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A SEMIALGEBRAIC DESCRIPTION OF THE GENERAL MARKOV
MODEL ON PHYLOGENETIC TREES

ELIZABETH S. ALLMAN∗† , JOHN A. RHODES∗† , AND AMELIA TAYLOR‡

Abstract. Many of the stochastic models used in inference of phylogenetic trees from biological
sequence data have polynomial parameterization maps. The image of such a map — the collection of
joint distributions for a model — forms the model space. Since the parameterization is polynomial,
the Zariski closure of the model space is an algebraic variety which is typically much larger than the
model space, but has been usefully studied with algebraic methods. Of ultimate interest, however, is
not the full variety, but only the model space. Here we develop complete semialgebraic descriptions
of the model space arising from the k-state general Markov model on a tree, with slightly restricted
parameters. Our approach depends upon both recently-formulated analogs of Cayley’s hyperdeter-
minant, and the construction of certain quadratic forms from the joint distribution whose positive
(semi-)definiteness encodes information about parameter values. We additionally investigate the use
of Sturm sequences for obtaining similar results.
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1. Introduction. Statistical inference of evolutionary relationships among or-
ganisms from DNA sequence data is routinely performed using probabilistic models
of sequence evolution along a tree. A site in a sequence is viewed as a 4-state (A,C,G,
T) random variable, which undergoes state changes as it descends along the tree from
an ancestral organism to its modern descendants. Such models exhibit a rich mathe-
matical structure, which reflects both the combinatorial features of the tree, and the
algebraic way in which stochastic matrices associated to edges of the tree are com-
bined to produce a joint probability distribution describing sequences of the extant
organisms.

One thread in the extensive literature on such models has utilized the viewpoint
of algebraic geometry to understand the probability distributions that may arise.
This is natural, since the distributions are in the image of a polynomial map, and
the image thus lies in an algebraic variety. The defining equations of this variety
(which depend on the tree topology), are called phylogenetic invariants. That a
probability distribution satisfies them can be taken as evidence that it arose from
sequence evolution along the particular tree. Phylogenetic invariants and varieties
have been extensively studied by many authors [13, 26, 17, 21, 20, 3, 34, 8, 12, 30,
11] (see [7] for more references) with goals ranging from biological (improving data
analysis) to statistical (establishing the identifiability of model parameters) to purely
mathematical.

However, it has long been understood that, in addition to the equalities of phylo-
genetic invariants, inequalities should play a role in characterizing those distributions
actually of interest for statistical purposes. Much of a phylogenetic variety is typically
composed of points not arising from stochastic parameters, but rather from apply-
ing the same polynomial parameterization map to complex parameters. Thus the
model space — the set of probability distributions arising as the image of stochastic
parameters on a tree — can be considerably smaller than the set of all probability
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distributions on the variety. An instructive recent computation [37] demonstrated
that for the 2-state general Markov model on the 3-leaf tree, for example, the model
space is only about 8% of the nonnegative real points on the variety. Inequalities can
thus be crucial in determining if a probability distribution arises from a model.

In the pioneering 1987 paper of Cavender and Felsenstein [13] polynomial equal-
ities and inequalities are given that can test which of the 3 possible unrooted leaf-
labeled 4-leaf trees might have produced a given probability distribution, and thus
in principle determine evolutionary relationships between 4 organisms. Nonetheless,
despite many advances in understanding phylogenetic invariants in the intervening
years, little has been accomplished in finding or understanding the necessary inequal-
ities. The potential usefulness of such inequalities, meanwhile, has been demonstrated
in [18], where an inequality that holds for the 2-state model on all tree topologies plays
a key role in studying loss of biodiversity under species extinction. In [9] a small num-
ber of inequalities, dependent on the tree, were used to show that for certain mixture
models trees were identifiable from probability distributions.

Recent independent works by Smith and Zwiernik [37] and by Klaere and Lieb-
scher [23] provided the first substantial progress on the general problem of finding
sufficient inequalities to describe the model space. Both groups successfully formu-
lated inequalities for the 2-state general Markov model on trees, using different view-
points. While the 2-state model has some applicability to DNA sequences, through
a purine/pyrimidine encoding of nucleotides, it is unfortunately not clear how to ex-
tend these works to the more general k-state model, or even to the particular k = 4
model that is directly applicable to DNA. Features of the statistical framework in [37]
make generalizing to more states highly problematic, while the formulation of [23]
involves beating through a thicket of algebraic details which are similarly difficult to
generalize.

In this work we provide a third approach to understanding the model space of the
general Markov model on trees which has the advantage of extending from the 2-state
to the k-state model with little modification. Our goal is a semialgebraic description
(given by a boolean combination of polynomial equalities and inequalities) of the set
of probability distributions that arise on a specific tree. Such a description exists by
the Tarski-Seidenberg Theorem [36, 31], since the stochastic parameter space for any
k-state general Markov model is a semialgebraic set, so its image under the polynomial
parameterization map must be as well. However, we seek an explicit description, and
this theorem does not provide a useful means of obtaining it.

We describe below two methods for obtaining such a semialgebraic model descrip-
tion. In one approach, that applies equally easily to all k and all binary trees, we
obtain inequalities using a recently-formulated analog of Cayley’s 2 × 2 × 2 hyper-
determinant from [1], and the construction of certain quadratic forms from the joint
distribution whose positive (semi-)definiteness encodes information about parameter
values. We note that the appearance of the hyperdeterminant in both [37] and [23]
motivated the work of [1], but that our introduction of quadratic forms in this paper
is an equally essential tool for obtaining our results. Moreover, we do not see direct
precursors of this idea in either [37] or [23].

We also describe an alternative method using Sturm sequences for univariate
polynomials to obtain inequalities. Specifically, we construct polynomials in the en-
tries of a probability distribution whose roots are exactly a subset of the numerical
parameters, and Sturm theory leads to inequalities stating that the roots lie in the
interval (0, 1), as the parameters must. Although for the 2-state model this leads to
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a complete semialgebraic description of the model on a 3-leaf tree, for higher k it be-
comes more unwieldy. Nonetheless, this approach can produce inequalities of smaller
degree than those found using quadratic forms, so we consider it a potentially useful
technique.

In both approaches, we must impose some restrictions on the set of stochastic
parameters in order to give our semialgebraic conditions. We thus formulate a notion
of nonsingular parameters and mostly restrict to considering them for our results. In
the k = 2 case this notion is particularly natural from a statistical point of view,
though it is slightly less so for higher k. Indeed, an understanding of why this notion
is needed algebraically illuminates, we believe, the difficulties of passing from 2-state
results to k-state results.

This paper is organized as follows: In §2 we formally introduce the general Markov
model on trees and set basic notations and terminology, including the notion of non-
singular parameters. In §3, we give a semialgebraic description of the general Markov
model on the 3-leaf tree using the work of [1] and Sylvester’s theorem on quadratic
forms, a description that is made complete for the 2-state model, but holds only for
nonsingular parameters of the k-state model. Additionally, we discuss connections to
several previous works on the 2-state model [29, 37, 23]. In §4, we use Sturm sequences
to give partial semialgebraic descriptions of 3-leaf model spaces, and develop several
examples. In §5, we give the main result: a semialgebraic description of the k-state
general Markov model on n-leaf trees for nonsingular parameters. For the 2-state
model we prove a slightly stronger result that drops the nonsingularity assumption.

2. Definitions and Notations.

2.1. The general Markov model on trees. We review the k-state general
Markov model on trees, GM(k), whose parameters consist of a combinatorial object,
a tree, and a collection of numerical parameters that are associated to a rooted version
of the tree.

Let T = (V,E) be a binary tree with leaves L ⊆ V , |L| = n, and {Xa}a∈V a
collection of discrete random variables associated to the nodes, all with state space
[k] = {1, 2, . . . , k}. Distinguish an internal node r of T to serve as its root, and direct
all edges of T away from r. (Often this model is presented with the root as a node of
valence 2 which is introduced by subdividing some edge. However, under very mild
assumptions this leads to the same probability distributions we consider here [33, 3],
so we avoid that complication.) Though necessary for parameterizing the model, the
choice of r will not matter in our final results, as will be shown in §5.

For a tree T rooted at r, numerical parameters {π, {Me}e∈E} for the GM(k)
model on T are:

(i) A root distribution row vector π = (π1, . . . , πk), with nonnegative entries
summing to 1;

(ii) Markov matrices Me, with nonnegative entries and row sums equal to 1.

The vector π specifies the distribution of the random variable Xr, i.e., πi =
Prob(Xr = i), and the Markov matrices Me, for e = (ae, be) ∈ E, give transition
probabilities Me(i, j) = Prob(Xbe = j | Xae

= i) of the various state changes in
passing from the parent vertex ae to the child vertex be. Letting X = (Xa)a∈V , the
joint probability distribution at all nodes of T is thus

Prob(X = j) = πjr
∏

e∈E

Me(jae
, jbe).
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By marginalizing over all variables at internal nodes of T , we obtain the joint distri-
bution, P , of states at the leaves of T ; if k ∈ [k]|L| is an assignment of states to leaf
variables, then

P (k) =
∑

m∈[k]|V rL|

Prob(X = (k,m))

where (k,m) is an assignment of states to all the vertices of T compatible with k. It
is natural to view P as an n-dimensional k × · · · × k array, or tensor, with one index
for each leaf of the tree.

For fixed T and choice of r, we use ψT to denote the parameterization map

ψT : {π, {Me}e∈E} 7→ P.

That the coordinate functions of ψT are polynomial is obvious, but essential to our
work here. Note that we may naturally extend the domain of the polynomial map to
larger sets, by dropping the nonnegativity assumptions in (i) and (ii), but retaining
the condition that rows must sum to 1. We will consider real parameters and a real
parameterization map, as well as complex parameters and a complex parameterization
map. In contrast, we refer to the original probabilistic model as having stochastic
parameters. Since the parameterization maps are all given by the same formula, we
use ψT to denote them all, but will always indicate the current domain of interest.

The image of complex, real, or stochastic parameters under ψT is an n-dimensional
k×· · ·×k tensor, whose kn entries sum to 1. When parameters are not stochastic, this
tensor generally does not specify a probability distribution, as there can be negative
or complex entries. We refer to any tensor whose entries sum to 1, regardless of
whether the entries are complex, real, or nonnegative, as a distribution, but reserve
the term probability distribution for a nonnegative distribution. With this language,
the image of complex parameters under ψT is a distribution, but may or may not
be a probability distribution. Similarly, while the matrix parameters Me have rows
summing to one even for complex parameters, we reserve the term Markov matrix
exclusively for the stochastic setting.

