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Abstract. We review a general class of models for self-organized dynamics based on align-
ment. The dynamics of such systems is governed solely by interactions among individuals or
“agents”, with the tendency to adjust to their ‘environmental averages’. This, in turn, leads
to the formation of clusters, e.g., colonies of ants, flocks of birds, parties of people, rendezvous
in mobile networks, etc. A natural question which arises in this context is to understand
when and how clusters emerge through the self-alignment of agents, and what type of “rules
of engagement” influence the formation of such clusters. Of particular interest to us are cases
in which the self-organized behavior tends to concentrate into one cluster, reflecting a con-
sensus of opinions, flocking of birds, fish or cells, rendezvous of mobile agents, and in general,
concentration of other traits intrinsic to the dynamics.
Many standard models for self-organized dynamics in social, biological and physical science
assume that the intensity of alignment increases as agents get closer, reflecting a common ten-
dency to align with those who think or act alike. Moreover, “Similarity breeds connection,”
reflects our intuition that increasing the intensity of alignment as the difference of positions
decreases, is more likely to lead to a consensus. We argue here that the converse is true: when
the dynamics is driven by local interactions, it is more likely to approach a consensus when the
interactions among agents increase as a function of their difference in position. Heterophily
— the tendency to bond more with those who are different rather than with those who are
similar, plays a decisive rôle in the process of clustering. We point out that the number of
clusters in heterophilious dynamics decreases as the heterophily dependence among agents
increases. In particular, sufficiently strong heterophilious interactions enhance consensus.
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1. Introduction

Nature and human societies offer many examples of self-organized behavior. Ants form
colonies to coordinate the construction of a new nest, birds form flocks which fly in the same
direction, mobile networks are sought to form a coordinated rendezvous and human crowd
form parties to reach a consensus when choosing a leader. The self-organized aspect of such
systems is their dynamics, governed solely by interactions among its individuals or “agents”,
which tend to cluster into colonies, flocks, parties, etc. A natural question which arises in
this context is to understand when and how clusters emerge through the self-interactions of
agents, and what type of “rules of engagement” influence the formation of such clusters. Of
particular interest to us are cases in which the self-organized behavior tends to concentrate
into one cluster, reflecting a consensus of opinions, flocking of birds, fish or cells, rendezvous
of mobile networks, and in general, concentration around other positions intrinsic to the self-
organized dynamics. Generically, we will refer to this process as concentration around an
emerging consensus.

Many models have been introduced to appraise the emergence of consensus. Representative
examples can be found in [12, 35, 37, 49, 63, 88, 107, 113], and we refer the reader to a
more comprehensive list of references surveyed in section 9 below. The starting point for our
discussion is a general framework which embed several types of models describing self-organized
dynamics. We consider the evolution of N agents, each of which is identified by its “position”
pi(t) ∈ Rd. The position pi(t) may account for opinion, velocity, or other attributes of agent
“i” at time t. Each agent adjusts its position according to the position of his neighbors:

(1.1)
d

dt
pi = α

∑
j 6=i

aij(pj − pi), aij ≥ 0.

This provides a rather general description for processes of alignment. Here, α > 0 is a scaling
parameter and the coefficients aij quantify the strength of influence between agents i and j:
the larger aij is, the more weight is given to agent j to align itself with agent i, based on
the difference of their positions pi − pj . The underlying fundamental assumption here is that
agents do not react to the position of others but to their differences relative to other agents.
In particular, the aij ’s themselves are allowed to depend on the relative differences, pi − pj .
Indeed, we consider nonlinear models (1.1) where

aij = aij(P(t)), P(t) := {pk(t)}k.
We emphasize the nonlinear aspect of the alignment models (1.1): the intricate aspect of such
models is the nonlinear dependence of the influence matrix on the dynamics, aij = aij(P(t)).
We ignore two other important processes involved in self-organized dynamics as advocated in
the pioneering work of Reynolds, [93], namely, the short-range repulsion (or avoidance) and
the long-range cohesion (or attraction), and we refer to recent works driven by the balance of
these two processes in e.g., [8, 47, 50, 79, 84, 104]. Our purpose here is to shed light on the role
of mid-range alignment which covers the important zone “trapped” between the short-range
attraction and long-range repulsion.

We distinguish between two main classes of self-alignment models. In the global case,
the rules of engagement are such that every agent is influenced by every other agent, aij >
η > 0. The dynamics in this case is driven by global interactions. We have a fairly good
understanding of the large time dynamics of such models; an incomplete list of recent works in
this direction includes [11, 18, 37, 44, 60, 61, 63, 69, 75, 88], and the references therein. Global
interactions which are sufficiently strong lead to unconditional consensus in the sense that all
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initial configurations of agents concentrate around an emerging limit state, the “consensus”
p∞,

pi(t)
t→∞−→ p∞.

The first part of the paper, section 2, contains an overview of the concentration dynamics in
such global models, from the perspective of the general framework of (1.1).

