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Abstract
Integrate-and-fire models of biological neurons combine differential equations with discrete spike
events. In the simplest case, the reset of the neuronal voltage to its resting value is the only spike
event. The response of such a model to constant input injection is limited to tonic spiking. We here
study a generalized model in which two simple spike-induced currents are added. We show that
this neuron exhibits not only tonic spiking at various frequencies but also the commonly observed
neuronal bursting. Using analytical and numerical approaches, we show that this model can be
reduced to a one-dimensional map of the adaptation variable and that this map is locally
contractive over a broad set of parameter values. We derive a sufficient analytical condition on the
parameters for the map to be globally contractive, in which case all orbits tend to a tonic spiking
state determined by the fixed point of the return map. We then show that bursting is caused by a
discontinuity in the return map, in which case the map is piecewise contractive. We perform a
detailed analysis of a class of piecewise contractive maps that we call bursting maps and show that
they robustly generate stable bursting behavior. To the best of our knowledge, this work is the first
to point out the intimate connection between bursting dynamics and piecewise contractive maps.
Finally, we discuss bifurcations in this return map, which cause transitions between spiking
patterns.
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integrate-and-fire; hybrid dynamical systems; Mihalas–Niebur neuron; bursting; contraction
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1. Introduction
A pervasive issue in computational neuroscience is the tradeoff between a neural model’s
accuracy and the computational cost of its implementation. Models that include details of
biophysical ion channels, such as the Hodgkin–Huxley model, are considered very accurate,
especially if they also take into account the detailed morphology of the cell. Unfortunately,
such models are computationally very expensive and their specification requires many
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parameters. On the other hand, integrate-and-fire models without spatial extension are
capable of reproducing basic neuronal behaviors while being far less computationally
expensive and requiring far fewer parameters. Thus, parameter estimation from biological
data is more tractable for these simplified neural models, and these lower-dimensional
models allow for a systematic exploration of parameter space.

The leaky integrate-and-fire neuron appeared in the 1960s (see Brunel and van Rossum,
2007 for a review). All integrate-and-fire models use a differential equation to describe the
transmembrane voltage of a neuron between action potentials (“spikes”). Given that spikes
are highly stereotyped, the models omit detailed simulations of action potentials and replace
them with simple instantaneous events. The sequence of times of these spiking events
constitutes the output of the neuron. In addition, during a spiking event the transmembrane
voltage is modified. In the simplest case (Knight, 1972), this modification is a reset of the
voltage to its resting value, usually chosen as zero. In response to constant input, after a
transient, the model’s response is limited to generating sequences of action potentials with
constant frequency (“tonic spiking”). Obviously, this frequency vanishes for sufficiently
small input currents.

Despite its simplicity, the leaky integrate-and-fire neuron continues to be used in a large
number of applications. Nevertheless, it is well known that the repertoire of biological
neurons is not limited to tonic firing. To capture these richer behaviors, a number of
generalized integrate-and-fire models have been proposed (for a review see Izhikevich,
2004). In this study, we consider a particular generalized integrate-and-fire model and focus
primarily on how it can represent the two most commonly observed firing patterns (other
than adaptation, which can be seen as a transient). One is tonic firing, already described, and
the other is bursting, which is the generation of a sequence of action potentials in rapid
progression followed by a silent period after which the process recommences. While there
are other methods for adding bursting to a neuron model’s repertoire, we will show that a
very simple generalization of the leaky integrate-and-fire neuron, the addition of spike-
induced currents, suffices.

The rigorous study of spiking neuron models is an active area in applied mathematics.
Spiking models involving resets are examples of hybrid systems. Hybrid systems are
generally defined as dynamical systems that exhibit both continuous and discrete dynamical
behavior. This class of dynamical systems, however, is vast and admits many subclasses
(see Henzinger, 1996 for a review). The best understood class of hybrid systems is that
known as variable structure systems. These systems are of the following form:

(1.1)

where the state vector x ∈ ℝn is continuous and the function φ(x, t) : ℝn×ℝ → ℝn is
piecewise continuous with finitely many continuous pieces. When the state trajectory x
crosses certain boundaries in the phase space, the function φ(x, t) experiences a
discontinuity.

On the other hand, in spiking neural models, the state trajectory is discontinuous, while the
dynamical function φ(x, t) remains constant. These systems are sometimes called impulsive
dynamical systems (Haddad, Chellaboina, and Kablar, 2001), and their analysis requires
tools different from those employed in the study of the more common switching-type hybrid
systems frequently considered in the engineering and control literature. Later in this work,
we point out an interesting connection between these two classes of hybrid systems: both
naturally admit symbolic representations based on phase-space partitions.
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In this paper, we take a similar approach to that of Touboul and Brette (2009) and provide a
thorough analysis of the dynamics of a particular hybrid spiking model. The study of
Touboul and Brette (2009), like ours, analyzes spiking patterns through an appropriately
defined one-dimensional discrete map. This discrete map is defined based on reset to a line
of possible values and maps a reset value after a spike to the reset value after the next spike.
The analysis of the orbits generated by a map of this form in Touboul and Brette (2009),
however, is complicated by the fact that the continuous dynamics are nonlinear. This
nonlinearity necessarily complicates the relationship between the properties of the
continuous system and those of the discrete map. In contrast, we shall see in section 3 that a
linear model is sufficient for generating tonic spiking and bursting, and this formulation
greatly facilitates the analysis of model solutions.

The maps considered by Touboul and Brette (2009) and Izhikevich and Hoppensteadt
(2004) generate bursting patterns through limit cycles (a review of map-based approaches to
neuronal dynamics can be found in Ibarz, Casado, and Sanjuán (2011); see also section 7).
In both cases, the maps are continuous. Touboul and Brette (2009) make the following
important observation: if there is a periodic bursting orbit of period 3, then there must exist
periodic orbits of all periods. This follows directly from a theorem proved by Sharkovskiĭ
(1995). This property is unfortunate from the point of view of neural coding, since it
indicates that it is problematic to model intrinsic bursting of period 3 with a one-dimensional
continuous map, as one must ensure that the orbits of other periods are unstable. It seems
unlikely that real neurons are affected in an appreciable way by this mathematical difficulty.

The immediate consequence of this result is that, to the extent that intrinsic bursting of
period 3 can be modeled by a class of one-dimensional maps, these maps cannot be
continuous. In fact, discontinuous map models of neurons have previously been explored by
Nagumo and Sato (1972), Rulkov (2002), Shilnikov and Rulkov (2003), Medvedev (2005),
Manica, Medvedev, and Rubin (2010), and Lajoie and Shea-Brown (2011). Nagumo and
Sato consider a piecewise linear map and give a condition for an individual orbit to be
periodic. However, for general models with linear state dynamics between spikes, the
adaptation map is nonlinear due to the nontrivial dependence of the post-spike assignment
on initial conditions. Thus, Sato and Nagumo’s work is particular to their map definition. In
this work, we shall generalize their findings to a larger class of dynamical systems: those
with piecewise contractive one-dimensional representations.

Although earlier work on map models of neurons does not fit into the piecewise contraction
framework, piecewise contractive maps have been studied in the mathematical literature as a
natural extension to the study of piecewise isometries and interval exchange transformations
(see Bruin and Deane, 2009; Brémont, 2006; Gambaudo and Tresser, 1988; Catsigeras and
Budelli, 2011). Piecewise contractive maps Φ : V → V, where V is a metric space, satisfy the
contractive property d(x, y) > d(Φ(x), Φ(y)) but only when there is an i such that x, y ∈ Si,

where  is a partitioning of the domain of Φ such that V = ∪Si and Si ∩ Sj = ∅ for i ≠ j.
Piecewise contractions have recently been used to study spiking neural networks (Catsigeras
and Guiraud, to appear; Cessac, 2008). Piecewise contractive maps generate symbolic
sequences by traversing the various partitions of the domain, yet they generally avoid
chaotic regimes. Recently, several classes of piecewise contractive maps have proven to be
generically asymptotically periodic and therefore nonchaotic (Bruin and Deane, 2009;
Brémont, 2006; Catsigeras and Budelli, 2011). Counterexamples exist (Kruglikov and
Rypdal, 2006), but this is the exception rather than the rule, as expansive dynamics are
typically required in order to generate chaotic behavior. In our work, we extend the
application of the theory of piecewise contractive mappings to single-neuron modeling. In
doing so, we also shed new light on bursting phenomena in particular.
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The remainder of this paper is organized as follows. In section 2, we formally introduce the
model, provide its solution formula, and define the solutions considered in this study. In
section 3.1, we reduce the model to a one-dimensional map, and in section 3.2, we discuss
its piecewise contractive property. We show that piecewise contractive dynamics are an
inherent property of this model, and we provide an analytical expression for the derivative of
the map at every point. We use this analytical expression to conduct a numerical search of
parameter values for which the model satisfies the piecewise contractive property. In section
4, we discuss tonic spiking in the model. We show that in the tonic firing regime, there is a
one-to-one correspondence between the external inputs to a neuron and its asymptotic firing
rate. We also provide a sufficient analytical condition on the parameters that ensures that the
return map is globally contractive; in this case the neuron fires tonically. In section 5, we
develop a generalization of bursting behaviors observed in our neurons that we call bursting
maps. We show that bursting maps robustly generate periodic orbits with symbolic
dynamics that are the simplest possible description of bursting phenomena. We discuss
transitions between solution types under parameter variation, along with some associated
issues of co-existence, in section 6. Finally, in section 7, we make concluding remarks,
comment further on the relation of our work to some others in the literature, and point out
directions for future research.

2. The neuron model
2.1. General model definition

The model neuron to be studied is described by the following set of differential equations:

(2.1)

where Ij are internal (“spike-induced”) currents and V (t) is the voltage. All other quantities
are constants: Ie is the injected (input) current, kj and γ are inverse time constants, and V0 is
the resting potential. We assume henceforth that the kj are all distinct from each other and
from γ.

