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Evolving Bayesian Emulators for Structured Chaotic Time Series, with
Application to Large Climate Models∗

Daniel Williamson† and Adam T. Blaker‡

Abstract. We develop Bayesian dynamic linear model Gaussian processes for emulation of time series output for
computer models that may exhibit chaotic behavior, but where this behavior retains some underlying
structure. The statistical technology is particularly suited to emulating the time series output of
large climate models that exhibit this feature and where we want samples from the posterior of
the emulator to evolve in the same way as dynamic processes in the computer model do. The
methodology combines key features of good uncertainty quantification (UQ) methods such as using
complex mean functions to capture large-scale signals within parameter space, with dynamic linear
models in a way that allows UQ to borrow strength from the Bayesian time series literature. We
present an MCMC algorithm for sampling from the posterior of the emulator parameters when the
roughness lengths of the Gaussian process are unknown. We discuss an interpretation of the results
of this algorithm that allows us to use MCMC to fix the correlation lengths, making future online
samples from the emulator tractable when used in practical applications where online MCMC is
infeasible. We apply this methodology to emulate the Atlantic Meridional Overturning Circulation
(AMOC) as a time series output of the fully coupled non–flux-adjusted atmosphere-ocean general
circulation model HadCM3.
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1. Introduction. Computer models are used in many diverse areas of science to study
the behavior of complex physical systems such as the Earth’s climate. A computer model is,
essentially, a mathematical function of a possibly large number of parameters. The function is
often approximated as part of the model code, for example, using discretized solvers to evaluate
solutions to partial differential equations or integrals within the mathematical description.
Using such a model to make inferences about the physical system in question introduces a
number of sources of uncertainty that must be quantified. These sources include structural
uncertainty, often referred to as model discrepancy, which represents the extent to which the
model fails to represent the true physics of the system through either inaccurate modelling or
numerical approximation; decision uncertainty, which represents the uncertainty in the model
output due to any decision or control parameters and the uncertainty as to what these might
eventually be in the real world; and parametric uncertainty due to not knowing which choices
of the model parameters lead to model output that best represents the physics of the system.
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A key component of parametric uncertainty derives from our inability to run the com-
puter model at every possible choice of the input parameters. Often called code uncertainty
(Kennedy and O’Hagan, 2001), this feature of the analysis of computer experiments has re-
ceived particular attention from the research community, leading to a general methodology
based on emulators. An emulator is a stochastic representation of a computer model that
generates a prediction for the output of a computer model at any setting of the model param-
eters and reports a measure of uncertainty for that prediction. Emulators can be evaluated
in a fraction of the time it would take to run a computer model, and there are many different
techniques for building them. Generally, an emulator is built by using an ensemble of runs
at different parameter choices, called the design, and using that ensemble to fit a statistical
model.

The form of the emulator depends largely on the form of the computer model out-
put. There is a wide literature on how to fit emulators for models with univariate output
(Sacks et al., 1989; Haylock and O’Hagan, 1996; Santner, Williams, and Notz, 2003). The
models we will study return time series output, and the task will be to emulate these as a
function of the model parameters and forcing. The computer models of interest exhibit what
we term structured chaotic behavior. Such models are common in the study of complex dy-
namic systems with computer models, such as those found in climate and finance. The output
is chaotic because slight changes to the input parameters or the initial conditions at which
the model is run can effect large changes to the output. This chaos, however, retains some
structure. The models are deterministic, not stochastic, which means that running the model
twice at the same settings of the input parameters and initial conditions will return the same
output. Slight perturbations to the parameters may lead to large differences in the exact
evolution of the time series. However, global features such as parameter-dependent trends
and the character of the variability will be very similar.

When emulating such time series output of a computer model, unless the initial condi-
tions in the model are fixed for purely physical reasons, both at the time the parameters are
changed and when any forcing is introduced, our emulators should not interpolate the model
runs observed. This is because by choosing a specific time to change the experiment we are
introducing sampling uncertainty. For example, when the parameters of a climate model are
perturbed, the model must be run for a number of years until it is in equilibrium before any
CO2 forcing experiments can be applied. Once the model is in equilibrium, the point at which
forcing is applied is both important in terms of the precise time series returned from the model
and irrelevant to the scientific analysis being performed. The sampling uncertainty introduced
by perturbing the parameters or altering the forcing in a climate model is known as internal
variability (see, for example, Hawkins and Sutton, 2009) and must be explicitly modelled as
part of a methodology for emulating time series output of computer models with structured
chaotic behavior.

The emulation of time series is part of the more general problem of jointly emulating multi-
variate output of computer models. This has been done using multivariate Gaussian processes
(Rougier, 2008; Conti and O’Hagan, 2010), though this is difficult if the output is reasonably
high dimensional. A popular solution is to project the output to a lower-dimensional set of
basis vectors and to then emulate the coefficients. Bases used in the literature include prin-
cipal components (Challenor, McNeall, and Gattiker, 2009; Higdon et al., 2008b), wavelets
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(Bayarri et al., 2007), and P-splines (Williamson, Goldstein, and Blaker, 2012). In each of
these methods a low-dimensional basis is constructed to represent any output of the simulator,
and the model output is projected onto that basis. A multivariate emulation of the coefficients
using Gaussian processes can then take place. This approach has many advantages, including
simplifying the numerical challenge faced in constructing and inverting high-dimensional co-
variance matrices for Gaussian processes, and allowing a great deal of interpretability to the
emulated quantities. For example, basis projection often acts as a smoother, allowing global
trends and large-scale signals to be captured. These emulators can account for structured
chaos by allowing the smoother to represent the structure and removing sampling uncertainty
at the dimension reduction stage.

There are problems with using basis representations too, particularly when modelling
time series. It may be hard, if not impossible, to find a suitable basis that allows accurate
capturing of all of the structure we require in every run in our design. Although history
matching may help with this (see section 3), we may still have difficulty capturing “rare”
or even “run specific” events that may be smoothed out, yet still represent behavior in a
region of parameter space that is of interest. This would lead to the projected coefficients
being a poor representation of the model output for those runs where we fail to do a good
job, leading to an emulator not of the computer model, but of a poor fit to it. For most
basis expansions, although we might sufficiently capture the smooth behaviors of interest, the
structure and character of the variability in the output are not explicitly modelled. We may,
by chance, only remove variability that explicitly accounts for the noise in our system through
the dimension reduction, but this is unlikely. Draws from the posterior distribution of the
emulator are likely to resemble a smooth representation of the output, but even if “white
noise” is subsequently added to these draws, they may not look like realistic realizations of
the modelled dynamic process as output by the simulator.

Emulators that aim to capture the dynamics of the system have been attempted by
Conti et al. (2009) and by Liu and West (2008). Conti et al. (2009) construct what they
call dynamic emulators by modelling the one-step transition function of the state vector as
a function of the state vector and the model parameters. By accurately modelling how the
model moves from one time step to the next, they can evolve draws from the posterior dis-
tribution of the output of the simulator at any choice of the input parameters by updating
the full state vector of the model directly. For many problems however, the state vector is
prohibitively large such that this approach is infeasible.

Liu and West (2008) introduced a dynamic approach to emulation based on dynamic lin-
ear models (West and Harrison, 1997; Prado and West, 2010) and Gaussian processes. They
modelled the time series output of a computer model as a time varying autoregressive (TVAR)
process plus an independent Gaussian process at each time point. Their emulators interpolate
the design points. Their approach uses the TVAR process to model temporal behavior common
throughout parameter space and uses the Gaussian process to describe independent deviations
from this global behavior, for any parameter choice, at each time point. However, the model
output may not exhibit the same degree of smoothness throughout its parameter space, and
there may be complex parameter-dependent temporal behavior that is more easily captured
by fitting a complex, parameter-dependent, global mean function and allowing the Gaussian
process residual to do less work by capturing “local” variability around this mean function.