In more realistic models, however, interactions between agents are limited to their local
neighbors, [1, 4, 36, 71, 93]. The behavior of local models where some of the aij may vanish,
requires a more intricate analysis. In the general scenario for such local models, discussed
in section 3, agents tend to concentrate into one or more separate clusters. The particular
case in which agents concentrate into one cluster, that is the emergence of a consensus or a
flock, depends on the propagation of uniform connectivity of the underling (weighted) graph
associated with the adjacency matrix, {aij}. This issue is explored in section 4 where we
show that connectivity implies consensus. Thus, the question of consensus for local models is
turned into the question of persistence of connectivity over time. Note that even if the initial
configuration is assumed connected, then there is still a possibility of losing connectivity as
the aij ’s may vary in time together with the positions P(t). The open question of tracing the
propagation of connectivity in time for general class of local models (1.1) plays an important
role in many applications, beyond the implication of emerging consensus. As an example we
mention engineering applications to sensor-based networks, from automatic traffic control and
wireless communication to production systems and mobile robot networks, e.g., [64, 71, 89, 90,
94, 112, 113] and the references therein.

Many standard models for self-organized dynamics in social, biological and physical science
assume that the dependence of aij decreases as a function of |pi−pj |, where | · | is a problem-
dependent proper metric to measure a difference of positions, opinions, etc. The statement
that “Birds of feature flock together” reflects a common tendency to align with those who
think or act alike, [69, 77, 83]. Moreover, “Similarity breeds connection,” reflects the intuitive
scenarios in which the influence coefficients aij increase as the difference of positions |pi − pj |
decreases: the more the aij ’s increase, the more likely it is to lead to a consensus. But in
fact, we argue here that the converse is true: for a self-organized dynamics driven by local
interactions, it is more likely to approach a consensus when the interaction among agents
increases as a function of their difference |pi − pj |. Heterophily — the tendency to bond
more with the different rather than with those who are similar, plays a decisive rôle in the
clustering of (1.1). The consensus in heterophilious dynamics is explored in the second part of
the paper, in terms of local interactions of the form, aij = φ(|pi−pj |), where φ(·) is a compactly
supported influence function which is increasing over its support. In section 5 we report our
extensive numerical simulations which confirm the counter-intuitive phenomenon, where the
number of clusters decreases as the heterophilious dependence increases; in particular, if φ is
increasing fast enough then the corresponding dynamics concentrate into one cluster, that is,
heterophilious dynamics enhances consensus. We mention in passing the scenario of “extreme
heterophily” advocated in [71, 112, 113], where distributed coordination is governed by local
influence function φ(·) which grows to infinity as it approaches the right edge of its support,
in order to create an energy barrier which enforces connectivity and hence consensus. We are
not unaware that this phenomenon of enhanced consensus in the presence of heterophilious
interactions, may have intriguing consequences in different areas other than social networks,
e.g., global bonding in atomic scales, avoiding materials’ fractures in mesoscopic scales, or
“cloud” formations in macroscopic scales.
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In the rest of the paper, we address a few important extensions of the self-alignment models
outlined above. These extensions are still work in progress and we by no means try to be
comprehensive. In section 6 we turn our attention to nearest neighbor dynamics. Careful
3D observations made by the StarFlag project, [25, 26, 27], showed that interactions of birds
are driven by topological neighborhoods, involving a fixed number of nearby birds, instead
of geometric neighborhoods involving a fixed radius of interaction. Here we prove that in the
simplest case of two nearest neighbor dynamics, connectivity propagates in time and consensus
follows for influence functions which are non-decreasing on their compact support. In section
7 we turn our attention to fully discrete models for self-alignment. The large time evolution in
discrete time-steps, e.g., the opinion of dynamics in [11, 12, 75], may depend on the time-step
∆t. Here, we show that the semi-discrete framework for global and local self-alignment outlined
in sections 2–5 can be extended, mutatis mutandis, to the fully-discrete case. In particular,
we recover a decreasing Lyapunov functional, a fully-discrete analogue of the semi-discrete
clustering analysis in section 4.2. Finally, in section 8 we discuss the passage from the agent-
based description to mean-field limits as the number of agents, or “particles” tends to be large
enough. There is a growing literature on kinetic descriptions of such models, [21, 22, 23, 49, 51,
61] and the references therein. Here we focus our attention on the hydrodynamic descriptions
of self-organized opinion dynamics and flocking. The closing section 9 is devoted to a more
detailed discussion on the broader subject of self-organized dynamics. Since a comprehensive
review of this multidisciplinary subject is beyond the scope of this paper, in particular, we
include a selection of references, classified into several complementary categories of different
disciplines, models, scales, approaches and patterns.

1.1. Examples of opinion dynamics and flocking. Models for self-organized dynamics
(1.1) have appeared in a large variety of different contexts, including load balancing in com-
puter networks, evolution of languages, gossiping, algorithms for sensor networks, emergence of
flocks, herds, schools and other biological “clustering”, pedestrian dynamics, ecological models,
peridynamic elasticity, multi-agent robots, models for opinion dynamics, economic networks
and more; a detailed list of references is surveyed in section 9 below.

To demonstrate the general framework for self-alignment dynamics (1.1), we shall work with
two main concrete examples. The first models opinions dynamics. In these models, N agents,
each with vector of opinions quantified by pi  xi ∈ Rd, interact with each other according to
the first-order system,

(1.2a)
d

dt
xi = α

∑
j 6=i

aij(xj − xi) , aij =
φ(|xj − xi|)

N
.