When the voltage reaches threshold, V (t) = Θ, the state variables are updated. The update
rules are

(2.2)

where V0 < Θ is the reset potential. Typically, Ri ∈ {0, 1} for all spike-induced currents Ii. If
Ri = 0, the value of Ii is reset to Ai after every spike. If Ri = 1, the value of Ii is incremented
by Ai following each spike; we refer to such spike-induced currents as additive current. The
system defined by (2.1) and (2.2) will be referred to in the rest of this work as “the model.”

We note that the model is a special case of the generalized integrate-and-fire model
introduced by Mihalas and Niebur (2009). In their model, the threshold is adaptive (our
model is the special case a = b = 0 of their equation 2.1), the input current Ie can be time
dependent, and there is no limit on the number of spike-induced currents. In addition, to
simplify the notation, we have divided terms involving currents by the membrane
capacitance C, have changed the units of current from charge per time to voltage per time,
and have defined γ = G/C, which has units of inverse time.

2.2. Model solution and spike condition
We now give the analytical formulas for solutions to the model equations specified by (2.1)
and discuss their immediate implications. The formulas we present are a special case of
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those described in Mihalas and Niebur (2009). Since the dynamical matrix in (2.1) is
triangular, the system’s eigenvalues λi are simply the negative inverses of the distinct
inherent time constants, −k1,…,−kn, −γ. Therefore, there is a single, stable attractor towards
which all trajectories will converge, and the trajectories are all sums of exponentials eλit.
Specifically, the solution to (2.1) with initial conditions (I10,…, In0, V0) is

(2.3)

Despite the existence of an attractor, the reset conditions (2.2) allow the model to capture
nontrivial behaviors associated with neurons if the spike condition V (t) − Θ = 0 can be
satisfied. The transformation x = e−t reduces the spike condition to the equation D(x) ≐ V (x)
−Θ = 0. The time of a spike resulting from a set of initial conditions can then be found by
computing the solutions to the following equation:

(2.4)

Remark 1. In the analysis of models with reset, we may think of time two different ways. To
focus on the time from one spike to the next, it is convenient to think of time being reset to 0
after each spike. Alternatively, to consider a spike train including many spikes, it is helpful
to think of time as always increasing, without reset. Our analysis takes the former
perspective, which appears already in the transformation x = e−t and (2.4). In our figures,
we follow the common convention of showing time increasing across multiple spikes, as in
the second perspective.

Writing the set of all real solutions to (2.4) as {x1,…, xm}, the solution that corresponds to
the first spike time is

(2.5)

If D(x) = 0 has no solution, the neuron will not spike. In the phase plane, this means that the
system approaches a stationary state at which V < Θ and all state derivatives are zero. We
can establish sufficient conditions for spiking to occur by evaluating D(x) at the endpoints of
the interval on which x is defined, x = 0 and x = 1:

(2.6)

Relevant parameter sets have V0 < Θ such that D(1) is negative, and thus a sufficient
condition for a spike to occur, independent of {Ij0}, is

(2.7)

If this condition is met, then by the intermediate value theorem D(x) must have a root for
some real x ∈ (0, 1).

Jimenez et al. Page 5

SIAM J Appl Dyn Syst. Author manuscript; available in PMC 2014 September 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



2.3. Simplified model and solution types
To facilitate the analysis of the asymptotic aspects of its dynamics, we define a simplified
form of the model on which we will focus in this paper.

Definition 2.1. The simplified model obeys (2.1) with reset conditions (2.2) and has the
following properties:

a. n = 2 (two internal currents);

b. R1 = 1, R2 = 0 (one additive current);

c. A1 < 0 (the additive current is negative).

Positive additive currents tend to yield unstable dynamics, such as a firing rate that diverges
to infinity over time, and they are not considered below. Henceforth, when we refer to (2.3)
and (2.4), we mean the case where n = 2.

Remark 2. Since there is only one current for which the reset depends on its value before a
spike and we have fixed the threshold Θ, the model may be reduced to a one-dimensional
map (see section 3 and beyond). If the threshold is not fixed, as in the general model, a two-
dimensional map is needed to describe the dynamics even with a reset of just one current.
Unfortunately, the study of two-dimensional maps using analytical tools is difficult, and
their analysis typically requires numerical methods (Shilnikov and Rulkov, 2003; Manica,
Medvedev, and Rubin, 2010).

For model (2.1), we can distinguish various types of solutions, depending on the existence
and patterns of spike threshold crossings. Recall that when a spike occurs, corresponding to
(2.4) being satisfied, the reset conditions (2.2) are implemented, yielding new initial
conditions in (V, I1, I2). Define an interspike interval as the time between two successive
spikes.

Definition 2.2. A quiescent solution is one that never reaches threshold. A phasic spiking or
phasic solution is a solution for which, after finitely many spikes, a reset occurs after which
no additional spikes occur.

When a solution is neither quiescent nor phasic, it exhibits sustained spiking, meaning that
the corresponding trajectory crosses threshold infinitely many times. Within the family of
sustained spiking solutions, we distinguish two special types.

Definition 2.3. A tonic spiking solution is a periodic solution in which all interspike times
are equal. A bursting solution is a periodic solution for which the sequence of interspike
intervals consists of subsequences of two or more consecutive small values alternating with
individual large values.

Remark 3. The determination of what are small and large interspike intervals in the
definition of a bursting solution is ambiguous. The neuroscience literature includes various
algorithms for deciding whether a sequence of interspike intervals qualifies as a bursting
solution or not. In section 3, we will provide a formulation that provides an unambiguous
way to identify bursting solutions.

If R1 = R2 = 0, the neuron will either fire tonically or will not fire at all, since the state
variables will be reset to the same values after each spike. We shall see that with the
restriction R1 = 1, R2 = 0, complex behaviors such as bursting can occur, as long as A1 < 0,
such that I1 < 0. We consider tonic spiking and bursting solutions in sections 4 and 5,
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respectively. In section 6, we discuss co-existence of solution types for fixed parameter sets
and transitions between solutions as parameters are varied.

2.4. Implementation details
To reduce computation cost in simulations, the model’s eigenvalues are typically chosen to
be rational or integer multiples of each other, in which case (2.4) is a polynomial in x to a
power, which can be solved using standard numerical techniques. To find the spike time,
one must find the largest root of D(x) in (0, 1). In Brette (2007), a hybrid bisection/Newton–
Raphson method is proposed that solves this problem efficiently. The method relies on
recursive bisection followed by the application of the method of Sturm sequences to find the
exact number of roots in a given interval. To ease the computational burden this method
entails, one can often discard the possibility of a spike using Descartes’s rule of signs, which
states that for an arbitrary polynomial

(2.8)

the number of positive, real roots is equal to the number of sign changes in the sequence an,
…, a0 or is less than it by a multiple of 2. Denote the number of sign changes in the
polynomial D(x) by Δ(D(x)). In the case of a constant threshold and two spike-induced
currents, Δ(D(x)) ≤ 3. A sufficient condition for ruling out a spike from a particular set of
initial conditions is that Δ(D(x)) = 0, while Δ(D(x)) = 1 or 3, which requires D(0) > 0,
ensures that a spike occurs.

3. Return map properties
3.1. Map definition and basic structure

We henceforth consider only nonquiescent solutions. Recall that spike times are given as
maximal solutions x to the spiking equation D(x) = 0, and these depend on the initial
conditions. In general, we could write this equation as D(x, I10, I20, V0) = 0, where (I10, I20,
V0) denote the values of our variables at time 0, to emphasize this point. Since we are
considering only nonconstant resets for one internal current (I1), however, we may express
the spiking equation more simply as D(x, I10) = 0 and view our model system as a return
map or Poincaré map from the I1 value immediately following one spike and reset to the I1
value immediately following the next spike and reset. If the spike count is n, the return map
is defined as

(3.1)

where we have shortened the subscript 10 to 1 for simplicity. The value of Φ is computed
from the decay from the input value of the current up to the next spike time, followed by the
addition of A1 in the reset:

(3.2)

where x depends implicitly on I1 as defined by D(x, I1) = 0, and I1 < 0. Since x > 0, we have
that Φ(I1) ≤ A1. The characteristics of the return map Φ fully specify the qualitative behavior
of our model neurons. Examples of return maps for various spiking scenarios are shown in
Figure 1; we discuss details of their classification below.

The return map Φ is piecewise continuous in a manner that we make precise in the following
lemma. For the following analysis, it is critical that spike times be defined as maximal
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solutions to D(x, I1) = 0, but we will not explicitly include the max operation in writing this
equation.

Lemma 3.1. Given a neuron as defined in section 2, the map Φ : ℝ− → ℝ− has either no
discontinuities or one point of discontinuity, call it Id, away from which Φ is differentiable.

In the latter case, Φ experiences a downward jump at its discontinuity: .

Proof. By the implicit function theorem, the equation D(x, I1) = 0 defines a differentiable
function x = f(I1) on all open intervals where Dx(x, I1) ≠ 0. Hence, points I1 for which
Dx(f(I1), I1) = 0 represent the possible discontinuities of Φ as defined by (3.2), and Φ is
differentiable away from such points. In fact, any points of discontinuity occur due to
changes in the initial value of I1 that cause D(x, I1) to gain or lose a root. (This phenomenon
is illustrated in Figure 4(c) below.) Correspondingly, there are only two ways in which the
solution x = f(I1), satisfying D(x, I1) = 0, may experience a discontinuity as I1 increases:
either an existing maximal solution xmax disappears outside of the open interval (0, 1), or a
new solution x̃max appears as I1 is increased, such that 1 > x̃max > xmax, and the max
operation in (2.5) will select the larger root x̃max. In fact, the former case is impossible; an
increase in I1 can only make the neuron spike sooner. This is a simple consequence of the

fact that , which we prove in section 3.2. However, it is indeed possible for a larger
solution x̃max to appear as I1 is increased, corresponding to a faster spike time. Therefore,
x(I1) must experience an upward discontinuity in magnitude as I1 increases if a discontinuity
is experienced at all, and this change in x yields a downward jump in Φ, since I1 < 0 by our
general assumptions.

