1) and
has a value of m = 1.01× 10−4 kg.

5.1. One-dimensional SIM approximation. Results of an approximation of
a one-dimensional SIM are shown in Figure 5.1 and 5.2. We use zH2O as reaction
progress variable and vary its value. The values of all remaining species at the solution
of the different optimization problems are plotted versus zH2O in form of trajectories
through the solution points z∗(t∗) which are shown as x marks. The computation is
done with the GGN method as described in Section 3.

We use values near the equilibrium state as initial values in the optimization
algorithm as we assume this point near a slow manifold. We set the values of the
reaction progress variable near its initial value; see Table 5.2. This allows for a fast
computation of a solution of the first optimization problem with zt∗H2O = 3 mol kg−1.

Table 5.2
Initial value (unscaled) for the algorithm and a solution of the optimization problem (2.2) as

solved for the results depicted in Figure 5.1 to reduce the simplified hydrogen combustion model with
zt∗H2O

= 3 mol kg−1.

Variable Initial value z0(t∗) Numerical solution z∗(t∗)

zO 0.345 464 41 0.345 637 63
zH2

2.027 973 2 2.028 161 5
zH 1.519 563 9 1.519 360 6
zOH 0.764 549 59 0.764 376 37
zH2O 3.000 000 0 3.000 000 0
zN2

32.905 130 32.905 130

All computations are done on an Intelr CoreTM i5-2410M CPU with 2.30 GHz,
operating system openSUSE 12.2 (x86 64) including the Linux kernel 3.4.11 and GCC
4.7.1. We do not use a step size strategy in the predictor corrector scheme. To compute
the 17 points shown in Figure 5.1, 74 iterations are necessary, which take in sum 0.02 s.

Figure 5.2 is presented to illustrate the linear step approximation. For the com-
putation of the three solutions (as εtol = 1.1 is chosen) of the optimization problem
with different values for zH2O, 15 iterations are needed (in sum), which is slightly more
effort per optimization problem than in the case, where the results are illustrated in
Figure 5.1, where the distance between the different values for zt∗H2O is only 0.25. It
can be seen that the result of the linear approximation can lead to large deviations
from a smooth, invariant manifold.

Warm start with step size strategy. We want to demonstrate that a step size
strategy for the warm start of the algorithm to solve neighboring optimization prob-
lems can have a benefit. So we consider the optimization problem (2.2) with t∗ = tf ,
tf − t0 = 10−7 s to be solved for the nominal parameter zt∗H2O = 3 mol kg−1 with the
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Fig. 5.1. Numerical solutions of the optimization problem (2.4) to approximate a one-
dimensional manifold in the state space of the six species model for hydrogen combustion. The
full dot represents the equilibrium. The x marks depict solutions z∗(t∗) of (2.4) for different values
of the reaction progress variables zH2O at t∗. Trajectories through these points (curves in the figures)
are also shown.

shooting approach and Ipopt [39]. As neighboring problem we consider the parame-
ter zt∗H2O = 0.5 mol kg−1. Such a large change in the parameter can occur e.g. if the
presented method for model reduction is used in situ in a CFD simulation and grid
refinements are performed in different regions of the spatial domain.

We solve the optimization problem first with zt∗H2O = 3 mol kg−1 and second with

zt∗H2O = 0.5 mol kg−1 with a full step method in the predictor corrector scheme and
apply the Euler prediction.

The computations are done on an Intelr CoreTM i5-2410M CPU with 2.30 GHz,
operating system openSUSE 12.2 (x86 64) including the Linux kernel 3.4.11 and GCC
4.7.1. Six iterations in Ipopt [39] have to be preformed to solve the nominal opti-
mization problem and nine iterations to solve the second optimization problem. In
sum, 15 iterations are necessary which take 0.82 s in sum.
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Fig. 5.2. Illustration of solutions of the same problem as solved for the results shown in
Figure 5.1, but with a linear step tolerance of εtol = 1.1, see (4.6).

If we initialize the step size strategy, see Section 4.2, with initial step size hinit =
1

2.5 and the desired number of iterations k̃ = 10, we need one intermediate step in the
predictor corrector scheme described in Section 4.2. This is to solve the optimization
problem with the parameter zt∗H2O = 2 mol kg−1. In this case we need in sum 6+5+8 =
19 iterations that take only 0.70 s. The difference in the computation time arises as
the point for initialization of the algorithm to solve the second optimization problem
in the full step method is not near the solution such that the KKT matrix is ill-
conditioned. The inertia correction in Ipopt, see [39], is activated, and 19 line search
iterations are performed in sum. In case of an activated step size strategy, the initial
value for the algorithm to solve the optimization problem in case of a warm start is
near the solution of the optimization problem such that no inertia correction and also
19 line search iterations (one per Newton iteration) are necessary in the presented
example.