Here, 0 < φ < 1 is the scaled influence function which acts on the “difference of opinions”,
|xi − xj |. The metric | · | needs to be properly interpreted, adapted to the specific context of
the problem at hand. Another model for interaction of opinions is

(1.2b)
d

dt
xi = α

∑
j 6=i

aij(xj − xi) , aij =
φij∑
k φik

, φij := φ(|xj − xi|).

The classical Krause model for opinion dynamics [75, 12] is a time-discretization of (1.2b),
which will be discussed in section 7 below. Observe that the adjacency matrix {aij} in the
first model (1.2a) is symmetric while in the second model, (1.2b), it is not.

Another branch of models have been proposed to describe flocking. These are second-order
models where the observed property is the velocity of birds, pi 7→ vi ∈ Rd, which are coupled
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to their location xi ∈ Rd. The flocking model of Cucker and Smale (C-S) has received a
considerable attention in recent years, [37, 38, 61, 18, 60],

(1.3a)
d

dt
vi = α

∑
j 6=i

aij(vj − vi) , aij =
φ(|xj − xi|)

N
where

d

dt
xi = vi.

In C-S model, alignment is carried out by isotropic averaging. In [88] we advocated a more
realistic alignment-based model for flocking, where alignment is based on the relative influence,
similar to (1.2b),

(1.3b)
d

dt
vi = α

∑
j 6=i

aij(vj − vi) , aij =
φij∑
k φik

with φij := φ(|xj − xi|).

Again, C-S model is based on a symmetric adjacency matrix, {aij}, while symmetry is lost in
(1.3b), i.e. aij 6= aji.
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Figure 1.1. Evolution in time of the consensus model for two different influence

functions φ (Left figure: φ(r) = χ[0,1], Right figure: φ(r) = .1χ[0,1/
√
2]+χ[1/

√
2,1]). By

diminishing the influence of close neighbors (Right figure), we enhance the emergence

of a consensus. Simulations are started with the same initial condition (100 agents

uniformly distributed on [0, 10]).

The models for opinion and flocking dynamics (1.2), and respectively, (1.3), can be written
in the unified form

(1.4)
d

dt
pi = α

N∑
j=1

aij(pj − pi), aij =
1

σi
φ(|xi − xj |).

In the opinion dynamics, p 7→ x; in the flocking dynamics, p 7→ ẋ. The degree σi = N in the
symmetric models, or σi =

∑
j 6=i φ(|xi−xj |) in the non-symmetric models. The local vs. global

behavior of these models hinges on the behavior of the influence function, φ. If the support
of φ is large enough to cover the convex hull of P(0) = {pk(0)}k, then global interactions will
yield unconditional consensus or flocking. On the other hand, if φ is locally supported, then
the group dynamics in (1.4) depends on the connectivity of the underlying graph, {aij}. In
particular, if the overall connectivity is lost over time, then each connected component may
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lead to a separate cluster. Heterophilious self-organized dynamics is characterized by a locally
supported influence function, φ, which is increasing as a function of the mutual differences,
φij = φ(|xi − xj |). The more heterophilious the dynamics is, in the sense that its influence
function has a steeper increase over its compact support, the more it tends to concentrate in
the sense of approaching a smaller number of clusters. In particular, heterophilious dynamics
is more likely to lead to a consensus as demonstrated for example, in figure 1.1 (and is further
documented in figures 5.2 and 5.7 below). Observe that the only difference between the two
models depicted in figure 1.1 is that the influence in the immediate neighborhood (of radius
r ≤ 1/

√
2) was decreased, from φ = 1χ[0,1] (on the left) into φ = 0.1χ[0,1/

√
2] + χ[1/

√
2,1] (on

the right): this was sufficient to enhance the four-party clustering on the left to turn into a
consensus shown on the right.

2. Global interactions and unconditional emergence of consensus

In this section we derive explicit conditions for global self-organized dynamics (1.1) to con-
centrate around an emerging consensus. Our starting point is a convexity argument which is
valid for any adjacency matrix A = {aij}, whether symmetric or not. We begin by noting
without loss of generality, that A may be assumed to be row-stochastic,

(2.1)
∑
j

aij = 1, i = 1, . . . , N.

Indeed, by rescaling α if necessary we have
∑

j 6=i aij ≤ 1, and (2.1) holds when we set aii :=

1−∑j 6=i aij ≥ 0. We rewrite (1.1) in the form

(2.2)
d

dt
pi = α (pi − pi) , pi :=

N∑
j=1

aijpj .

Thus, if we let Ω(t) denote the convex hull of the properties {pk}k, then according to (2.2), pi is
relaxing to the average value pi ∈ Ω(t), while the boundary of Ω is a barrier for the dynamics.
It follows that the positions in the general self-organized model (1.1) remain bounded.

Proposition 2.1. The convex hull of p(t) is decreasing in time in the sense that the convex
hull, Ω(t) := Conv

(
{pi(t)}i∈[1,N ]

)
, satisfies

(2.3) Ω(t2) ⊂ Ω(t1), t2 > t1 ≥ 0.

Moreover, we have

(2.4) max
i
|pi(t)| ≤ max

i
|pi(0)|.