2.2. Algebraic and semialgebraic model descriptions. Most previous al-
gebraic analysis of the GM(k) model has focused on the algebraic variety associated
to it for each choice of tree T . With this viewpoint one is essentially passing from the
parameterization of the model, as given above, to an implicit description of the image
of the parameterization as a zero set of certain polynomial functions, traditionally
called phylogenetic invariants [13, 26, 7].

Whether one considers stochastic, real, or complex parameters, the collection
of phylogenetic invariants for GM(k) on a tree T are the same. Thus they cannot
distinguish probability distributions that arise from stochastic parameters from those
arising from non-stochastic real or complex ones. To complicate matters further, there
exist distributions that satisfy all phylogenetic invariants for the model on a given tree,
but are not even in the image of complex parameters. Though the algebraic issues
behind this are well understood, they prevent classical algebraic geometry from being
a sufficient tool to focus exclusively on the distributions of statistical interest.

To gain a more detailed understanding, we seek to refine the algebraic description
of the model given by phylogenetic invariants into a semialgebraic description: In
addition to finding polynomials vanishing on the image of the parameterization (or
equivalently polynomial equalities holding at all points on the image), we also seek
polynomial inequalities sufficient to distinguish the stochastic image precisely.
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Recall that a subset of Rn is called a semialgebraic set if it is a boolean combi-
nation of sets each of which is defined by a single polynomial equality or inequality.
The Tarski-Seidenberg Theorem [36, 31] implies that the image of a semialgebraic set
under a polynomial map is also semialgebraic.

Since for all T the stochastic parameter space of ψT is clearly semialgebraic, this
implies that semialgebraic descriptions exist for the images of the ψT . Determining
such descriptions explicitly is our goal.

2.3. Nonsingular parameters, positivity, and independence. Some of our
results will be stated with additional mild conditions placed on the allowed parameters
for the GM(k) model. We state these conditions here, and explore their meaning.

Definition 2.1. A choice {π, {Me}e∈E} of stochastic, real, or complex parame-
ters for GM(k) on a tree T with root r is said to be nonsingular provided

(i) at every (hidden or observed) node a, the marginal distribution va of Xa

has no zero entry, and
(ii) for every edge e, the matrix Me is nonsingular.

Parameters which are not nonsingular are said to be singular.
For stochastic parameters, the first condition in this definition can be replaced

with a simpler one:
(i’) the root distribution π has no zero entry.

Statement (i) follows from (i’) and (ii) inductively, since if all entries of va are positive
and M(a,b) is a nonsingular Markov matrix, then the distribution vb = vaM(a,b) at a
child b of a has positive entries. However, for complex or real parameters requirement
(i) is not implied by (i’) and (ii), as a simple example shows: va = (1/2, 1/2), and

M(a,b) =

(
s 1− s

2− s s− 1

)
are singular parameters since vb = (1, 0), even though va

has no zero entries and M(a,b) is a nonsingular for s 6= 1.

It is also natural to require that all numerical parameters of GM(k) on a tree
T be strictly positive. This means that all states may occur at the root, and every
state change is possible in passing along any edge of the tree. This assumption is
plausible from a modeling point of view, and can be desirable for technical statistical
issues as well. Note that positivity of parameters does not ensure nonsingularity,
since a Markov matrix may be singular despite all its entries being greater than zero.
Similarly, nonsingularity of parameters does not ensure positivity since a nonsingular
Markov matrix may have zero entries.

Given a joint probability distribution of random variables, two subsets of vari-
ables are independent when the marginal distribution for the union of the sets is the
product of the marginal distributions for the two sets individually. We also use this
term, in a nonstandard way, to apply to complex or real distributions when the same
factorization holds.

To illustrate this usage, consider a tree T with two nodes, r, a and one edge (r, a).
For complex parameters π and M(r,a), the joint distribution of Xr and Xa is given
by the matrix

P = diag(π)M(r,a).

Then the variables are independent exactly when P is a rank 1 matrix: P = π
Tva.

For k = 2 this occurs precisely when the parameters are singular. For k > 2, however,
independence implies the parameters are singular, but not vice versa. In general,
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singular parameters ensure that P has rank strictly less than k, but not that P has
rank 1.

These comments easily extend to larger trees to give the following.

Proposition 2.2. Suppose P = ψT (π, {Me}) for a choice of complex GM(k)
parameters on an n-leaf tree T . If the parameters are nonsingular, then there is no
proper partition of the indices of P into independent sets. For k = 2, the converse
also holds.

That the converse is false for k > 2 is a complicating factor for the generalization
of our results from the k = 2 case. Indeed, this is the reason we ultimately restrict to
nonsingular parameters.

In closing this section, we note that for any P ∈ Im(ψT ), there is an inherent and
well-understood source of non-uniqueness of parameters giving rise to P , sometimes
called ‘label-swapping.’ Since internal nodes of T are unobservable variables, the dis-
tribution P is computed by summing over all assignments of states to such variables.
As a result, if the state names were permuted for such a variable, and corresponding
changes made in numerical parameters, P is left unchanged. Thus parameters leading
to P can be determined at most up to such permutations.

In the case of nonsingular parameters, label-swapping is the only source of non-
uniqueness of parameters leading to P [15]. (See also [25, 2]). For singular parameters
there are additional sources of non-uniqueness.

2.4. Marginalizations, slices, group actions, and flattenings. Viewing
probability distributions on n variables as n-dimensional tensors gives natural as-
sociations between statistical notions and tensor operations. For example, summing
tensor entries over an index, or a collection of indices, corresponds to marginalizing
over a variable, or collection of variables. Considering only those entries with a fixed
value of an index, or collection of indices, corresponds (after renormalization) to con-
ditioning on an observed variable, or collection of variables. Rearranging array entries
into a new array, with fewer dimensions but larger size, corresponds to agglomerating
several variables into a composite one with larger state space. Here we introduce the
necessary notation to formalize these tensor operations.

Definition 2.3. For an n-dimensional k× · · · × k tensor P , integer i ∈ [n], and
vector v = (v1, · · · , vk), define the (n− 1)-dimensional tensor P ∗i v by

(P ∗i v)(j1, . . . , ĵi, . . . , jn) =
k∑

ji=1

vjiP (j1, · · · , ji, · · · , jn),

where ˆ denotes omission.
Thus, the ℓth slice of P in the ith index is defined by P···ℓ··· = P ∗i eℓ, where eℓ

is the ℓth standard basis vector, and the ith marginalization of P is P···+··· = P ∗i 1
where 1 is the vector of all 1s.

The above product of a tensor and vector extends naturally to tensors and ma-
trices.

Definition 2.4. For an n-dimensional k × · · · × k tensor P and k × k matrix
M , define the n-dimensional tensor P ∗i M by

(P ∗i M)(j1, . . . , jn) =
k∑

ℓ=1

P (j1, . . . , ji−1, ℓ, ji+1, . . . , jn)M(ℓ, ji).
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If the above operations on a tensor by vectors or matrices are performed in dif-
ferent indices, then they commute. This allows the use of n-tuple notation for the
operation of matrices in all indices of a tensor, such as the following:

P · (M1,M2, . . . ,Mn) = (· · · ((P ∗1 M1) ∗2 M2) · · · ) ∗n Mn.

Although the Mi need not be invertible, restricting to that case gives the natural
(right) group action of GL(k,C)n on k× · · ·× k tensors. This generalizes the familiar
operation on 2-dimensional tensors P , i.e., on matrices, where

P · (M1,M2) = (P ∗1 M1) ∗2 M2 =MT
1 PM2.

If v ∈ Ck, then Diag(v) denotes the 3-dimensional k×k×k diagonal tensor whose
only nonzero entries are the vi in the (i, i, i) positions. That this notion is useful for
the GM(k) model is made clear by the observation that for a 3-leaf star tree T , rooted
at the central node,

ψT (π, {M1,M2,M3}) = Diag(π) · (M1,M2,M3). (2.1)

If P is an n-dimensional k × · · · × k tensor and [n] = A ⊔ B is a disjoint union
of nonempty sets, then the flattening of P with respect to this bipartition, FlatA|B(P )

is the k|A| × k|B| matrix with rows indexed by i ∈ [k]|A| and columns indexed by
j ∈ [k]|B|, with

FlatA|B(P )(i, j) = P (k),

where k ∈ [k]n has entries matching those of i and j, appropriately ordered. Thus
the entries of P are simply rearranged into a matrix, in a manner consistent with the
original tensor structure. When P specifies a joint distribution for n random variables,
this flattening corresponds to treating the variables in A and B as two agglomerate
variables, with state spaces the product of the state spaces of the individual variables.

Notations such as Flat1|23(P ), for example, will be used to denote the matrix
flattening obtained from a 3-dimensional tensor using the partition of indices A = {1},
B = {2, 3}. If e is an edge in an n-leaf tree, then e naturally induces a bipartition
of the leaves, by removing the edge and grouping leaves according to the resulting
connected components. A flattening for such a bipartition is denoted by Flate(P ).

Finally, we note that flattenings naturally occur in the notion of independence:
If [n] = A ⊔ B, then the sets are independent precisely when FlatA|B(P ) is a rank 1
matrix.

3. GM(k) on 3-leaf trees. In this section we derive a semialgebraic description
of GM(k) on the 3-leaf tree, the smallest example of interest. Results for the 3-leaf
tree also serve as a building block for the study of the model on larger trees in §5.
For this section, then, T is fixed, with leaves 1, 2, 3 and root r at the central node.

When k = 2, Cayley’s hyperdeterminant plays a critical role, as has already been
highlighted in [38]. Though our formulation will be different, we take the hyperdeter-
minant as our starting point. For any 2×2×2 tensor A = (aijk), the hyperdeterminant
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∆(A) [14, 19, 16] is

∆(A) =
(
a2111a

2
222 + a2112a

2
221 + a2121a

2
212 + a2122a

2
211

)
− 2

(
a111a112a221a222

+ a111a121a212a222 + a111a122a211a222 + a112a121a212a221 + a112a122a221a211

+ a121a122a212a211
)
+ 4

(
a111a122a212a221 + a112a121a211a222

)
.