To see why Φ can have at most one discontinuity, consider that the voltage V (t′) at a fixed
time t′ increases monotonically with I1. The solution x experiences a discontinuity when a
local maximum of V (t) is pushed above the threshold Θ as I1 is increased. From (2.3), we
see that the voltage V (t) is a weighted sum of three exponentials. It follows that V (t)
contains at most two critical points and therefore at most one local maximum. Therefore, a
local maximum of V (t) can be pushed above the threshold Θ by increasing I1 at most one
time, proving that Φ has at most a single discontinuity.

Lemma 3.1 provides a natural way to define the bursting solutions introduced in Definition

2.3. Suppose Φ has a discontinuity. Since , we can associate short times to spike
with iterations on the larger I1 component of Φ and long times to spike with iterations on the
more negative I1 component. A bursting solution is an orbit with subsequences of
consecutive iterates on the short time component of Φ, interrupted by single iterates on the
long time component.

3.2. Contraction and piecewise contraction
For general one-dimensional iterated maps, chaotic behavior of the iterations {I, Φ(I), Φ2(I),
…} can arise from very simple mapping functions Φ. On the other hand, a class of iterated
maps known as contractive mappings always gives rise to simple dynamics.

Definition 3.2. A function on a metric space f : S → S is a contractive mapping if there exists
a constant r < 1 such that d(f(x), f(y)) ≤ rd(x, y) for all x and y in S.

These maps are especially stable, as made precise by the following classical result.
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Theorem 3.3 (contractive mapping principle). If f : S → S is a contractive mapping and S is
a complete space, there exists a unique fixed point x0, and x0 = limn→∞ fn(x) for any point x
∈ S.

Proof. See Rudin (1976) or any introductory book on real analysis.

A consequence of Theorem 3.3 is that if Φ : ℝ− → ℝ− is a contractive mapping on its entire
domain, all of its orbits converge asymptotically to a unique, stable, fixed point Ifix. Another
consequence of the theorem is that a fixed point Ifix of a differentiable map Φ is locally
stable if there exists an epsilon-ball Bε(Ifix) of the fixed point Ifix for which Φ(I) : Bε(Ifix) →
Bε(Ifix) satisfies the contractive condition:

(3.3)

Then, given any initial point I1 ∈ Bε(Ifix), its iterates will converge to Ifix.

Interestingly, most parameter choices used for simulations result in Φ(I1) satisfying the
piecewise contractive property, which we now define.

Definition 3.4. The return map Φ of our model neuron is piecewise contractive if

(3.4)

on every open domain D ⊂ ℝ− such that D ∩ {Id} = ∅, where {Id} is the set of
discontinuities of Φ.

Finding sufficient conditions on the parameters such that the piecewise contractive property
holds requires finding analytical bounds for |Φ′|. As we will show, this task is rather
difficult. The quantity |Φ′| is related to the separation of nearby trajectories in the phase
space in the I1 direction. In continuous dynamical systems, the evolution of this separation
over time is described by Lyapunov exponents. For the model we consider, however, a
negative Lyapunov exponent does not guarantee the contractivity of Φ, because nearby
trajectories will attain the spiking line V (t) = Θ at different times. The piecewise contractive
property of Φ depends on the following: how is a small initial displacement δI1 evolved
along a trajectory from the reset line (V = V0) to the spike line (V = Θ)? If the end
displacement is always smaller than the initial displacement, Φ is globally contractive. If this
is the case only when the initial values of I1 are on the same subset Sj, then Φ is piecewise
contractive. A plot of a set of neighboring trajectories is shown in Figure 2(a) for the
globally contractive case and in Figure 2(b) for the piecewise contractive case.

If we introduce a perturbation δI1 to I1 = I1(0), then we change the value of I1(t) along the
solution as well as the time until the next spike. For two arguments of Φ given by Ĩ1 = I1 +
δI1 and I1, yielding spike times t̃ and t, respectively, (2.3) gives

For parameters leading to biologically relevant spiking patterns, small perturbations δI1
typically result in negligible differences in spike times, t ̃ ≈ t. This occurs since the external
current Ie is typically the main driving force of the neuron and hence is the main contributor
to the spiking rate. Thus, to leading order, Φ(Ĩ1) − Φ(I1) ≈ δI1 exp(−k1t), and locally
contractive dynamics appear to be an inherent property of neurons defined in section 2.
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To construct an exact condition for the piecewise contractive property to hold at a given
point I1, we compute the derivative of the return map from (3.2):

(3.5)

We compute an implicit expression for  by invoking the implicit function theorem, which

states that for any open domain in which , the following holds:

(3.6)

The numerator of this expression is positive, since

(3.7)

for x ∈ (0, 1). The denominator must be negative, since  must hold at the moment
the neuron spikes, and therefore

(3.8)

The above equations prove that

(3.9)

This result is intuitive, because an increase in I1 results in a monotonic increase in the
derivative of the voltage V′(t̃) at any fixed t ̃. Hence the neuron spikes sooner for larger
values of I1, leading to a larger solution x = e−t to D(x, I1) = 0. It then follows from (3.5) that

(3.10)

for all I1 ∈ ℝ−. After some algebraic manipulation, one obtains

(3.11)

If the right-hand side of (3.11) has a value greater than −1 for all I1 ∈ ℝ−, the contractive
property holds in this domain. For parameters leading to biologically relevant spiking
behaviors such as tonic spiking and bursting, including the parameter choices discussed in
this paper as well as in Mihalas and Niebur (2009), this condition typically holds.

In section 4.2 we use (3.11) to obtain a condition on the parameters to ensure globally
contractive behavior in the case that I2 = 0. Since we did not find a simple analytical
condition to ensure contractive behavior for I2 ≠ 0, we performed a numerical exploration of
parameter space using MATLAB. At every permutation of the parameter values shown in
Table 2, the largest root of D(x) in (0, 1) was computed using the MATLAB roots function,
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and this x value was used in (3.11) to verify the contractive condition. The lowest derivative
was found to be −0.39. This allows a significant margin of error for the map’s derivative at
values of I1 in between those values at which the condition was checked. In particular, we
observed that increasing Ie stabilizes the dynamics. This is not surprising, since at any fixed
value of I1, in the Ie → ∞ limit, x → 1 and Φ′ (I1) → 1.

An example of an expansive (noncontractive) return map is shown in Figure 1(f). This map
generates period-2 oscillations. On the other hand, such oscillations can also be generated by
piecewise contractive maps such as that shown in Figure 1(e). In this study, we shall focus
on the case when Φ is contractive or piecewise contractive, since this is the predominant
case arising in our model over a broad range of parameter values, such as those shown in
Table 2.

4. Tonic spiking
4.1. Uniqueness of the fixed point

Tonic spiking solutions correspond to fixed points of the return map Φ(I1). These fixed
points occur at values of I1 for which

(4.1)

In a plot of Φ(I1), fixed points occur when the return map intersects the Φ(I1) = I1 line, as
shown in Figures 1 and 3.

Lemma 4.1. The return map Φ(I) for the model neuron described in section 2 contains at
most one fixed point.

Proof. We prove this result by contradiction. Assume there are two fixed points I1 and I2 in
(−∞, 0]. If both of these points belong to the same interval Sj, then the map Φ(I1) is
continuous in the interval (I1, I2). As established in Lemma 3.1, Φ is also differentiable in
this interval. By the mean value theorem, there must therefore be a point I1 < I′ < I2 at which

(4.2)

However, we have that 1 > xk1 > Φ′(I1) from (3.10). Therefore, there cannot be two fixed
points in the interval. On the other hand, suppose fixed points I1 and I2 belong to separate
intervals S1 and S2 separated by the discontinuity point Id. Since Id > I1, Φ(I1) = I1, and Φ′ <

1, we have . By Lemma 3.1, Φ experiences a downward discontinuity at Id,
and hence there exists a sufficiently small ε for which Φ(Id + ε) < Id. Since Id + ε and I2 both
belong to S2, there exists a point Id +ε < I′ < I2 at which

(4.3)

This concludes the proof.

We have already seen that under condition (2.7), quiescent solutions do not exist. The
consequence of Lemma 4.1 is that for a fixed parameter set, the neuron may exhibit periodic
tonic spiking at only one frequency. Local stability of the associated fixed point is
guaranteed for maps satisfying the piecewise contractive property as long as the fixed point
Ifix is a positive distance d0 from the discontinuity set {Id}. If (2.7) holds, then Lemma 4.1
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implies that bistability or hysteresis in the model can occur only if it involves aperiodic or
bursting states.

4.2. A sufficient condition for tonic spiking
If Φ is globally contractive on ℝ− and has no discontinuity points, all orbits approach a tonic
spiking state. This follows directly from Theorem 3.3. A differential-geometric approach to
finding sufficient contractive conditions on the parameters for a two-dimensional spiking
neuron model is developed by Foxall et al. (2012). The subthreshold dynamics of the class
of two-dimensional systems considered in that study are nonlinear and do not generally
admit analytical solutions. In contrast, in our case, we may use the analytical solution of the
subthreshold dynamics to derive a sufficient condition for contractive behavior and hence
tonic spiking.

If we consider model neurons in which I2 = 0, thus restricting our analysis to a two-
dimensional model, the following simple contractive condition exists.

Proposition 4.2. Consider a neuron with I2 = 0. If k1 > 2γ and

(4.4)

then Φ is contractive for I1 ∈ ℝ− and all orbits converge to a tonic spiking state.