Proof. We verify (2.4) for a general vector norm | · | which we characterize in terms of its dual
|w|∗ = supw 6=0〈w, z〉/|z| so that |p| = sup〈p,w〉/|w|∗. Let w = w(t) denotes the maximal
dual vector of pi(t), so that 〈pi,w〉 = |pi|, then

〈ṗi,w〉 = α (〈pi,w〉 − 〈pi,w〉) ≤ α(|pi| − |pi|).
Since 〈pi, ẇ〉 ≤ 0 we have

d

dt
|pi(t)| = 〈ṗi,w〉+ 〈pi, ẇ〉 ≤ α(|pi(t)| − |pi(t)|),

and finally, |pi(t)| ≤ maxi |pi(t)| yields (2.4). �
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pi

Ω

ṗi

Figure 2.1. The convex hull Ω of the positions pi.

Remark. Since the models of opinion dynamics and flocking dynamics (1.4) are translation
invariant in the sense of admitting the family of solutions {pi − c}, then for any fixed state c,
proposition 2.1 implies

max
i
|pi(t)− c| ≤ max

i
|pi(0)− c|.

Consensus and flocking are achieved when the decreasing Ω(t) shrinks to a limit point

Ω(t)
t→∞−→ {p∞},

max
i
|pi(t)− p∞| t→∞−→ 0.

There are various approaches, not unrelated, to derive conditions which ensure unconditional
consensus or flocking. We shall mention two: an L∞ contraction argument and an L2 energy
method based on spectral analysis.

2.1. An L∞ approach: contraction of diameters. Proposition 2.1 tells us that {pi(t)}i
remain uniformly bounded and the diameter, maxij |pi(t) − pj(t)|, is non-increasing in time.
In order to have concentration, however, we need to verify that the diameter of p(t) decays to
zero. The next proposition quantifies this decay rate.

Theorem 2.2. Consider the self-organized model (1.1) with a raw stochastic adjacency matrix
A, (2.1). Let

[p] := max
ij
|pi − pj |

denote the diameter of the position vector p. Then the diameter satisfies the concentration
estimate

(2.5)
d

dt
[p(t)] ≤ −αη

A(P(t))
[p(t)], ηA := min

ij

∑
k

min{aik, ajk}.

In particular, if there is a slow decay of the concentration factor so that

∫ ∞
η
A(P(s))

ds = ∞,

then the agents concentrate in the sense that

(2.6a) Θ(t) :=

∫ t

η
A(P(s))

ds
t→∞−→ ∞  lim

t→∞
max
i,j
|pi(t)− pj(t)| = 0.

Moreover, if the decay of the concentration factor is slow enough in the sense that
∫∞

exp(−αΘ(s))ds <
∞, then there is an emerging consensus p∞ ∈ Ω(0),

(2.6b)

∫ ∞
e−αΘ(t)dt <∞  |pi(t)− p∞| . e−αΘ(t)[p(0)] for all i = 1, . . . , N.

Remark. We note that theorem 2.2 applies to any vector norm | · |.
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Proof. We begin with the following estimate which quantifies the contractivity of the row
stochastic A in the induced vector semi -norm [ · ] (since this bound is solely due to the
convexity of the row stochastic A, we suppress the time-dependence of p and p = Ap),

(2.7) [Ap] ≤ (1− η
A

)[p], [p] = max
ij
|pi − pj |, 1− η

A
=

1

2

∑
k

|aik − ajk|.

The estimate (2.7) in its `1-dual form for column stochastic matrices goes back to Dobrushin
[46], and his so-called coefficient of ergodicity, η

A
, was later used to quantify the relative entropy

in discrete Markov processes [30, 31] and the contractivity in models of opinion dynamics [75].
For completeness, we proceed with the proof for general vector norms | · |. Fix any i and j
which are to be chosen later, and set ηk := min{aik, ajk} so that aik − ηk and ajk − ηk are

non-negative. Then, for arbitrary w ∈ Rd we have,

〈pi − pj ,w〉 =
∑
k

aik〈pk,w〉 −
∑
k

ajk〈pk,w〉

=
∑
k

(aik − ηk)〈pk,w〉 −
∑
k

(ajk − ηk)〈pk,w〉

≤
∑
k

(aik − ηk) max
k
〈pk,w〉 −

∑
k

(ajk − ηk) min
k
〈pk,w〉

= (1− η
A

)

(
max
k
〈pk,w〉 −min

k
〈pk,w〉

)
≤ (1− η

A
) max

k`
〈pk − p`,w〉 ≤ (1− η

A
) max
k,`
|pk − p`||w|∗.

In the last step, we characterize the norm | · | by its dual |w|∗ = supw 6=0〈w, z〉/|z| so that
〈z,w〉 ≤ |z||w|∗. Now, choose i and j as a maximal pair such that [p] = |pi − pj |; we then
have

[Ap] ≡ [p] = |pi − pj | = sup
w 6=0

〈pi − pj ,w〉
|w|∗

≤ (1− η
A

) max
k,`
|pk − p`|

and (2.7) now follows.

Next, we consider the discrete time-marching system associated with (1.1),

p(t+ ∆t)− p(t)

∆t
= α (Ap(t)− p(t)) .

