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Abstract. In this paper we propose two different primal-dual splitting algorithms
for solving inclusions involving mixtures of composite and parallel-sum type monotone
operators which rely on an inexact Douglas-Rachford splitting method, however applied
in different underlying Hilbert spaces. Most importantly, the algorithms allow to process
the bounded linear operators and the set-valued operators occurring in the formulation
of the monotone inclusion problem separately at each iteration, the latter being individ-
ually accessed via their resolvents. The performances of the primal-dual algorithms are
emphasized via some numerical experiments on location and image deblurring problems.

Keywords. Douglas-Rachford splitting, monotone inclusion, Fenchel duality, con-
vex optimization

AMS subject classification. 90C25, 90C46, 47A52

1 Introduction and preliminaries
In applied mathematics, a wide range of convex optimization problems such as single- or
multifacility location problems, support vector machine problems for classification and
regression, portfolio optimization problems as well as signal and image processing prob-
lems, all of them likely possessing nondifferentiable convex objectives, can be reduced
to the solving of inclusions involving mixtures of monotone set-valued operators.

In this article we propose two different primal-dual iterative error-tolerant methods
for solving inclusions with mixtures of composite and parallel-sum type monotone op-
erators. Both algorithms rely on the inexact Douglas-Rachford algorithm (cf. [8, 9]),
but still differ clearly from each other. An important feature of the two approaches
and, simultaneously, an advantage over many existing methods is their capability of
processing the set-valued operators separately via their resolvents, while the bounded
linear operators are accessed via explicit forward steps on their own or on their adjoints.
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The resolvents of the maximally monotone operators are not always available in closed
form expressions, fact which motivates the inexact versions of the algorithms, where
implementation errors in the shape of summable sequences are allowed.

The methods in this article are also perfectly parallelizable since the majority of their
steps can be executed independently. Furthermore, when applied to subdifferential
operators of proper, convex and lower semicontinuous functions, the solving of the
monotone inclusion problems is, under appropriate qualification conditions (cf. [2, 4]),
equivalent with finding optimal solutions to primal-dual pairs of convex optimization
problems. The considered formulation also captures various different types of primal
convex optimization problems and corresponding conjugate duals appearing in wide
ranges of applications. The resolvents of subdifferentials of proper, convex and lower
semicontinuous functions are the proximal point mappings of these and are known to
take in a lot of situations shape of closed form expressions.

Recent research (see [3,5,6,10,14]) has shown that structured problems dealing with
monotone inclusions can be efficiently solved via primal-dual splitting approaches. In
[10], the problem involving sums of set-valued, composed, Lipschitzian and parallel-sum
type monotone operators was decomposed and solved via an inexact Tseng algorithm
having foward-backward-forward characteristics in a product Hilbert space. On the
other hand, in [14], instead of Lipschitzian operators, the author has assumed cocoercive
operators and solved the resulting problem with an inexact forward-backward algorithm.
Thus, our methods can be seen as a continuation of these ideas, this time by making
use of the inexact Douglas-Rachford method. Another primal-dual method relying on
the same fundamental splitting algorithm is considered in [11] in the context of solving
minimization problems having as objective the sum of two proper, convex and lower
semicontinuous functions, one of them being composed with a bounded linear operator.

Due to the nature of Douglas-Rachford splitting, we will neither assume Lipschitz
continuity nor cocoercivity for any of the operators present in the formulation of the
monotone inclusion problem. The resulting drawback of not having operators which
can be processed explicitly via forward steps is compensated by the advantage of allow-
ing general maximal monotone operators in the parallel-sums, fact which relaxes the
working hypotheses in [10,14].

The article is organized as follows. In the remaining of this section we introduce the
framework we work within and some necessary notations. The splitting algorithms and
corresponding weak and strong convergence statements are subject of Section 2 while
Section 3 is concerned with the application of the two methods to convex minimization
problems. Finally, in Section 4 we make some numerical experiments and evaluate the
obtained results.

We are considering the real Hilbert spaces H and Gi endowed with the inner prod-
uct 〈·, ·〉H and 〈·, ·〉Gi

and associated norm ‖·‖H =
√
〈·, ·〉H and ‖·‖Gi

=
√
〈·, ·〉Gi

, i =
1, . . . ,m, respectively. The symbols ⇀ and → denote weak and strong convergence,
respectively, R++ denotes the set of strictly positive real numbers and R+ = R++∪{0}.
By B(0, r) we denote the closed ball with center 0 and radius r ∈ R++. For a function
f : H → R = R ∪ {±∞} we denote by dom f := {x ∈ H : f(x) < +∞} its effective
domain and call f proper if dom f 6= ∅ and f(x) > −∞ for all x ∈ H. Let be

Γ(H) := {f : H → R : f is proper, convex and lower semicontinuous}.
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The conjugate function of f is f∗ : H → R, f∗(p) = sup {〈p, x〉 − f(x) : x ∈ H} for
all p ∈ H and, if f ∈ Γ(H), then f∗ ∈ Γ(H), as well. The (convex) subdifferential of
f : H → R at x ∈ H is the set ∂f(x) = {p ∈ H : f(y) − f(x) ≥ 〈p, y − x〉 ∀y ∈ H}, if
f(x) ∈ R, and is taken to be the empty set, otherwise. For a linear continuous operator
Li : H → Gi, the operator L∗i : Gi → H, defined via 〈Lix, y〉 = 〈x, L∗i y〉 for all x ∈ H
and all y ∈ Gi, denotes its adjoint, for i ∈ {1, . . . ,m}.

Having two functions f, g : H → R, their infimal convolution is defined by f � g :
H → R, (f � g)(x) = infy∈H {f(y) + g(x− y)} for all x ∈ H, being a convex function
when f and g are convex.

LetM : H → 2H be a set-valued operator. We denote by zerM = {x ∈ H : 0 ∈Mx}
its set of zeros, by fixM = {x ∈ H : x ∈Mx} its set of fixed points, by graM = {(x, u) ∈
H × H : u ∈ Mx} its graph and by ranM = {u ∈ H : ∃x ∈ H, u ∈ Mx} its range.
The inverse of M is M−1 : H → 2H, u 7→ {x ∈ H : u ∈ Mx}. We say that the
operator M is monotone if 〈x− y, u− v〉 ≥ 0 for all (x, u), (y, v) ∈ graM and it is
said to be maximally monotone if there exists no monotone operator M ′ : H → 2H
such that graM ′ properly contains graM . The operator M is said to be uniformly
monotone with modulus φM : R+ → [0,+∞] if φM is increasing, vanishes only at 0,
and 〈x− y, u− v〉 ≥ φM (‖x− y‖) for all (x, u), (y, v) ∈ graM .

The resolvent and the reflected resolvent of an operator M : H → 2H are

JM = (Id +M)−1 and RM = 2JM − Id,

respectively, the operator Id denoting the identity on the underlying Hilbert space.
When M is maximally monotone, its resolvent (and, consequently, its reflected resol-
vent) is a single-valued operator and, by [1, Proposition 23.18], we have for γ ∈ R++

Id = JγM + γJγ−1M−1 ◦ γ−1Id. (1.1)

Moreover, for f ∈ Γ(H) and γ ∈ R++ the subdifferential ∂(γf) is maximally monotone
(cf. [15, Theorem 3.2.8]) and it holds Jγ∂f = (Id + γ∂f)−1 = Proxγf . Here, Proxγf (x)
denotes the proximal point of γf at x ∈ H representing the unique optimal solution of
the optimization problem

inf
y∈H

{
γf(y) + 1

2‖y − x‖
2
}
. (1.2)

In this particular situation (1.1) becomes Moreau’s decomposition formula

Id = Proxγf +γ Proxγ−1f∗ ◦γ−1Id. (1.3)

When Ω ⊆ H is a nonempty, convex and closed set, the function δΩ : H → R, defined
by δΩ(x) = 0 for x ∈ Ω and δΩ(x) = +∞, otherwise, denotes the indicator function of
the set Ω. For each γ > 0 the proximal point of γδΩ at x ∈ H is nothing else than

ProxγδΩ(x) = ProxδΩ(x) = PΩ(x) = arg min
y∈Ω

1
2‖y − x‖

2,

which is the projection of x on Ω.
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The sum and the parallel sum of two set-valued operators M1, M2 : H → 2H are
defined as M1 +M2 : H → 2H, (M1 +M2)(x) = M1(x) +M2(x) ∀x ∈ H and

M1 �M2 : H → 2H,M1 �M2 =
(
M−1

1 +M−1
2

)−1
,

respectively. If M1 and M2 are monotone, than M1 +M2 and M1 �M2 are monotone,
too, however, if M1 and M2 are maximally monotone, this property is in general not
true neither for M1 +M2 nor for M1 �M2 (see [2]).

2 Algorithms and convergence results
Within this section we provide two algorithms together with weak and strong conver-
gence results for the following primal-dual pair of monotone inclusion problems.