4 DANIEL WILLIAMSON AND ADAM T. BLAKER

The approach to building emulators by fitting parameter-dependent global mean functions
and modelling residual variability with Gaussian processes has been widely applied (see, for
example, Craig et al., 2001; Cumming and Goldstein, 2009; Rougier et al., 2009) and was dis-
cussed and advocated by Kaufman et al. (2011). We will apply this approach to the emulation
of structured chaotic time series output of computer models.

In this paper we extend the dynamic linear model approach of Liu and West (2008) to
allow for model output exhibiting structured chaos by adding a white noise process to the
residual. We superpose a dynamic regression in the model parameters and forcing to cap-
ture features in the evolution of the time series output that change as we move through
parameter space in a way captured by simple functions of the parameters. We then allow
the Gaussian process to capture the remaining “local” signal. We illustrate our methodol-
ogy by emulating a time series of an ocean transport called the Atlantic Meridional Over-
turning Circulation (AMOC), output from the third Hadley Centre climate model HadCM3
(Gordon et al., 2000; Pope et al., 2000), and an atmosphere ocean generalized circulation
model (AOGCM) used in the fourth report from the Intergovernmental Panel on Climate
Change (IPCC) (Solomon et al., 2007).

The quantity is of particular interest to ocean and climate scientists because of the asso-
ciated heat transported by the predominantly northward flowing water masses in the upper
limb of the AMOC. Observations of the AMOC have been made from April 2004 until the
present by a collaboration of UK and US scientists (Rayner et al., 2011), and a recent study
found the AMOC to be responsible for nearly 90% of the net meridional ocean heat flux at
26◦N (Johns et al., 2011). Studies using both numerical models and observation have found
the AMOC to exhibit substantial variability on a wide range of time scales (see, for example,
Blaker et al., 2012; McCarthy et al., 2012; Balan Sarojini et al., 2011; Biastoch et al., 2008),
and it is expected that the AMOC will reduce in strength by 25% over the next few decades
(Bindoff et al., 2007) due to increasing concentrations of atmospheric greenhouse gases.

In section 2 we present the basic details of computer model emulation using Gaussian
processes and introduce our methodology for emulating structured chaotic time series output
of computer models by generalizing the ideas of Liu and West (2008). In section 3 we describe
the application, introduce an ensemble of climate model runs, and discuss the use of history
matching to remove unphysical runs prior to emulation of complex time series. In section 4 we
discuss the different prior judgements required to build our emulators and describe the choices
made in our application. Section 5 introduces an MCMC algorithm for sampling from the
posterior when the roughness lengths of the Gaussian process are uncertain and discusses the
interpretation of our statistical model. In section 6 we present results and section 7 contains
a discussion. Proofs of certain results that drive the Bayesian updating of our emulator that
are from the time series literature are included in Appendix A for interested UQ practitioners
who may not be familiar with them.

2. Emulators.

2.1. Emulation. Let x be a set of input and decision parameters for a computer model
f(x). A typical form for an emulator for component fi of f is

(1) fi(x) =
∑
j

βijgj(x)⊕ εi(x),
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where the operator ⊕ indicates the addition of independent quantities, g(x) is a specified
vector of regressors, β is a matrix of uncertain coefficients, and εi(x) is a Gaussian pro-
cess with stationary correlation function R(|x − x′|;ρ) with parameters ρ. The first half
of this equation is designed to capture large-scale (global) features of the computer model
output throughout parameter space, and the residual process models the local variability
(Williamson, Goldstein, and Blaker, 2012). Time can be handled by including it as part of
the vector x (emulating as a function of time) (see, for example, Rougier, 2008) or by allowing
i to indicate time and by specifying beliefs about β with a temporal correlation function for
the ε(x) (see, for example, Craig et al., 2001).

Given the form in (1), an emulator is constructed by choosing the elements of g(x) and
the form of the covariance function for εi(x) and then initializing the random field {β, εi(x)}
by performing a Bayesian update of our model using prior judgments and an ensemble of runs
of the computer model. For example, suppose the covariance function of εi(x) is σ

2R(·, ·;ρ).
Suppose, in addition, that full prior probability distributions are available on {β, σ,ρ}. Then,
the random field π(fi(x)) with

fi(x)|β, σ,ρ ∼ GP
(
βg(x), σ2R(·, ·;ρ))

can be updated by an ensemble F using Bayes’ theorem and the decomposition

π(fi(x), β, σ,ρ|F ) = π(β, σ,ρ|F )π(fi(x)|β, σ,ρ, F ),

with

fi(x)|β, σ,ρ, F ∼ GP (m(x), c(·, ·)) ,
where m(x) and c(·, ·) depend on g(x), R(·, ·), and the prior distribution on {β, σ,ρ}. Under
certain strong assumptions that fix the elements of ρ and that allow β and σ to be integrated
out, a closed form is available for π(fi(x)|F ) through conjugate analysis (see, for example,
Haylock and O’Hagan, 1996). When we are not willing to make these assumptions, samples
from π(fi(x)|F ) can be obtained using MCMC.

An alternative to a full probabilistic analysis is a Bayes linear analysis. This approach
replaces the specification of a full prior probability distribution for uncertain parameters with
specification of means, variances, and covariances and then performs a second order analysis
of the resulting model using the ensemble F . Full details of this method can be found in
Craig et al. (1996), Cumming and Goldstein (2010), and Williamson and Goldstein (2012).

Traditionally, emulators were built with constant prior mean functions with g(x) = 1 and
the Gaussian process residual capturing global structure of the function in its parameter space
as well as local information close to observed model runs (Sacks et al., 1989; Currin et al.,
1991; Santner, Williams, and Notz, 2003). However, this is inefficient in many cases where
complex mean functions can be constructed that capture the global behavior and allow the
Gaussian process to more accurately capture the residual local variability.

In the computer experiment literature it has now become popular to choose a complex vec-
tor g(x) so as to model large-scale features of the computer code (see, for example, Craig et al.,
1997; Rougier, 2008; Rougier et al., 2009; Williamson, 2010; Vernon, Goldstein, and Bower,
2010). This has the effect of reducing the importance of the Gaussian process to the quality
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of the overall fit. In some cases the fit is judged to be adequate enough to have soaked up
all of the parameter-dependent behavior of the model, leaving an uncorrelated noise process
residual (Rougier et al., 2009; Sexton, Murphy, and Collins, 2011; Williamson et al., 2013).
Kaufman et al. (2011) use complex mean functions to restrict the correlation lengths in order
to use correlation functions with restricted support and to reduce the computational burden
when emulating functions using large ensembles.

2.1.1. The nugget process. The emulators described above will interpolate the observed
model runs following Bayesian updating. This is desirable when the computer code is de-
terministic in many cases. However, there are incidences when this is not appropriate. For
example, in many situations, although all parameters in the computer model were varied in
the design, only a handful are deemed “active.” In these circumstances the Gaussian process
will be built using the active variables only. Variability due to the inactive variables, though
judged not to contribute a great deal to the overall variability of the output, must be modelled
separately.

We may also judge that there is a discrepancy between the Gaussian process and the
computer model output, perhaps arising from a misspecified correlation structure or lack of
stationarity (Grammacy and Lee, 2012). In these situations we may add a “nugget term,”
a mean zero “noise” process, to the emulator that indicates variability in the output that
is not attributed to the inputs we include in our emulator. The term “nugget” originates
from the spatial statistics literature, where it is included in the fitting of Gaussian processes
to account for measurement error (Cressie, 1993; Diggle and Ribeiro, 2007). A review and
exploration of the effect of the use of a nugget in emulators for computer models can be found
in Andrianakis and Challenor (2012). Kleijnen (2009) also discusses emulation for computer
models where the output is not deterministic.