The function ∆ has the GL(2,C)3-invariance property

∆(P · (g1, g2, g3)) = det(g1)
2 det(g2)

2 det(g3)
2∆(P ). (3.1)

This fact, combined with a study of canonical forms for GL(2,C)3-orbit representa-
tives, leads to the following theorem.

Theorem 3.1 ([16], Theorem 7.1). A complex 2 × 2 × 2 tensor P is in the
GL(2,C)3-orbit of D = Diag(1, 1) if, and only if, ∆(P ) 6= 0. A real tensor is in the
GL(2,R)3-orbit of D if, and only if, ∆(P ) > 0.

Suppose that k = 2 and P = ψT (π, {M1,M2,M3}) arises from nonsingular pa-
rameters on T . Then, equation (2.1) states P = Diag(π) · (M1,M2,M3), but letting
M ′

1 = diag(π)M1 we also have

P = D · (M ′
1,M2,M3).

Therefore ∆(P ) > 0 by the forward implication of Theorem 3.1. This hyperdetermi-
nantal inequality can thus be included in building a semialgebraic description of the
GM(2) model when restricted to nonsingular parameters.

However, the inequality ∆(P ) > 0 yields a weaker conclusion than that P arises
from stochastic, or even real, nonsingular parameters, so additional inequalities are
needed for a semialgebraic model description.

Nonetheless, motivated by the role the hyperdeterminant plays in the semialge-
braic description of the GM(2) model, in a separate work Allman, Jarvis, Rhodes,
and Sumner [1] construct generalizations of ∆ for k ≥ 2. These functions are defined
by

fi(P ;x) = det(Hx(det(P ∗i x))),

where x is a vector of auxiliary variables, and Hx denotes the Hessian operator. They
also have invariance properties under GL(k,C)3 such as

f3(P · (g1, g2, g3);x) = det(g1)
k det(g2)

k det(g3)
2f3(P ; g3x).

The next theorem establishes that the nonvanishing of these polynomials, in con-
junction with the vanishing of some others, identifies the orbit of Diag(1), and thus
is an analog of Theorem 3.1 for larger k.

Theorem 3.2 ([1]). A complex k× k× k tensor P lies in the GL(k,C)3-orbit of
Diag(1) if, and only if, for some i ∈ {1, 2, 3},

(i) (P ∗i ej) adj(P ∗i x)(P ∗i eℓ) − (P ∗i eℓ) adj(P ∗i x)(P ∗i ej) = 0 for all
j, ℓ ∈ [k]. Here adj denotes the classical adjoint, and equality means as a matrix of
polynomials in x.

(ii) fi(P ;x) is not identically zero as a polynomial in x.
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Moreover, if the enumerated conditions hold for one i, then they hold for all.

When k > 2 the GL(k,C)3-orbit of Diag(1) is not dense among all k×k×k tensors;
rather its closure is a lower dimensional subvariety. This explains the necessity of the
equalities in item (i). In the case k = 2 these equalities simplify to 0 = 0 and thus
hold for all tensors. One can further verify that if k = 2 then fi = ∆, so that Theorem
3.2 includes the first statement of Theorem 3.1.

One might hope that the polynomials fi(P ;x) had a sign property similar to that
given in Theorem 3.1 for ∆(P ), so that a simple test could further distinguish the
image of nonsingular real parameters. For k = 3, using functions related to the fi, a
semialgebraic description of the GL(k,R)3-orbit of Diag(1) can in fact be obtained in
this manner (see [1]), giving a complete analog of Theorem 3.1. However, for k > 3
no analog is known.

Finally, we emphasize that for k > 2 the functions fi are not the ones usually
referred to as hyperdeterminants [19], but rather a different generalization of ∆.

With semialgebraic conditions ensuring a tensor is in the GL(k,C)3 orbit of
Diag(1) in hand, we wish to supplement these to ensure it arises from nonsingular
stochastic parameters. We address this in several steps; first, we give requirements
that a tensor is the image of complex parameters under ψT , and then that these
parameters be nonnegative.

Proposition 3.3. Let P be a complex k × k × k distribution. Then P is in the
image of nonsingular complex parameters for GM(k) on the 3-leaf tree if, and only if,
P is in the GL(k,C)3-orbit of Diag(1) and det(P ∗i 1) 6= 0 for i = 1, 2, 3. Moreover,
the parameters are unique up to label swapping.

Proof. To establish the claimed reverse implication, suppose P = Diag(1) ·
(g1, g2, g3) for some gi ∈ GL(k,C), and let ri = gi1 denote the vector of row sums of
gi. A computation shows that

P ∗3 1 = gT1 diag(r3)g2.

Thus det(P ∗3 1) 6= 0 is equivalent to the row sums of g3 being nonzero, and similarly
for the other gi.

Now Mi = diag(ri)
−1
gi is a complex matrix with row sums equal to one. Letting

π = (
∏3

i=1 r
i
1, . . . ,

∏3
i=1 r

i
k) be the vector of entry-wise products of the ri, the entries

of π are nonzero and

P = Diag(π) · (M1,M2,M3).

Since P is a distribution,

1 = ((P ∗1 1) ∗2 1) ∗3 1

= (((Diag(π) · (M1,M2,M3)) ∗1 1) ∗2 1) ∗3 1

= ((Diag(π) ∗1 M11) ∗2 M21) ∗3 M31

= ((Diag(π) ∗1 1) ∗2 1) ∗3 1

= π · 1,

so π is a valid complex root distribution. Thus, P is in the image of ψT for complex,
nonsingular parameters.

The forward implication in the theorem is straightforward.
The uniqueness of nonsingular parameters up to permutation of states at the

internal node of the tree was discussed at the end of subsection 2.3.
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Combining this Proposition with Theorems 3.1 and 3.2 we obtain the following.

Corollary 3.4. A k × k × k complex distribution P is the image of complex,
nonsingular parameters for GM(k) on the 3-leaf tree if, and only if, it satisfies the
semialgebraic conditions (i) and (ii) of Theorem 3.2 and

(iii) for i = 1, 2, 3, det(P ∗i 1) 6= 0.

For k = 2, P is the image of real nonsingular parameters for GM(2) on the 3-leaf
tree if, and only if, it satisfies ∆(P ) > 0 and the semialgebraic conditions (iii).

Next we characterize the image of nonsingular stochastic parameters, and finally
of strictly positive nonsingular parameters. The key to this step is the construction
of certain quadratic forms whose positive semi-definiteness (respectively definiteness)
encodes nonnegativity (respectively positivity) of some of the numerical parameters.
Sylvester’s Theorem [35], which we state for reference here, then gives a semialgebraic
version of these conditions.

Recall that a principal minor of a matrix is the determinant of a submatrix chosen
with the same row and column indices, and that a leading principal minor is one of
these where the chosen indices are {1, 2, 3, . . . , k} for any k.

Theorem 3.5 (Sylvester’s Theorem). Let A be an n× n real symmetric matrix
and Q(x) = xTAx the associated quadratic form on Rn. Then

1. Q is positive semidefinite if, and only if, all principal minors of A are non-
negative, and

2. Q is positive definite if, and only if, all leading principal minors of A are
strictly positive.

We use Sylvester’s Theorem to establish the following theorem.

Theorem 3.6. A k × k × k tensor P is the image of nonsingular stochastic
parameters for the GM(k) model on the 3-leaf tree if, and only if, its entries are
nonnegative and sum to 1, conditions (i), (ii), and (iii) of Theorem 3.2 and Corollary
3.4 are satisfied, and

(iv) all leading principal minors of

det(P··+)P
T
+·· adj(P··+)P·+·, (3.2)

are positive, and all principal minors of the following matrices are nonnegative:

det(P··+)P
T
i·· adj(P··+)P·+·, for i = 1, . . . , k, (3.3)

det(P··+)P
T
+··adj(P··+)P·i·, for i = 1, . . . , k,

det(P+··)P·+·adj(P+··)P
T
··i, for i = 1, . . . , k.

Moreover, P is the image of nonsingular positive parameters if, and only if, its
entries are positive and sum to 1, conditions (i), (ii), and (iii) are satisfied and

(iv’) all leading principal minors of the matrices in (3.2) and (3.3) are positive.

In both of these cases, the nonsingular parameters are unique up to label swap-
ping.

Proof. Let P be an arbitrary nonnegative k×k×k tensor whose entries sum to 1.
By Corollary 3.4, the first 3 conditions are equivalent to P = ψT (π, {M1,M2,M3})
for complex nonsingular parameters. We need to show the addition of assumption
(iv) is equivalent to parameters being nonnegative.



Semialgebraic description of the GM model on phylogenetic trees 11

Note that

P··+ = P ∗3 1 =MT
1 diag(π)M2,

P·+· = P ∗2 1 =MT
1 diag(π)M3,

P+·· = P ∗1 1 =MT
2 diag(π)M3.

Since P··+ is nonsingular, we find

PT
+··P

−1
··+P·+· =MT

3 diag(π)M3 (3.4)

is symmetric, and the matrix of a positive definite quadratic form if, and only if the
entries of π are positive. Equivalently, by Sylvester’s theorem, all leading principal
minors of this matrix must be positive.

Similarly, using slices one has

PT
i··P

−1
··+P·+· =MT

3 diag(π)Λ1,iM3

where Λ1,i = diag(M1ei) is the diagonal matrix with entries from the ith column of
M1. Thus its principal minors being nonnegative is equivalent (since we already have
that the entries of π are positive) by Sylvester’s Theorem to the entries in the ith
column of M1 being nonnegative. The product PT

+··P
−1
··+P·i· similarly can be used for

a condition that the ith column of M2 be nonnegative, and the product P·+·P
−1
+··P

T
··i

for the columns of M3.
Multiplying all these matrices by the square of an appropriate nonzero determi-

nant clears denominators and preserves signs, yielding (3.2) and (3.3).
For the second statement, that the matrices in (3.2) and (3.3) have positive leading

principal minors is equivalent, by Sylvester’s Theorem, to the positive definiteness of
the quadratic forms, which in turn is equivalent to the positiveness of parameters.
Since these parameters are nonsingular, the only source of non-uniqueness is label
swapping.