Using (2.7) we obtain

[p(t+ ∆t)] = [(1− α∆t)p(t) + α∆t Ap(t)] ≤ (1− α∆t)[p(t)] + α∆t(1− η
A

)[p(t)],

or after rearrangement,

[p(t+ ∆t)]− [p(t)]

∆t
≤ −αη

A
[p(t)],

and the desired bound (2.5) follows by letting ∆t→ 0. In particular, we have

(2.8) max
ij
|pi(t)− pj(t)| ≤ exp

(
−α

∫ t

0
η
A(P(s))

ds

)
[p(0)]

t→∞−→ 0,
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which proves (2.6a). Moreover,

|pi(t2)− pi(t1)| =

∣∣∣∣∫ t2

τ=t1

ṗi(τ) dτ

∣∣∣∣ ≤ αmax
ij

∫ t2

τ=t1

|pi(τ)− pj(τ)| ds

≤ α

∫ t2

τ=t1

exp (−αΘ(τ)) dτ [p(0)], Θ(τ) =

∫ τ

0
η
A(P(s)

ds,

which tends to zero, |pi(t2)− pi(t1)| → 0 for t2 > t1 � 1, thanks to our assumption (2.6b). It

follows that the limit pi(t)
t→∞−→ p∞i exists, and hence all agents concentrate around the same

limit position, an emerging consensus p∞ ∈ Ω(0). The concentration rate estimate (2.6b)
follows from (2.8). �

Theorem 2.2 relates the emergence of consensus or flocking of ṗ = Ap−p to the behavior of∫ t
η
A(P(s))

ds ↑ ∞, and to this end we seek lower-bounds on the “concentration factor” ηA , which
are easily checkable in terms of the entries of A. This brings us to the following definition.

Definition (Active sets [88]). Fix θ > 0. The active set, Λ(θ), is the set of agents which
influence every other agent “more” than θ,

(2.9) Λ(θ) := {j
∣∣ aij ≥ θ for any i}.

Observe that since aij changes in time, aij = aij(P(t)), the number of agents in the active set
Λ(θ) is a time dependent quantity, denoted λ(θ) = λ(θ, t) := |Λ(θ, t)|.
The straightforward lower bound, η

A
≥ maxθ θ · λ(θ) yields

Corollary 2.3. The diameter of the self-organized model (1.1) with a stochastic adjacency
matrix A, (2.1) satisfies the concentration estimate

(2.10)
d

dt
[p(t)] ≤ −α(max

θ
θ · λ(θ, t)) [p(t)].

In particular, the lower bound η
A
≥ N minij aij, corresponding to θ = minij aij with λ(θ, t) =

N , yields [61]

(2.11) |p(t)− p∞| . exp

(
−αN

∫ t

0
m(s)ds

)
[p(0)], m(s) := min

ij
aij(s).

Remark. The bound (2.10) is an improvement of the “flocking” estimate [88, Lemma 3.1]

d

dt
[p(t)] ≤ −α(max

θ
θ · λ(θ, t))2 [p(t)].

Corollary 2.3 is a useful tool to verify consensus and flocking behavior for general adjacency
matrices A = {aij}, whether symmetric or not. We demonstrate its application with the
following sufficient condition for the emergence of a consensus in the opinion models (1.2). In
either the symmetric or non-symmetric case,

aij =


φij
N

φij
σi

 ≥
φ([x(t)])

N
, σi =

∑
k

φik ≤ N.

By proposition 2.1, the diameter [x(t)] is non-increasing, yielding the lower bound

Naij(P(t)) =
N

σi
φ(|xi(t)− xj(t)|) ≥ min

r≤[x(t)]
φ(r) ≥ min

r≤[x(0)]
φ(r),
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which in turns implies the following exponentially fast convergence towards a consensus x∞.

Proposition 2.4 (Unconditional consensus). Consider the models for opinion dynamics (1.2)
with an influence function φ(r) ≤ 1, and assume that

(2.12) m := min
r≤[x(0)]

φ(r) > 0.

Then, there is an exponentially fast convergence towards an emerging consensus x∞,

(2.13) |xi(t)− x∞| . e−αmt[x(0)].

Similar arguments apply for the flocking models (1.3): since [v(t)] is non-increasing then
[x(t)] ≤ [x(0)] + t[v(0)] and hence

Naij(P(t)) =
N

σi
φ(|xi(t)− xj(t)|) ≥ min

r≤[x(t)]
φ(r) ≥ min

r≤[x(0)]+t[v(0)]
φ(r);

if φ(·) is decreasing then we can set m(t) = φ([x(0)] + t[v(0)]) and unconditional flocking
follows from for corollary 2.3 for sufficiently strong interaction so that

∫∞
φ(s)ds = ∞. In

fact, a more precise statement of flocking is summarized in the following.

Proposition 2.5 (Unconditional flocking). Consider the flocking dynamics (1.3) with a de-
creasing influence function φ(r) ≤ φ(0) ≤ 1, and assume that

(2.14)

∫ ∞
φ(s)ds =∞;

Then, the diameter of positions remains uniformly bounded, [x(t)] ≤ D∞ < ∞, and there is
an exponentially fast concentration of velocities around a flocking state v∞,

(2.15) |vi(t)− v∞| . e−αmt[v(0)], m = φ(D∞).