2.2. Dynamic linear model Gaussian processes. In the remainder of this article we refer
to the computer model output corresponding to parameters x at time t as ft(x), explicitly
acknowledging time in our notation. The dynamic approach to emulation introduced by
Liu and West (2008) models the emulator as a TVAR process plus an independent Gaussian
process via

ft(x) =

p∑
j=1

θt,jft−j(x)⊕ εt(x)

with εt(x) ∼ N(0, vt) independent over time and with a square-exponential correlation function
with uncertain roughness lengths. This specification captures temporal relationships using
the TVAR process, yet the modelling makes no specific provision for parameter-dependent
temporal relationships, leaving these to be captured by the Gaussian process at each time
point. We might expect this kind of model to perform well for simulators whose time series
output contains regular features throughout parameter space, for example, peaks at specific
times which would appear in the posterior distribution of θ. These features may be more or
less exaggerated depending on x, and the Gaussian process εt(x) will allow this to be captured.
However, in models where the temporal behavior depends heavily on the parameters and where
the time series can look quite different for different parameter choices, the Gaussian process
will have to capture most of the behavior of the model output independently in time. In
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this way, the dynamic emulators introduced by Liu and West (2008) are similar to standard
emulators with constant mean functions.

We generalize their approach by superposing a dynamic regression in the input param-
eters x. This superposition preserves the status of the model as a dynamic linear model
(West and Harrison, 1997, Chapter 6). We also superpose a nugget process to ensure that
our emulators do not interpolate the model runs, as this is not appropriate for models that
exhibit structured chaos. The nugget in our model captures internal variability and may also
be used to account for any variability due to inactive inputs.

Our model is

(2) ft(x) =

p∑
j=1

θt,jft−j(x) +

q∑
k=1

βt,kgk(xt)⊕ εt(x)⊕Δt,

with uncertain parameters θt = (θt,1, . . . , θt,p)
T and βt = (βt,1, . . . , βt,q)

T , εt(x) a Gaussian
process with εt(x) ∼ N(0, τvt) independent over time, and Cov [εt(x), εt(x

′)] = τvtR(|x −
x′|;ρ). Δt is a nugget residual with Δt ∼ N(0,Δvt), also independent over time. τ and Δ
are preassigned scalars that we take here to sum to 1 so that the vt can be viewed as the
variance of the mean zero residual component of the model and τ and Δ are the proportions
of the residual variability that are correlated “signal” and “white noise” respectively, though
this constraint is not a requirement of the modelling.

The vector g(xt) is a vector of regressors in xt, which is potentially a time series that can
be derived explicitly from x. The simplest case is xt = x for all t; however, some computer
models require time series inputs that are controlled through a handful of parameters in x. It
may be useful to allow some terms in our model of the simulator to be described as functions of
the elements of these time series rather than the parameters, as we shall see in our application.

Let ψt = (θt,βt)
T follow a random walk in time so that

(3) ψt = ψt−1 + wt, wt ∼ N(0, vtWt),

for some matrix Wt. We specify a normal inverse gamma prior for ψ0, v0 with ψ0|v0,D0 ∼
N(m0, v0C

∗
0 ), φ0|D0 ∼ G(n0/2, d0/2), and φt = v−1

t for all t. The collection Dt represents all
hyperparameter information up to time t for all t as well as ensemble data up to time t.

Models for sequences vt and Wt are based on variance discounting (West and Harrison,
1997; Prado and West, 2010) with

(4) Wt|Dt−1 =
(1− δw)

δw
C∗
t−1

and

(5) φt|Dt−1 =
γtφt−1

δv
,

where γt ∼ Beta(δvnt−1/2, (1−δv)nt−1/2) so that φt evolves as a result of independent random
shocks γt/δv. Parameters C∗

t−1, nt−1, and dt−1 will be derived below as part of a conjugate
Bayesian update of the normal inverse gamma model. The parameters δv and δw are discount
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parameters to be specified. With the model above it can be shown (for example, using Mellin
transforms) that the prior for φt can be written as

φt|Dt−1 ∼ G(δvnt−1/2, δvdt−1/2).

Let X1, . . . ,Xn represent the ensemble design points, and define

HT
t =

⎛
⎜⎝

ft−1(X1) · · · ft−p(X1) g1(X1t) · · · gq(X1t)
...

...
...

...
ft−1(Xn) · · · ft−p(Xn) g1(X1t) · · · gq(Xnt)

⎞
⎟⎠

and
εt = (εt(X1), . . . , εt(Xn))

T , Ft = (ft(X1), . . . , ft(Xn))
T .

Then
Ft = HT

t ψt + εt +Δt, εt ∼ N(0, vtτΣ),

with
Σij = R(|Xi −Xj |;ρ), Δt ∼ N(0, vtΔIn).

In what follows we present details of the Bayesian update of this model conditioned on ρ
with the form of R(·) assumed known and describe how to sample evolutions of the emulator.
Though some of the results and recurrence relationships are considered “standard” in the
time series literature, we present details here and proofs where appropriate in Appendix A
for readers who are familiar with the computer experiment literature but not with dynamic
linear model theory.

2.3. Bayesian updating. The updating of {ψt, vt} with the ensemble data F1:T happens
iteratively from t = 1, . . . , T by a procedure called forward filtering in the time series literature
(West and Harrison, 1997). For each time t the prior distribution of φt|Dt−1 is given above and
the marginal distribution of ψt−1 is ψt−1|Dt−1 ∼ Tδvnt−1(mt−1, Ct−1) with Ct−1 = St−1C

∗
t−1

and St−1 = dt−1/nt−1.
From this information, we can derive recurrence relationships that perform the Bayesian

updates for all time using

ψt|Dt−1 ∼ Tδvnt−1(at, Rt), Ft|Dt−1 ∼ Tδvnt−1(ht, Qt),

φt|Dt ∼ G(nt/2, dt/2), ψt|Dt ∼ Tnt(mt, Ct),

where

Rt =
Ct−1

δw
, at =mt−1, Qt = HT

t RtHt + St−1(τΣ +ΔIn),

ht = HT
t at, nt = δvnt−1 + n, dt = δvdt−1 + St−1e

T
t Q

−1
t et,

et = Ft − ht, mt = at +Atet, Ct =
St

St−1
(Rt −AtQtA

T
t )

and At = RtHtQ
−1
t . Although these relationships are known in the time series literature and

only slightly changed to allow for our augmentations to the model of Liu and West (2008), we
include a derivation in Appendix A for interested readers.
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2.4. Sample evolutions. Having obtained posterior distributions for the uncertain pa-
rameters in our model we can draw samples from the posterior and sample an evolution of our
emulator in time based on the sampled values of the known parameters. To draw a sample
path from our emulator at a new input x we first sample values of v1:T and ψ1:T and then,
for t = 1 : T , sample iteratively from ft(x)|v1:T ,ψ1:T ,Ft, f1:(t−1)(x) ∼ N(μt(x), σ

2
t (x)) with

(6) μt(x) =

p∑
j=1

θt,jft−j(x) +

q∑
k=1

βt,kgk(xt) + τρTx(τΣ+ΔIn)
−1ξt

and

(7) σ2(x) = vt(τ +Δ− τ2ρTx(τΣ +ΔIn)
−1ρx),

where ξt = (ξt(X1), . . . , ξt(Xn)), ξt(Xi) = ft(Xi)−
∑p

j=1 θt,jft−j(Xi)−
∑q

k=1 βt,kgk(Xit), and

ρx = (R(|x − X1|), . . . , R(|x −Xn|))T . Note here that there is a starting value problem for
p > 0, where the samples described above are undefined for t < p+1. We discuss this further
in section 4.