Proof. Note that under the conditions of the proposition, (2.7) holds, and thus the neuron
spikes repetitively. We now establish the contractive property, which ensures convergence
to a periodic tonic state. By rewriting (3.11) as

(4.5)

and recalling (3.10), we see that  ensures that |Φ′(I1)| < 1. We also recall that g(x,
I1) and h(x, I1) are both negative by preceding arguments. Therefore, a contractive condition
is that g(x, I1) > 2h(x, I1). We now set I2 = 0 in (3.5) and in (2.4). The latter equation allows
us to cancel the xk1 terms in favor of xγ terms. This yields

(4.6)

Writing the contractive condition g(x, I1) > 2h(x, I1) and simplifying, we obtain

(4.7)

The proposition then follows from 1 > xγ > 0 and some simple algebraic manipulation. Note
that we used k1 > 2γ to ensure that the left-hand side of (4.7) is negative for all values of I1
∈ ℝ−.

A consequence of Proposition 4.2 is that for model neurons for which I2 = 0 and k1 > 2γ,
there always exists Imin such that Φ(I1) is globally contractive on ℝ− for all Ie > Imin. Thus,
increasing the external current has a stabilizing effect on the dynamics of these neurons. One
can always make these neurons fire tonically by setting Ie to be sufficiently large. We note
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that a very similar result was obtained by Touboul and Brette (2009) for a nonlinear spiking
model.

5. Bursting
5.1. Phase space analysis

We now analyze the bursting scenario in the phase plane. This analysis will allow us to
derive necessary conditions for bursting and also provides an algorithm for generating
parameters that lead to bursting.

As introduced in section 3.1, bursting can occur when Φ(I1) experiences a downward
discontinuity at a discontinuity point Id. This discontinuity can cause the iterates of Φ to
follow a cyclic pattern along which it visits both components of Φ, as seen in the cobwebs in
Figures 1(d) and 1(e). The discontinuity of Φ occurs at the value of I1 at which V′(t(I1)) = 0
and V″(t(I1)) < 0, where t(I1) is the spike time. At this location, an infinitesimal change to
the value I1 will cause the trajectory to miss the spiking surface, resulting in a discontinuous
change in the timing of the spiking event. This situation is observed in Figure 2(b) and is
referred to as a grazing bifurcation by some authors (e.g., Donde and Hiskens, 2004).

At a grazing bifurcation, the following equations are satisfied:

(5.1)

(5.2)

(5.3)

where we used (2.3) to compute (5.2), and we used (5.2) to obtain (5.3). We now show that
such an event can occur only if condition (2.7) is satisfied, and we subsequently assume that
it holds.

Proposition 5.1. Condition (2.7) is necessary for the existence of a bursting solution.

Proof. Recall that D(1) < 0, independent of I1. For a bursting solution to exist, there must be
a value I1 such that a grazing bifurcation occurs at some xg ∈ (0, 1) and a later spike occurs
at some xs ∈ (0, xg). A grazing bifurcation represents a multiplicity two root of D(x) = 0,
while the later spike corresponds to an additional root. If condition (2.7) does not hold, then
D(0) < 0, so D(x) must have yet another root in (0, xs). But with n = 2, the polynomial D(x)
is given by a constant plus three x-dependent terms and thus cannot have four positive real
roots (counting multiplicities).

From (2.7), (5.1), and (5.2), we have

(5.4)

From (5.3), we also have that

(5.5)
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Recall that I1(t) < 0 and I2(t) > 0. It follows that (5.4) and (5.5) can never be mutually
satisfied if k1 > k2. Thus, the following is a necessary condition for bursting:

(5.6)

The following algorithm provides a practical method for finding bursting parameters by
constructing a grazing bifurcation:

1. Choose some V0, Ie, I10, I20, γ, k1, k2 such that Ie > 0, I10 < 0, I20 > 0, I10 + I20 = 0,
and k1 = k2 > 0. For any t, the following equations hold:

(5.7)

(5.8)

(5.9)

where the last equation follows from the model solutions in (2.3). As a trivial
consequence,

(5.10)

such that (5.4) cannot be satisfied for any t > 0.

2. Now choose t = t1 such that t1k2 < 1. This choice ensures that

(5.11)

Keeping the same values of the time constants, we now compute the margin of
(5.10):

(5.12)

(5.13)

3. Find a perturbation Δk2 > 0 such that the following equations are satisfied:

(5.14)

(5.15)

where we have written V (t1, k2 + Δk2) to make the dependence of the voltage on
the current k2 explicit. From (5.11), we see that (5.14) is satisfied for any

(5.16)

Equation (5.15) is satisfied for sufficiently small Δk2, since the left-hand side of
(5.10) increases monotonically with k2 and the right-hand side decreases
monotonically with k2. Once a suitable Δk2 is found, we set
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(5.17)

This new time constant ensures that inequality (5.5) will be satisfied at t = t1. This
will give us the negative second derivative that is needed to induce a grazing
bifurcation.

4. Compute the margin of inequality (5.15) at t = t1 using  instead of k2 + Δk2:

(5.18)

We will now decrease Ie in such a way that the V -nullcline equation (5.2) will be
satisfied at t = t1. From the solution formulas (2.3) we have that

(5.19)

Using this equation, we find the external current that reduces the margin in
inequality (5.10) to zero, which results in the V -nullcline equation being satisfied
at t = t1:

(5.20)

From this choice and (5.12) we have that α0 > α1. Hence, we have

(5.21)

This condition guarantees that

(5.22)

which in turn yields  (recall that V (t) may have only two critical
points, since it is the sum of three exponentials).

5. Finally, set

(5.23)

We have now obtained parameters t1, k1, , I10, I20, Ie, V0, Θ that lead to a
bursting-inducing grazing bifurcation at t = t1.

The main results of this section are summarized in the following proposition.

Proposition 5.2. Assume that (2.7) holds. Given any I10, k1, γ, V0, at least one grazing
bifurcation occurs in the region of parameter space specified by

and none occurs outside of this region.

Proof. The algorithm above serves as a constructive proof that this region of parameter
space must contain at least one grazing bifurcation. On the other hand, we have also
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observed in (5.6) that grazing bifurcations are impossible whenever k2 ≤ k1. The lower
bound on Ie stems from (5.4), and the upper bound stems from the fact that at the bifurcation
point,

(5.24)

thus completing the proof.

Of course, to obtain bursting behavior in the model, appropriate values of the reset
parameters A1, A2 are needed. To obtain bursting dynamics from a grazing bifurcation
constructed as in the above algorithm, we set A2 = I20 and then adjust the height of the map
using A1 to ensure that the fixed point line Φ(I) = I intersects neither the left nor the right
part of the map, as shown in Figure 4(b).

5.2. Bursting maps
As described above, Φ contains at most a single fixed point and at most a single
discontinuity. If there is no fixed point, then the neuron may burst or display nonperiodic
behavior. We shall show that the following class of maps robustly generates bursting-like
behavior.

Definition 5.3. The return map Φ for a model neuron is a bursting map if it is piecewise
contractive with a point of discontinuity Id < 0 and there exist some ε1, ε2 > 0 for which the
following conditions hold:

(5.25)

We note that periodic solutions occurring in maps with a single discontinuity are also
discussed in Hogan, Higham, and Griffin (2007). We also note that this definition can be
applied to return maps of an adaptation variable generated by models other than that defined
in section 2. In order for the results that follow to apply to other models, however, it is
crucial that the spike times depend monotonically on the value of the adaptation variable.
This condition is satisfied for maps Φ(I) generated from our model, since as shown in

section 3.2 we have  for all I ∈ ℝ, where tsp is the time of the next spike.

Not all piecewise contractive maps generated by our model neurons will satisfy the
conditions of a bursting map. However, note that the parameter A1 affects solely the height
of the map and has no effect on the map’s derivative at any point, as can be seen from (3.2).
Since Φ experiences a downward discontinuity at Id (Lemma 3.1), given model parameters p⃗
∈ (Ie, V0, Θ, I20, γ, k1, k2) that generate a piecewise contractive map, one can always find A1
∈ ℝ− such that the conditions of a bursting map are satisfied.

An example of a bursting map is shown in Figures 4(a)–4(c). We observe numerically that
such maps are preperiodic: the orbits of the map robustly tend to a periodic pattern
regardless of initial conditions. In this section, we provide mathematical justification for the
observed bursting behaviors. Our approach draws on the work by Gambaudo and Tresser
(1988) and Brémont (2006).

The discontinuity in Φ complicates the application of the contraction principle but does not
prohibit its use. Since the map is discontinuous at Id, there always exist x, y ∈ ℝ− such that
d(Φ(x), Φ(y)) > rd(x, y) for any value of r, as we may choose x and y to be arbitrarily close to
the discontinuity point but on opposite sides. Therefore, Φ(I) : ℝ− → ℝ− is not a contractive
mapping, and we cannot directly apply the contractive mapping principle. Nevertheless, if
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we can find a subset V ⊂ ℝ− such that Φm : V → V continuously, then Φm is indeed a
contraction on V. This follows from applying the chain rule to successive mappings and
using piecewise contractivity:

(5.26)

(5.27)

where In+1 = Φ(In). Therefore, Φm(I) may be a contractive mapping when I is restricted to
the subset V. In this case, the map Φm : V → V must contain a unique fixed point Ifix ∈ V to
which orbits in V converge. As we shall see, there may be several invariant sets Vi and
periodicities m for a bursting map Φ.

5.3. Restriction of the domain to reachable sets
We define the notion of reachable sets. This notion allows us to restrict the action of Φ to a
compact set R. An illustration of reachable sets is shown in Figure 5.

Definition 5.4. Given a bursting map Φ : ℝ− → ℝ−, partition the domain ℝ− into the sets S0
= (−∞, Id) and S1 = [Id, 0]. We define the left and right reachable sets R0 and R1,
respectively, and their union as follows:

(5.28)

The reachable sets cover all points reachable from the opposite site of the discontinuity.
Both sets must be nonempty; otherwise, Φ(Si) maps Si, i ∈ {0, 1}, continuously into itself,
and Φ has a fixed point, which violates the definition of a bursting map. Note that R0 and R1
are bounded sets with finite measure, due to the boundedness of S1.