Proof. Unlike the first-order models for consensus, the diameter in second-order flocking mod-
els, [x(t)], may increase in time. The bound D∞ stated in (2.15) places a uniform bound on
the maximal active diameter. To derive such a bound observe that in the second order flocking
models, the evolution of the diameter of velocities satisfies,

d

dt
[v(t)] ≤ −αφ([x(t)])[v(t)],

and is coupled with the evolution of positions [x(t)]: since ẋ = v, we have

d

dt
[x(t)] ≤ [v(t)].

The last two inequalities imply that the following energy functional introduced by Ha and Liu
[60],

E(t) := [v(t)] + α

∫ [x(t)]

0
φ(s)ds,

is decreasing in time,

(2.16) α

∫ [x(t)]

[x(0)]
φ(s) ds ≤ [v(0)]− [v(t)] ≤ [v(0)].

This, together with our assumption (2.14) yield the existence of a finite D∞ > [x(0)] such that

(2.17) α

∫ [x(t)]

[x(0)]
φ(s) ds ≤ [v(0)] ≤ α

∫ D∞

[x(0)]
φ(s) ds.
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Thus, the active diameter of positions does not exceed [x(t)] ≤ D∞, and since φ is assumed
decreasing, the minimal interaction is Naij ≥ φ([x(t)]) ≥ φ(D∞) which yields

d

dt
[v(t)] ≤ −αφ(D∞)[v(t)].

This concludes the proof of (2.15). �

Remark (Global interactions). Proposition 2.4 derives an unconditional consensus under the
assumption of global interaction, namely, according to (2.12) every agent interacts with every
other agent as

aij ≥
1

N
φ(|xi − xj |) ≥

m

N
> 0.

Similarly, the unconditional flocking stated in proposition 2.5 requires global interactions, in the
sense of having an influence function (2.14) which is supported over the entire flock. Indeed,
if the influence function φ is compactly supported, supp{φ} = [0, R], then assumption (2.14)
tells us that

[v(0)] ≤ α
∫ R

[x(0)]
φ(s) ds;

but according to (2.16), α

∫ [x(t)]

[x(0)]
φ(s) ds ≤ [v(0)] and hence the support of φ remains larger

than the diameter of positions, R ≥ [x(t)].

Proposition 2.5 recovers the unconditional flocking results for the C-S model, φ(r) ∝ (1 +
r)−2β, β > 1/2, obtained earlier using spectral analysis, `1-, `2- and `∞-based estimates [37,
61, 18, 60, 22]. The derivations are different, yet they all required the symmetry of the C-S
influence matrix, aij = φij/N . Here, we unify and generalize the results, covering both the
symmetric and non-symmetric scenarios. In particular, we improve here the unconditional
flocking result in the non-symmetric model obtained in [88, theorem 4.1]. Although the tools
are different — notably, lack of conservation of momentum 1

N

∑
i vi(t) in the non-symmetric

case, we nevertheless end up with same condition (2.14) for unconditional flocking.

2.2. Spectral analysis of symmetric models. A more precise description of the concentra-
tion phenomena is available for models governed by symmetric influence matrices, aij = aji,
such as (1.2a) and (1.3a). Set qi = pi − 〈p〉 where 〈p〉 := 1/N

∑
i pi is the average (total

momentum), which thanks to symmetry is conserved in time, ˙〈p〉(t) ∝ ∑ij aij(pi − pj) = 0,

and hence the symmetric system (1.1) reads

d

dt
qi(t) = α

N∑
j=1

aij(qj − qi), qi := pi − 〈p〉.

Let LA := I − A denote the Laplacian matrix associated with A, with ordered eigenvalues
0 = λ1(LA) ≤ λ2(LA) ≤ . . . λN (LA). The following estimate is at the heart of matter (here | · |
denotes the usual Euclidean norm on Rd),
(2.18)

1

2

d

dt

∑
i

|qi(t)|2 = α
∑
i,j

aij〈qj−qi,qi〉 = −α
2

∑
ij

aij |qj−qi|2 ≤−αλ2(LA)
∑
i

|qi(t)|2.

The second equality is a straightforward consequence of A being symmetric; the following
inequality follows from the Courant-Fischer characterization of the second eigenvalue of LA in



12 SEBASTIEN MOTSCH AND EITAN TADMOR

terms of vectors q orthogonal to the first eigenvector 1 = (1, 1, . . . , 1)>,

(2.19) λ2(LA) = min∑
qk=0

〈LAq,q〉
〈q,q〉 ≤

(1/2)
∑

ij aij |qi − qj |2∑
i |qi|2

.

We end up with the following sufficient condition for the emergence of unconditional concen-
tration.

Theorem 2.6 (Unconditional concentration in the symmetric case). Consider the self-organized
model (1.1),(2.1) with a symmetric adjacency matrix A. Then the following concentration es-
timate holds

(2.20) ∨p(t) ≤ exp

(
−α

∫ t

λ2(LA(P(s)))ds

)
∨p(0), ∨2

p(t) :=
1

N

∑
i

|pi(t)− 〈p〉(0)|2.

In particular, if the interactions remain “sufficiently strong” so that
∫∞

λ2(LA(P(s)))ds = ∞,
then there is convergence towards consensus pi(t)→ p∞ = 〈p〉(0).