We first describe how to sample from {v1:T ,ψ1:T } by backwards sampling. First, sample
vT ∼ G(nT /2, dT /2); then, for t = T−1, . . . , 1, sample ηt ∼ G((1−δv)nt/2, dt/2) and calculate

v−1
t = ηt +

δv
vt+1

.

Although this result is known in the time series literature, we include a proof that this scheme
samples from the correct distribution in Appendix A for interested readers. Given v1:T , we
sample ψ1:T by first sampling a ψT from

ψT |v1:T ,DT ∼ N(mT , vTC
∗
T );

then, for t = T − 1, . . . , 1, we iteratively sample from

ψt|ψt+1, vt,Dt ∼ N((1 − δw)mt + δwψt+1, (1− δw)vtC
∗
t ),

with C∗
t = Ct/St for all t. Again, a short proof of this known result is given in Appendix A

for interested readers.

3. Emulating the AMOC in HadCM3. Our motivating application involves emulating
the AMOC as output by HadCM3 as a function of model parameters and CO2 forcing. This is
part of a National Environment Research Council funded project called RAPIT (Risk Analysis,
Probability and Impacts Team) that aims to quantify the risk of rapid change or shutdown
of the AMOC. To meet this challenge we will build an emulator for key outputs of HadCM3,
such as the AMOC time series, and use calibration (Kennedy and O’Hagan, 2001) to provide
probability distributions for the relevant quantities in the real world. In this paper we use the
methodology described to construct an evolving emulator for the AMOC that will be used as
part of future work.
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3.1. The ensemble. The RAPIT ensemble we are using was designed on 27 of HadCM3’s
parameters, controlling processes such as tracer mixing in the oceans, cloud formation and
distribution, and sea ice formation as well as many others. Each ensemble member is associated
with a decision parameter controlling the rate of CO2 concentration increase for the simulation.
Each simulation runs through 120 model years, with 50 years devoted to allowing the model to
reach equilibrium at preindustrial CO2 following parameter perturbation and 70 years during
which CO2 concentration is increased by the rate indicated by the decision parameter. This
parameter is chosen from the range [0, 0.04], with 0.01 indicating annual 1% increase in CO2

concentrations and a doubling of CO2 concentrations by the end of the experiment.
A Latin hypercube design containing 10, 000 different perturbations was designed and the

runs were submitted to climate prediction dot net (CPDN, http://climateprediction.net), a
distributed computing project through which climate models are distributed to run as back-
ground processes on personal computers volunteered by members of the public. With over
35, 000 active hosts, many of which using multicore machines, we can run very large ensembles
with this resource. However, the price for obtaining large ensembles on personal computers is
that each member takes a very long time to complete. Runtimes differ from machine to ma-
chine; however, it takes approximately 28 days for a reasonably fast and dedicated PC to run
40 years of the simulation. Most runs take much longer, and many are incomplete after many
months. Details of the design and more on the ensemble can be found in Williamson et al.
(2013) and Yamazaki et al. (2013).
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Figure 1. The AMOC at 26◦N in the RAPIT ensemble colored by the annual percentage increase of CO2

forcing applied after year 50. The right-hand panel shows the density of the “final” AMOC value and was
computed by binning the final 20 year means of the AMOC into bins with 2Sv intervals (1Sv = 1× 106m3s−1).

Figure 1 shows all of the transient (nonzero rate of CO2 increase) runs in the RAPIT

http://climateprediction.net
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ensemble that had completed 120 years of simulation at the time of this writing. The plot
shows a very wide range of AMOC behaviors, many of which are considered as “unphysical”
by climate scientists. The peak at around year 15, for example, is an artificial synchronous
excitation of a mode of climate variability known to exist in HadCM3 which is a result of
the introduction of parameter perturbations (Blaker and Williamson, 2014). These unusual
behaviors may be difficult to emulate and, due to their artificial nature, emulating them is
not likely to be of interest, although their presence in the data may mask behavior that is of
interest and make that difficult to model. The solution we present is to use simpler and easier
to model outputs from the computer model, such as univariate averages, in order to rule out
parts of parameter space that lead to unphysical behavior by history matching.

3.2. History match. So that we may focus on emulating only those parts of parameter
space that we cannot rule out as being unphysical, we first perform a history match on the
ensemble. History matching is a statistical method that uses observational data in order to rule
out regions of parameter space where it is judged to be implausible that the model could mimic
the real world given all of the relevant uncertainties. It has been applied in a number of areas,
including on computer models for oil reservoirs (Craig et al., 1996; Cumming and Goldstein,
2010) and on models that simulate the formation of galaxies at the beginning of the universe
(Vernon, Goldstein, and Bower, 2010).

The method works by linking the computer model to reality via a statistical model that
explicitly acknowledges a discrepancy between reality and the simulator. The most popular
model uses the “best input approach” (Kennedy and O’Hagan, 2001), which is to say that
reality y can be modelled as

(8) y = f(x∗)⊕ η,
where x∗ is the setting of the model parameters referred to as the best input and η is model
discrepancy. Observed history z, usually related to y via z = y ⊕ e with mean zero mea-
surement error e, is then used to rule out regions of parameter space via the implausibility
measure I(x) = maxi{Ii(x)}, where

(9) Ii(x) = zi − E [fi(x)]√
Var [zi − E [fi(x)]]

.

The form of Var [z − E [f(x)]] depends on the method used to link f(x) to y; for example, by
adopting (8) we get

Var [z − E [f(x)]] = Var [e] + Var [η] + Var [f(x)] .

Implausibility can be viewed as a standardized distance with “large” values of I(x) for any
particular value of x implying an implausible match. “Large” is often taken to be 3, but
will depend on the problem. There is also a multivariate version of I(x); see, for example,
Vernon, Goldstein, and Bower (2010).

We performed a history match on HadCM3 using four univariate outputs calculated as
the mean of the final decade of data in the ensemble. The outputs were global mean surface
air temperature (SAT), the northern hemisphere meridional SAT gradient (SGRAD, mea-
sured as the difference between averages over 0–20oN and 50–70oN), the average northern
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hemisphere seasonal cycle of SAT (SCYC, June–August average minus December–February
average), and global mean precipitation. We used a multimodel ensemble of simulations from
different AOGCMs from the World Climate Research Programme’s Coupled Model Inter-
comparison Project phase 3 (CMIP3) (Meehl et al., 2007) and second order exchangeability
(Goldstein and Wooff, 2007) to link HadCM3 to reality and to define our implausibility mea-
sure. The match ruled out 56% of the parameter space of HadCM3. Full details of this
analysis and the methodology are the subject of Williamson et al. (2013).
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Figure 2. Transient AMOC projections for HadCM 3 in NROY space colored by CO2 forcing. Grey lines
represent ruled out ensemble members. The right-hand panel shows the density of the “final” AMOC value and
was computed by binning the final 20 year means of the AMOC into bins with 2Sv intervals.

Figure 2 shows the transient ensemble members in what we termed not ruled out yet
(NROY) space, with the grey lines depicting those ensemble members that were ruled out
as implausible by the history match. The NROY ensemble contains a much narrower range
of AMOC behaviors and the relationship between CO2 forcing and AMOC is visible on the
plot, which implies that our modeling task will be simpler. By concentrating our efforts on
building the complex emulator in NROY space we avoid problems in capturing any difficult
to model behaviors that we do not need to and focus our energy on capturing those behaviors
that are of interest to scientists studying the model. Note that sampling the final emulator at
some point x0 must first evaluate I(x0) to decide whether or not x0 is within NROY space,
before evolving the emulator as described in section 2.4.