Problem 2.1. Let A : H → 2H be a maximally monotone operator and z ∈ H.
Furthermore, for every i ∈ {1, . . . ,m}, let ri ∈ Gi, Bi : Gi → 2Gi and Di : Gi → 2Gi be
maximally monotone operators and Li : H → Gi a nonzero bounded linear operator.
The problem is to solve the primal inclusion

find x ∈ H such that z ∈ Ax+
m∑
i=1

L∗i (Bi�Di)(Lix− ri) (2.1)

together with the dual inclusion

find v1 ∈ G1, . . . , vm ∈ Gm such that (∃x ∈ H)
{
z −

∑m
i=1 L

∗
i vi ∈ Ax

vi ∈(Bi�Di)(Lix− ri), i = 1, . . . ,m.
(2.2)

We say that (x, v1, . . . , vm) ∈ H × G1 . . .× Gm is a primal-dual solution to Problem
2.1, if

z −
m∑
i=1

L∗i vi ∈ Ax and vi ∈ (Bi�Di)(Lix− ri), i = 1, . . . ,m. (2.3)

If (x, v1, . . . , vm) ∈ H × G1 . . .× Gm is a primal-dual solution to Problem 2.1, then x is
a solution to (2.1) and (v1, . . . , vm) is a solution to (2.2). Notice also that

x solves (2.1)⇔ z −
m∑
i=1

L∗i (Bi�Di)(Lix− ri) ∈ Ax⇔

∃ v1 ∈ G1, . . . , vm ∈ Gm such that
{
z −

∑m
i=1 L

∗
i vi ∈ Ax,

vi ∈ (Bi�Di)(Lix− ri), i = 1, . . . ,m.

Thus, if x is a solution to (2.1), then there exists (v1, . . . , vm) ∈ G1 × . . .Gm such that
(x, v1, . . . , vm) is a primal-dual solution to Problem 2.1 and if (v1, . . . , vm) ∈ G1× . . .Gm
is a solution to (2.2), then there exists x ∈ H such that (x, v1, . . . , vm) is a primal-dual
solution to Problem 2.1.
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Example 2.1. In Problem 2.1, set m = 1, z = 0 and r1 = 0, let G1 = G, B1 = B,
L1 = L, D1 : G → 2G , D1(0) = G and D1(v) = ∅ ∀v ∈ G \ {0}, and A : H → 2H and
B : G → 2G be the convex subdifferentials of the functions f ∈ Γ(H) and g ∈ Γ(G),
respectively. Then, under appropriate qualification conditions (see [2, 4]), to solve the
primal inclusion problem (2.1) is equivalent to solve the optimization problem

inf
x∈H
{f(x) + g(Lx)} ,

while to solve the dual inclusion problem (2.2) is nothing else than to solve its Fenchel-
dual problem

sup
v∈G
{−f∗(−L∗v)− g∗(v)} .

For more primal-dual pairs of convex optimization problems which are particular
instances of (2.1)-(2.2) we refer to [10,14].

2.1 A first primal-dual algorithm

The first iterative scheme we propose in this paper and which we describe as follows
has the particularity that it accesses the resolvents of A, B−1

i and D−1
i , i = 1, ...,m, and

processes each operator Li and its adjoint L∗i , i = 1, ...,m two times.

Algorithm 2.1.
Let x0 ∈ H, (v1,0, . . . , vm,0) ∈ G1× . . .×Gm and τ and σi, i = 1, ...,m, be strictly positive
real numbers such that

τ
m∑
i=1

σi‖Li‖2 < 4.

Furthermore, let (λn)n≥0 be a sequence in (0, 2), (an)n≥0 a sequence in H, (bi,n)n≥0 and
(di,n)n≥0 sequences in Gi for all i = 1, . . . ,m and set

(∀n ≥ 0)



p1,n = JτA
(
xn − τ

2
∑m
i=1 L

∗
i vi,n + τz

)
+ an

w1,n = 2p1,n − xn
For i = 1, . . . ,m⌊
p2,i,n = JσiB

−1
i

(
vi,n + σi

2 Liw1,n − σiri
)

+ bi,n

w2,i,n = 2p2,i,n − vi,n
z1,n = w1,n − τ

2
∑m
i=1 L

∗
iw2,i,n

xn+1 = xn + λn(z1,n − p1,n)
For i = 1, . . . ,m⌊
z2,i,n = JσiD

−1
i

(
w2,i,n + σi

2 Li(2z1,n − w1,n)
)

+ di,n

vi,n+1 = vi,n + λn(z2,i,n − p2,i,n).

(2.4)

Theorem 2.1. For Problem 2.1 assume that

z ∈ ran
(
A+

m∑
i=1

L∗i (Bi�Di)(Li · −ri)
)

(2.5)

and consider the sequences generated by Algorithm 2.1.
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(i) If

+∞∑
n=0

λn‖an‖H < +∞,
+∞∑
n=0

λn(‖di,n‖Gi + ‖bi,n‖Gi) < +∞, i = 1, . . . ,m,

and
∑+∞
n=0 λn(2− λn) = +∞, then

(a) (xn, v1,n, . . . , vm,n)n≥0 converges weakly to a point (x, v1, . . . , vm) ∈ H×G1×
. . .× Gm such that, when setting

p1 = JτA

(
x− τ

2

m∑
i=1

L∗i vi + τz

)
,

and p2,i = JσiB
−1
i

(
vi + σi

2 Li(2p1 − x)− σiri
)
, i = 1, ...,m,

the element (p1, p2,1, . . . , p2,m) is a primal-dual solution to Problem 2.1.
(b) λn(z1,n − p1,n) → 0 (n → +∞) and λn(z2,i,n − p2,i,n) → 0 (n → +∞) for

i = 1, ...,m.
(c) whenever H and Gi, i = 1, ...,m, are finite-dimensional Hilbert spaces,

an → 0 (n → +∞) and bi,n → 0 (n → +∞) for i = 1, ...,m, then
(p1,n, p2,1,n, . . . , p2,m,n)n≥0 converges strongly to a primal-dual solution of
Problem 2.1.

(ii) If

+∞∑
n=0
‖an‖H < +∞,

+∞∑
n=0

(‖di,n‖Gi + ‖bi,n‖gi) < +∞, i = 1, . . . ,m, inf
n≥0

λn > 0

and A and B−1
i , i = 1, ...,m, are uniformly monotone,

then (p1,n, p2,1,n, . . . , p2,m,n)n≥0 converges strongly to the unique primal-dual solu-
tion of Problem 2.1.

Proof. Consider the Hilbert space G = G1 × . . .× Gm endowed with inner product and
associated norm defined, for v = (v1, . . . , vm), q = (q1, . . . , qm) ∈ G, as

〈v, q〉G =
m∑
i=1
〈vi, qi〉Gi

and ‖v‖G =

√√√√ m∑
i=1
‖vi‖2Gi

, (2.6)

respectively. Furthermore, consider the Hilbert space K = H × G endowed with inner
product and associated norm defined, for (x,v), (y, q) ∈ K, as

〈(x,v), (y, q)〉K = 〈x, y〉H + 〈v, q〉G and ‖(x,v)‖K =
√
‖x‖2H + ‖v‖2G , (2.7)

respectively. Consider the set-valued operator

M : K→ 2K, (x, v1, . . . , vm) 7→ (−z +Ax, r1 +B−1
1 v1, . . . , rm +B−1

m vm),
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which is maximally monotone, since A and Bi, i = 1, ...,m, are maximally monotone
(cf. [1, Proposition 20.22 and Proposition 20.23]) and the bounded linear operator

S : K→ K, (x, v1, . . . , vm) 7→
(

m∑
i=1

L∗i vi,−L1x, . . . ,−Lmx
)
,

which proves to be skew (i. e. S∗ = −S) and hence maximally monotone (cf. [1, Example
20.30]). Further, consider the set-valued operator

Q : K→ 2K, (x, v1, . . . , vm) 7→
(
0, D−1

1 v1, . . . , D
−1
m vm

)
,

which is maximally monotone, as well, since Di is maximally monotone for i = 1, ...,m.
Therefore, since domS = K, both 1

2S + Q and 1
2S + M are maximally monotone

(cf. [1, Corollary 24.4(i)]). On the other hand, according to [10, Eq. (3.12)], it holds
(2.5) ⇔ zer (M + S +Q) 6= ∅, while [10, Eq. (3.21) and (3.22)] yield

(x, v1, . . . , vm) ∈ zer (M + S +Q)⇒(x, v1, . . . , vm) is a primal-dual
solution to Problem 2.1. (2.8)

Finally, we introduce the bounded linear operator

V : K→ K, (x, v1, . . . , vm) 7→
(
x

τ
− 1

2

m∑
i=1

L∗i vi,
v1
σ1
− 1

2L1x, . . . ,
vm
σm
− 1

2Lmx
)
.