To apply theorem 2.6, we need to trace effective lower bounds on λ2(LA); here are two
examples which recover our previous results in section 2.1.

Example #1 (revisiting theorem 2.2). If r is the Fiedler eigenvector associated with λN−1(A)
with r ⊥ 1, then (2.7) implies

λN−1(A) =
[Ar]

[r]
≤ sup

p⊥1

[Ap]

[p]
≤ 1− η

A
.

We end up with the following lower bound for the Fiedler number

λ2(LA) = 1− λN−1(A) ≥ 1− (1− η
A

) ≥ η
A
.

Thus, theorem 2.2 is recovered here as a special case of the sharp bound (2.20) in theorem
2.6. The former has the advantage that it applies to non-symmetric models, but as remarked
earlier, is limited to models with global interactions; the latter can address the consensus of
local, connected models, consult section 6 below.

We remark in passing that while theorem 2.2 employs the `∞-based diameter, [p] = [p]∞ =

maxij |pi − pj |, then theorem 2.6 is in fact the corresponding `2-based diameter, [p]22 :=∑
ij |pi − pj |2/(2N) = ∨p.

Example #2 (revisiting propositions 2.4 and 2.5). A straightforward lower bound λ2(LA) ≥
N min aij recovers corollary 2.3,

(2.21) ∨p(t) ≤ exp

(
−α

∫ t

m(s)ds

)
∨p(0), m(t) := min

ij
φ(|xi(t)− xj(t)|),

The characterization of concentration in theorem 2.6 is sharp in the sense that the estimate
(2.18) is. Indeed, it is well known that positivity of the Fiedler number, λ2(LA) > 0, character-
izes the algebraic connectivity of the graph associated with the adjacency matrix A, [53, 87, 29].
Theorem 2.6 places a minimal requirement on the amount of connectivity as a necessary con-
dition for consensus1. There are many characterizations for the algebraic connectivity of static
graphs [29, 45, 53, 54, 56, 86, 87, 95]. In the present context of self-organized dynamics (1.1),
however, the dynamics of ṗ = α(Ap − p) dictates the connectivity of A = A(P(t)), which in

1We ignore possible cases in which the self-organized dynamics may regain connectivity under “cluster dy-
namics”, namely, agents separated into disconnected clusters and merging into each other at a later stage.
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turn, determines the clustering behavior of the dynamics, due to the nonlinear dependence,
A = A(P(t)). Thus, the intricate aspect of the self-organized dynamics (1.1) is tracing its
algebraic connectivity over time through the self-propelled mechanism in which the nonlinear
dynamics and algebraic connectivity are tied together. This issue will be explored in the next
sections, dealing with clustering driven by local interactions.

3. Local interactions and clustering

In this section we consider the self-organized dynamics (1.1) of a “crowd” of N agents,
P = {pi}Ni=1 which does not interact globally: entries in their adjacency matrix may vanish,
aij ≥ 0. The dynamics is dictated by local interactions and its large time behavior leads to
the formation of one or more clusters.

3.1. The formation of clusters. A cluster C is a connected subset of agents, {pi}i∈C , which
is separated from all other agents outside C, namely

#1. aij 6= 0 for all i, j ∈ C; and #2. aij = 0 whenever i ∈ C and j /∈ C.
The important feature of such clusters is their self-contained dynamics in the sense that

d

dt
pi = α

∑
j∈C

aij(pj − pi),
∑
j∈C

aij = 1, i ∈ C.

The dynamics of such self-contained clusters is covered by the concentration statements of
global dynamics in section 2. In particular, if cluster C(t) remains connected and isolated for
sufficiently long time, then its agents will tend to concentrate around a local consensus,

pi(t)
t→∞−→ p∞C , for all i ∈ C.

The intricate aspect, however, is the last if statement: the evolution of agents in a cluster C
may become influenced by non-C agents, and in particular, different clusters may merge over
time.

In the following, we fix our attention on the particular models for opinion and flocking dynam-
ics, expressed in the unified framework (1.4),

(3.1a)
d

dt
pi = α

N∑
j=1

aij(pj − pi), aij = aij(x) =
1

σi
φ(|xi − xj |);

Recall that p 7→ x in opinion dynamics, p 7→ ẋ in flocking dynamics, and σi is the degree,

(3.1b)


σi = N, symmetric model,

σi =
∑

j 6=i φ(|xi − xj |), non symmetric model.

We assume that the influence function φ is compactly supported

(3.2) Supp{φ(·)} = [0, R].

A cluster C = C(t) ⊂ {1, 2, . . . , N} is dictated by the finite diameter of the influence function
φ such that the following two properties hold:

#1. max
i,j∈C(t)

|xi(t)− xj(t)| ≤ R; and #2. min
i∈C(t),j /∈C(t)

|xi(t)− xj(t)| > R.