Remark. Matrix products such as that of equation (3.4) appeared in [3], where
their symmetry was used to produce phylogenetic invariants, but their usefulness for
stating nonnegativity of parameters was overlooked.

Remark. The j × j minors of the matrices in (3.2) and (3.3) are polynomials
in the entries of P of degree j(2k + 1), with j = 1, . . . , k. However, as the leading
determinant in those products is real and nonzero, one can remove an even power of
it without affecting the sign of the minors. Thus the polynomial inequality of degree
j(2k+ 1) can be replaced by one of lower degree, j(k + 1)+ ejk, where ej = 0 or 1 is
the parity of j.

In the case of the 2-state model, the above result can be made more complete,
by also explicitly describing the image of singular parameters. While semialgebraic
characterizations of probability distributions for both nonsingular and singular pa-
rameters on the 3-leaf tree have been given previously by [32], [10], [23], and [37], we
provide another since our approach is novel.

Theorem 3.7. A tensor P is in the image of the stochastic parameterization map
ψT for the GM(2) model on the 3-leaf tree if, and only if, its entries are nonnegative
and sum to 1, and one of the following occur:

1. ∆(P ) > 0, det(P ∗i 1) 6= 0 for i = 1, 2, 3, all leading principal minors of

det(P··+)P
T
+·· adj(P··+)P·+·
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are positive, and all principal minors of the following six matrices are nonnegative:

det(P··+)P
T
i·· adj(P··+)P·+·, for i = 1, 2,

det(P··+)P
T
+·· adj(P··+)P·i·, for i = 1, 2,

det(P+··)P·+· adj(P+··)P
T
··i, for i = 1, 2.

In this case, P is the image of unique (up to label swapping) nonsingular parameters.
2. ∆(P ) = 0, and all 2 × 2 minors of at least one of the matrices Flat1|23(P ),

Flat2|13(P ), Flat3|12(P ) are zero. In this case, P arises from singular parameters. If
P has all positive entries, then it is the image of infinitely many singular stochastic
parameter choices.

Proof. Using Theorem 3.6, and the observations made for k = 2 immediately
following the statement of Theorem 3.2, case 1 is already established under the weaker
condition that ∆(P ) 6= 0. However, since the parameters are nonsingular and real
when ∆(P ) 6= 0 and the conditions of case 1 are satisfied, by Theorem 3.1 we may
assume equivalently that ∆(P ) > 0.

To establish case 2, first assume P = ψT (π, {M1,M2,M3}) is the image of singular
stochastic parameters. Then certainly P has nonnegative entries summing to 1, and
by equations (2.1) and (3.1), ∆(P ) = 0. Since

Flat1|23(P ) =MT
1 diag(π)M,

where M is the 2× 4 matrix obtained by taking the tensor product of corresponding
rows of M2 and M3, this flattening has rank 1, if π has a zero entry or M1 has rank
1. Similar products for the other flattenings show that singular parameters imply at
least one of the flattenings Flat1|23(P ),Flat2|13(P ),Flat3|12(P ) has rank 1, and hence
its 2× 2 minors vanish.

Conversely, suppose ∆(P ) = 0 and at least one of the flattenings has vanishing
2 × 2 minors, and hence rank 1. Then by the classification of orbits given in [16,
Table 7.1], P is in the GL(2,R)3-orbit of one of the following four tensors: the tensor
Diag(1, 0) (in which case all three flattenings have rank 1) or one of the 3 tensors with
parallel slices I and the zero matrix (in which case exactly one of the flattenings has
rank 1).

If P = Diag(1, 0) · (g1, g2, g3), then P (i, j, k) = g1(1, i)g2(1, j)g3(1, k). Since the
entries of P are nonnegative and sum to 1, one sees the top rows of each gi can
be chosen to be nonnegative, summing to 1. The bottom row of each gi can also
be replaced with any nonnegative row summing to 1 that is independent of the top
row. Taking π = (1, 0), this gives us infinitely many choices of singular stochastic
parameters giving rise to P . Alternatively, one could choose each Markov matrix
to have two identical rows, and any π with nonzero entries to obtain other singular
stochastic parameters leading to P .

For the remaining cases assume, without loss of generality, that P = E ·(g1, g2, g3),
where E··1 = (1/2) I, and E··2 is the zero matrix. Then P··1 = g3(1, 1)(g

T
1 g2) and

P··2 = g3(1, 2)(g
T
1 g2). Since the entries of P are nonnegative and add to 1, we may

assume that the top row of g3 is also nonnegative and adds to 1. Choose M3 to
have two identical rows matching the top row of g3. Now P··+ = gT1 g2 is a rank-2
nonnegative matrix with entries adding to 1. Such a matrix can be written in the form
P··+ = MT

1 diag(π)M2 with, for instance M1 = I, π = P·++, M2 = diag(π)−1P··+.
Then one has P = ψT (π, {M1,M2,M3}). If P has positive entries one may also choose
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M1 sufficiently close to I so thatM1, π = (MT
1 )−1P·++, M2 = diag(π)−1(MT

1 )
−1
P··+

all have nonnegative entries, thus obtaining infinitely many singular parameter choices
leading to P . (The example of P = E shows that with only nonnegative entries there
may be only finitely many singular parameter choices leading to P .)

Remark. The analysis of the singular parameter case in this proof, by appealing
without explanation to [16, Table 7.1], has not made explicit the importance of the
notion of tensor rank. Indeed, that concept is central to both [16] and [1] and thus
plays a crucial behind-the-scenes role in this work as well. The first singular case, a
tensor in the orbit of Diag(1, 0), is of tensor rank 1, while the second, a tensor in the
orbit of E, is of tensor rank 2 yet multlilinear rank (2, 2, 1). The nonsingular case is
those of tensor rank 2 and multlinear rank (2, 2, 2).

Remark. In case 1 of the theorem, the polynomial inequalities are of degree 4
and 2 (from ∆ and the determinants) and degree 5 and 10 (from the minors), but
the degree 10 ones can be lowered to degree 6 by removing a factor of a determinant
squared. The polynomial equalities appearing in case 2 have degree 4 and 2, with
the quadratics simply expressing that one of the leaf variables is independent of the
others.

Minor modifications to the argument give the extension to positive parameters
below.

Theorem 3.8. A tensor P is in the image of the positive stochastic parame-
terization map for the GM(2) model on the 3-leaf tree if, and only if, its entries are
positive and sum to 1, and the conditions of Theorem 3.7 are met with the following
modification to case 1: all leading principal minors of the matrices are positive.

Proof. Case 1 is proved by combining the arguments for Theorems 3.6 and 3.7.
For case 2, if P is in the orbit of Diag(1, 0) the argument of Theorem 3.7 still

applies, replacing ‘nonnegative’ with ‘positive’, and using the second construction of
singular parameters. If P is in the orbit of E we simply replace ‘nonnegative’ with
‘positive’ in the argument.

As mentioned above, semialgebraic descriptions of the binary general Markov
model on trees have been given previously, but in ways where generalizations to k-
state models were not apparent. Although we have considered only the 3-leaf tree
(with larger trees to be discussed in §5) thus far, we pause here to discuss some
connections to the recent works of Zwiernik and Smith [37] and Klaere and Liebscher
[23] on semialgebraic descriptions of the binary model on trees, as well as the older
work of Pearl and Tarsi [29].

Though using different approaches (and in the case of [29] with different goals),
all three of these works emphasize statistical interpretations of various quantities
computed from a probability distribution P (e.g., covariances, conditional covariances,
moments, tree cumulants). While analogs of some of the same quantities appear in
our generalization to k-state models, we have used algebra, rather than statistics, to
guide our derivation. Although an inequality such as det(P ∗i 1) 6= 0 which appears
in our description can be given a simple statistical interpretation when k = 2 (that
two leaf variables are not independent), for larger k its meaning is more subtle, as it
is tied to our notion of nonsingular parameters. Thus our generalization to k-state
models uses a more detailed development than the simple generalization of statistical
concepts from k = 2 to larger k.

The role played by the hyperdeterminant ∆ in giving a semialgebraic model de-
scription for k = 2 was first made clear in [37]. Its role was essentially independently
discovered in [23, Theorem 6], though without recognition that it is a classical al-
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gebraic object. Indeed, both works recognize ∆ as an expression in the 2-variable
and 3-variable covariances (i.e., central moments). This is a fascinating intertwining
of algebra and statistics, yet we did not find it helpful in understanding the correct
analog of ∆ for higher k; rather, [1] develops the analog fi used here through algebraic
motivation entirely. It would nonetheless be interesting to understand whether fi can
be described in more statistical language.

The explicit semialgebraic model descriptions for the 2-state model given in both
[37] and [23] take on quite different forms than ours. This is not a surprise as such a
description is far from unique, and different reasoning may produce different inequali-
ties. The version in [37], for example, is stated in a different coordinate system, using
tree cumulants rather than the entries of P . We find all these descriptions valuable, as
what should be considered the simplest, or most natural, description is not obvious.

The focus of [29] is on recovery of parameters for GM(2) on the 3-leaf tree from
a probability distribution assumed to have arisen from stochastic parameters, in an
approach based on earlier work in latent structure analysis [27]. In addressing this
question, however, semialgebraic conditions on the distribution are obtained. For
instance, the non-vanishing of denominators is needed for formulas to make sense,
and thus certain polynomials must be nonzero. (The authors seem to assume nonsin-
gularity of parameters, though that is never clarified in the paper.) While ∆ never
arises in [29], it is remarkable to note, then, that using the results of Theorem 3.1 and
making explicit the tacit assumptions that various rational expressions exist and are
real, the conditions given in Theorem 1 of [29] are sufficient to show ∆(P ) > 0, and
thus P is in the image of stochastic nonsingular parameters. Thus one can extract a
semialgebraic model description from this work, even if that was not its goal.

4. Inequalities for 3-leaf trees via Sturm theory. The semialgebraic model
descriptions given in the previous section have the advantage of being easily describ-
able in a uniform way for all k. However, semialgebraic descriptions are not unique,
and there is no clear notion of what description should be considered simplest. It is
also of interest, therefore, to obtain alternative polynomial inequalities, possibly of
lower degree, that must also be satisfied by probability distributions in the model, in
the hopes that they lead to another, perhaps better, semialgebraic model description,
or that they might be of further use for testing whether a distribution arises from the
model. We explore another approach to doing so here.