For an efficient tracking of the SIM for different values of the reaction progress
variables, it is important to stay close to the solution in neighboring optimization
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problems. Therefore, a step size strategy is beneficial.

5.2. Two-dimensional SIM approximation. We choose z1 = zH2
and z2 =

zO as reaction progress variables. Numerical solutions of (2.2) for the reduction of
the simplified model for hydrogen combustion are shown in Figure 5.3.
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Fig. 5.3. Visualization of numerical solutions of the optimization problem (2.2) with t∗ = tf ,
tf − t0 = 10−7 s to reduce the simplified hydrogen combustion model with the reaction progress
variables z1 and z2. The solution points z∗(t∗) with z3 = zH2O for different values of (zt∗1 , zt∗2 )
are shown as a mesh. The results shown in Figure 5.1 are again plotted as x marks as well as the
equilibrium is shown as full dot.

Local solutions of the optimization problem (2.2) approximate different two-di-
mensional SIM for different values of the reaction progress variables. The two two-
dimensional SIM come close to each other. Such occurrences can lead to severe numer-
ical problems in the optimization algorithms as well as in the continuation algorithms
as there are regions where the KKT matrix might be singular at least in the range of
machine precision.

5.2.1. Optimization landscapes. We want to further illustrate this situation
via optimization landscapes, i.e. graphical representations of the objective function
versus the (free) optimization variables.

One reaction progress variable. In Figure 5.4, the value of (the objective function
of the optimization problem (2.4)) Φ = ‖JS(z) S(z)‖22 is plotted versus the two
degrees of freedom in (2.4) represented by z1 and z2 for one exemplary value of the
one reaction progress variable zt∗3 = zt∗H2O = 1 mol kg−1 for the simplified hydrogen
combustion model.

The Φ-axis has logarithmic scale. A single local solution of the optimization
problem (2.4) for the reduction of the simplified hydrogen combustion model can be
seen.

Two reaction progress variables. To compute an optimization landscape in case
of two reaction progress variables, we fix zt∗2 = zt∗O = 0.3 mol kg−1. We regard the
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Fig. 5.4. Visualization of Φ = ‖JS(z) S(z)‖22 in dependence of z1 and z2 to illustrate the

solution of the optimization problem (2.4) with zt∗3 = zt∗H2O
= 1 mol kg−1 for the reduction of the

simplified hydrogen combustion model.

value of Φ = ‖JS(z) S(z)‖22 (the objective function of the optimization problem (2.4))
in dependence of z3 for fixed z1.

The results are shown in Figure 5.5. It can be seen that there are two distinct
local minima of Φ = ‖JS(z) S(z)‖22 for a fixed value of e.g. z1 = 2 mol kg−1: There
is no unique local solution of the optimization problem (2.4) for the reduction of
the simplified hydrogen combustion model with the reaction progress variables zt∗2 =
zt∗O = 0.3 mol kg−1 and zt∗1 = zt∗H2

= 2 mol kg−1. One solution is near the value

z′3 = z′H2O = 3.1020 mol kg−1 and the other one near z′′3 = 5.2977 mol kg−1.
In this case the predictor corrector scheme helps to follow the desired local optimal

solution in dependence of the reaction progress variables and not to switch to another
curve c of local solutions. This is only possible as long as the KKT matrix is not “too
ill-conditioned”.

5.2.2. Performance test. We use the specific moles of H2O and H2 for the
parametrization of a two-dimensional SIM approximation in a performance test.

We consider a test situation of a two-dimensional grid of 108 points (zt∗H2O, zt∗H2
) ∈

[0.001, 0.5, 1, 1.5, . . . , 5, 5.5]× [0.001, 0.5, 1, . . . , 3.5, 4], where points which violate mass
conservation in combination with the positivity constraints are ignored such that 80
points remain.

Solutions of the optimization problem (2.4) computed with the GGN method with
Euler prediction for initialization of the algorithm to solve neighboring problems are
shown in Figure 5.6 for illustration.

In Table 5.3, we compare the performance of the algorithm using the different
implemented solution methods. We use the generalized Gauss–Newton method as
described in Section 3 for the solution of (2.4). We solve the same problem with the
interior point algorithm Ipopt [39]. Third, we apply a shooting approach for the semi-
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Fig. 5.5. Visualization of Φ = ‖JS(z) S(z)‖22 for the simplified hydrogen combustion model
in dependence of z1 and z3 for a fixed value of z2 = 0.3 mol kg−1. The scale for Φ is logarithmic.
Consider the value of Φ in dependence of z3 for a fixed value of z1, e.g. for z1 = 2 mol kg−1.

infinite optimization problem (2.2) with t∗ = tf . The NLP problem (after solving the
ODE with the BDF integrator developed by D. Skanda in [36]) is solved with Ipopt

[39]. As a fourth alternative, we use a simple Gauss–Radau collocation with linear
polynomials (backward Euler) for (2.2) with t∗ = tf . The resulting high-dimensional
NLP problem is also solved with Ipopt [39] in the latter case. For the optimization
problem (2.2), an integration horizon of tf − t0 = 10−8 s is used.