The history match identifies NROY space, a subspace of original input space which we
would like to emulate the time series output of our model over. Ideally, we would design and
run a new ensemble within NROY space so that the runs used to build the dynamic emulator
had some desirable property. For example, we may want them to be “space filling,” though
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care must be taken to define what it means to “fill” unusually shaped subspaces of the initial
parameter space. Williamson and Vernon (2014) have developed an efficient algorithm for
obtaining large numbers of uniform random draws from NROY space. These draws can be
used to select uniform subdesigns that seek to optimize any user-defined design criteria with
respect to the full set of uniform samples.

In our application we are not able to design and run a new ensemble on HadCM3. As our
original design was large and space filling, there is no a priori reason to think that the 44% of
that design that is in NROY space would be biased towards any particular region of NROY
space. However, visualizing and designing runs in complicated high-dimensional subspaces of
model-input space represents a challenging open avenue of research.

3.3. Requirements of the emulator. The HadCM3 AMOC exhibits structured chaos,
which, in this case, means that we might expect very slight perturbations to the model pa-
rameters to result in output that retains the same global properties in terms of location and
longer term trajectory. However, the annual fluctuations may be very different, with the di-
rection of spikes entirely arbitrary. There may be interesting “events” or significant deviations
from the trend in the original or perturbed model, and these may occur at different times. It
is important that our emulator does not interpolate the runs in our ensemble so that we do
not model what is internal variability as parameter-dependent signal.

However, we would like our emulator draws to retain the character of an AMOC time
series as output from the model. Although the direction of spikes is not important due to
internal variability, that is not to say that there are not regions of parameter space in which
the character of that variability is such that interesting “events” are more frequent or more
likely. We can have more confidence in our ability to explore the probability of rapid changes
to the AMOC using an emulator of HadCM3 if our emulator appears to evolve like an AMOC
time series as output by HadCM3. We will discard the first 40 years of the time series as the
spin up phase and emulate the 80-year transient time series as a function of the parameters
and forcing.

4. Building the dynamic emulator. In order to construct the emulator (2) with (3), (4),
(5) and the specified normal inverse gamma prior for ψ0, v0, we require a great deal of model
and parameter specification. Some of these are common to all challenges in emulating com-
puter models, for example, choosing g(xt), the proportion of noise in the residual, Δ, and the
form of R(|x−x′|;ρ) and how to handle ρ. We must also specify variance discount parameters,
δv, δw, and the hyperparameters of the normal inverse gamma distributionm0, C

∗
0 , n0, and d0.

Just as when building ordinary emulators, it is useful to start by specifying the mean
function. In this case, that means specifying the order of the TVAR process and the elements
of g(xt). As with the emulation of simple univariate quantities, regression and other standard
data-analysis techniques can be used to select functions to be used in g(·). We can perform
these exploratory analyses using summaries of parts of the time series or using other output
from the computer model.

In our application we make use of the control simulations and choose terms in g(·) to
capture both the level of the AMOC at the start of the run and its parameter-dependent
response to increase in CO2 concentrations. To capture the level of the AMOC, we take the
mean of the last decade of the discarded first 40 years of all simulations returned from CPDN
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(≈ 4800 runs). We then use ordinary least squares (OLS) to model these as a function of the
eight parameters having the largest effect on the model AMOC.

The selected parameters include five that control aspects of the cloud schemes, among
them thickness, distribution, and type of clouds formed (these parameters are vf1, ct, cwland,
rhcrit, and eacf), a parameter called entcoef that controls how rapidly convective clouds
entrain surrounding air, a parameter called kappa0 si controlling the rate of vertical mixing of
water in the HadCM3 ocean, and a parameter called dyndiff that is part of the specification
of the dynamics of each model run. The terms in the regression fitted in the eight parameters
described above are included in g(xt).

Although we control CO2 concentrations with one decision parameter, this parameter is
used to compute a time series of CO2 concentrations that is then written to a forcing file for
use by HadCM3. We choose to regress on these changing CO2 concentrations rather than on
the decision parameter, as this is more natural in a dynamic linear model setting.

We use returned match pairs to gauge the response to forcing. There were 358 runs
where both the transient and control simulation had returned 120 years of data. For each of
these pairs we smoothed the control using a cubic polynomial in t and subtracted the smooth
control AMOC from the transient AMOC. This smoothing is designed to make sure that the
anomaly has variability similar to that of the transient AMOC. We then use stepwise selection
to fit a regression to the final year anomaly with no intercept allowing a cubic signal in CO2

concentration at year 120 and all first and second order interactions with the parameters and
the CO2. The selected model had 17 terms, involving the CO2 concentration and the other
parameters. Each of these was added to g(xt). The terms can be seen in Table 1.

Though internal variability is modelled through Δt, there are modes of variability on
longer time scales that are of interest to our collaborators. These are typically on time scales
of 7–20 years (Allison et al., 2012). We allow the autoregression to capture the behavior on
shorter time scales by setting p = 7. If our time series were longer, we might choose p = 20 and
explore these modes more thoroughly; this is planned for the future as the ensemble continues
to develop.

The elements of m0 and C∗
0 correspond to prior means and variances on the coefficients

on the time varying autoregression and the dynamic regression. We set the terms in m0

corresponding to the autoregression to be 1/7 and set the relevant diagonal elements of C∗
0 to

be 4 to allow flexibility of the autoregression and to allow individual terms to change sign. We
set the terms inm0 and C∗

0 relating to those regression terms selected using OLS on the large
ensemble of 40 year runs using the expected value and covariance matrix of these coefficients
calculated from the OLS fit.

For the remaining terms that model the response to CO2 forcing we take the view that
the method and amount of data used to select the terms in the dynamic regression were not
sufficient to have confidence in the fitted coefficients and covariance matrix. We therefore
set the remaining terms in m0 to 0 and increase the variance and decrease the correlation
of the covariance matrix calculated from the least squares fit before fixing the corresponding
terms in C∗

0 . We do this by halving the correlations and by doubling the standard deviations
in the covariance matrix of the least squares fit. We believe this is preferable to including a
diagonal matrix in C∗

0 , as our exploratory analysis may have revealed strongly correlated terms
in our regression and, although we do not trust the strength of these correlations, we judge
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that indicating that there is a positive/negative correlation between two terms in our prior
modelling is worthwhile. The remaining terms in C∗

0 , corresponding to correlations between
the dynamic regression terms and the autoregression terms as well as correlations between
those terms involving CO2 concentration and those not, are set to zero.

For the distribution of v0 we wanted to allow it to be as data driven as possible. To
prevent nt increasing very rapidly in t, we fix n0 = n/(1 − δv) and allow the variance to be
controlled by dt, whose update equation involves the data values. We set d0 = n0/4; however,
experiments showed that the filtered values for d1:T were not sensitive to this choice.

Choosing the discount factors is a problem common to any dynamic linear modelling
with variance discounting. For our emulator we used previous experience with the ensem-
ble. Williamson and Allison (2012) fitted separate simple dynamic linear models to ensemble
members and found that values of δw between 0.93 and 0.97, depending on the CO2 rate,
produced fits that were appropriately smooth in that application. The models fitted in that
application were much less complex and, to ensure against oversmoothing in this application,
we set δw = 0.9. δv = 0.8 was chosen to allow the variance more flexibility to change in time
if appropriate. For example, it may be the case that the variance changes as CO2 increases.

We set Δ = 0.5 so that we judge that half of the residual from our dynamic mean func-
tion represents internal variability and uncertainty due to inactive variables. We choose the
separable exponential correlation function for the Gaussian process, namely

R(|x− x′|;ρ) =
r∏

i=1

exp{−κi|xi − x′i|αi},

with ρ = {κ,α} and r the number of variables in x. We follow Bayarri et al. (2007) and fix
αi = 1.9 for i = 1, . . . , r instead of the more common choice of 2 in the computer experiment
literature, leading to a “rougher” Gaussian process than is often fitted.