It is a simple calculation to prove that V is self-adjoint, i. e. V ∗ = V . Furthermore,
the operator V is ρ-strongly positive for

ρ =

1− 1
2

√√√√τ m∑
i=1

σi‖Li‖2
min

{1
τ
,

1
σ1
, . . . ,

1
σm

}
,

which is a positive real number due to the assumption

τ
m∑
i=1

σi‖Li‖2 < 4 (2.9)

made in Algorithm 2.1. Indeed, using that 2ab ≤ αa2 + b2

α for any a, b ∈ R and any
α ∈ R++, it yields for each i = 1, . . . ,m

2‖Li‖‖x‖H‖vi‖Gi ≤
σi‖Li‖2√

τ
∑m
i=1 σi‖Li‖2

‖x‖2H +
√
τ
∑m
i=1 σi‖Li‖2
σi

‖vi‖2Gi
(2.10)
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and, consequently, for each x = (x, v1, . . . , vm) ∈ K, it follows that

〈x,V x〉K = ‖x‖
2
H

τ
+

m∑
i=1

‖vi‖2Gi

σi
−

m∑
i=1
〈Lix, vi〉Gi

≥ ‖x‖
2
H

τ
+

m∑
i=1

‖vi‖2Gi

σi
−

m∑
i=1
‖Li‖‖x‖H‖vi‖Gi

(2.10)
≥

1− 1
2

√√√√τ m∑
i=1

σi‖Li‖2
(‖x‖2H

τ
+

m∑
i=1

‖vi‖2Gi

σi

)

≥

1− 1
2

√√√√τ m∑
i=1

σi‖Li‖2
min

{1
τ
,

1
σ1
, . . . ,

1
σm

}
‖x‖2K

= ρ‖x‖2K. (2.11)

Since V is ρ-strongly positive, we have cl(ranV ) = ranV (cf. [1, Fact 2.19]), zerV =
{0} and, as (ranV )⊥ = zerV ∗ = zerV = {0} (see, for instance, [1, Fact 2.18]), it holds
ranV = K. Consequently, V −1 exists and ‖V −1‖ ≤ 1

ρ .
The algorithmic scheme (2.4) is equivalent to

(∀n ≥ 0)



xn−p1,n

τ − 1
2
∑m
i=1 L

∗
i vi,n ∈ A(p1,n − an)− z − an

τ
w1,n = 2p1,n − xn
For i = 1, . . . ,m⌊

vi,n−p2,i,n

σi
− 1

2Li(xn − p1,n) ∈ −1
2Lip1,n +B−1

i (p2,i,n − bi,n) + ri − bi,n

σi

w2,i,n = 2p2,i,n − vi,n
w1,n−z1,n

τ − 1
2
∑m
i=1 L

∗
iw2,i,n = 0

xn+1 = xn + λn(z1,n − p1,n)
For i = 1, . . . ,m⌊

w2,i,n−z2,i,n

σi
− 1

2Li(w1,n − z1,n) ∈ −1
2Liz1,n +D−1

i (z2,i,n − di,n)− di,n

σi

vi,n+1 = vi,n + λn(z2,i,n − p2,i,n).
(2.12)

We introduce for every n ≥ 0 the following notations:
xn = (xn, v1,n, . . . , vm,n)
yn = (p1,n, p2,1,n, . . . , p2,m,n)
wn = (w1,n, w2,1,n, . . . , w2,m,n)
zn = (z1,n, z2,1,n, . . . , z2,m,n)

and


dn = (0, d1,n, . . . , dm,n)
dσn = (0, d1,n

σ1
, . . . ,

dm,n

σm
)

bn = (an, b1,n, . . . , bm,n)
bσn = (an

τ ,
b1,n

σ1
, . . . ,

bm,n

σm
)

. (2.13)

The scheme (2.12) can equivalently be written in the form

(∀n ≥ 0)


V (xn − yn) ∈

(
1
2S +M

)
(yn − bn) + 1

2Sbn − b
σ
n

wn = 2yn − xn
V (wn − zn) ∈

(
1
2S +Q

)
(zn − dn) + 1

2Sdn − d
σ
n

xn+1 = xn + λn (zn − yn) .

(2.14)
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We set for every n ≥ 0

ebn = V −1
((1

2S + V
)
bn − bσn

)
edn = V −1

((1
2S + V

)
dn − dσn

)
.

(2.15)

Next we introduce the Hilbert space KV with inner product and norm respectively
defined, for x,y ∈ K, as

〈x,y〉KV
= 〈x,V y〉K and ‖x‖KV

=
√
〈x,V x〉K, (2.16)

respectively. Since 1
2S +M and 1

2S +Q are maximally monotone on K, the operators

B := V −1
(1

2S +M
)

and A := V −1
(1

2S +Q
)

(2.17)

are maximally monotone on KV . Moreover, since V is self-adjoint and ρ-strongly
positive, one can easily see that weak and strong convergence in KV are equivalent
with weak and strong convergence in K, respectively.

Consequently, for every n ≥ 0 we have

V (xn − yn) ∈
(1

2S +M
)

(yn − bn) + 1
2Sbn − b

σ
n

⇔ V xn ∈
(
V + 1

2S +M
)

(yn − bn) +
(1

2S + V
)
bn − bσn

⇔ xn ∈
(
Id + V −1

(1
2S +M

))
(yn − bn) + V −1

((1
2S + V

)
bn − bσn

)
⇔ yn =

(
Id + V −1

(1
2S +M

))−1 (
xn − ebn

)
+ bn

⇔ yn = (Id +B)−1
(
xn − ebn

)
+ bn (2.18)

and

V (wn − zn) ∈
(1

2S +Q
)

(zn − dn) + 1
2Sdn − d

σ
n

⇔ zn =
(
Id + V −1

(1
2S +Q

))−1 (
wn − edn

)
+ dn

⇔ zn = (Id +A)−1
(
wn − edn

)
+ dn. (2.19)

Thus, the iterative rules in (2.14) become

(∀n ≥ 0)


yn = JB

(
xn − ebn

)
+ bn

zn = JA
(
2yn − xn − edn

)
+ dn

xn+1 = xn + λn(zn − yn)
. (2.20)

In addition, we have

zer (A+B) = zer
(
V −1 (M + S +Q)

)
= zer (M + S +Q) .
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By defining for every n ≥ 0

βn = JB
(
xn − ebn

)
−JB (xn)+bn and αn = JA

(
2yn − xn − edn

)
−JA (2yn − xn)+dn,

the iterative scheme (2.20) becomes

(∀n ≥ 0)

 yn = JB(xn) + βn
zn = JA (2yn − xn) +αn
xn+1 = xn + λn(zn − yn)

, (2.21)

thus, it has the structure of an error-tolerant Douglas-Rachford algorithm (see [9]).
(i) The assumptions made on the error sequences yield

+∞∑
n=0

λn‖dn‖K < +∞,
+∞∑
n=0

λn‖dσn‖K < +∞,
+∞∑
n=0

λn‖bn‖K < +∞,
+∞∑
n=0

λn‖bσn‖K < +∞

(2.22)

and, by the boundedness of V −1, S and V , if follows

+∞∑
n=0

λn‖ebn‖K < +∞ and
+∞∑
n=0

λn‖edn‖K < +∞. (2.23)

Further, by making use of the nonexpansiveness of the resolvents, the error sequences
satisfy

+∞∑
n=0

λn [‖αn‖K + ‖βn‖K] ≤
+∞∑
n=0

λn
[
‖JA

(
2yn − xn − edn

)
− JA (2yn − xn) ‖K + ‖dn‖K

+‖JB
(
xn − ebn

)
− JB (xn) ‖K + ‖bn‖K

]
≤

+∞∑
n=0

λn
[
‖edn‖K + ‖dn‖K + ‖ebn‖K + ‖bn‖K

]
< +∞.

By the linearity and boundedness of V it follows that

+∞∑
n=0

λn [‖αn‖KV
+ ‖βn‖KV

] < +∞.

(i)(a) According to [9, Theorem 2.1(i)(a)] the sequence (xn)n≥0 converges weakly in
KV and, consequently, in K to a point x ∈ fix (RARB) with JBx ∈ zer(A +B). The
claim follows by identifying JBx and by noting (2.8).

(i)(b) According to [9, Theorem 2.1(i)(b)] it follows that (RARBxn−xn)→ 0 (n→
+∞). From (2.21) it follows that for every n ≥ 0

λn(zn − yn) = λn
2 (RA(RB(xn) + 2βn)− xn + 2αn) ,

10



thus, by taking into consideration the nonexpansiveness of the reflected resolvent and
the boundedness of (λn)n≥0, it yields

‖λn(zn − yn)‖KV
≤λn2 ‖RARBxn − xn‖KV

+ λn
2 ‖RA(RBxn + 2βn)−RA(RBxn) + 2αn‖KV

≤‖RARBxn − xn‖KV
+ λn [‖αn‖KV

+ ‖βn‖KV
] .

The claim follows by taking into account that λn [‖αn‖KV
+ ‖βn‖KV

]→ 0 (n→ +∞).
(i)(c) As shown in (a), we have that xn → x ∈ fix (RARB) (n→ +∞) with JBx ∈

zer(A+B) = zer(M+S+Q). Moreover, by the assumptions we have bn → 0 (n→ +∞)
(cf. (2.13), thus ebn → 0 (n→ +∞) (cf. (2.15)) and βn → 0 (n→ +∞). Hence, by the
continuity of JB and (2.21), we have

yn = JB (xn) + βn → JBx ∈ zer (M + S +Q) (n→ +∞).

(ii) The assumptions made on the error sequences yield

+∞∑
n=0
‖dn‖K < +∞,

+∞∑
n=0
‖dσn‖K < +∞,

+∞∑
n=0
‖bn‖K < +∞,

+∞∑
n=0
‖bσn‖K < +∞,

thus,

+∞∑
n=0
‖ebn‖K < +∞ and

+∞∑
n=0
‖edn‖K < +∞.

This implies that

+∞∑
n=0

[‖αn‖K + ‖βn‖K] < +∞

which, due to the linearity and boundedness of V , yields

+∞∑
n=0

[‖αn‖KV
+ ‖βn‖KV

] < +∞.