4.1. Review of Sturm Theory. Sturm theory can be used to impose conditions
that roots of a univariate polynomial lie in a certain interval. We briefly recall basic
definitions and results. Suppose that f(x) ∈ R[x] is a non-constant polynomial of
degree m, with no multiple roots, and we wish to count the roots of f in an interval
(a, b) where f(a)f(b) 6= 0. Then a Sturm sequence S for f on the interval [a, b] is a
sequence f = f0, f1, . . . , fm of polynomials satisfying certain sign relationships at the
zeros of the fj in the interval [a, b]. We give an example below, but for specifics, see,
for instance, [22]. For any c ∈ [a, b] which is not a root of any fi, the sign variation
VS(c) is the number of sign changes in the sequence f(c), f1(c), . . . , fm(c).

Theorem 4.1 (Sturm’s Theorem). Let f(x) ∈ R[x] be a non-constant polynomial
and S a Sturm sequence for f on [a, b]. Then the number of distinct roots of f(x) in
(a, b) is equal to VS(a)− VS(b).

Though other constructions of Sturm sequences exist, we use the standard se-
quence, derived using a modified Euclidean algorithm. If f = f0 is a polynomial of
degree m > 0, then set f1 = f ′, and for j = 2, . . . ,m, take fj to be the opposite of
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the remainder of division of fj−2 by fj−1. This yields a Sturm sequence for f on any
interval [a, b] with fj(a) 6= 0, fj(b) 6= 0.

To illustrate, suppose that f(x) = x2 + c1x + c0 ∈ R[x]. Then the standard

sequence is f, 2x + c1,
c2
1

4 − c0. For the particular choice of coefficients c1 = − 3
4

and c0 = 1
8 , using this sequence on [0, 1], we calculate that f0(0), f1(0), f2(0) is the

sequence 1
8 ,−

3
4 ,

1
64 , and f0(1), f1(1), f2(1) =

3
8 ,

5
4 ,

1
64 . Thus, VS(0) = 2, VS(1) = 0, so

f has VS(0)−VS(1) = 2 roots in (0, 1). Indeed, the factorization f(x) =
(
x− 1

2

)(
x− 1

4

)

shows this directly.
Two comments are in order: First, in this example observe that f2(x) is one-

fourth the discriminant of f(x), and its positivity ensures that a monic quadratic has
distinct and real roots. This shows that Sturm theory can produce familiar algebraic
expressions, such as the quadratic discriminant, and thus gives a tool for generalizing
them. The second observation we state more formally, as it is needed in our arguments
below.

Corollary 4.2. If f(x) is of degree m with neither 0 nor 1 a root, and S is a
Sturm sequence for f on [0, 1], then f has m distinct roots in this interval precisely
when VS(0) = m and VS(1) = 0.

This corollary allows us to obtain inequalities ensuring a polynomial has distinct
roots in [0, 1]: One simply requires that the fi(0) alternate in being > 0 or < 0, while
the fi(1) either be all > 0 or all < 0. We informally refer to inequalities obtained in
this manner as Sturm sequence inequalities.

4.2. Eigenvalues and Sturm Sequences. We now give a second construction
of inequalities that, if satisfied, ensure that GM(k) model parameters on a 3-leaf tree
are stochastic. While in §3 we constructed matrices encoding positivity of parame-
ters through requirements on associated quadratic forms, here we instead construct
matrices whose eigenvalues encode parameters.

Suppose that P = ψT (π, {M1,M2,M3}) for complex nonsingular {π,M1M2,M3}.
Recall that for i ∈ [k],

Pi·· = P ∗1 ei =MT
2 diag(π)Λ1,iM3,

P+·· = P ∗1 1 =MT
2 diag(π)M3

where Λ1,i = diag(M1ei) is the diagonal matrix with entries from the ith column of
M1. Thus, by nonsingularity of the parameters,

A1,i := P−1
+··Pi·· =M−1

3 Λ1,iM3

has as eigenvalues the entries of the ith column of M1. (This construction underlies
the proof of parameter identifiability for the GM(k) model on trees [15], and the
construction of phylogenetic invariants in [3], including the equality in condition (i)
of Theorem 3.2 of this paper.) Similarly we define the matrices

A2,i := P−1
·+·P·i· =M−1

3 Λ2,iM3,

A3,i := P−1
··+P··i =M−1

2 Λ3,iM2

with Λj,i = diag(Mjei) the diagonal matrix with entries from the ith column of the
matrix Mj .

Proposition 4.3. Let P = ψT (π, {M1,M2,M3}) be a real k × k × k tensor
that is the image of complex nonsingular parameters. For each of the matrices Aj,i,
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j ∈ {1, 2, 3}, i ∈ [k], assume the characteristic polynomial has neither 0 nor 1 as a
root, and let Sj,i denote the standard Sturm sequence for it. Then VSj,i

(0) = k and
VSj,i

(1) = 0 for all i, j if, and only if, the matrices M1, M2, M3 are positive Markov
matrices with no repeated element in any column and π is real.

Proof. The statement about the Mi follows from Corollary 4.2. Then, since the
Mi are real and invertible

π = ((P · (M−1
1 ,M−1

2 ,M−1
3 )) ∗1 1) ∗2 1

shows π is real.

Each matrixAj,i has entries that are rational in the entries of P , with denominator
det(P ∗j 1) of degree k and numerator of degree k. The characteristic polynomial f
of Aj,i thus also has coefficients that are rational functions in P , and in fact the non-
leading coefficients ci of f are rational of degree k over k. This can be seen explicitly,
for example when j = 1, in the following:

f(x) = det(xI − P−1
+··Pi··)

= det(xP−1
+··P+·· − P−1

+··Pi··)

= det
(
P−1
+·· (xP+·· − Pi··)

)

=
det

(
xP+·· − Pi··

)

det(P+··)
. (4.1)

It follows that the Sturm sequence inequalities, which are constructed from the
coefficients ci, are rational in the entries of P as well. Indeed, by multiplying each of
these inequalities by a sufficiently high even power of det(P ∗j 1) to avoid changing
signs, these expressions become polynomial in P . Thus, one can phrase the conditions
VSj,i

(0) = k and VSj,i
(1) = 0 as a collection of polynomial inequalities. Finally, note

that since f is a monic characteristic polynomial, then (−1)kf0(0) = det(Aj,i) > 0
and fk(0) = fk(1), so the signs of all fj(0) and fj(1) are determined. This leads to
the following:

Corollary 4.4. Consider real k × k × k tensors P = ψT (π, {M1,M2,M3})
arising from complex nonsingular parameters. Then one can give a finite collection
of strict polynomial inequalities that hold precisely when the Mi are positive Markov
matrices with no repeated column entries, and π is real.

Remark. For simplicity, we have restricted our discussion to polynomials with no
multiple roots, leading to the constraints on the matrix column entries given above.
However, this restriction can be removed, by considering Sturm sequences for poly-
nomials with repeated roots. We suggest [24, 28] for futher information.

Note that the non-strict versions of the inequalities of Corollary 4.4 must continue
to hold on the closure of the image of parameters described in the corollary. As
this closure includes the image of Markov matrices which may have repeated column
entries, or entries of 0 or 1, or are singular, the non-strict inequalities hold for all
stochastic parameters.

However, some distributions arising from non-stochastic parameters may satisfy
the non-strict inequalities as well. Thus while we have obtained semialgebraic state-
ments guaranteeing stochasticity of nonsingular parameters of a particular form, this
does not seem to lead to a complete semialgebraic description of the image of all
stochastic parameters for arbitrary k. In the case k = 2, however, we can do better,
as we show next.
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4.3. Sturm sequences for GM(2). In the specific case of the 2-state model,
we explicitly give the inequalities of Corollary 4.4. To this end, suppose that P =
ψT (π, {M1,M2,M3}) is a 2× 2× 2 probability distribution arising from nonsingular
parameters.

For any j ∈ {1, 2, 3}, i ∈ [2], let A = Aj,i. The standard Sturm sequence of the
characteristic polynomial of A is

f0 = t2 − tr(A)t+ det(A),

f1 = 2t− tr(A),

f2 =
1

4
(tr(A)

2
− 4 det(A)) =

1

4
δ(f0),

where δ(f) denotes the discriminant of the monic quadratic polynomial f .
Since k = 2, the nonsingularity of the Mi together with the fact that their rows

sum to 1 implies that none of their columns have repeated entries. Thus the char-
acteristic polynomial f0 must have distinct roots. To ensure that these roots are in
(0, 1), so that the matrix parameters are Markov, the variation in signs of the Sturm
sequence must be:

f0(0) = det(A) > 0, f0(1) = 1− tr(A) + det(A) > 0,

f1(0) = −tr(A) < 0, f1(1) = 2− tr(A) > 0, (4.2)

f2(0) =
1

4
δ(f) > 0, f2(1) =

1

4
δ(f) > 0.

Each of these inequalities can be expressed using rational expressions in the entries
of P . For instance, for j = 1, i = 1, the first two inequalities ensuring that the first
column of M1 has distinct entries between 0 and 1 are

f0(0) = det(A) =
det(P1··)

det(P+··)
> 0, (4.3)

and

f1(0) = −tr(A) =
−2 det(P1··) + p112p221 − p211p122 − p111p222 + p212p121

det(P+··)
< 0.

After multiplying each of the inequalities of (4.2) by det(P+··)
2 to clear denominators,

we obtain five distinct polynomial inequalities of degree 4 in the entries of P , as well
as one degree-2 inequality

det(P+··) 6= 0.

Note too that f2(0) = f2(1) is a positive multiple of the discriminant of f0, and its
positivity guarantees (again) that the roots of f0 are distinct and real.

The inequality (4.3) has a direct statistical interpretation: Assuming the states
of the variables Xi are encoded with numerical values s and s+ 1, then det(P+··) =
Cov(X2, X3) and det(P1··) is a positive multiple of Cov(X2, X3 | X1 = 1). Thus the
inequality states that the sign of the association of X2 and X3 is the same whether
we have information about X1 or not. Viewing the 3-leaf tree as a graphical model
for nonsingular parameters, this should be expected, but that it arises cleanly from
Sturm theory is a pleasant surprise.
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Of additional interest is the observation that f2 can be expressed in terms of the
hyperdeterminant ∆(P ):

f2 =
δ(f)

4
=

∆(P )

4 det(P+··)2
.