Table 5.3
Comparison of the performance of the various algorithms for the reduction of the simplified

model for hydrogen combustion with two reaction progress variables and full step predictor corrector
method for the initialization of neighboring problems.

Method Prediction # Iter. w/o fail Time Fail Time w/o fail

GGN Constant 806 0.43 s 11 0.18 s
Euler 731 0.35 s 11 0.17 s

IP for (2.4) Constant 670 1.09 s 0 1.09 s
Euler 591 0.85 s 0 0.85 s

Shooting Constant 335 44.15 s 0 44.15 s
Euler 258 39.36 s 0 39.36 s

Collocation Constant 315 95.61 s 0 95.61 s
Euler 234 51.13 s 0 51.13 s

An initialization of neighboring problems is done without step size control, as we
evaluate the benefit of the Euler prediction here. The computations are done with
the same computer configuration as in the example for a warm start with step size
control in Section 5.1.
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Fig. 5.6. Illustration of an approximation of a two-dimensional SIM in the phase space of
the simplified model for hydrogen combustion. The optimization problem (2.4) is solved with the
GGN method. The absolute tolerance for all di is 10−10. The relative tolerance is 10−9. The
values of the optimization variables at the solution are plotted versus the given values of the reaction
progress variables shown as x marks. The trajectories started with the solution z∗(t∗) as initial
values converge toward the equilibrium shown as full dot.

It can be seen that the gain in the computation time achieved by the Euler
prediction in case of the collocation method, where we use 100 collocation points, is
the largest with about 46.5%. This is reasonable because of the strong dependence
of the collocation method on the initialization on all collocation points in the time
interval [t0, tf ].

The benefit of the Euler prediction is about 10.8% if the shooting approach is
used to solve (2.2). In case of the GGN method, the benefit is only 5.6% if we do
not regard failures. The eleven failures only occur in the region, where zt∗H2O is larger
than the equilibrium value zeq

H2O. These can not be overcome neither with the step
size control for the continuation method nor with a larger tolerance for convergence
in the GGN method. It can be seen that the algorithm for the solution of (2.4) with
the GGN method is much faster than the algorithm for the solution of (2.2). The
computation of one approximation of a point on the SIM (without regarding failures)
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takes about 0.17 s/(80 − 11) ≈ 2.5 ms. This is pretty fast and might be used in an
online (in situ) SIM computation during CFD simulations.

6. Conclusion. In this article, we present a strategy for an efficient solution of
parametric optimization problems that arise for a method for model reduction that
is raised in [24, 25, 32].

Two methods are tested to solve the semi-infinite optimization problem (2.2)
for model reduction: collocation and shooting approaches. The resulting nonlinear
programming problem is solved with a state-of-the-art open source interior point
algorithm [39]. It turns out that all variants for the solution of the semi-infinite
optimization problem are too slow for an in situ application of the model reduction
method in e.g. a computational fluid dynamics simulation.

A finite optimization problem in form of a constrained nonlinear least squares
problem can be formulated instead. This can be solved efficiently with a generalized
Gauss–Newton method. A filter approach is used for globalization of convergence.
Second order correction iterations prevent the Maratos effect. The problem that has
to be solved in the feasibility restoration phase of the filter algorithm can also be
formulated as a least squares problem such that matrix factorizations can be reused.

Parameter sensitivities of the optimization problem are used in a homotopy
method for the solution of neighboring problems. The reaction progress variables
for parametrization of the slow manifold are considered as parameters in the opti-
mization problem. The problem has to be solved several times for different values
of the parameters. An Euler prediction of the solution of neighboring problems is
employed based on the parameter sensitivities, which are computed to obtain an ap-
proximation of the tangent space of the slow manifold. This linear prediction can be
used directly within a certain tolerance as an approximation of a point on the slow
manifold. It can also be used in combination with a step size strategy. The step size is
computed according to [10] in dependence of the contraction of the corrector method
– the solution method for the nonlinear programming problem – and the iterations
needed to solve a previous optimization problem.

We study the presented methods for a simplified model for hydrogen combustion.
We find that a solution of the optimization problem for approximation of points on a
slow manifold can be computed in short time for the presented example. Furthermore
it can be seen that there might exist several distinct local solutions of the optimization
problem. In such cases, the predictor corrector scheme helps to follow one local
minimum in dependence of the chosen parametrization of the slow manifold.

Such a solution strategy could also be used for variations in the model parameters
as e.g. the mixture fraction, the internal energy, and others.
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