Since A and B−1
i , i = 1, ...,m, are uniformly monotone, there exist increasing functions

φA : R+ → [0,+∞] and φB−1
i

: R+ → [0,+∞], i = 1, ...,m, vanishing only at 0, such
that

〈x− y, u− z〉 ≥ φA (‖x− y‖H) ∀ (x, u), (y, z) ∈ graA
〈v − w, p− q〉 ≥ φB−1

i
(‖v − w‖Gi) ∀ (v, p), (w, q) ∈ graB−1

i ∀i = 1, ...,m.
(2.24)

The function φM : R+ → [0,+∞],

φM (c) = inf

φA(a) +
m∑
i=1

φB−1
i

(bi) :

√√√√a2 +
m∑
i=1

b2i = c

 , (2.25)
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is increasing and vanishes only at 0 and it fulfills for each (x,u), (y, z) ∈ graM

〈x− y,u− z〉K ≥ φM (‖x− y‖K) . (2.26)

Thus, M is uniformly monotone on K.
The function φB : R+ → [0,+∞], φB(t) = φM

(
1√
‖V ‖

t

)
, is increasing and vanishes

only at 0. Let be (x,u), (y, z) ∈ graB. Then there exist v ∈ Mx and w ∈ My
fulfilling V u = 1

2Sx+ v and V z = 1
2Sy +w and it holds

〈x− y,u− z〉KV
= 〈x− y,V u− V z〉K

=
〈
x− y,

(1
2Sx+ v

)
−
(1

2Sy +w
)〉

K
(2.26)
≥ φM (‖x− y‖K)

≥ φM

(
1√
‖V ‖

‖x− y‖KV

)
= φB (‖x− y‖KV

) . (2.27)

Consequently, B is uniformly monotone on KV and, according to [9, Theorem
2.1(ii)(b)], (JBxn)n≥0 converges strongly to the unique element y ∈ zer(A + B) =
zer (M + S +Q). In the light of (2.21) and using that βn → 0 (n → +∞), it follows
that yn → y (n→ +∞).

Remark 2.1. Some remarks concerning Algorithm 2.1 and Theorem 2.1 are in order.

(i) Algorithm 2.1 is a fully decomposable iterative method, as each of the opera-
tors occurring in Problem 2.1 is processed individually. Moreover, a considerable
number of steps in (2.4) can be executed in parallel.

(ii) The proof of Theorem 2.1, which states the convergence of Algorithm 2.1, relies on
the reformulation of the iterative scheme as an inexact Douglas-Rachford method
in a specific real Hilbert space. For the use of a similar technique in the context
of a forward-backward-type method we refer to [14].

(iii) We would like to notice that the assumption
∑+∞
n=0 λn‖an‖H < +∞ does not

necessarily imply neither that (‖an‖H)n≥0 is summable nor that (an)n≥0 (weakly
or strongly) converges to 0 as n→ +∞. We refer to [9, Remark 2.2(iii)] for further
considerations on the conditions imposed on the error sequences in Theorem 2.1.

Remark 2.2. In the following we emphasize the relations between the proposed algo-
rithm and other existent primal-dual iterative schemes.

(i) Other iterative methods for solving the primal-dual monotone inclusion pair in-
troduced in Problem 2.1 were given in [10] and [14] for D−1

i , i = 1, ...,m monotone
Lipschitzian and cocoercive operators, respectively. Different to the approach
proposed in this subsection, there, the operators D−1

i , i = 1, ...,m, are processed
within some forward steps.
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(ii) When for every i = 1, ...,m one takes Di(0) = Gi and Di(v) = ∅ ∀v ∈ Gi \ {0},
the algorithms proposed in [10, Theorem 3.1] (see, also, [6, Theorem 3.1] for the
case m = 1) and [14, Theorem 3.1] applied to Problem 2.1 differ from Algorithm
2.1.

(iii) When solving the particular case of a primal-dual pair of convex optimization
problems discussed in Example 2.1 one can make use of the iterative schemes
provided in [11, Algorithm 3.1] and [7, Algorithm 1]. Let us notice that particu-
larizing Algorithm 2.1 to this framework gives rise to a numerical scheme different
to the ones in the mentioned literature.

2.2 A second primal-dual algorithm

In Algorithm 2.1 each operator Li and its adjoint L∗i , i = 1, ...,m are processed two times,
however, for large-scale optimization problems these matrix-vector multiplications may
be expensive compared with the computation of the resolvents of the operators A, B−1

i

and D−1
i , i = 1, ...,m.

The second primal-dual algorithm we propose for solving the monotone inclusions
in Problem 2.1 has the particularity that it evaluates each operator Li and its adjoint
L∗i , i = 1, ...,m, only once.

Algorithm 2.2.
Let x0 ∈ H, (y1,0, . . . , ym,0) ∈ G1 × . . .×Gm, (v1,0, . . . , vm,0) ∈ G1 × . . .×Gm, and τ and
σi, i = 1, ...,m, be strictly positive real numbers such that

τ
m∑
i=1

σi‖Li‖2 <
1
4 .

Furthermore, set γi = σ−1
i τ

∑m
i=1 σi‖Li‖2, i = 1, ...,m, let (λn)n≥0 be a sequence in

(0, 2), (an)n≥0 a sequence inH, (bi,n)n≥0 and (di,n)n≥0 sequences in Gi for all i = 1, . . . ,m
and set

(∀n ≥ 0)



p1,n = JτA (xn − τ (
∑m
i=1 L

∗
i vi,n − z)) + an

xn+1 = xn + λn(p1,n − xn)
For i = 1, . . . ,m
p2,i,n = JγiDi (yi,n + γivi,n) + di,n
yi,n+1 = yi,n + λn(p2,i,n − yi,n)
p3,i,n = JσiB

−1
i

(vi,n + σi (Li(2p1,n − xn)− (2p2,i,n − yi,n)− ri)) + bi,n

vi,n+1 = vi,n + λn(p3,i,n − vi,n).
(2.28)

Theorem 2.2. In Problem 2.1 suppose that

z ∈ ran
(
A+

m∑
i=1

L∗i (Bi�Di)(Li · −ri)
)
. (2.29)

and consider the sequences generated by Algorithm 2.2.
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(i) If

+∞∑
n=0

λn‖an‖H < +∞,
+∞∑
n=0

λn(‖di,n‖Gi + ‖bi,n‖Gi) < +∞, i = 1, . . . ,m,

and
∑+∞
n=0 λn(2− λn) = +∞, then

(a) (xn, y1,n, . . . , ym,n, v1,n, . . . , vm,n)n≥0 converges weakly to a point
(x, y1, ..., ym, v1, ..., vm) ∈ H × G1 × . . . × Gm × G1 × . . . × Gm such
that (x, v1, ..., vm) is a primal-dual solution to Problem 2.1.

(b) λn(p1,n−xn)→ 0 (n→ +∞), λn(p2,i,n−yi,n)→ 0 (n→ +∞) and λn(p3,i,n−
vi,n)→ 0 (n→ +∞) for i = 1, ...,m.

(c) whenever H and Gi, i = 1, ...,m, are finite-dimensional Hilbert spaces,
(xn, v1,n, . . . , vm,n)n≥0 converges strongly to a primal-dual solution of Prob-
lem 2.1.

(ii) If

+∞∑
n=0
‖an‖H < +∞,

+∞∑
n=0

(‖di,n‖Gi + ‖bi,n‖gi) < +∞, i = 1, . . . ,m, inf
n≥0

λn > 0

and A,B−1
i and Di, i = 1, ...,m, are uniformly monotone,

then (p1,n, p3,1,n, . . . , p3,m,n)n≥0 converges strongly to the unique primal-dual solu-
tion of Problem 2.1.

Proof. We let G = G1 × . . . × Gm be the real Hilbert space endowed with the inner
product and associated norm defined in (2.6) and consider

K = H× G × G,

the real Hilbert space endowed with inner product and associated norm defined for
x = (x,y,v),u = (u, q,p) ∈ K as

〈x,u〉K = 〈x, u〉H + 〈y, q〉G + 〈v,p〉G and ‖x‖K =
√
‖x‖2H + ‖y‖2G + ‖v‖2G , (2.30)

respectively. In what follows we set

y = (y1, ..., ym), v = (v1, ..., vm), y = (y1, ..., ym), v = (v1, ..., vm).