We next prove an important preliminary result about the action of bursting maps on ℝ− and
on R

Lemma 5.5. Given a bursting map Φ, for each I ∈ ℝ−, there exists i such that Φi(I) ∈ R.
Furthermore, Φ(R) ⊂ R.

Proof. On S0 and hence on R0, the map is increasing, in the sense that for I ∈ S0,

(5.29)

The monotonic, increasing sequence {Φi(I)} will exceed Id and thus reach S1 in a finite
number of iterations. Therefore, the orbit must eventually leave S0 and reach R1. Similar
considerations hold for S1. That Φ(R) ⊂ R follows directly from the construction of R.

Note that Lemma 5.5 does not imply the existence of a fixed point of Φ in R, since Φ : R →
R is not a continuous mapping.

The consequence of Lemma 5.5 is twofold. First, it allows us to consider a map that is
defined on the compact set R, ignoring the part of the domain that is disjoint with R. Second,
it implies that successive iterates of Φ are nested:
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Therefore, if there indeed exists a periodic orbit {I0, Φ(I0),Φ2(I0),…, I0}, the following is
evidently also true:

where Φ∞(R) is a set of measure zero, due to the contractive condition. Such sets are more
commonly known as ω-limit sets.

Definition 5.6. The an ω-limit set ω(I) of a point I is the set of limit values of all convergent
subsequences extracted from its forward orbit. More precisely, if p ∈ ω(I), then for any ε > 0
and m > 0, there exists n > m such that d(Φn(I), p) < ε.

The definition of an ω-limit set extends naturally to intervals within the domain of Φ. A
periodic point x must lie inside the ω-limit set of R.

As we shall see, injectivity of Φ simplifies the description of the genericity of asymptotically
periodic dynamics. In our case, although bursting maps are generally not injective
everywhere on ℝ−, we can often find a refined reachable set R′ ⊆ R for which Φ : R′ → R′ is
injective. We now define this notion.

Definition 5.7. Given a bursting map Φ with reachable set R, a refined reachable set is an
interval that satisfies the following:

a. Φ(R′) ⊂ R′;

b. Φn(R) ⊂ R′ for some n > 0.

If a refined reachable set exists on which Φ is injective, all orbits will be attracted to it, and
we may restrict our attention to the injective map Φ : R′ → R′. The following lemma
provides a sufficient condition for the injectivity of Φ on such a set R′.

Lemma 5.8. Consider a bursting map Φ that is piecewise injective on R (it is injective on the
reachable sets R0 and R1). Then, there exists a refined reachable set R′ ⊂ R for which the
map Φ : R′ → R′ is injective.

Proof. We prove the lemma by considering the following three cases. The construction of
the refined reachable sets for Cases I and II is illustrated in Figure 6.

• Case I: Φ′ > 0 on R0 and R1.

We define the refined reachable sets as follows:

(5.30)

R′ satisfies the conditions of a refined reachable set. Indeed, suppose there exist

 for which Φ(I0) = Φ(I1). By the positivity of Φ′, the refined
reachable sets are as follows:

(5.31)

Applying the contraction hypothesis, we obtain
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(5.32)

where the signs in these equations depend on whether Φ(I0) = Φ(I1) belongs to R0
or to R1. Adding these terms, we obtain

(5.33)

which contradicts the fact that  and .

• Case II: Φ′ > 0 on Ri, Φ′ < 0 on R1−i for some i ∈ {0, 1}.

We consider the case that i = 0, as the case where i = 1 is similar. We construct the
refined reachable sets as follows:

(5.34)

Again, it is easy to check that R′ satisfies the requirements of a refined reachable

set. If instead there exist  for which Φ(I0) = Φ(I1), then the
contraction hypothesis yields

(5.35)

Adding these terms using Φ(I0) = Φ(I1), we obtain

(5.36)

which contradicts the fact that  and .

• Case III: Φ′ < 0 on R0 and R1.

We define the refined reachable set R′ = R. The fact that Φ is injective on R′
follows immediately from the fact that the map experiences a downward
discontinuity at Id. This concludes the proof.

The consequence of this lemma is that piecewise injectivity on R ⇒ injectivity on a refined
reachable set R′. Due to the complexity of the expression for the map’s derivative in (3.11),
we were unable to provide bounds on the parameters that indicate when Φ is piecewise
injective on R. On the other hand, the return maps we have observed—including those in
this paper—typically feature piecewise injectivity on R.

5.4. Periodic orbits
We now describe the periodic orbits that may arise from bursting maps. The following
theorem is due to Gambaudo and Tresser. Our proof follows along the same lines as the
proof found in Gambaudo and Tresser (1988) but also supplies some missing steps. An
illustration of the proof is shown in Figure 7.

Theorem 5.9. Recalling that Φ is right continuous, we denote

and
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With this notation,

(5.37)

Proof. Suppose we are given a point y ∈ R. By comparing the orbit of y with the orbits of

 and  simultaneously, we shall show that the ω-limit set of y must lie in the ω-

limit set of either  or .

Suppose Φ has a (piecewise) Lipschitz constant 0 ≤ K < 1. We first claim that for any n > 0,

there exist mn ≥ 0 and sn ∈ {+, −} such that . To show
this, suppose y ∈ Ri, where i ∈ {0, 1}, and pick s1 = − (+) if i = 0 (1), which implies

(5.38)

Find n = min{p ∈ N : Φp(y) ∈ Ri and  for i, j ∈ {0, 1}, j ≠ i} ≥ 1. If n > 1, then

the fact that Φn−1(y),  for some fixed i ∈ {0, 1} yields

(5.39)

that is, we can choose sq = s1 for q = 1,…, n.

Suppose Φn(y) ∈ Rj, j ∈ {0, 1}. We now choose sn+1 ∈ {+, −} such that . Note
that

(5.40)

since Φn(y) and  are on opposite sides of Id (with equality if ). This is

observed in Figure 7(a), where for n = 1 we have that Φn(y) and  are on opposite
sides of Id. Thus, combining either (5.38), if n = 1, or (5.39) together with (5.40), a
subsequent iterate gives

that is, we can take mn+1 = 1. Continuing this process and increasing n, we can

monotonically decrease the distance between Φn(y) and , where the sn and mn

depend on n. The contraction between the orbit of  and of y is illustrated in Figures 7(b)
and 7(c).

For any ε > 0, there exists an N(ε) such that  for any n > N(ε).
Given a point z ∈ ω(y) and ε > 0, by definition there exists an infinite, increasing sequence
of integers {ni} such that ni > N(ε) and

(5.41)

for all i. Then, by the triangle inequality,
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(5.42)

where the mnk that satisfy this equation must exist and are chosen as described above. Since
each snk ∈ {+, −}, all points in the ω-limit set of y are approached arbitrarily closely by the

forward orbit of at least one of  or  in the asymptotic limit. Hence, if z is in the

ω-limit set of y ∈ R, then z must also be in the ω-limit set of  or of . This
concludes the proof.

The immediate consequence of this result is that there are at most two periodic orbits for
bursting maps. A piecewise contractive map with two periodic orbits is shown in Figure
7(d). We can also establish a condition for such maps to yield bursting activity for all orbits.

Theorem 5.10. If ω(R) ∩ Id = ∅, then all orbits are asymptotically periodic.

Proof. If the hypothesis is satisfied, we can define the following positive quantity:

(5.43)

We choose an arbitrary point I ∈ R. Since the orbit of I under Φ is an infinite sequence of
points within a bounded interval of ℝ−, ω(I) is nonempty; let y ∈ ω(I) ∈ ω(R). We can find δ
′ < δ, for which Φn(Bδ′ (y)) ∩ Id = ∅ for all n ≥ 0. By the definition of ω-limit sets, there
exists a sequence ni such that for Ii ≐ Φni(I),

(5.44)

We choose integers nk, nk′ ∈ {ni} such that Ik, Ik′ ∈ Bδ′/2(y), k′ > k, and |Φnk′−nk (Bδ′(y))| < δ′/
2 (this is always possible, since Φ is contractive). Since Ik′ = Φnk′−nk (Ik) ∈ Φnk′−nk (Bδ′(y)), it
follows that

(5.45)

Since the disc Bδ′(y) gets mapped continuously into itself by the map Φnk′−nk, there exists a
unique attracting periodic orbit that attracts all x ∈ Bδ′ (y), namely the orbit of y, and the
orbit of I is asymptotically periodic.

5.5. Genericity of periodic behavior
In Catsigeras and Budelli (2011), we find a general treatment of injective piecewise
contractions in n dimensions. We summarize an important result of their work.

Theorem 5.11 (Catsigeras and Budelli (2011)). Injective piecewise contractive maps C0

generically exhibit only asymptotically periodic behavior.

Injectivity is necessary for this result to directly apply to bursting maps. In fact, injectivity is
also used in Brémont (2006) to prove that injective piecewise contractions on the interval
are generically periodic with respect to the location of a map’s discontinuity points. If a
refined reachable set R′ exists such that Φ : R′ → R′ is injective, then the conclusions of
Catsigeras and Budelli (2011) hold. In particular, asymptotically periodic behavior is the
only behavior that has nonzero probability of occurring in an implementation where the map
is perturbed by arbitrarily small noise.

However, the arguments of Catsigeras and Budelli to prove C0 genericity cannot be directly
used to prove genericity with respect to a fixed set of parameters for our model. As pointed
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out in Bruin and Deane (2009), the family of maps defined by Φ : [0, 1) → [0, 1), Φ(x) = λx
+ a(mod 1), for a fixed λ ∈ (0, 1) and parameter a ∈ [0, 1), is generically aperiodic with
respect to the parameter a. It seems unlikely that a similar phenomenon occurs for
parameters of our model. In the case that Φ′ > 0 on R, we have the following result.