Since ∆(P ) 6= 0 implies det(P+··) 6= 0, we find

f2 > 0 if, and only if, ∆(P ) > 0. (4.4)

In particular, using Theorem 3.1, we see the Sturm inequality involving f2 implies
that P arises from nonsingular real parameters, and thus an additional assumption
of that fact is not needed to supplement the Sturm inequalities.

We further note that the inequalities (4.2) for various Aj,i are not independent
of one another. Since Aj,1 +Aj,2 = I, it follows that the two matrices Aj,1, Aj,2 give
rise to the same inequalities.

The inequalities (4.2), unfortunately, are not sufficient to ensure the root distri-
bution π is also positive. For instance,

P =

[
0.65439 0.07191 0.16361 0.01809
0.07191 0.00079 0.01809 0.00121

]

is a probability distribution that satisfies ∆(P ) > 0 and the Sturm inequalities for
each Aj,i, but the root distribution π = (1.01,−0.01) is not stochastic.

Nonetheless, in the 2-state case we can construct another inequality in P that en-
sures the root distribution is positive. If P ∈ Im(ψT ) for nonsingular real parameters,
then

det(P+··) det(P·+·) det(P··+)

∆(P )
= π1π2.

This is easily verified using transformation properties of the determinants and ∆ under
the action of (M1,M2,M3) on Diag(π). (See [6, p. 136] for an earlier derivation and
application of this equation.) Since π1 + π2 = 1, the positivity of the πi is equivalent
to

0 <
det(P+··) det(P·+·) det(P··+)

∆(P )
<

1

4
.

Moreover, because ∆(P ) > 0, this in turn is equivalent to the inequalities

0 < det(P+··) det(P·+·) det(P··+) <
1

4
∆(P ). (4.5)

Although the second inequality here is not homogeneous, it can be made homogeneous
of degree 6 by multiplication of the right side by 1 = (

∑2
i,j,k=1 Pijk)

2.
Putting this all together, we have an alternative semialgebraic test, to be con-

trasted with case 1 of Theorem 3.8, for testing that π is stochastic.
Proposition 4.5. The image of the positive nonsingular parameterization map

for GM(2) on a 3-leaf tree can be characterized as the probability distributions satis-
fying an explicit collection of strict polynomial inequalities: 3 of degree 2, 13 of degree
4, and 2 of degree 6.
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Proof. By the above discussion, the degree-2 inequalities det(P ∗i 1) 6= 0 and the
5 degree-4 inequalities arising from (4.2) for each of the 3 choices of j suffice to ensure
that nonsingular parameters exist, with Markov matrices having positive entries. Only
13 of these degree-4 inequalities are distinct, as each j leads to ∆(P ) > 0. Then the
degree-6 inequalities of (4.5) ensure π has positive entries.

Note that case 1 of Theorem 3.8 gave a description using 3 degree-2, 1 degree-4,
4 degree-5, and 4 degree-6 polynomials. The description arising from Sturm theory
thus uses fewer degree-5 and 6 polynomials, but more degree-4 ones.

4.4. Sturm sequences for GM(3). We now give several examples of Sturm
sequence inequalities for GM(3) on the 3-taxon tree.

If A is a 3 × 3 matrix with positive determinant and characteristic polynomial
f(x) = x3 + c2x

2 + c1x+ c0 without roots at 0 or 1, then A has 3 distinct eigenvalues
in the interval (0,1) if, and only if,

f0(0) = c0 < 0, f0(1) = 1 + c2 + c1 + c0 > 0,

f1(0) = c1 > 0, f1(1) = 3 + 2c2 + c1 > 0,

f2(0) = −c0 +
1

9
c1c2 < 0, f2(1) = −

2

3
c1 +

2

9
c22 − c0 +

1

9
c1c2 > 0, (4.6)

f3(0) =
9

4

δ(f)

(3c1 − c22)
2 > 0, f3(1) =

9

4

δ(f)

(3c1 − c22)
2 > 0,

where δ(f) denotes the discriminant of f . Here, of course, c0 = − det(A), c2 = −tr(A)
and c1 is quadratic in the entries of A. However, by (4.1), if A = Aj,i then each ci is
rational in the entries of P , with numerator of degree 3 and denominator det(P ∗j 1).

By multiplying the top 6 inequalities of (4.6) by det(P ∗j 1)2, we obtain six
polynomial inequalities of degree 6 in P . In the case that A = A1,1 = P−1

+··P1··, for
example, the first inequality is

0 < − det(P+··)
2f0(0) = det(P+··) det(P1··).

By (4.1) we know that det(P+··)
2c1 and det(P+··)

2c2 are polynomials of the form
det(P+··)K, where K is homogeneous of degree 3 in the entries of P . Computations
with Maple show K has 42 monomial summands for c1, and 114 monomial summands
for c2.

The inequality of the bottom row of (4.6) can be simplified to δ(f) > 0, which is
of degree 4 in the ci. Thus, det(P+··)

4δ(f) > 0 is a polynomial inequality of degree
12 in P . We omit writing these Sturm inequalities explicitly.

Instead, we illustrate a more direct application of the relevent Sturm theory, in
which the semialgebraic description of the model is present only implicitly. Consider
the probability distribution with exact rational entries given by

P =
[

0.1500 0.0130 0.1053̄ 0.0130 0.0050 0.0153̄ 0.1053̄ 0.0153̄ 0.0776̄

0.0130 0.0050 0.0153̄ 0.0050 0.0090 0.0093̄ 0.0153̄ 0.0093̄ 0.0186̄

0.1053̄ 0.0153̄ 0.0776̄ 0.0153̄ 0.0093̄ 0.0186̄ 0.0776̄ 0.0186̄ 0.0620

]
. (4.7)

One can check that P satisfies the conditions of Theorem 3.2, so P is in the image
of nonsingular complex parameters. Then the values of the Sturm sequence at x = 0
and x = 1 for the characteristic polynomial of A1,1 are approximately as in Table 4.1.
Thus the sign variations are VS(0) = 2 and VS(1) = 1, so the first column of M1 has
exactly 1 distinct real entry. This then implies that either M1 is not real, or that its
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first column contains the same entry in all rows. Since the second possibility implies
that a 3 × 3 Markov matrix is singular, we can conclude that P does not arise from
stochastic parameters.

f0(x) f1(x) f2(x) f3(x)

x = 0 −0.1087 0.7225 −0.0117 −0.0283
x = 1 0.1138 0.7225 0.0067 −0.0283

Table 4.1
Sturm sequence values for the characteristics polynomial of A1,1 for the tensor P of (4.7)

This example did not actually require the full strength of Sturm’s theorem; it
is sufficient to note that the discriminant of the cubic characteristic polynomial is
negative to conclude that the first column of M1 has two complex entries, and one
real one. This is special to the small size of the state space, however. For the case of
most interest in phylogenetics, k = 4, the sign of the quartic discriminant alone does
not carry enough information to determine whether all roots of a polynomial are real.
Moreover, even for k = 3, the Sturm sequence is needed to ensure roots are between
0 and 1.

One might optimistically hope that some k = 3 analog of the hyperdeterminant,
such as those in [1], might arise easily from Sturm theory, as the hyperdeterminant
itself did in the case k = 2. Unfortunately this does not appear to be the case, at
least by the most straightforward considerations.

In closing, we note that for k ≥ 3 we have not given in this section any condition
to ensure that π has positive entries. For k = 2 we did do so, using the transformation
formula for ∆(P ), but this idea does not seem to generalize. The only way we know to
obtain a semialgebraic condition ensuring this is through the quadratic form approach
used in §3.

5. GM(k) on n-leaf trees. We now extend the results of the previous sections
to n-leaf trees, for n > 3. To vary the choice of the root node of the tree in our
arguments, we need the following. Similar lemmas are given in [33, Theorem 2] and
[3, Proposition 1].

Lemma 5.1. Suppose stochastic parameters are given for the GM(k) model on
a tree T with the root located at a specific node of T . Then there are stochastic
parameters for T rooted at any other node of T , or at a node of valence 2 introduced
along an edge of T , which lead to the same distribution. Moreover, if the original
parameters were nonsingular and/or positive, then so are the new ones.

Proof. It is enough to show this on a tree with a single edge, as one may then
successively apply that result along the edges in a path in a larger tree.

We show first that the root may be moved from one vertex of an edge to the
other. For this it is sufficient to show that given any probability distribution π and
Markov matrix M , there exists a probability distribution π̃ and Markov matrix M̃
with diag(π)M = P = M̃T diag(π̃). This is straightforward if the column sums of P
are nonzero. If a column sum of P is zero, and hence all entries in the column are
zero, then the corresponding entry of π̃ must be zero while that row of M̃ can be
arbitrary. If the original parameters were nonsingular or positive, then showing that
the new ones are as well is straightforward.

If instead we wish to move the root from vertex a on edge (a, b) to a new internal
node r introduced to subdivide the edge, first introduce r and let M(a,r) = M(a,b)
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and M(r,b) = I. Then move the root from a to r as above. For the case of positive
parameters, instead pick M(r,b) to have positive entries but be near enough to I that

M(a,r) =M(a,b)M
−1
(r,b) has positive entries.

Note that for real or complex parameters Lemma 5.1 fails to hold as the examples

π = (1/2, 1/2), M =

(
s 1− s

2− s s− 1

)
, s 6= 1 show. (The problem is simply that a

column sum of diag(π)M can be zero though the column is not the zero vector.)
However, if the parameters are nonsingular, we can still move the root by modi-
fying the above argument. Indeed, nonsingularity of parameters implies that from
diag(π)M = M̃T diag(π̃) one can solve for a nonsingular M̃ , since the other three
matrices in the equation are nonsingular. This shows the following.

Lemma 5.2. Suppose real or complex nonsingular parameters are given for the
GM(k) model on a tree T with the root located at a specific node of T . Then there are
nonsingular parameters for T rooted at any other node of T , or at a node of valence
2 introduced along an edge of T , which lead to the same distribution.

We now show that independent subsets of variables allow the question of deter-
mining if a distribution arises from parameters on a tree to be ‘decomposed’ into the
same question for the marginalizations to the subsets.