Consider the set-valued operator

M : K→ 2K, (x,y,v) 7→ (−z +Ax,D1y1, . . . , Dmym, r1 +B−1
1 v1, . . . , rm +B−1

m vm),

which is maximally monotone, since A,Bi and Di, i = 1, ...,m, are maximally monotone
(cf. [1, Proposition 20.22 and Proposition 20.23]) and the bounded linear operator

S : K→ K, (x,y,v) 7→
(

m∑
i=1

L∗i vi,−v1, . . . ,−vm,−L1x+ y1, . . . ,−Lmx+ ym

)
,

14



which proves to be skew (i. e. S∗ = −S) and hence maximally monotone (cf. [1, Example
20.30]). Since domS = K, the sum M + S is maximally monotone, as well (cf. [1,
Corollary 24.4(i)]). Further, we have

(2.29)⇔ (∃x ∈ H) z ∈ Ax+
m∑
i=1

L∗i (Bi�Di) (Lix− ri)

⇔ (∃ (x,v) ∈ H × G)
{
z ∈ Ax+

∑m
i=1 L

∗
i vi

vi ∈ (Bi�Di) (Lix− ri) , i = 1, . . . ,m

⇔ (∃ (x,v) ∈ H × G)
{
z ∈ Ax+

∑m
i=1 L

∗
i vi

Lix− ri ∈ B−1
i vi +D−1

i vi, i = 1, . . . ,m

⇔ (∃ (x,y,v) ∈ K)


0 ∈ −z +Ax+

∑m
i=1 L

∗
i vi

0 ∈ Diyi − vi, i = 1, . . . ,m
0 ∈ ri +B−1

i vi − Lix+ yi, i = 1, . . . ,m
⇔ (∃ (x,y,v) ∈ K) (0, . . . , 0) ∈ (M + S) (x,y,v)
⇔ zer (M + S) 6= ∅. (2.31)

From the above calculations it follows that

(x,y,v) ∈ zer (M + S)⇒
{
z −

∑m
i=1 L

∗
i vi ∈ Ax

vi ∈ (Bi�Di) (Lix− ri) , i = 1, ...,m
⇔ (x, v1, ..., vm) is a primal-dual solution to Problem 2.1.

(2.32)

Finally, we introduce the bounded linear operator

V : K→ K

(x,y,v) 7→
(
x

τ
−

m∑
i=1

L∗i vi,
y1
γ1

+ v1, . . . ,
ym
γm

+ vm,
v1
σ1
− L1x+ y1, . . . ,

vm
σm
− Lmx+ ym

)
,

which is self-adjoint, i. e. V ∗ = V . Furthermore, the operator V is ρ-strongly positive
for

ρ =

1− 2

√√√√τ m∑
i=1

σi‖Li‖2
min

{1
τ
,

1
γ1
, . . . ,

1
γm

,
1
σ1
, . . . ,

1
σm

}
,

which is a positive real number due to the assumption

τ
m∑
i=1

σi‖Li‖2 <
1
4 (2.33)

made in Algorithm 2.2. Indeed, for γi = σ−1
i τ

∑m
i=1 σi‖Li‖2 it yields for each i =

1, . . . ,m,

2 〈Lix− yi, vi〉Gi
≤ 2‖Li‖‖x‖H‖vi‖Gi + 2‖yi‖Gi‖vi‖Gi

≤ σi‖Li‖2‖x‖2H√
τ
∑m
i=1 σi‖Li‖2

+

√√√√τ m∑
i=1

σi‖Li‖2
‖yi‖2Gi

γi
+ 2

√√√√τ m∑
i=1

σi‖Li‖2
‖vi‖2Gi

σi
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and, consequently, for each x = (x,y,v) ∈ K, it follows that

〈x,V x〉K = ‖x‖
2
H

τ
+

m∑
i=1

[
‖yi‖2Gi

γi
+
‖vi‖2Gi

σi

]
− 2

m∑
i=1
〈Lix− yi, vi〉Gi

≥

1− 2

√√√√τ m∑
i=1

σi‖Li‖2
min

{1
τ
,

1
γ1
, . . . ,

1
γm

,
1
σ1
, . . . ,

1
σm

}
‖x‖2K

= ρ‖x‖2K. (2.34)

The algorithmic scheme (2.28) is equivalent to

(∀n ≥ 0)



xn−p1,n

τ −
∑m
i=1 L

∗
i vi,n ∈ −z +A(p1,n − an)− an

τ
xn+1 = xn + λn(p1,n − xn)
For i = 1, . . . ,m

yi,n−p2,i,n

γi
+ vi,n ∈ Di(p2,i,n − di,n)− di,n

γi

yi,n+1 = yi,n + λn(p2,i,n − yi,n)
vi,n−p3,i,n

σi
− Li(xn − p1,n) + yi,n − p2,i,n

∈ ri +B−1
i (p3,i,n − bi,n)− Lip1,n + p2,i,n − bi,n

σi

vi,n+1 = vi,n + λn(p3,i,n − vi,n).

(2.35)

We introduce for every n ≥ 0 the following notations:
xn = (xn, y1,n, . . . , ym,n, v1,n, . . . , vm,n)
pn = (p1,n, p2,1,n, . . . , p2,m,n, p3,1,n, . . . , p3,m,n)
an = (an, d1,n, . . . , dm,n, b1,n, . . . , bm,n)
aτn = (an

τ ,
d1,n

γ1
, . . . ,

dm,n

γm
,
b1,n

σ1
, . . . ,

bm,n

σm
).

(2.36)

Hence, the scheme (2.35) can equivalently be written in the form

(∀n ≥ 0)
⌊
V (xn − pn) ∈ (S +M) (pn − an) + San − aτn
xn+1 = xn + λn(pn − xn). (2.37)

Considering again the Hilbert space KV with inner product and norm respectively
defined as in (2.16), since V is self-adjoint and ρ-strongly positive, weak and strong
convergence in KV are equivalent with weak and strong convergence in K, respectively.
Moreover, A = V −1 (S +M) is maximally monotone on KV . Thus, by denoting
en = V −1 ((S + V )an − aτn) for every n ≥ 0 the iterative scheme (2.37) becomes

(∀n ≥ 0)
⌊
pn = JA (xn − en) + an
xn+1 = xn + λn(pn − xn). (2.38)

Furthermore, introducing the maximal monotone operator B : K → 2K, x 7→ {0},
and defining for every n ≥ 0

αn = JA (xn − en)− JA (xn) + an,
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the iterative scheme (2.38) becomes (notice that JB = Id)

(∀n ≥ 0)

 yn = JB(xn)
pn = JA (2yn − xn) +αn
xn+1 = xn + λn(pn − yn)

, (2.39)

thus, it has the structure of the error-tolerant Douglas-Rachford algorithm from [9].
Obviously, zer(A+B) = zer(M + S).

(i) The assumptions made on the error sequences yield
+∞∑
n=0

λn‖an‖K < +∞ and
+∞∑
n=0

λn‖en‖K < +∞,

thus, by the nonexpansiveness of the resolvent of A,
+∞∑
n=0

λn‖αn‖K < +∞

and, consequently, by the linearity and boundedness of V ,
+∞∑
n=0

λn‖αn‖KV
< +∞.

(i)(a) Follows directly from [9, Theorem 2.1(i)(a)] by using that JB = Id and relation
(2.32).

(i)(b) Follows in analogy to the proof of Theorem 2.1(i)(b).
(i)(c) Follows from Theorem 2.2(i)(a).
(ii) The iterative scheme (2.38) can be also formulated as

(∀n ≥ 0)

 pn = JA(xn) +αn
yn = JB (2pn − xn)
xn+1 = xn + λn(yn − pn)

, (2.40)

with the error sequence fulfilling
+∞∑
n=0
‖αn‖KV

< +∞.

The statement follows from [9, Theorem 2.1(ii)(b)] by taking into consideration the
uniform monotonicity of A and relation (2.32).

Remark 2.3. When for every i = 1, ...,m one takes Di(0) = Gi and Di(v) = ∅ ∀v ∈
Gi \ {0}, and (di,n)n≥0 as a sequence of zeros, one can show that the assertions made in
Theorem 2.2 hold true for step length parameters satisfying

τ
m∑
i=1

σi‖Li‖2 < 1,

when choosing (y1,0, . . . , ym,0) = (0, . . . , 0) in Algorithm 2.2, since the sequences
(y1,n, . . . , ym,n)n≥0 and (v1,n, . . . , vm,n)n≥0 vanish in this particular situation.
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Remark 2.4. In the following we emphasize the relations between Algorithm 2.2 and
other existent primal-dual iterative schemes.

(i) When for every i = 1, ...,m one takes Di(0) = Gi and Di(v) = ∅ ∀v ∈ Gi\{0}, and
(di,n)n≥0 as a sequence of zeros, Algorithm 2.2 with (y1,0, . . . , ym,0) = (0, . . . , 0) as
initial choice provides an iterative scheme which is identical to the one in [14, Eq.
(3.3)], but differs from the one in [10, Theorem 3.1] (see, also, [6, Theorem 3.1]
for the case m = 1) when the latter are applied to Problem 2.1.

(ii) When solving the particular case of a primal-dual pair of convex optimization
problems discussed in Example 2.1 and when considering as initial choice y1,0 =
0, Algorithm 2.2 gives rise to an iterative scheme which is equivalent to [11,
Algorithm 3.1]. In addition, under the assumption of exact implementations,
the method in Algorithm 2.2 equals the one in [7, Algorithm 1], our choice of
(λn)n≥0 to be variable in the interval (0, 2), however, relaxes the assumption in [7]
that (λn)n≥0 is a constant sequence in (0, 1].

3 Application to convex minimization problems
In this section we particularize the two iterative schemes introduced and investigated in
this paper in the context of solving a primal-dual pair of convex optimization problems.
To this end we consider the following problem.