Theorem 5.12. For increasing bursting maps Φ : S → S where S is the reachable set, ω(S) ∩
Id = ∅ holds almost surely with respect to choice of parameters. Hence, increasing bursting
maps are asymptotically periodic generically with respect to parameters of our model.

Proof. Since Φ is increasing on S, it follows from Lemma 5.5 that we may restrict our
attention to a refined reachable set R on which Φ is injective. Consider the set E = R\Φ(R),
referred to as the exceptional set in Bruin and Deane (2009). This set consists of points with
no preimage in R. We may write

and so on. Continuing this process ad infinitum we obtain

where  a.e. (almost everywhere), since ω(R) has measure zero. From

injectivity, it is easy to check that these ω(R) and  are disjoint. As a consequence,

if we can show that for an injective bursting map , then we are guaranteed

that Id ∉ ω(R). We claim that for increasing bursting maps,  and hence Id ∉
ω(R), except for a vanishingly small subset of the parameter space. Suppose that Id ∈
(Φn(E))◦ for some n. Then, since Id and Φn(E) both vary smoothly with respect to the
parameters, there must exist a surrounding full-measure box in the parameter space defined
by p⃗ ∈ {(Ie, V0, Θ, I20, γ, k1, k2, A1) : Ie ∈ (Ie0, Ie1), γ ∈ (γ0, γ1),…} in which Id ∈ (Φn(E))◦

still holds.

Proposition 5.13. Given a bursting map Φ such that Φ′ > 0 on a reachable set R, suppose

that Id ∈ ω(R) for some . Given any δA1 > 0, there exists  such

that  is satisfied.

To prove this proposition, we show that there exists an arbitrarily small perturbation of A1
for which Id ∈ Φl(E) for some l > 0. First, note that E can be written as a disjoint union of

intervals: E = ∪Ej. Since  a.e., given any δA1 > 0, we can always find m > 0
and an integer j such that the right endpoint er = sup(Φm(Ej)) satisfies

(5.46)

Since by assumption , the map Φ never cuts the interval Ej; that is, for each
m, Φm(Ej) is entirely below Id or above Id. Since we are also taking Φ′ > 0, it follows that er
= sup(Φm(Ej)) = Φm(sup(Ej)). We define es ≐ sup(Ej) such that er = Φm(es).

We now consider the effect of perturbing the parameter A1 on the map Φ. From (3.2), we see
that incrementing A1 simply shifts the map Φ upwards, without changing the location of the
discontinuity Id. Increasing A1 therefore results in an upward displacement of R as well as
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Φ(R). Since E = R\Φ(R), it follows that the right endpoint es of the set Ej will also increase to

a value  as A1 is incremented from  to . We now consider the perturbed map

(5.47)

If Id ∈ Ψn(Ei) for some n < m, the proposition follows immediately. Therefore, we suppose
otherwise, in which case the first n iterates of Ej are not cut by Ψ. From the mean value
theorem (Theorem 5.19 in Rudin, 1976), there exists a point e1 such that we may write the
second iterate of Ψ as

(5.48)

where Ψ(es) > e1 > Φ(es). Note that the application of the mean value theorem is appropriate
unless Ψ(es) and Φ(es) are on opposite sides of Id; in that case, however, since Φ(Ej) varies

continuously as A1 is increased from  to , there must be a point

 for which Id ∈ Φ(Ej) and the proposition follows. By iterating (5.48) m
times we find that either Ψi(es) and Φi(es) end up on opposite sides of Id for some 1 < i < m
and the proposition follows, or

(5.49)

where the ei that satisfy this equation always exist (by the mean value theorem) and satisfy
Ψi(es) > ei > Φi(es). As a consequence,

(5.50)

from which we see that the perturbation δA1 has pushed the interval Φm(Ei) across the
discontinuity point Id, which remains immobile. Thus, the continuity of Φm(E1) in A1 on

 gives us an A1 value for which Id ∈ Φm(E1). Since δA1 > 0 was arbitrary, this
result proves the proposition.

Based on the proposition, for any fixed set of parameters (Ie, V0, Θ, I1, I2, γ, k1, k2), the set
of parameters {Ã1} for which Id ∈ ω(R) is a countable set. It follows that the set of

parameters for which  has Lebesgue measure zero (see Chapter 11 in Rudin,
1976). Theorem 5.12 follows immediately.

Given this result and those in Brémont (2006) and Catsigeras and Budelli (2011), it is
natural to conjecture that injective piecewise contractions are generically asymptotically
periodic with respect to uniform vertical displacements. Indeed, we have not observed
bursting maps for which bursting behavior does not occur, in spite of the fact that the maps
generated by our model are not always injective on a refined reachable set R′. Thus, it
appears that bursting maps with attracting nonperiodic orbits occupy an exceedingly small
subset of the set of all bursting maps.

The above considerations suggest a simple method of partitioning R such that the iterates of
points inside the same partition will be attracted to the same periodic orbit: compute the
inverse orbit of Id. Since Id ∩ ω(R) = ∅ generically, there is a finite number of preimages

Φ−i(Id) in R. By using  as boundary points, we may partition R into the
union of n disjoint intervals: R = ∪Si, and Si ∩ Sj = ∅ if i ≠ j. Since the orbits of the interior
of these sets never encounter the discontinuity point Id, we are guaranteed that the interior of
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the partitions Si will be sent into each other continuously:  for i ≠ j. Continuing
this process, for any i ∈ {1,…, n} there must exist integers b > a > 0 for which

. It follows that there exists a unique fixed point of the map Φb−a in some

 for some j. This point corresponds to a unique periodic point to which all
points in  are attracted. We note that such a partition {Si} is known in the dynamical
systems literature as a Markov partition. Markov partitions allow us to describe the
dynamics in terms of a directed graph where each vertex has a single outgoing edge. Distinct
periodic orbits correspond to distinct cycles in this directed graph; the number of distinct
cycles in the directed graph is equal to the number of periodic bursting solutions.

5.6. Symbolic dynamics of bursting maps
We now summarize some basic terminology from symbolic dynamics that we shall use,
following conventions put forth by Lind and Marcus (1995).

Definition 5.14. Given a point x ∈ R, we define its address a(x) as 0 or 1, depending on
whether x is in R0, R1, respectively. We define the itinerary I(x) of a point x ∈ R by the right-
infinite sequence of addresses

For j ≥ 0, we define the [i, j] block of an itinerary as follows:

This symbolic description of the dynamics represents a coarse graining of a point’s forward
trajectory. The usefulness of this approach stems from the fact that a 0 address, with I1 < Id,
corresponds to a slower spike time than any iterate with a 1 address, with I1 > Id (recall from
(3.9) that larger values of I1 result in a smaller interspike time). Therefore, the itinerary of a
bursting orbit is described by a periodic succession of 1’s and 0’s consisting of multiple fast
spikes separated by a single slow spike. For example,

corresponds to a periodic pattern of bursts of three spikes, also known as triplets. In the case
that Φ is piecewise injective on R, the dynamics are dramatically simplified and are
suggestive of bursting. As discussed previously, many of the bursting maps observed in our
model satisfy the piecewise injective property on the reachable set R in addition to the
piecewise contractive property.

Theorem 5.15. Suppose a bursting map Φ is piecewise injective on R. Given i ∈ {0, 1} and
x0 ∈ Ri, we define M = min{m : Φm(x0) ∈ R1−i}. Then, for any m > M, there exists j ∈ {0, 1}
such that if Φm(x) ∈ Rj, then Φm+1(x) ∈ R1−j.

Proof. The theorem states that after M iterates, the itinerary of x cannot contain both
consecutive 1’s (fast spikes) and consecutive 0’s (slow spikes).

• Case I: Φ′(x) < 0 on Ri for some i.

If Φ′ (x) < 0 on Ri, then for all x ∈ Ri, Φ(x) ∈ R1−i, satisfying the theorem.

• Case II: Φ′ (x) > 0 on R0 and R1.
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We proceed by contradiction. Suppose there exist m1, m2 > M such that

(5.51)

By definition, Φ is increasing on R0 and on R1. In addition, since m1, m2 > M, Φm1(x) has a
preimage in R1, and Φm2(x) has a preimage in R0. Since R1 ≥ Id ≥ R0, it follows that

(5.52)

From the positivity of Φ′(x) on R0, R1, we may apply Φ to the preceding inequalities,
obtaining

(5.53)

From the contractive property of Φ,

(5.54)

Inequalities (5.52) and (5.53) imply that

(5.55)

such that

(5.56)

Combining (5.54) and (5.56) gives us the required contradictions.

The following similar result about periodic orbits holds for arbitrary bursting maps and does
not suppose injectivity.

Theorem 5.16. Given a bursting map Φ with periodic orbit {x0, x1, x2,…, x0,…}, the
following two itinerary blocks are mutually incompatible:

(5.57)

for any n,m > 0. For example, if there exists an n such that the first condition holds, the
second is false for all m > 0.

Proof. We show this result by contradiction. Assume there indeed exist y1 ∈ R0, z1 ∈ R1 on
which Φ(y1) ∈ R0, Φ(z1) ∈ R1. Since the periodic orbit is a finite set for which the map Φ is
bijective, we may apply the inverse map Φ−1 to this set without difficulty even in cases
where Φ is not injective on R. Define

(5.58)

The memberships of y0, z0 to the sets R0, R1 follow from the definition of a bursting map:
for any a0 ∈ R0 and a1 ∈ R1, Φ(a0) > a0 and Φ(a1) < a1. Then,

(5.59)

where we have used the fact that Φ(y0) = xmax. Similarly,
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(5.60)

which gives us the required contradiction.

If Φ(R0) ⊂ R1, there cannot be successive slow spikes, and if Φ(R1) ⊂ R0, there cannot be
successive fast spikes. If the map’s derivative is sufficiently small on R0, we are guaranteed
that Φ(R0) ⊂ R1. We now make this statement precise.