Proposition 5.3. Let P be a joint distribution of a set L of k-state variables such
that for some partition L1|L2| · · · |Ls of L, the variable sets Li and Lj are independent
for all i 6= j. Suppose the marginal distribution of each Li arises from nonsingular
GM(k) parameters on a tree Ti. Then P arises from GM(k) parameters on any tree
T which can be obtained by connecting the trees T1, T2, . . . , Ts by the introduction of
new edges between them (with endpoints possibly subdividing either edges of the Ti or
previously introduced edges joining some of the Ti).

Note that the converse of this statement, that if P arises from parameters for
the GM(k) model on an |L|-leaf tree then the marginal distributions of each Li arise
from parameters for the GM(k) model on an |Li|-leaf tree, is well-known, and does
not require the independence of the variable sets, or nonsingularity of parameters.

Proof. It is enough to consider a partition of L into two independent subsets,
L1|L2. Let T be any tree formed by connecting T1 and T2 by a single edge, possibly
with endpoints introduced to subdivide edges of one or both of the Ti. If e = (r1, r2)
is the edge joining T1 and T2, with ri in Ti, then by Lemma 5.2 we may assume that
parameters on T1 and T2 are given for roots r1 and r2. We root T at r1 and then
specify parameters on T as the root distribution π1 for T1, all matrix parameters on
the edges of T1 and T2, and for the edge e the matrix Me = 1π2

T where π2 is the
root distribution on T2.

Let P̃ denote the image of these parameters under ψT . The edge e of T induces
the split L1|L2 of the leaf variables, and flattening with respect to e gives Flate(P̃ ) =
ATCB where A,B are k× k|L1| and k× k|L2| matrices depending only on the matrix
parameters on the subtrees T1 and T2, and

C = diag(π1)Me,

= diag(π1)1π
T
2 = π1π

T
2 .

Indeed, in the stochastic case, A gives probabilities of observations at the leaves L1

conditioned on the state at r1, B gives probabilities of observations at the leaves L2

conditioned on the state at r2, and C is a matrix giving the joint distribution of states
at r1 and r2. Observing that ATCB = (AT

π1)(π
T
2 B), independence implies that P̃ is
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the product of the same marginal distributions on L1 and L2 as P , and hence P̃ = P .

One can replace the assumption of nonsingularity of parameters in this proposition
with one of stochasticity, since the main technical point in the proof is that we need
freedom to move the root to any node of valence 2 along an edge of T . By Lemma
5.1, this holds for stochastic parameters, so we obtain the following.

Proposition 5.4. With P and the Li as in Proposition 5.3, if the marginal
distributions of each Li arise from stochastic parameters for the GM(k) model on an
|Li|-leaf tree, then P arises from stochastic parameters for the GM(k) model on an
|L|-leaf tree. If the parameters on the |Li|-leaf trees are positive, so are those on the
|L|-leaf tree.

By this proposition, the only sets we must understand to build a semialgebraic
description for the full n-leaf stochastic model are the image of parameters for m-leaf
trees, m ≤ n, when no subsets of the m leaf variables are independent. In the case
k = 2, by Proposition 2.2, this is precisely the images of nonsingular parameters.
Unfortunately, for larger k characterizing such images is much more difficult, and we
do not accomplish it in this paper.

One way to think about the difficulty with k > 2 is in terms of matrix rank. When
k = 2, a Markov matrix has either rank 1 or rank 2, which results in independent
variables or nonsingular parameters, respectively. For larger k, a Markov matrix
may have rank between the extremes of 1 and k, which again produce independent
variables or nonsingular parameters. These intermediate cases of singular Markov
matrices that are not of rank 1 would each require a detailed analysis, both in the
3-leaf tree case, and then to produce some type of decomposition for larger trees.

Rather than pursue a detailed semialgebraic model description allowing all ranks
of Markov matrices for all k, we instead choose to focus on the image of nonsingular
parameters. These are certainly the most important in most applications. Moreover,
any distribution arising from singular parameters will lie in the topological closure of
this set, as singular parameters can be approximated by nonsingular ones. Of course
the closure may also contain points that do not arise from any parameters, so this does
not circumvent the difficulties of dealing with the many special cases of intermediate
rank if an exact semialgebraic description of the full stochastic model is desired.

In the setting of nonsingular, though not necessarily stochastic parameters, we
obtain the following.

Proposition 5.5. Let P be an n-dimensional k × k × · · · × k distribution with
n ≥ 3. Then P arises from nonsingular complex parameters on a binary tree T if,
and only if,

(i) All marginalizations of P to 3 variables arise from nonsingular parameters
on the induced 3-leaf, 3-edge trees, and

(ii) For all internal edges e of T , all (k + 1) × (k + 1) minors of the matrix
flattening Flate(P ) are 0.

Moreover, such nonsingular parameters are unique up to label swapping at internal
nodes of T .

Note that condition (i) can be stated in terms of explicit semialgebraic conditions,
using Corollary 3.4. Also, the polynomial equalities of condition (ii) are usually called
edge invariants [8].

Proof. For the forward implication, condition (i) follows since marginalizations
arise from the model on the associated induced subtree, using Markov matrices that
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are products of the original ones. Item (ii) is from [8], where it is shown that all
P ∈ Im(ψT ) satisfy the edge invariants. (The nonsingularity of parameters is not
required for either of these.)

For the reverse implication, we proceed by induction on the size n of the variable
set L. The claim holds by assumption in the base case of n = 3. Assume the statement
is true for fewer than n ≥ 4 variables. We identify leaves of T with the variables
associated to them. Choose some internal edge e0 = (a, b) of T , corresponding to
the split L1|L2 of L, with |L1|, |L2| ≥ 2, a in the subtree spanned by L1, and b in
the subtree spanned by L2. Introducing a vertex c subdividing (a, b), let T1 be the
subtree with leaves L1 ∪ {c} and T2 the subtree with leaves L2 ∪ {c}. Thus (a, c) in
T1 and (b, c) in T2 are the edges formed from dividing (a, b).

Since the edge invariants are satisfied by P , Flate0(P ) has rank at most k. There-
fore, there exist k|L1| × k and k × k|L2| matrices A,B, both of rank at most k, with

Flate0(P ) = AB.

Choose a single variable ℓ2 ∈ L2 and let Q denote the marginalization of P to L1∪{ℓ2}.
Then there is a k|L2| × k matrix N such that

Flate0(P )N = ABN = Flate1(Q),

where this last flattening is along the edge e1 = (a, ℓ2) in the induced subtree on
L1 ∪ {ℓ2}. Stated differently, multiplication by N marginalizes over all those leaves
in L2 except ℓ2.

Since Q also satisfies conditions (i) and (ii), by the inductive hypothesis Q arises
from nonsingular parameters. Moreover, we see that Flate1(Q) has rank k, since
marginalization over all but one variable in L1 is seen to produce a rank k matrix
from the nonsingular parameterization. It follows that the k× k matrix BN has rank
k. Replacing A and B with AC and C−1B for some invertible k × k matrix C, we
may further assume the rows of BN add to 1.

Now sinceQ arises from nonsingular parameters on a (|L1|+1)-leaf tree isomorphic
to T1 rooted at a, we claim that Q′ = Q ∗ℓ2 (BN)−1 arises from nonsingular complex
parameters on T1 for some suitable choice of B. Indeed, Q′ arises from the same
parameters as Q, except that on the edge (a, c) we use the matrix parameter that
is the product of the one on the edge leading to ℓ2 and (BN)−1. Since (BN)−1 is
a nonsingular matrix with rows summing to one, the only condition to check is that
the marginalization of the resulting distribution to c has no zero entries. But this
marginalization is vc = vℓ2(BN)−1, and has a zero entry only if vℓ2 is in the left

nullspace of one (or more) of the columns of (BN)−1. However, replacing A and B
with AC and C−1B for some appropriate nonsingular matrix C whose rows sum to
one, we can ensure that vc has no zero entries.

Since the parameters producing Q′ are nonsingular, by Lemma 5.2 we may reroot
T1 at c, with parameters the root distribution vc, matrices {Me} on all edges of T1
corresponding to ones in T , and matrix M(c,a) on the edge (c, a).

Now with K the matrix which marginalizes Flate0(P ) over all elements of L1 but
one, say ℓ1, we see

K Flate0(P ) = KAB = Flate2(U),

where U is the marginalization of P over the same elements of L1 and the last flat-
tening is on e2 = (b, ℓ1) in the induced subtree, which is isomorphic to T2. But by
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induction U arises from nonsingular parameters on T2 rooted at b. Letting M be the
product of the matrix parameters on the edges in the path from c to ℓ1 in T1. Then
U ′ = U ∗ℓ1 M

−1 also arises from nonsingular parameters on T2 (checking that its
marginalization to c is vℓ1M

−1 = vc, which has no zeros by construction).
Note now that U ′ has flattening (M−1)TKAB. But (M−1)TKA = diag(vc) by

construction. Thus diag(vc)B is the c|L2 flattening of a tensor arising on T2 from
nonsingular complex parameters. With the root at c, letMe be the Markov parameters
for all edges of T2 corresponding to ones in T , and M(c,b) the Markov matrix on (c, b).
The root distribution vc is the same as for T1.

It remains to check that P is the image of the parameters on T with subdivided
edges (c, a) and (c, b) rooted at c given by vc, {Me}e6=(a,b), and M(c,a) and M(c,b).
But these parameters lead to the distributions Q′ and U ′ on T1 and T2 respectively.
Since Flat(a,c)(Q

′) = A while Flat(c,b)(U
′) = diag(vc)B, the equation Flate(P ) = AB

shows they produce P on T .
That the parameters are unique, up to label swapping at the internal nodes of T ,

follows from the 3-leaf case.

Note that in establishing the reverse implication in Proposition 5.5 we did not
use condition (i) for every 3-variable marginalization. Informally, given a tree T one
could choose a sequence of edges which can be successively ‘cut’ (by the introduction
of the node c in the inductive proof above) to produce a forest of 3-taxon trees. Then
condition (i) is only needed for a subset of the 3-leaf marginalizations, determined by
the sequence of edges chosen to cut and the choice of the variables denoted ℓ1, ℓ2 in
the proof. Similarly, not all edge flattenings of condition (ii) are used: For the first
edge to be ‘cut’, one uses the full edge flattening, but after that, only edge flattenings
of marginalizations to subsets of variables are needed. Thus the full set of conditions
given in this proposition is actually equivalent to a subset of them, though pinning
down a precise subset is rather messy and will not be pursued here.