Problem 3.1. Let H and Gi, i = 1, ...,m, be given real Hilbert spaces, f ∈ Γ(H) and
z ∈ H, gi, li ∈ Γ(Gi), ri ∈ Gi, i = 1, ...,m, and Li : H → Gi, i = 1, ...,m, nonzero
bounded linear operators. Consider the convex optimization problem

(P ) inf
x∈H

{
f(x) +

m∑
i=1

(gi� li)(Lix− ri)− 〈x, z〉
}

(3.1)

and its conjugate dual problem

(D) sup
(v1,...,vm)∈G1×...×Gm

{
−f∗

(
z −

m∑
i=1

L∗i vi

)
−

m∑
i=1

(g∗i (vi) + l∗i (vi) + 〈vi, ri〉)
}
. (3.2)

Considering the maximal monotone operators

A = ∂f, Bi = ∂gi and Di = ∂li, i = 1, ...,m,

the monotone inclusion problem (2.1) reads

find x ∈ H such that z ∈ ∂f(x) +
m∑
i=1

L∗i (∂gi�∂li)(Lix− ri), (3.3)

while the dual inclusion problem (2.2) reads

find v1 ∈ G1, . . . , vm ∈ Gm such that (∃x ∈ H)
{
z −

∑m
i=1 L

∗
i vi ∈ ∂f(x)

vi ∈(∂gi�∂li)(Lix− ri), i = 1, . . . ,m.
(3.4)
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If (x, v1, . . . , vm) ∈ H × G1 . . .× Gm is a primal-dual solution to (3.3)-(3.4), namely,

z −
m∑
i=1

L∗i vi ∈ ∂f(x) and vi ∈ (∂gi�∂li)(Lix− ri), i = 1, . . . ,m, (3.5)

then x is an optimal solution to (P ), (v1, . . . , vm) is an optimal solution to (D) and
the optimal objective values of the two problems, which we denote by v(P ) and v(D),
respectively, coincide (thus, strong duality holds).

Combining this statement with Algorithm 2.1 and Theorem 2.1 give rise to the
following iterative scheme and corresponding convergence results for the primal-dual
pair of optimization problems (P ) − (D). We also use that the subdifferential of a
uniformly convex function is uniformly monotone (cf. [1, Example 22.3(iii)]).

Algorithm 3.1.
Let x0 ∈ H, (v1,0, . . . , vm,0) ∈ G1×. . .×Gm and τ and σi, i = 1, ...,m, be strictly positive
real numbers such that

τ
m∑
i=1

σi‖Li‖2 < 4.

Furthermore, let (λn)n≥0 be a sequence in (0, 2), (an)n≥0 a sequence in H, (bi,n)n≥0 and
(di,n)n≥0 sequences in Gi for all i = 1, . . . ,m and set

(∀n ≥ 0)



p1,n = Proxτf
(
xn − τ

2
∑m
i=1 L

∗
i vi,n + τz

)
+ an

w1,n = 2p1,n − xn
For i = 1, . . . ,m⌊
p2,i,n = Proxσig∗i

(
vi,n + σi

2 Liw1,n − σiri
)

+ bi,n
w2,i,n = 2p2,i,n − vi,n

z1,n = w1,n − τ
2
∑m
i=1 L

∗
iw2,i,n

xn+1 = xn + λn(z1,n − p1,n)
For i = 1, . . . ,m⌊
z2,i,n = Proxσil∗i

(
w2,i,n + σi

2 Li(2z1,n − w1,n)
)

+ di,n
vi,n+1 = vi,n + λn(z2,i,n − p2,i,n).

(3.6)

Theorem 3.1. For Problem 3.1 suppose that

z ∈ ran
(
∂f +

m∑
i=1

L∗i (∂gi�∂li)(Li · −ri)
)
, (3.7)

and consider the sequences generated by Algorithm 3.1.

(i) If

+∞∑
n=0

λn‖an‖H < +∞,
+∞∑
n=0

λn(‖di,n‖Gi + ‖bi,n‖Gi) < +∞, i = 1, . . . ,m,

and
∑+∞
n=0 λn(2− λn) = +∞, then
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(i) (xn, v1,n, . . . , vm,n)n≥0 converges weakly to a point (x, v1, . . . , vm) ∈ H×G1×
. . .× Gm such that, when setting

p1 = Proxτf

(
x− τ

2

m∑
i=1

L∗i vi + τz

)
,

and p2,i = Proxσig∗i

(
vi + σi

2 Li(2p1 − x)− σiri
)
i = 1, ...,m,

p1 is an optimal solution to (P ), (p2,1, . . . , p2,m) is an optimal solution to
(D) and v(P ) = v(D).

(ii) λn(z1,n − p1,n) → 0 (n → +∞) and λn(z2,i,n − p2,i,n) → 0 (n → +∞) for
i = 1, ...,m.

(iii) whenever H and Gi, i = 1, ...,m, are finite-dimensional Hilbert spaces, an →
0 (n → +∞) and bi,n → 0 (n → +∞) for i = 1, ...,m, then (p1,n)n≥0
converges strongly to an optimal solution to (P ) and (p2,1,n, . . . , p2,m,n)n≥0
converges strongly to an optimal solution to (D).

(ii) If
+∞∑
n=0
‖an‖H < +∞,

+∞∑
n=0

(‖di,n‖Gi + ‖bi,n‖gi) < +∞, i = 1, . . . ,m, inf
n≥0

λn > 0

and f and g∗i , i = 1, ...,m, are uniformly convex,
then (p1,n)n≥0 converges strongly to an optimal solution to (P ),
(p2,1,n, . . . , p2,m,n)n≥0 converges strongly to an optimal solution to (D) and
v(P ) = v(D).

Algorithm 2.2 and Theorem 2.2 give rise to the following iterative scheme and
corresponding convergence results for the primal-dual pair of optimization problems
(P )− (D).

Algorithm 3.2.
Let x0 ∈ H, (y1,0, . . . , ym,0) ∈ G1 × . . .×Gm, (v1,0, . . . , vm,0) ∈ G1 × . . .×Gm, and τ and
σi, i = 1, ...,m, be strictly positive real numbers such that

τ
m∑
i=1

σi‖Li‖2 <
1
4 .

Furthermore, set γi = σ−1
i τ

∑m
i=1 σi‖Li‖2, i = 1, ...,m, (λn)n≥0 be a sequence in (0, 2),

(an)n≥0 a sequence in H, (bi,n)n≥0 and (di,n)n≥0 sequences in Gi for all i = 1, . . . ,m and
set

(∀n ≥ 0)



p1,n = Proxτf (xn − τ (
∑m
i=1 L

∗
i vi,n − z)) + an

xn+1 = xn + λn(p1,n − xn)
For i = 1, . . . ,m
p2,i,n = Proxγili (yi,n + γivi,n) + di,n
yi,n+1 = yi,n + λn(p2,i,n − yi,n)
p3,i,n = Proxσig∗i

(vi,n + σi (Li(2p1,n − xn)− (2p2,i,n − yi,n)− ri)) + bi,n
vi,n+1 = vi,n + λn(p3,i,n − vi,n).

(3.8)
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Theorem 3.2. In Problem 3.1 suppose that

z ∈ ran
(
∂f +

m∑
i=1

L∗i (∂gi�∂li)(Li · −ri)
)
, (3.9)

and consider the sequences generated by Algorithm 3.2.

(i) If
+∞∑
n=0

λn‖an‖H < +∞,
+∞∑
n=0

λn(‖di,n‖Gi + ‖bi,n‖Gi) < +∞, i = 1, . . . ,m,

and
∑+∞
n=0 λn(2− λn) = +∞, then

(a) (xn, y1,n, . . . , ym,n, v1,n, . . . , vm,n)n≥0 converges weakly to a point
(x, y1, ..., ym, v1, ..., vm) ∈ H × G1 × . . . × Gm × G1 × . . . × Gm such
that such that x is an optimal solution to (P ), (v1, ..., vm) is an optimal
solution to (D) and v(P ) = v(D).

(b) λn(p1,n−xn)→ 0 (n→ +∞), λn(p2,i,n−yi,n)→ 0 (n→ +∞) and λn(p3,i,n−
vi,n)→ 0 (n→ +∞) for i = 1, ...,m.

(c) whenever H and Gi, i = 1, ...,m, are finite-dimensional Hilbert
spaces, (xn)n≥0 converges strongly to an optimal solution to (P ) and
(v1,n, . . . , vm,n)n≥0 converges strongly to an optimal solution to (D).

(ii) If
+∞∑
n=0
‖an‖H < +∞,

+∞∑
n=0

(‖di,n‖Gi + ‖bi,n‖gi) < +∞, i = 1, . . . ,m, inf
n≥0

λn > 0

and f, li and g∗i , i = 1, ...,m, are uniformly convex,

then, (p1,n)n≥0 converges strongly to the unique optimal solution to (P ),
(p3,1,n, . . . , p3,m,n)n≥0 converges strongly to the unique optimal solution of (D)
and v(P ) = v(D).

Remark 3.1. According to Remark 2.3, when li : Gi → R, li = δ{0}, and (di,n)n≥0 is
chosen as a sequence of zeros for every i = 1, ...,m, the assertions made in Theorem 3.2
hold true for step length parameters satisfying

τ
m∑
i=1

σi‖Li‖2 < 1

when taking in Algorithm 3.2 as initial choice (y1,0, . . . , ym,0) = (0, . . . , 0). In this case
the sequences (y1,n, . . . , ym,n)n≥0 and (p2,1,n, . . . , p2,m,n)n≥0 vanish and (3.8) reduces to

(∀n ≥ 0)


p1,n = Proxτf (xn − τ (

∑m
i=1 L

∗
i vi,n − z)) + an

xn+1 = xn + λn(p1,n − xn)
For i = 1, . . . ,m⌊
p3,i,n = Proxσig∗i

(vi,n + σi (Li(2p1,n − xn)− ri)) + bi,n
vi,n+1 = vi,n + λn(p3,i,n − vi,n).