Proposition 5.17. Given a bursting map Φ, define ε = sup{ε1 : Φ(I) −I > ε1 for all I ∈ R0},
and define rmin = min(R0). If

(5.61)

then Φ(R0) ⊂ R1, and there are no consecutive slow spikes once the iterates are inside the
reachable set R.

Proof. Suppose, on the contrary, that Φ(R0) ∩ R0 ≠ ∅. Then, there exists r0 ∈ R0 such that
Φ(r0) = r1 < Id. We also have Φ(r1) > r1 + ε. From the mean value theorem, there exists y ∈
R0 such that

(5.62)

By the definition of the reachable set R (Definition 5.4), we have R0 = [rmin, Id). Hence,

(5.63)

which contradicts the hypothesis of the lemma.

This proposition shows that if Φ′ is sufficiently small at every point in R0 (or is negative),
we will not observe periodic bursting orbits in which multiple slow spikes are separated by
single fast spikes, such as

In our model, |Φ′| is often small on R0, and hence Φ(R0) ⊂ R1 is commonly observed. This is
seen in Figure 4(b).

6. Co-existence of solutions and transitions between them
In the previous two sections, we have focused separately on the dynamics of tonic spiking
and bursting in model (2.1)–(2.2). We conclude our analysis by considering how transitions
between solution regimes, including scenarios where solution types co-exist, occur as
parameters are varied.

6.1. Quiescent and phasic solutions
We have already seen that if condition (2.7) holds, then all initial conditions lead to spikes,
so we avoid that condition for now.

Proposition 6.1. If (2.7) is false, then for any initial value I20 (or, equivalently, any value of
A2), there exists some Iq ∈ ℝ− such that for all initial values I10 < Iq, the neuron does not
spike, and for all initial values I10 ≥ Iq, the neuron spikes.
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Proof. From the model solutions (see (2.3)), we have

(6.1)

We rewrite the above inequality as

(6.2)

where g(t), h(t) > 0 for all t > 0. If the neuron does not spike for I10 = 0, then we choose Iq =
0 and the proposition follows. Assume instead that the neuron does spike for I10 = 0. In this
case, for I10 = 0, there exist times ta, tb such that Θ ≤ V (t) if and only if t ∈ [ta, tb], since the
voltage in this case is a sum of two exponentials. In this time interval, the inequality

(6.3)

follows from (6.2). We now define

(6.4)

It is readily checked that for any , we have V (t) < Θ for any t > 0, and the neuron
does not spike. Of course, since the voltage time course increases monotonically with I10,

there exists some  that satisfies the criterion of the proposition.

6.2. Onset of tonic spiking
In spite of Proposition 6.1, the failure of condition (2.7) does not rule out sustained spiking
entirely if A2 is sufficiently large.

Proposition 6.2. Suppose (2.7) is false and A2 is sufficiently large such that the neuron
spikes for some I10 = I1s < 0. There exists a value of the reset parameter  for
which tonic spiking co-exists with quiescent solutions, as selected by initial conditions.
Similarly, there exists a value of the reset parameter  for which phasic solutions
co-exist with quiescent solutions, as selected by initial conditions.

Proof. To prove the first part of the proposition, consider that the trajectory associated with

I10 = I1s yields a spike at a time t = ts. Choose . From the map definition
(3.2), if we set , we have Φ(I1s) = I1s, which is the fixed point equation corresponding
to tonic spiking solutions. On the other hand, from Proposition 6.1, there exists some Iq such
that trajectories with I10 < Iq cannot reach threshold, and thus co-existence between tonic
spiking and quiescence is achieved. This concludes the first part of the proposition.

To prove the second part of the proposition, choose a value of the reset parameter 
that satisfies

(6.5)

where we write t(I10) to emphasize that the spike time t itself depends on the initial value of
the I1 current. It follows that
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(6.6)

Thus, the fixed point equation Φ(I10) = I10 is never satisfied. Since the map is decreasing, if
we set I10 = 0, there exists a finite number m of spikes, with Φk(0) ≥ Iq for all k < m and
Φm(0) < Iq, after which the neuron will not spike, as established in Proposition 6.1. This
situation corresponds to a phasic spiking solution. On the other hand, if we choose I10 < Iq,
the solution will be quiescent. This concludes the proof of the second part of the proposition.

The above proof illustrates that for appropriate choices of A2, very negative choices of A1
lead to termination of spiking after finitely many spikes, while a smaller magnitude choice
of A1 can yield tonic spiking. That is, we can obtain a bifurcation from the absence of
sustained spiking to the appearance of a tonic spiking fixed point by increasing the
parameter A1, which shifts the map vertically (see (3.2)). This bifurcation is illustrated in
Figures 8(a)–8(d).

6.3. Onset of bursting
From Proposition 5.1, condition (2.7) must hold for bursting to occur. Hence, to switch from
quiescent or phasic spiking to bursting, parameters must be varied that cause (2.7) to hold.
Once (2.7) holds, however, all initial conditions lead to sustained spiking. We thus observe
that we have two possible routes away from parameter regimes that lack sustained spiking,
for which the return map is defined only on a finite interval of I1 values. In the case
illustrated in Figures 8(a)–8(d), as a parameter is varied, a fixed point comes into existence
before condition (2.7) becomes satisfied, yielding co-existence of quiescent solutions with
tonic or phasic solutions. Alternatively, as a parameter is varied, condition (2.7) may
become true before a fixed point exists, in which case the return map becomes defined for
all I1 ≤ 0 and, at least for parameter values near this event, exhibits a discontinuity at some
value I1 = Id < 0.

Due to the form of condition (2.7), a natural parameter to vary to attain the transition from
phasic spiking to bursting is Ie. Figures 9(a)–9(d) show an example of this transition as Ie is
increased, with other parameters fixed as in the last row in Table 1.

6.4. From bursting to tonic spiking
Increasing the input current Ie causes the return map Φ to decrease. This property follows
from the map definition

(6.7)

and the fact that increasing Ie always makes the neuron spike sooner: . Furthermore,
increases in Ie yield decreases in the I1 value at the discontinuity, Id, of Φ. To see this result,
define the function f : R3 → R2 by

(6.8)

where D(x, Ie, I1) is given in (2.4) and . For a given Ie, the value
of Id is determined by the equation f(x, Ie, I1) = 0 at I1 = Id.

Proposition 6.3. The discontinuity point (x, Id) of the map Φ depends smoothly on the
parameter Ie whenever the Jacobian matrix
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(6.9)

is invertible. In addition,

(6.10)

Proof. The smoothness of the variation of x, Id with respect to Ie follows directly from the
generalized implicit function theorem. To show dId/dIe < 0, we consider perturbations of x,
Ie, I1 on the manifold defined by D(x, Ie, I1) = 0. To first order, these perturbations satisfy

(6.11)

However, note that at any discontinuity associated with bursting, ∂D(x, Ie, I1)/∂x = 0, ∂D(x,
Ie, I1)/∂Ie > 0, and ∂D(x, Ie, I1)/∂I1 > 0. It follows that ΔI1/ΔIe < 0, thus completing the proof.

As Ie is increased, we therefore have the lower segment of Φ (with 0 ≥ I1 > Id) moving to
more negative values and extending over a larger interval of I1. A transition to tonic spiking
will occur if a transition occurs in which this part of the map collides with the identity line,
resulting in the creation of a new fixed point. In the literature, this is known as a border
collision bifurcation (Helena and James, 1995; Jain and Banerjee, 2003). The map-
decreasing effect of increasing Ie opposes the creation of a fixed point, while the
discontinuity-shifting effect of increasing Ie promotes it. Figures 10(a)–10(d) illustrate a
case in which the latter effect is dominant and increases in Ie cause a transition from bursting
to tonic spiking.

7. Discussion
In this paper, we have studied the contractive dynamics that typically arise in a simple
generalized integrate-and-fire model. The model, a special case of the model introduced by
Mihalas and Niebur (2009), consists of a linear, diagonalizable set of differential equations
combined with an update rule that is applied whenever the membrane voltage crosses the
threshold. In our analysis, we significantly advance our understanding of the more general
model described in Mihalas and Niebur (2009) by deriving a discrete return map that
accurately describes the model’s sustained activity patterns, tonic spiking and bursting. We
establish certain general properties of this map, discuss conditions for tonic spiking,
bursting, and asymptotic periodicity of solutions, and consider transitions between solution
types.

Our results are likely to be of practical interest to researchers, since our model produces a
variety of spiking behaviors in a manner that is naturally conducive to computational
implementation using efficient event-driven algorithms (Mihalas et al., 2011) and even for
implementations in VLSI hardware (Folowosele et al., 2009; van Schaik et al., 2010). An
important objective of neural network simulations is to study the link between the properties
of single neurons and network dynamics. As such, the ability to design efficiently
implemented model neurons that provably possess certain properties, such as bursting and
tonic firing, is of significant utility.
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Local contractivity of the return map played a key role in our analysis. We used analytical
formulas for model solutions to derive an exact closed form expression, (3.5), for the
derivative of the return map at every point. This expression allowed us to find mild
conditions on the parameters for local contractivity without the need for sophisticated
estimates, in contrast to the methodology developed in Foxall et al. (2012) to find sufficient
conditions for tonic spiking in a model with nonlinear dynamics.

Our results include some general findings on how piecewise contractive maps can capture
bursting behavior. We demonstrate that the piecewise contractive property not only admits
at most two periodic orbits but also enforces a strong constraint on the symbolic dynamics
that may be observed. If the map is injective, then after the orbit crosses the discontinuity
point Id once, all orbits must consist of one or more fast (slow) spikes separated by single
slow (fast) spikes. If the map is not injective, its orbits are attracted to periodic orbits with a
similar property, namely that they cannot feature repeated slow spikes followed by repeated
fast spikes. In particular, if the map has a sufficiently small or negative derivative on the part
of its domain corresponding to slow spikes, then we observe the typical bursting
phenomenon of multiple fast spikes separated by single slow spikes. Thus, piecewise
contractions provide a simple and elegant abstraction for bursting in biological neurons.