There are many benefits to fixing the roughness lengths κ, the principal one being a
simplification of the Bayesian calculations, both in general emulation problems and specifically
in our dynamic approach. For example, if κ is fixed, our posterior distribution for the model
parameters can be obtained analytically and we can sample from the emulator as described
above. An argument is often made that if the mean function is sufficiently well fitted, the
correlation in the residual will be very small and the contribution of κ to the overall uncertainty
in the emulator will be negligible. Indeed this is one of the principal reasons for fitting
complex mean functions. In standard emulation, there are heuristics for selecting κ based on
the order of the monomial terms in the mean function (Vernon, Goldstein, and Bower, 2010;
Williamson, Goldstein, and Blaker, 2012).

Though we suspect that the complexity of our mean function will make the correlation in
the residual small, an inexperience with this type of emulator leads us to be cautious. It is
not clear how the presence of the TVAR terms in our model will impact upon the roughness
lengths. The way the functions in g(xt) have been chosen leads us to be uncertain as to the
quality of the fit of the mean function as CO2 forcing begins and we step through time. This
means that we may have more correlation in the residual than we hoped. We explore the effect
of changing κ by choosing a prior distribution for the correlation lengths and implementing
an MCMC sampling algorithm.
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5. MCMC algorithm. We adapt the MCMC algorithm described in Liu and West (2008)
to our augmented model. The algorithm is a block metropolis within a Gibbs sampler. The
sampler has two steps: At the ith iteration do the following:

1. Sample κ
(i)
1:r from P (κ|ψ(i)

1:T , v
(i)
1:T ,F1:T ).

2. Sample ψ
(i)
1:T , v

(i)
1:T from P (ψ1:T , v1:T |F1:T , κ

(i)
1:r).

Step 2 proceeds as described in sections 2.3 and 2.4, by forward filtering and backwards
sampling. Step 1 is achieved through a metropolis step.

Assuming

P (κ1:r|ψ(i)
1:T , v

(i)
1:T ,F1:T ) ∝ P (F1:T |ψ1:T , v1:T ,κ1:r)P (κ1:r)

and letting L(κ) = P (F1:T |ψ1:T , v1:T , κ1:r), the metropolis step is as follows. Let υj = log(κj)
for j = 1, . . . , r, and, at iteration i, propose

υ∗j = υ
(i−1)
j +N(0,Ω2

j ),

where the Ωj are chosen depending on the behavior of the corresponding parameter.
The Jacobian for this transformation is

J(κ) =
r∏

j=1

1

κj
,

so that the acceptance probability for υ∗ is

L(κ∗
1:r)P (κ∗

1:r)J(κ
(i−1)
1:r )

L(κ
(i−1)
1:r )P (κ

(i−1)
1:r )J(κ∗

1:r)
.

The likelihood is

L(κ1:r) = |τΣ+ΔIn|−
T
2 exp

{
−1

2

T∑
t=1

Zt/vt

}
T∏
t=1

v
−n

2
t ,

with
Zt = (Ft −HT

t ψt)
T (τΣ +ΔIn)

−1(Ft −HT
t ψt).

5.1. Roughness length prior. We use the concept of the “half correlation length” which
has formed the basis of heuristics used to fix correlation lengths (Vernon, Goldstein, and Bower,
2010; Williamson and Goldstein, 2012), and has been used by Higdon et al. (2008a) to define
a prior distribution over the correlation lengths. The idea, for each roughness length κj , is to
consider the correlation between x and x′ if all elements of x and x′ are the same except the
jth and if |xj − x′j | is half of the range of xj .

For variables defined on [0, 1], this defines a half length correlation, sj , with

sj = exp{−κj/2
1.9}.

We choose a prior different from that of Liu and West (2008) on sj, by letting sj ∼ Be(1, bj).
This allows us control in specifying which variables we think are more or less likely to have
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Figure 3. Histograms for the half length correlation distributions specified by bj = 1.9 (left) and bj = 4.5
(right).

a larger half length correlation through the one parameter bj . The resulting prior on the
roughness lengths is

P (κj) ∝ exp
{−κj/2

1.9
} (

1− exp
{−κj/2

1.9
})bj−1

.

For variables that were relatively inactive, in that only linear terms were included in g(xt),
we chose bj = 4.5 so that a priori there is roughly a 10% chance that the corresponding half
length correlation is greater than 0.4. These variables were kappa0 si and dyndiff. For the
rest of the parameters, including the CO2 rate, we chose bj = 1.9 so that there is roughly a
10% chance of the half length correlation being greater than 0.7. The two prior distributions
on the half length correlations are shown as histograms in Figure 3.

5.2. Model interpretation. Our interpretation of the output of this MCMC analysis de-
pends very much upon how we view our statistical model. A belief that the chosen climate
model output really did follow a dynamic linear model Gaussian process with the specifica-
tion given above and uncertainty on the collection {ψ1:T , v1:T , κ1:r} would lead us to interpret
our MCMC algorithm as the search for the true settings of the parameters. The posterior
distributions correspond to our uncertainty over what the settings of these parameters should
be, given the model output and our other prior modelling choices.

Alternatively, if we view the statistical model as a useful tool for expressing our uncertainty
about the climate model output, but recognize that the climate model is not really a dynamic
linear model Gaussian process, then we do not view {ψ1:T , v1:T ,κ1:r} as having true settings
at all. In this interpretation, good choices of the parameters lead to a distribution over the
model output that we believe forms an accurate picture of our uncertainty about the output.
We can then view the MCMC as the search for these good choices.

The distinction is important. On the one hand, our uncertainty on the output is derived
from uncertainty about what the true parameters of our dynamic linear model Gaussian
process (DLMGP) should be. On the other, the DLMGP is viewed as a tool with good
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choices of the parameters leading to uncertainty on the output that we are prepared to adopt
and report as our own.

In the first case, in order to evaluate the uncertainty in the output for any particular value
x, we must run the MCMC algorithm, discarding burn in and thinning as appropriate until we
judge that our samples are approximately independent and we have covered the distribution
of the parameters adequately well. For each setting of the parameters in the sample, we can
evolve a sample f(x). If we want a sample for a new x, say x′, either we use the existing
MCMC output and accept that our sampled f(x) and f(x′) are not independent, or we
conduct a new MCMC analysis for x′.

Neither option is attractive in situations where the whole point of the emulator is to allow
fast surrogates of the climate model to be used in order to explore its behavior in parameter
space. Indeed, for many applications of emulators, a statistical model that requires an MCMC
sample in order to evaluate the uncertainty on f(x) for any x is not fit for purpose.

If we hold to the second interpretation, that good choices of the parameters lead to a
distribution over the model output that we can adopt as reflecting our uncertainty, then the
MCMC becomes a useful tool for exploration. Once good choices of the parameters are found,
we can pick one of these choices and fix the roughness lengths at this setting. This has the
benefit of making samples from our emulator fast, by avoiding the MCMC every time we want
to sample f(x) at a new x.

We can also use the output of the MCMC to perform a sensitivity analysis on our choice of
the roughness lengths. Having used the analysis to select a good choice of roughness lengths,
we can also select choices consistent with our prior specification from the tails of the sampled
distribution. These choices can be compared with our current best choice using more standard
emulator diagnostics such as “leave one out” plots. We do this for our application in section 6.

6. Results and diagnostics. We used the regressors fitted on the controls that were used
to select functions to enter into g(·) to generate values for times (1− p), . . . , 0, so that we did
not lose almost 10% of the time series we were trying to emulate. In many problems we may
have previous time series values that are not spinning up and these could be used instead.
Else, our time series may be longer and removing the first p points will not affect the inference.
The problem of deciding how to perform inference for the first p values for an autoregression
is common to many problems in time series analysis.