Supposing now that an n-dimensional distribution P arises from nonsingular com-
plex parameters on a binary tree T , we wish to give semialgebraic conditions that are
satisfied if, and only if, the parameters are stochastic. By considering only marginal-
izations to 3 variables and appealing to Proposition 3.6, we can give conditions that
hold precisely when the root distribution and products of matrix parameters along
any path leading from an interior vertex of T to leaves are stochastic. This immedi-
ately yields semialgebraic conditions that the root distribution and matrix parameters
on terminal edges are stochastic. However, additional criteria are needed to ensure
matrix parameters on interior edges are stochastic. In the 4-leaf case, such criteria
are given by the following.

Proposition 5.6. Suppose a tensor P arises from nonsingular complex parame-
ters for GM(k) on the 4-leaf tree 12|34. If the 3-marginalizations P···+ and P+··· arise
from stochastic parameters and, in addition, all principal minors of the k2×k2 matrix

det(P+··+) det(P·+·+) Flat13|24
(
P ∗2 (adj(P

T
+··+)P

T
·+·+)) ∗3 (adj(P·+·+)P·++·)

)
(5.1)

are nonnegative, then P arises from stochastic parameters.
The statement about the minors of the symmetric matrix in (5.1) is of course

really a requirement that this matrix be positive semidefinite. Also, this matrix could
instead be replaced by ones where the roles of leaves 1 and 2 or of leaves 3 and 4 have
been interchanged.

Proof. Root T at the interior node near leaves 1 and 2. Let Mi, i = 1, 2, 3, 4 be
the complex matrix parameter with row sums equal to one on the edge leading to leaf
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i, M5 the matrix parameter on the internal edge, and π the root distribution. Define
the matrices

N32 = PT
+··+ =MT

3 M
T
5 diag(π)M2,

N31 = PT
·+·+ =MT

3 M
T
5 diag(π)M1.

Then

P = P ∗2 N
−1
32 N31

is a tensor arising from the same parameters as P except that M2 has been replaced
with M1. That is, now the same matrix parameter is used on the edges leading to
leaves 1 and 2.

Similarly with

N14 = P·++· =MT
1 diag(π)M5M4,

N13 = P·+·+ =MT
1 diag(π)M5M3,

then

P̃ = P ∗3 N
−1
13 N14 (5.2)

is a tensor arising from the same parameters as P except that M3 has been replaced
with M4.

Consider now the 13|24 flattening of P̃ , a flattening which is not consistent with
the topology of the underlying tree. As shown in [5], this can be expressed as a
product of k × k matrices

Flat13|24(P̃ ) = ATDA, (5.3)

where D is the diagonal matrix with the k2 entries of diag(π)M5 on its diagonal,
and A = M1 ⊗M4 is the Kronecker product. Because M1,M4 are nonsingular, so
is A. Since conditions on 3-marginals ensure π has positive entries, we can ensure
M5 has nonnegative entries by requiring that Flat13|24(P̃ ) be positive semidefinite.
Using Sylvester’s theorem, this is equivalent to requiring that its principal minors
be nonnegative. Since the resulting inequalities would involve rational expressions,
due to the inverses of matrices, we first multiply Flat13|24 P̃ by squares of nonzero
determinants, to remove denominators.

The matrix in (5.1) has entries of degree 4k + 1 in those of P . After removing
squares of powers of determinants for even minors, the polynomial inequalities from
the principal j × j minors are of degrees j(2k+ 1)+ 2kej, where ej ∈ {0, 1} gives the
parity of j.

Together with Theorems 3.6 and 3.7, the last two propositions yield the following
theorem.

Theorem 5.7. Suppose P is an n-dimensional joint probability distribution for
the k-state variables Y1, . . . , Yn. Then P arises from nonsingular stochastic parame-
ters for GM(k) on an n-leaf binary tree T if, and only if,

(i) All marginalizations of P to 3 variables satisfy the conditions of Theorem
3.6 (or if k = 2 of Theorem 3.7) to arise from nonsingular stochastic parameters on
a 3-leaf tree;
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(ii) For all internal edges e of T , the edge invariants are satisfied by P , i.e., all
(k + 1)× (k + 1) minors of the matrix flattening Flate(P ) are 0;

(iii) For each internal edge e of T , and some choice of 4 leaves inducing a quartet
tree with internal edge e, all principal minors of the matrix flattening constructed in
Proposition 5.6, for the 4-dimensional marginalization, are nonnegative.

While we noted that one can use a smaller set of inequalities than were given in
Proposition 5.5 to ensure a distribution arises from nonsingular parameters, the full
set of inequalities given in Theorem 5.7 has additional redundancies. To illustrate, in
the 4-leaf case checking that only two of the 3-marginals, say P+··· and P···+ for the
tree 12|34, satisfy the conditions of Proposition 3.6. is sufficient.

For a 4-variable distribution P , it is straightforward to obtain semialgebraic con-
ditions ensuring P arises from strictly positive parameters: One need only require
the more stringent condition (iv’) of Proposition 3.6, on the marginalizations P···+

and P+··· to ensure they arise from strictly positive parameters, and that all leading
principal minors of the matrix in (5.1) are strictly positive. This then allows one to
give such conditions applicable to larger trees, establishing the following.

Theorem 5.8. Semialgebraic conditions that a probability distribution P arises
from nonsingular positive parameters for GM(k) on a tree T can be explicitly given.

Note that one can also handle non-binary trees by the techniques of this section.
To show a distribution arises from nonsingular, or stochastic nonsingular, parameters
on a non-binary tree, one need only show it arises from parameters on a binary reso-
lution of the tree, and that the Markov matrix on each edge introduced to obtain the
resolution is the identity. But semialgebraic conditions that the Markov matrix on an
internal edge of a 4-leaf tree be I (or a permutation, since label swapping prevents us
from distinguishing these) amounts to requiring that the matrix of equation (5.3) has
rank k. Indeed, rank k implies that the Markov matrix on the internal edge has only
k nonzero entries, and since other conditions we have derived imply nonsingularity,
the matrix must be a permutation.

We now give an example illustrating that the quadratic form approach of Propo-
sition 5.6, and thus of Theorem 5.7, detects a probability distribution that is in the
image of ψT for nonsingular real GM(2) parameters on the 4-taxon tree, where each
matrix parameter on a terminal edge is stochastic but the one on the internal edge is
not. By choosing parameters with some care, we can arrange that such a probability
distribution P satisfies that all 3-marginalizations arise from stochastic parameters,
yet P does not. Such examples are not new (see for example [4, 23, 37]), but we
include one here to illustrate our methods.

To create such an example, set the Markov parameter on each terminal edge
to have positive entries, using, for instance, the same M on each of these 4 edges.
Then choose the matrix parameter N on the internal edge of the tree to have very
small negative off-diagonal entries, so small so that both MN and NM are Markov
matrices. The root distribution may be taken to be any probability distribution with
positive entries. An example of such an (exact) probability distribution is given by P
with slices

P··11 =

[
0.4005062 0.0565718
0.0565718 0.0545702

]
P··12 =

[
0.0457358 0.0141662
0.0141662 0.0379118

]

P··21 =

[
0.0457358 0.0141662
0.0141662 0.0379118

]
P··22 =

[
0.0100222 0.0330958
0.0330958 0.1316062

]
.
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Here P satisfies all conditions of Theorem 5.7 except (iii). A computation shows that
the principal minors of the matrix in (5.1) are, when rounded to eight decimal places,
0.00363408, 0.00001744, 0.00000060, and −0.00000005. The negativity of one of these
shows P does not arise from stochastic parameters.

We conclude with a complete semialgebraic description of the 2-state general
Markov model on a 4-leaf tree without a restriction to nonsingular stochastic param-
eters. This is straightforward to give, since Proposition 2.2 indicates that in this case
a distribution which arises from parameters either has independent leaf sets (so we
can decompose the tree using Proposition 5.3), or the parameters were nonsingular
so Theorem 5.7 applies.

As observed earlier, the existence of many non-independence cases when k > 2
prevents us from assembling as complete a result.

Proposition 5.9. For the 4-leaf tree 12|34, the image of the stochastic parameter
space under the general Markov model GM(2) is the union of the following sets of
nonnegative tensors whose entries add to 1:

1. Probability distributions of 4 independent variables: P such that all 2 × 2
minors of every edge flattening vanish (i.e., all edge flattenings have rank 1);

2. Probability distributions with partition into minimal independent sets of vari-
ables of size 1, 3, of which there are 4 cases: If the partition is {{Y1}, {Y2, Y3, Y4}},
then P such that all 2× 2 minors of Flat1|234(P ) vanish, and P+··· satisfies the con-
ditions of Theorem 3.7, Case 1;

3. Probability distributions with partition into minimal independent sets of vari-
ables of size 1, 1, 2, of which there are 6 cases: If the partition is {Y1}|{Y2}|{Y3, Y4},
then P such that all 2 × 2 minors of Flat1|234(P ) and Flat2|134(P ) vanish, and
det(P++··) is nonzero;

4. Probability distributions with partition into minimal independent sets of vari-
ables {{Y1, Y2}, {Y3, Y4}} of size 2, 2: P such that all 2 × 2 minors of Flat12|34(P )
vanish, yet det(P··++) and det(P++··) are nonzero,

5. Probability distributions with no independent sets of variables: P such that
the edge invariants for 12|34 are satisfied, the 3-d marginalizations P+··· and P···+

satisfy the conditions of Theorem 3.7, Case 1, and all principal minors of the matrix
constructed in Proposition 5.6 are nonnegative.

In case 1, the only edge flattenings that are needed are those associated to terminal
edges. If these all have rank 1, then the flattening for the internal edge does as well.

In cases 1,2,3, the distributions arise from stochastic parameters on all 3 of the
binary topological trees with 4 leaves, as well as the star tree.

Note that all possible partitions of variables do not appear, but only those consis-
tent with the tree topology. In the 4-leaf case, this has ruled out only the 2 partitions
of size 2,2 that do not reflect a split in the tree.

Of course one could extend the above proposition to arbitrary size trees, as long
as k = 2, but the number of possible partitions into independent sets of variables
grows quickly, so we will not give an explicit statement.
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