Contraction approaches have been used successfully in the study of continuous nonlinear
systems (see Lohmiller and Slotine, 1998). The power of the contraction approach stems
from the fact that it employs a simpler notion of stability. Instead of viewing stability from
the global point of view of convergence to nominal trajectories that in practice may be
difficult to compute, the contraction approach views stability from a local point of view:
temporary disturbances are “forgotten,” and nearby trajectories converge to the same
trajectory. The contractive notion of stability appears especially well suited to modeling
neural systems, as contractive systems are inherently forgiving of sufficiently small
stochastic effects and can compute reliably in their presence. Piecewise contraction analysis
is the natural extension of contraction analysis to dynamical systems that compute
symbolically, as neural systems appear to do. It has been shown that under certain
conditions, spiking neural networks are piecewise contractive (Catsigeras and Guiraud, to
appear; Cessac, 2008). A limitation of these works is that their predictions are not
experimentally verifiable. By showing that bursting, an observed behavior, can be modeled
effectively in the piecewise contraction framework, we lend credibility to the piecewise
contraction approach as a model of neural system dynamics.

Bursting dynamics also arise in other reset-based models. Two prominent examples are the
integrate-and-burst model of Coombes, Owen, and Smith (2001) and the Izhikevich model
of Izhikevich (2004). In the former case, an additional nonlinear current and associated
threshold are appended to the standard leaky integrate-and-fire model to generate bursting,
while the latter features a quadratic voltage equation, such that the bursting mechanisms in
both models are more complicated than the one we consider. Map-based representations of
bursting have been directly proposed, but these are two-dimensional (Rulkov, 2002;
Shilnikov and Rulkov, 2003) or have been derived from nonlinear conductance-based
models (Medvedev, 2005) (see Ibarz, Casado, and Sanjuán, 2011 for a review of map
models in neuroscience). In the latter case, the onset of bursting can be associated with the
loss of stability of a fixed point, and resulting chaotic dynamics have been analyzed by
Medvedev (2006). As in Izhikevich (2004), the variable in our model that undergoes an
additive reset (reset to a nonconstant value) has an adaptive effect on voltage dynamics,
hindering the approach to threshold. In other works, maps have been derived from
oscillators coupled with synaptic inhibition, which also holds back spiking (Medvedev and
Cisternas, 2004; Zhang, Bose, and Nadim, 2009). While this mechanism can lead to
nontrivial oscillations and phase locking, it differs from what we consider in that the timing
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with which inhibitory signals arrive at one oscillator is determined by the state of the other
oscillator, rather than by the impacted oscillator itself.

A limitation of our work is the lack of a sufficient analytical condition on the parameters to
ensure the piecewise contractive property of the return map. We leave the task of finding
such a condition for further research. For practical purposes, it is a simple matter to check
the property computationally by using (3.5), as was done in section 3.2. The more general
problem of identifying classes of impulsive hybrid systems whose return maps have the
piecewise contractive property is another open avenue for research. The simplest way to
induce piecewise contractive maps from system dynamics is by switching between a finite
number of globally contractive system dynamics based on the previous post-reset value of
an adaptation variable (in our case, I1). For example, given state vector x = [x1,…, xm]⊤,
adaptation variable x1, whose previous initial value we denote by x10, a set of globally

contractive system dynamics , and a corresponding partition  of the domain of
x1, the following dynamics are piecewise contractive:

(7.1)

where ζ is the discrete-valued selection function which chooses k depending on the previous
value of x10, D is the forbidden set, and Ω is the reset function that resets all xi to a constant
value except for the adaptation variable x1 (which is incremented in our case). Of course, the

global contractivity of the set of system dynamics  itself depends on the shape of the
forbidden set D as well as the reset function Ω. In the analysis of spiking neural models, the
forbidden set is defined by V (t) ≥ Θ(t). This formulation is closely aligned with the classical
definition of a hybrid system, in which the state of the system is described by the values of
the continuous variables as well as the discrete-valued control mode.

The goal of single neuron modeling should not only be to replicate observed behaviors with
biologically plausible models but also to derive the most parsimonious algorithmic rules that
result in such behaviors. Neurons have been observed to fire in repetitive patterns when a
constant input current is given. In this paper, we have shown that the locally contractive
property of the adaptation variable in our neuron model is sufficient to induce
asymptotically stable tonic spiking and bursting. Local contractions can also accommodate
other behaviors that we have discussed as well, such as phasic spiking and the co-existence
of spiking patterns. The results of our paper are of a general nature and may be applied to
the analysis of other spiking models. It is our hope that our work contributes a useful
framework for understanding nonchaotic spiking dynamics.
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Figure 1.
Examples of return maps for various spiking scenarios. The blue curve is the function Φ(I),
the black diagonal line is the identity, and the black line with horizontal and vertical
segments connects system states between spikes. By iterating the map graphically—a
procedure known as cobwebbing—we gain insight into its asymptotic dynamics. Comparing
(a) and (b), we see that the orbits of maps with smaller derivatives converge in fewer
iterations to the fixed point than of maps with larger derivatives. All maps except for (f)
satisfy the piecewise contractive property. The maps were generated from the model using
parameters listed in Table 1. As will be seen in (3.9), larger iterates of I result in a shorter
interspike interval (faster spike time).
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Figure 2.
Trajectories of contractive and piecewise contractive maps. Collections of trajectories were
simulated, starting from V = V0 = 0 and equally spaced I10 values and continuing until V =
Θ = 0.02 was reached. The blue lines with arrows represent trajectories, and the red lines are
used to illustrate the spiking surface V = Θ. (a) Phase plane trajectories for a globally
contractive case, resulting in tonic spiking. Additional parameter values used are I20 = 0, k1
= 120, γ = 50, Ie = 3. (b) Phase space trajectories for a piecewise contractive case, resulting
in bursting. A three-dimensional phase space was used, because here I2 ≠ 0. A set of
trajectories with I10 values near 0 hits V = Θ quickly, while another set makes a longer
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excursion before doing so. Additional parameter values used are I20 = 10, k1 = 20, k2 = 200,
γ = 40, Ie = 1.
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Figure 3.
Visualization of a tonically firing neuron. See Table 1 for parameters used. (a) Converged
dynamics corresponding to the fixed point of Φ. (b) The Poincaré return map is globally
contractive. (c) Graph of D(x) for the values of I10 that occurred in the simulation shown in
(a). The blue line corresponds to the iterate of D(x) computed at the end of simulation shown
in (a).
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Figure 4.
Visualization of a bursting model neuron. See Table 1 for the parameters used. (a) The
voltage time course shows that voltage reaches threshold several times within each burst.
Notice the initial transient burst, after which Φ, as shown in (b), is confined to the reachable
set. (b) The return map Φ(I) is piecewise contractive. The right side of the discontinuity
corresponds to fast spikes, and the left side corresponds to slow spikes. (c) D(x) for the post-
reset values of I1 that occurred in the simulation shown in (a). D(x) can gain or lose a root in
(0,1) as I1 evolves. The blue line corresponds to the iterate of D(x) computed at the end of
the simulation shown in (a).
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Figure 5.
The construction of the reachable sets is illustrated. As discussed, we may limit our analysis
to the reachable set R = R0 ∪ R1. Note that Φ is injective on R but not injective on the entire
domain.
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Figure 6.
Illustration of Lemma 5.8 for a bursting map in which Φ : R → R is not injective. We see
that if Φ is piecewise injective on R, we can restrict the domain of Φ to a refined reachable
set R′ for which Φ : R′ → R′ is injective.
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Figure 7.
Illustration of Theorem 5.9 for a piecewise contractive map with Lipschitz constant 1 > K ≥

0. In this case, the orbit of y is approached arbitrarily closely by the orbit of .
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Figure 8.
The onset of tonic spiking from phasic spiking. (a), (b) Phasic spiking regime. The return
map here is defined only on a finite interval of I1 from which threshold can be reached,
given V (0) = V0 and I2(0) = A2. (a) An example of a return map and iterates corresponding
to a phasic spiking solution. (b) D(x) for the iterates of I1 shown in (a). (c), (d) Co-existence
of quiescence and tonic spiking. (c) An example of a return map and iterates converging to a
tonic spiking solution. (d) D(x) for the iterates of I1 shown in (c). Parameters for all plots
were identical (see Table 1) except for the reset parameter A1. In (a), (c), the return map is
defined only for I1 above the value at the dashed vertical line. That is, threshold is never
reached for I1(0) below this vertical line. In (b), (d), the blue line shows the iterate of D(x)
computed at the final iterate shown in (a), (b), respectively.
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Figure 9.
Example of a bifurcation from phasic spiking to bursting as Ie is varied. (a), (b) At Ie = 0.35,
all initial conditions lead to quiescence or phasic spiking and the return map Φ is defined
only on a finite interval of I1 values. (c), (d) At Ie = 1.0, (2.7) holds, spikes occur for all
initial conditions I10, Φ still has a discontinuity, and a periodic bursting solution exists. See
Table 1 for other parameter values used.
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Figure 10.
Example of a border collision bifurcation caused by increasing the Ie. (a), (b) Bursting
regime with Ie = 3.5. (c), (d) Tonic spiking regime with Ie = 4.5. See Table 1 for other
parameter values used.
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Table 2

Parameter ranges for the numerical search of the piecewise contractive property of model neurons. Parameter
sets are written using MATLAB syntax: [0 : 1 : 5] = [0, 1, 2, 3, 4, 5], for instance.

Ie 1:10

γ 20:20:60

k1 40:20:200

k2 40:20:200

Θ 0.020:0.005:0.025

I1 −10:0.001:0

I2 0:2:4

SIAM J Appl Dyn Syst. Author manuscript; available in PMC 2014 September 10.