(3.10)
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4 Numerical experiments
In this section we emphasize the performances of the algorithms introduced in this
article in the context of two numerical experiments on location and image deblurring
problems.

4.1 The generalized Heron problem

We start by considering the generalized Heron problem which has been recently inves-
tigated in [12,13] and where for its solving subgradient-type methods have been used.

While the classical Heron problem concerns the finding of a point u on a given
straight line in the plane such that the sum of distances from u to given points u1, u2 is
minimal, the problem that we address here aims to find a point in a closed convex set
Ω ⊆ Rn which minimizes the sum of the distances to given convex closed sets Ωi ⊆ Rn,
i = 1, . . . ,m.

The distance from a point x ∈ Rn to a nonempty set Ω ⊆ Rn is given by

d(x; Ω) = (‖ · ‖� δΩ)(x) = inf
z∈Ω
‖x− z‖.

Thus the generalized Heron problem reads

inf
x∈Ω

m∑
i=1

d(x; Ωi), (4.1)

where the sets Ω ⊆ Rn and Ωi ⊆ Rn, i = 1, . . . ,m, are nonempty, closed and convex.
We observe that (4.1) perfectly fits into the framework considered in Problem 3.1 when
setting

f = δΩ, and gi = ‖ · ‖, li = δΩi for all i = 1, . . . ,m. (4.2)

However, note that (4.1) cannot be solved via the primal-dual methods in [10] and [14]
since they require the presence of at least one strongly convex function (cf. Baillon-
Haddad Theorem, [1, Corollary 18.16]) in each of the infimal convolutions ‖ · ‖� δΩi ,
i = 1, . . . ,m, fact which is obviously not the case. Notice that

g∗i : Rn → R, g∗i (p) = sup
x∈Rn

{〈p, x〉 − ‖x‖} = δB(0,1)(p), i = 1, ...,m,

thus the proximal points of f , g∗i and l∗i , i = 1, ...,m, can be calculated via projections,
in case of the latter via Moreau’s decomposition formula.

We test our algorithms on some examples taken from [12,13] and denote in the final
evaluations for every k ≥ 0 by Vk the value of the objective function of (4.1) at each
iterate.

Example 4.1 (Example 5.5 in [13]). Consider problem (4.1) with the constraint set Ω
being the closed ball centered at (5, 0) having radius 2 and the sets Ωi, i = 1, . . . , 8,
being pairwise disjoint squares in right position in R2 (i. e. the edges are parallel to
the x- and y-axes, respectively), with centers (−2, 4), (−1,−8), (0, 0), (0, 6), (5,−6),
(8,−8), (8, 9) and (9,−5) and side length 1, respectively (see Figure 4.1).
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When solving this problem with Algorithm 3.1 and Algorithm 3.2 and the choices
made in (4.2), the following formulae for the proximal points involved in their formula-
tions are necessary:

Proxτf (x) = (5, 0) + arg min
y∈B(0,2)

1
2 ‖y − (x− (5, 0))‖2 = (5, 0) + PB(0,2) (x− (5, 0))

Proxσig∗i
(p) = arg min

z∈B(0,1)

1
2‖z − p‖

2 = PB(0,1) (p)

Proxσil∗i
(p)(1.3)= p− σi Proxσ−1

i li

(
p

σi

)
= p− σi arg min

z∈Ωi

1
2

∥∥∥∥z − p

σi

∥∥∥∥2
= p− σiPΩi

(
p

σi

)
.

Hence, when choosing x0 ∈ R2 and (v1,0, . . . , v8,0) ∈ R2× . . .×R2 as starting values,
letting (λn)n≥0 ⊆ (0, 2) and τ, σi ∈ R++, i = 1, . . . , 8, such that τ

∑8
i=1 σi < 4, the

iterative scheme Algorithm 3.1 becomes

(∀n ≥ 0)



p1,n = (5, 0) + PB(0,2)
(
xn − τ

2
∑8
i=1 vi,n − (5, 0)

)
w1,n = 2p1,n − xn
For i = 1, . . . , 8⌊
p2,i,n = PB(0,1)

(
vi,n + σi

2 w1,n
)

w2,i,n = 2p2,i,n − vi,n
z1,n = w1,n − τ

2
∑8
i=1w2,i,n

xn+1 = xn + λn(z1,n − p1,n)
For i = 1, . . . , 8⌊
z2,i,n = w2,i,n + σi

2 (2z1,n − w1,n)− σiPΩi

(
w2,i,n

σi
+ 1

2(2z1,n − w1,n)
)

vi,n+1 = vi,n + λn(z2,i,n − p2,i,n).

For the same initial choices, but when τ
∑8
i=1 σi <

1
4 , the iterative scheme in Algorithm

3.2 reads

(∀n ≥ 0)



p1,n = (5, 0) + PB(0,2)
(
xn − τ

∑8
i=1 vi,n − (5, 0)

)
xn+1 = xn + λn(p1,n − xn)
For i = 1, . . . , 8
p2,i,n = PΩi (yi,n + γivi,n)
yi,n+1 = yi,n + λn(p2,i,n − yi,n)
p3,i,n = PB(0,1) (vi,n + σi ((2p1,n − xn)− (2p2,i,n − yi,n)))
vi,n+1 = vi,n + λn(p3,i,n − vi,n).

Algorithm 3.1 Algorithm 3.2
k p1,k Vk p1,k Vk

0 (5,−2) 54.418914 (5,−2) 54.418914
5 (3.344027,−1.121496) 53.046330 (3.809999,−1.607451) 53.174978
10 (3.389398,−1.185733) 53.043638 (3.441673,−1.253641) 53.046054
20 (3.392361,−1.189747) 53.043627 (3.392712,−1.190221) 53.043627
50 (3.392688,−1.190188) 53.043627 (3.392688,−1.190188) 53.043627
106 (3.392688,−1.190188) 53.043627 (3.392688,−1.190188) 53.043627
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Initializations
Algorithm 3.1 σi = 0.5, τ = 0.24,

λn = 1.8, x0 = (5, 2),
vi,0 = 0, i = 1, . . . , 8

Algorithm 3.2 σi = 0.1, τ = 0.24,
λn = 1.8, x0 = (5, 2),
vi,0 = 0, i = 1, . . . , 8

Figure 4.1: Example 4.1. Generalized Heron problem with squares and disc constraint set on
the left hand side, initializations for the iterative schemes on the right hand side.

As pointed out in the above table, our methods need less than 50 iterations to obtain
an accuracy up to 6 decimal places for both function values and iterates. By comparison,
the subgradient-type method in [13], when applied to this particular problem with the
same starting point, requires more than a million iterations.

Example 4.2 (Example 4.3 in [12]). In this example we solve the generalized Heron
problem (4.1) in R3, where the constraint set Ω is the closed ball centered at (0, 2, 0)
with radius 1 and Ωi, i = 1, ..., 5, are cubes in right position with center at (0,−4, 0),
(−4, 2,−3), (−3,−4, 2), (−5, 4, 4) and (−1, 8, 1) and side length 2, respectively. The
plotted and the initializations for Algorithm 3.1 and Algorithm 3.2 are shown in Figure
4.2.
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Initializations
Algorithm 3.1 σi = 0.4, τ = 0.99,

λn = 1.8, x0 = (0, 2, 0)
vi,0 = 0, i = 1, . . . , 8

Algorithm 3.2 σi = 0.05, τ = 0.59,
λn = 1.8, x0 = (0, 2, 0),
vi,0 = 0, i = 1, . . . , 8

Figure 4.2: Example 4.2. Generalized Heron problem with cubes and ball constraint set on the
left hand side, initializations for the applied methods on the right hand side.
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Algorithm 3.1 Algorithm 3.2
k p1,k Vk p1,k Vk

0 (0, 2, 0) 24.18180 (0, 2, 0) 24.18180
5 (−0.92380, 1.62587, 0.08140) 22.23482 (−0.93595, 1.66118, 0.09588) 22.23627
10 (−0.92525, 1.62890, 0.07875) 22.23480 (−0.92561, 1.62957, 0.07762) 22.23480
20 (−0.92531, 1.62907, 0.07883) 22.23480 (−0.92520, 1.62880, 0.07882) 22.23480
50 (−0.92531, 1.62907, 0.07883) 22.23480 (−0.92531, 1.62907, 0.07883) 22.23480
106 (−0.92531, 1.62907, 0.07883) 22.23480 (−0.92531, 1.62907, 0.07883) 22.23480

According to the above table, both algorithms solve this problem in few steps. Especially
Algorithm 3.1 achieves accuracies up to 5 decimal places for both objective function
values and iterates in less than 20 iterations.