We set Ω1:9 = (0.1, 0.1, 0.1, 0.5, 0.1, 0.1, 0.1, 0.1, 0.7) based on experience with earlier test
runs showing that these choices led to good mixing. We ran the Markov chain for 840, 000
iterations, discarding the first 1000 as burn in and thinning every 400. The histograms of the
posterior samples are shown in Figure 4. From top left to bottom right, the panels correspond
to the marginal samples for vf1, ct, cwland, rhcrit, eacf, entcoef, kappa0 si, dyndiff, and CO2

rate. From this figure we can see that the Gaussian process residual is most correlated for close
values of the CO2 rate and cloud parameter rhcrit, with all other parameters contributing very
little to the correlation.

We select a member of the sample with high posterior density by visually inspecting the
location of a large number of samples on each of the marginal posterior distributions shown in
Figure 4 and selecting a sample that is simultaneously close to the mode of each marginal. We
then fix the roughness lengths at this choice (represented by the blue vertical lines in Figure
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Figure 4. Histograms from the MCMC sample for roughness lengths on each parameter. The vertical blue
lines represent the roughness lengths chosen to complete the emulator. The vertical red lines are a consistent
alternative used in a sensitivity analysis. From left to right the roughness lengths correspond to vf 1, ct, cwland,
rhcrit, eacf, entcoef, kappa0 si, dyndiff, and CO2 rate.

4). Having fixed the roughness lengths we can perform more standard emulator diagnostics.
Figure 5 shows leave one out plots for 20 of the ensemble members. For each panel in the
figure, the dark blue line represents the true value of HadCM3 in the ensemble. We train
the emulator using the other ensemble members and draw 100 samples from the posterior
distribution (the cyan lines). The pink line is the forecast function, the mean of the emulator
derived by integrating out ψ1:T and v1:T . Figure 5 shows that our emulator is able to capture
various different behaviors as the model evolves in time. We are able to capture the mean
level and the different responses to CO2 forcing in different parts of NROY parameter space.

We explore the sensitivity of our emulator to alternative consistent choices of the roughness
lengths by performing similar diagnostics with a member of the MCMC sample that is in the
tails of the distribution. This member is shown as the red vertical line in Figure 4 and
was chosen so that the sample was in the tails of the most active parameters in terms of
the correlation function of the Gaussian process residual, rhcrit, and CO2 rate. The leave
one out diagnostics are shown in Figure 6. The lack of difference between the diagnostics
for these two choices of the roughness lengths leads us to conclude that our uncertainty is
not sensitive to choices for the roughness lengths and that our autoregression and dynamic
regression components have soaked up most of the signal from the model parameters.

We are also interested in whether or not our emulator captures the character of the vari-
ability of HadCM3 so that draws from the emulator look like output from the climate model.
In Figure 7 we take four HadCM3 runs and compare four draws from the posterior distribu-
tions of emulators trained on the rest of the ensemble. The character of the variability for
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Figure 5. Leave one out plots for 20 of the ensemble members. In each panel the dark blue line is a run
from the climate model that the emulator has not seen. The cyan lines are draws from the posterior distribution
of the emulator. The pink line is the forecast function (the mean of the emulator with uncertainty in ψ1:T and
v1:T integrated out).

the draws is such that they are indistinguishable from HadCM3 output, enabling us to use
such emulators in future studies on the frequency of “rapid events” or “rapid changes” in the
climate model.

7. Discussion. We have developed DLMGPs for the emulation of time series output of
computer models that may exhibit structured chaos. Our method extends the method of
Liu and West (2008) so that the resulting emulator has some of the key features shown in
the UQ literature to be important, including a complex mean function to soak up as much
variability due to the model parameters as possible and a nugget process to handle sampling
uncertainty and inactive variables.

We have used this methodology to build an emulator for the time series output of an
atmosphere-ocean coupled climate model, HadCM3. The emulator captures a range of param-
eter-dependent temporal behaviors. Due to the way that the samples are evolved, the vari-
ability characteristics of samples from the emulator are the same as those from output of the
climate model, so that emulator draws and computer model runs look similar.

We present an MCMC algorithm for sampling from the posterior of our emulator when
the roughness lengths are unknown. We argue for an interpretation of the DLMGP as a
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Figure 6. Leave one out plots for 20 of the ensemble members for the alternative setting of the roughness
lengths. In each panel the dark blue line is a run from the climate model that the emulator has not seen. The
cyan lines are draws from the posterior distribution of the emulator. The pink line is the forecast function (the
mean of the emulator with uncertainty in ψ1:T and v1:T integrated out).
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Figure 7. Here we show four different climate model runs (dark blue) and a sample from the emulator
predicting each run (cyan). The emulator has not been trained using the model runs shown.
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useful construct leading to uncertainty on the model output that we can adopt as our own.
We then argue that it is natural, under this interpretation, to use the MCMC sample to
fix the roughness lengths and to explore the sensitivity of our conclusions to the choice of
roughness lengths using different, but consistent, values. Fixing the roughness lengths makes
the emulator fit for many practical purposes that an emulator requiring an MCMC to sample
from is not.

The model we have developed allows a framework in which statisticians familiar with
emulators and other UQ methods can borrow strength from the extensive Bayesian time se-
ries literature. The dynamic regression and Gaussian process elements are able to handle
parameter-dependent trends and form the “familiar” component of the emulator for the UQ
practitioner. The TVAR process allows temporal behaviors to be captured, with more complex
forms of the TVAR process able to capture harmonics of multiple frequencies across multiple
time series so that known model dynamics can be captured (Prado and West, 2010). Com-
bining these elements of the time series literature with emulators offers a promising avenue of
research in UQ.

In cases where the dynamics of the underlying computer model are well understood, an al-
ternative, more sophisticated dynamic emulator might be constructed by replacing the TVAR
and regression elements of the emulator with simplified versions of the actual computer code.
Reichert et al. (2011) call this “mechanism-based emulation.” They argue that some deter-
ministic computer code can be cast as a nonlinear or differential equation-based state space
model that might be simplified through linearization. This linearized form of the model would
replace the TVAR and dynamic regression components of (2). Though this approach is cur-
rently suitable only when the underlying computer model equations are known and simple
enough to be manipulated, there may be potential in developing a mixture of the two ap-
proaches for complex models such as those found in climate science.

Appendix A. Bayesian update. Throughout this section we make repeated use of the well-
known result that if θ|v ∼ N(m, vC) and v−1 ∼ G(n/2, nS/2), then θ ∼ Tn(m,SC). Here we
derive the forward filtering equations of section 3. Proving the recurrence relationships follows
West and Harrison (1997) (Chapters 2 and 10) adapted to our specific model and proceeds by
induction. First, we have ψt−1|vt−1Dt−1 ∼ N(mt−1, vt−1C

∗
t−1) and, to facilitate conjugacy,

we assume that the variance is updated in the prior, so ψt−1|vt−1Dt−1 ∼ N(mt−1, vtC
∗
t−1).

Then

E [ψt|vt,Dt−1] =mt−1 = at,

Var [ψt|vt,Dt−1] = vt
(
C∗
t−1 +Wt

)
= vt

C∗
t−1

δw
= vtR

∗
t

and

E [Ft|vt,Dt−1] = HT
t at, Var [Ft|vt,Dt−1] = vt(H

T
t R

∗
tHt + τΣ+ΔIn).

This implies (Ft|vt,Dt−1) ∼ N(ht, vtQ
∗
t ), with ht = HT

t at and Q∗
t = HT

t R
∗
tHt + τΣ + ΔIn.