Example 4.3 (Example 5.4 in [13]). Consider again the generalized Heron problem
(4.1) for squares in right position in R2, but this time subject to a real line. More
concretely, we take Ω =

{
(x1, x2) ∈ R2 : (x1, x2) = (1, 6) + t(1, 0), t ∈ R

}
and for Ωi, i =

1, ..., 5, the squares with center (−6,−9), (−5, 4), (0,−7), (1, 0) and (8, 8) and side
length 2. Figure 4.3 shows the plotted result and the initializations for Algorithm 3.1
and Algorithm 3.2.
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Initializations
Algorithm 3.1 σi = 0.1, τ = 3.99,

λn = 1.7, x0 = (−1, 6),
vi,0 = 0, i = 1, . . . , 8

Algorithm 3.2 σi = 0.1, τ = 0.49,
λn = 1.7, x0 = (−1, 6),
vi,0 = 0, i = 1, . . . , 8

Figure 4.3: Example 4.3. Generalized Heron problem with squares and line constraint on the
left hand side, initializations for the applied methods on the right hand side.

Algorithm 3.1 Algorithm 3.2
k p1,k Vk p1,k Vk

0 (−1, 6) 42.883775 (−1, 6) 42.883775
5 (−1.215422, 6) 42.884811 (−1.136966, 6) 42.883775
10 (−1.093321, 6) 42.882115 (−1.107478, 6) 42.882444
20 (−1.094633, 6) 42.882115 (−1.094886, 6) 42.882145
50 (−1.094773, 6) 42.882115 (−1.094773, 6) 42.882115
106 (−1.094773, 6) 42.882115 (−1.094773, 6) 42.882115

Algorithm 3.1 and Algorithm 3.2 achieve accuracies for both the values of the objective
function and the iterates in less than 50 iterations. By comparison, as shown in [13,
Example 5.4], the subgradient-type methods are not able to provide these accuracies
not even after 10 million iterations.
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4.2 Image deblurring

The second numerical experiment concerns the solving of an ill-conditioned linear inverse
problem arising in image deblurring. To this end, we consider images of size M × N
as vectors x ∈ Rn for n = MN , where each pixel denoted by xi,j , 1 ≤ i ≤ M , 1 ≤
j ≤ N , ranges in the closed interval from 0 (pure black) to 1 (pure white). For a given
matrix A ∈ Rn×n describing a blur (or averaging) operator and a given vector b ∈ Rn
representing the blurred and noisy image, our aim is to estimate the unknown original
image x ∈ Rn fulfilling

Ax = b.

To this aim we are solving the following regularized convex nondifferentiable problem

inf
x∈Rn

{
‖Ax− b‖1 + α2 ‖Wx‖1 + α1TV (x) + δ[0,1]n(x)

}
, (4.3)

where the regularization is done by a combination of two functionals with different
properties. Here, α1, α2 ∈ R++ are regularization parameters, TV : Rn → R is the
discrete isotropic total variation function andW : Rn → Rn is the discrete Haar wavelet
transform with four levels transforming the image into wavelet coefficients with respect
to the orthonormal Haar wavelet basis. Notice that the norm of the operator W is
‖W‖ = 2−8 and that none of the functions occurring in the objective function of (4.3)
is differentiable.

The picture undergoes a Gaussian blur of size 9 × 9 with standard deviation 4, as
done in [5, Section 4.2], yielding a blurring operator A with ‖A‖2 = 1 and A∗ = A. For
the discrete isotropic total variation functional

TV (x) =
M−1∑
i=1

N−1∑
j=1

√
(xi+1,j − xi,j)2 + (xi,j+1 − xi,j)2

+
M−1∑
i=1
|xi+1,N − xi,N |+

N−1∑
j=1
|xM,j+1 − xM,j | ,

where reflexive boundary conditions are assumed, it holds that TV (x) = ‖Lx‖×, where
Y = Rn × Rn, the operator L : Rn → Y, xi,j 7→ (L1xi,j , L2xi,j),

L1xi,j =
{
xi+1,j − xi,j , if i < M
0, if i = M

and L2xi,j =
{
xi,j+1 − xi,j , if j < N
0, if j = N

,

represents a discretization of the gradient in horizontal and vertical direction with ‖L‖ ≤
8 and ‖ ·‖× : Y → R, ‖(p, q)‖× =

∑M
i=1

∑N
j=1

√
p2
i,j + q2

i,j , is a norm on the Hilbert space
Y.

Consequently, the optimization problem (4.3) can be equivalently written as

inf
x∈Rn

{f(x) + g1(Ax) + g2(Wx) + g3(Lx)}, (4.4)

where f : Rn → R, f(x) = δ[0,1]n(x), g1 : Rn → R, g1(y) = ‖y − b‖1, g2 : Rn → R,
g2(y) = α2‖y‖1 and g3 : Y → R, g3(y, z) = α1‖(y, z)‖×. For every p ∈ Rn we have
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g∗1(p) = δ[−1,1]n(p)+pT b and g∗2(p) = δ[−α2,α2]n(p) (see, for instance [2]), while, for every
(p, q) ∈ Y it holds g∗3(p, q) = δS(p, q), where (cf. [5])

S =

(p, q) ∈ Y : max
1≤i≤M
1≤j≤N

√
p2
i,j + q2

i,j ≤ α1

 .
It is easy to see that for all x, p, q ∈ Rn it holds

Proxτf (x) = arg min
z∈[0,1]n

1
2‖z − x‖

2 = P[0,1]n(x)

Proxσ1g∗1
(p) = arg min

z∈[−1,1]n

{
σ1z

T b+ 1
2‖z − p‖

2
}

= P[−1,1]n(p− σ1b)

Proxσ2g∗2
(p) = arg min

z∈[−α2,α2]n

1
2‖z − p‖

2 = P[−α2,α2]n(p)

Proxσ3g∗3
(p, q) = arg min

(z1,z2)∈S

1
2‖(z1, z2)− (p, q)‖2 = PS (p, q) ,

where the projection operator PS : Y → S is defined via

(pi,j , qi,j) 7→ α1
(pi,j , qi,j)

max
{
α1,

√
p2
i,j + q2

i,j

} , 1 ≤ i ≤M, 1 ≤ j ≤ N.

Hence, when choosing x0 ∈ Rn and (v1,0, v2,0, v3,0) ∈ Rn×Rn×Y as starting values, and
letting (λn)n≥0 ⊆ (0, 2) and τ, σ1, σ2, σ3 ∈ R++ be such that τ

(
σ1 + σ22−16 + 8σ3

)
< 4,

the iterative scheme in Algorithm 3.1 becomes

(∀n ≥ 0)



p1,n = P[0,1]n
(
xn − τ

2 (A∗v1,n +W ∗v2,n + L∗v3,n)
)

p2,1,n = P[−1,1]n
(
v1,n + σ1

2 A(2p1,n − xn)− σ1b
)

p2,2,n = P[−α2,α2]n
(
v2,n + σ2

2 W (2p1,n − xn)
)

p2,3,n = PS
(
v3,n + σ3

2 L
∗(2p1,n − xn)

)
z1,n = 2p1,n − xn − τ

2 (A∗(2p2,1,n − v1,n) +W ∗(2p2,2,n − v2,n)
+L∗(2p2,3,n − v3,n))

xn+1 = xn + λn(z1,n − p1,n)
v1,n+1 = v1,n + λn

(
p2,1,n − v1,n + σ1

2 A(2z1,n − 2p1,n + xn)
)

v2,n+1 = v2,n + λn
(
p2,2,n − v2,n + σ2

2 W (2z1,n − 2p1,n + xn)
)

v3,n+1 = v3,n + λn
(
p2,3,n − v3,n + σ3

2 L(2z1,n − 2p1,n + xn)
)
.

Similarly, taking also into account Remark 3.1, Algorithm 3.2 can be also im-
plemented to this problem, this time by choosing τ, σ1, σ2, σ3 ∈ R++ such that
τ
(
σ1 + σ22−16 + 8σ3

)
< 1.

Figure 4.4 shows the performance of Algorithm 3.1 and Algorithm 3.2 when solving
(4.4) for α1 = 3e-3, α2 = 2e-5, starting points x0 = b and (v1,0, v2,0, v3,0) = (0, 0, 0) and
parameters

• DR1 (Algorithm 3.1): σ1 = 1, σ2 = 1, σ3 = 0.05, τ = 4
(
σ1 + σ22−16 + 8σ3

)−1 − 0.01,
λn = 1.5 for every n ≥ 0;
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• DR2 (Algorithm 3.2): σ1 = 1, σ2 = 0.05, σ3 = 0.05, τ = 1
(
σ1 + σ22−16 + 8σ3

)−1 − 0.01,
λn = 1.6 for every n ≥ 0,

and of the iterative scheme designed in [10, Theorem 3.1] for

• FBF ( [10, Theorem 3.1]): ε = 1
20(
√

1+2−16+8+1)
, γn = 1−ε√

1+2−16+8
for every n ≥ 0,

within the first 200 iterations, when applied to the 256 × 256 cameraman test image.
Figure 4.5 shows the original, observed and reconstructed versions of the 256 × 256
cameraman test image.
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Figure 4.4: The evolution of the values of the objective function and of the ISNR (improve-
ment in signal-to-noise ratio) for Algorithm 3.1 (DR1), Algorithm 3.2 (DR2) and the forward-
backward-forward method (FBF) from [10, Theorem 3.1].

(a) Original image (b) Blurred and noisy image (c) Reconstructed image

Figure 4.5: Figure (a) shows the clean 256× 256 cameraman test image, (b) shows the image
obtained after multiplying it with a blur operator and adding white Gaussian noise with standard
deviation 10−3 and (c) shows the reconstructed image generated by Algorithm 3.1.
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