Defining Rt = St−1R
∗
t and Qt = St−1Q

∗
t gives Ft|Dt−1 ∼ Tδvnt−1(ht, Qt), as given in the main

text.
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Noting that Cov [ψt,Ft|vt] = vtR
∗
tHt and performing the Bayesian update leads to

E [ψt|vt,Dt] = at +Atet =mt, At = RtHtQ
−1
t

and

Var [ψt|vt,Dt] = vt
(
R∗

t −R∗
tHtQ

∗−1
t HT

t R
∗T
t

)
= vt

(
R∗

t −AtQ
∗
tA

T
t

)
= vtC

∗
t ,

so that (ψt|vt,Dt) ∼ N(mt, vtC
∗
t ) and (ψt|Dt) ∼ Tnt(mt, Ct) with

Ct = StC
∗
t =

St

St−1

(
Rt −AtQtA

T
t

)
.

The update for φt by Dt follows by Bayes’ theorem, as

P (φt|Dt−1) ∝ φ
δvnt−1/2−1
t exp{−δvdt−1φt/2}

and

P (Ft|φt,Dt−1) ∝
∣∣∣∣Q∗

t

φt

∣∣∣∣
−n

2

exp

{
φt

2
eTt Q

∗−1
t et

}

∝ φ
n
2
t exp

{
− φt

2
eTt Q

∗−1
t et

}
,

and by Bayes’ theorem

P (φt|Dt) ∝ φ
δvnt−1+n

2
−1

t exp

{
− φt

2
(δvdt−1 + e

T
t Q

∗−1
t et)

}
,

so that (φt|Dt) ∼ G(nt/2, dt/2) with nt = δvnt−1 + n and

dt = δvdt−1 + e
T
t Q

∗−1
t et = δvdt−1 + St−1e

T
t Qtet.

A.1. Sampling distributions. We first show that the scheme for sampling v1:T samples
from the correct distribution expanding a proof in Chapter 10 on page 363 of West and Harrison
(1997). Clearly the first sample, that of vT |DT , is taken from the correct distribution. Now
by Bayes’ theorem

P (φt−1|φtDt) ∝ P (φt−1|Dt−1)P (φt|Dt−1),

with

P (φt−1|Dt−1) ∝ φ
nt−1

2
−1

t−1 exp{−dt−1φt−1/2},
and, using (5),

P (φt|φt−1,Dt−1) = Pγt

(
φtδv
φt−1

)
δv

φt−1

∝ φ
δvnt−1/2−1
t φ

−δvnt−1/2
t−1

(
1− δvφt

φt−1

)(1−δv)nt−1/2−1

∝ φ
δvnt−1/2−1
t φ

1+(δv−1)nt−1/2−δvnt−1/2
t−1 (φt−1 − δvφt)

(1−δv)nt−1/2−1

∝ φ
δvnt−1/2−1
t φ

1−nt−1/2
t−1 (φt−1 − δvφt)

(1−δv)nt−1/2−1 .
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Then

P (φt−1|φtDt) ∝ φ
nt−1/2−1+1−nt−1/2
t−1 exp{−dt−1φt−1/2}φδvnt−1/2−1

t (φt−1 − δvφt)
(1−δv)nt−1/2−1

∝ φ
δvnt−1/2−1
t exp{−dt−1φt−1/2} (φt−1 − δvφt)

(1−δv)nt−1/2−1

∝ exp{−dt−1φt−1/2} (φt−1 − δvφt)
(1−δv)nt−1/2−1

∝ exp{−dt−1φt−1/2} exp{δvφtdt−1/2} (φt−1 − δvφt)
(1−δv)nt−1/2−1

∝ exp{−(φt−1 − δvφt)dt−1/2} (φt−1 − δvφt)
(1−δv)nt−1/2−1 .

So, defining ηt−1 = φt−1 − δvφt, then ηt−1 ∼ G((1− δv)nt−1/2− 1, dt−1/2) and we can obtain
samples from (φt−1|φt,Dt) by sampling an ηt−1 and computing φt−1 = ηt−1 + δvφt, which is
the algorithm described in the main text.

Turning our attention to the backwards sampling scheme for ψ1:T |v1:T , we have already
shown that ψT |vT ,DT ∼ N(mT , vTC

∗
T ) when deriving the forward filtering equations. This

proof adapts the method shown in Chapter 4 of West and Harrison (1997) to our model.
Suppose ψt|vt,Dt ∼ N(mt, vtC

∗
t ). By Bayes’ theorem

P (ψt−1|ψt,Dt, v1:T ) =
P (ψt−1|ψt,Dt−1, v1:T )P (Ft|ψt−1,ψt,Dt−1, v1:T )

P (Ft|ψt,Dt−1, v1:T )
,

and due to the Markov property of the time series the denominator cancels with the second
half of the numerator so that

P (ψt−1|ψt,Dt, v1:T ) ∝ P (ψt−1|Dt−1, v1:T )P (ψt|ψt−1Dt−1, v1:T ).

Now, from the forward filtering calculations we have

(ψt−1|Dt−1, v1:T ) ∼ N(mt−1, vt−1C
∗
t−1)

(ψt|Dt−1, v1:T ) ∼ N(at, vt−1Rt/St−1)

∼ N(at, vt−1R
∗
t ),

so, using the Bayesian normal updating equations we get

(ψt−1|ψt,Dt−1) ∼ N(κt,Ξt)

with

κt =mt−1 + vt−1C
∗
t−1(vt−1R

∗
t )

−1(ψt − at)
=mt−1 + C∗

t−1(C
∗
t−1/δw)

−1(ψt −mt−1)

= (1− δw)mt−1 + δwψt

and

Ξt = vt−1C
∗
t−1 − vt−1C

∗
t−1(vt−1R

∗
t )

−1C∗
t−1vt−1

= vt−1(C
∗
t−1 − δwC

∗
t−1)

= vt−1(1− δw)C
∗
t−1.
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Appendix B. Elements of the dynamic mean function. Table 1 shows the terms used in
vector g(·) by the methods described in section 4. Each header in the table refers to one of
the parameters. Numbers on the diagonal refer to power terms in g(·) in each of the relevant
parameters. The number 1 on the diagonal implies only a linear term was included in g(·).
The number 2 implies that both quadratic and linear terms were in g(·). The number 3 implies
cubic, quadratic, and linear terms.

Numbers on the upper triangle refer to the inclusion or not of interactions between the two
relevant variables. For example, reading from the table, the term (rhcrit∗dyndiff) is included
in g(·), but the term (vf1 ∗ dyndiff) is not. Variables indicated in bold on the lower triangle
refer to three-way interactions that are present in g(·). For example, the terms (ent ∗ ct2) and
(vf1 ∗ cwland ∗ CO2) are both included in g(·). Our emulator does contain a constant term,
so the vector g(·) includes the element 1.

Table 1
A table indicating which terms are in g(·) for our dynamic emulator. The upper triangle labels which

interaction pairs are present. The diagonal indicates the order of the highest monomial term in that variable.
The lower triangle indicates which three-way interactions are included.

vf1 ct cwland rhcrit eacf ent kappa0 dyndiff CO2

vf1 2 1 1 0 1 1 0 0 1
ct 2 1 1 1 1 1 0 1
cwland ct 1 1 1 1 0 0 1
rhcrit 1 1 1 1 1 1
eacf ct ct 1 1 0 0 1
ent ct ct ct ct 2 1 0 1
kappa0 1 0 1
dyndiff 1 1
CO2 cwland cwland ent ent vf1 ct rhcrit 2
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A. Biastoch, C. W. Böning, J. Getzlaff, J. M. Molines, and G. Madec (2008), Mechanisms of
interannual-decadal variability in the meridional overturning circulation of the mid latitude North Atlantic
Ocean, J. Climate, 21, pp. 6599–6615.

N. L. Bindoff, J. Willebrand, V. Artale, A. Cazenave, J. Gregory, S. Gulev, K. Hanawa, C. Le
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