When the dynamics is global, R� [x(0)], then the whole crowd of agents can be considered
as one connected cluster. Here we consider the local dynamics when R is small enough relative
to the active diameter of the global dynamics: R < [x(0)] in the opinion dynamics (1.2), or
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R < D∞ in the flocking dynamics (1.3). The statements of global concentration towards a
consensus state asserted in propositions 2.4 and 2.5 do not apply. Instead, the local dynamics
of agents leads them to concentrate in one or several clusters — consult for example, figures
1.1 and 3.3, 5.2 below. Our primary interest is in the large time behavior of such clusters.
The generic scenario is a crowd of agents which is partitioned into a collection of clusters,
Ck, k = 1, . . .K, such that either |pi(t)− pj(t)| t→∞−→ 0, if i, j ∈ Ck ↔ |xi(t)− xj(t)| ≤ R

or |xi(t)− xj(t)| > R, if i ∈ Ck, j ∈ C`, k 6= `.

In this context, we raise the following two fundamental questions.

Question #1. Identify the class of initial configurations, P(0), which evolve into finitely
many clusters, Ck, k = 1, . . .K. In particular, characterize the number of such clusters K for
t� 1.

Question #2. Assume that the initial configuration P(0)) is connected. Characterize the
initial configuration P(0) which evolve into one cluster, K(t) = 1 for t � 1, namely, the
question of emerging of consensus in the local dynamics.

A complete answer to these questions should provide an extremely interesting insight into
local processes of self-organized dynamics, with many applications. In the next two sections
we provide partial answers to these questions. We begin with the first result which shows that
if the solution of (3.1) has bounded time-variation then it must be partitioned into a collection
of clusters.

Proposition 3.1 (Formation of clusters). Let P(t) = {pk(t)}k be the solution of the opinion
or flocking models (3.1) with compactly supported influence function Supp{φ(·)} = [0, R), and
assume it has a bounded time-variation

(3.3)

∫ ∞
|ṗi(s)|ds <∞.

Then P(t) approaches a stationary state, p∞, which is partitioned into K clusters, {Ck}Kk=1,

such that {1, 2, . . . , N} = ∪Kk=1Ck and

(3.4)


either pi(t) −→ p∞Ck as t→∞, for all i ∈ Ck,

or |xi(t)− xj(t)| > R for t� 1, if i ∈ Ck, j ∈ C`, k 6= `.

Remark. Observe that if the solution decays fast enough — in particular, if p(t) decays ex-

ponentially fast, |pi(t)− p∞i | . e−C(t−t0), t ≥ t0 > 0 (as in the unconditional consensus and
flocking of global interactions discussed in section 2), then it has a bounded time-variation.

Proof. Assumption (3.3) implies

|pi(t2)− pi(t1)| ≤
∫ t2

t1

|ṗi(s)|ds� 1 for t2 > t1 � 1,

hence each agent approaches its own stationary state, pi(t)
t→∞−→ p∞i . We claim that ṗi(t)

t→∞−→
0. To this end, we distinguish between the two cases of first-order opinion dynamics and
second-order flocking dynamics. In opinion dynamics, p 7→ x: since the expression of the right
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of (3.1),

(3.5) ṗi(t) =
α

σi(t)

∑
j

φ(|xi(t)− xj(t)|)(pi(t)− pj(t)), σi(t) =
∑
j

φ(|xi(t)− xj(t)|),

has a limit (involving p∞i = x∞i ), it follows that limt→∞ ṗi(t) exists and by (3.3) it must be
zero, ṗi(t) → 0. In the case of flocking dynamics, p 7→ ẋ, and there are two types of pairs
of agents (i, j): either they have the same limiting “velocity”, p∞i − p∞j = 0, and since φ is
bounded,

φ(|xi(t)− xj(t)|)(pi(t)− pj(t))
t→∞−→ 0;

or — if p∞i − p∞j 6= 0 then,

(3.6) |x∞i − x∞j | & |p∞i − p∞j |t > R, t� 1,

and hence

φ(|xi(t)− xj(t)|)(pi(t)− pj(t)) = 0, t� 1.

In either case, the expression on the right of (3.5) vanishes as t→∞.
Now, take the scalar product of (3.5) against pi and sum,

(3.7)
∑
i

σi〈ṗi,pi〉 = α
∑
ij

φij〈pj − pi,pi〉 ≡ −
α

2

∑
ij

φij |pj − pi|2.

Since pi ∈ Ω(0), σi ≤ N are uniformly bounded and ṗi(t) → 0 on the left, it follows that the
expression on the right tends to zero. In opinion dynamics (p 7→ x) we can pass to the limit
on the expression on the right which yields

(3.8) φ(|x∞i − x∞j |)|p∞i − p∞j |2 = 0, for all i, j ≤ N.

Thus, if |x∞i − x∞j | > R, then agents i and j are in separate clusters. Otherwise, when they

are in the same cluster, say i, j ∈ Ck so that |x∞i − x∞j | < R, then φ(|x∞i − x∞j |) > 0 and by

(3.8) they must share the same stationary state, p∞i = p∞j =: p∞Ck , that is, (3.4) holds. In the

case of flocking dynamic, p 7→ ẋ, we either have one type of pairs, |pi(t) − pj(t)| t→∞−→ 0 or a
second type of pairs, (3.6), namely, (3.4) holds. �

We now turn our attention to the number of clusters, K.

3.2. How many clusters? Note that if p∞ = (p∞1 , . . . ,p
∞
N )> be a stationary state of (3.1)

then p∞ is an eigenvector associated with the nonlinear eigenvalue problem,

A(x∞)p∞ = p∞,

corresponding to the eigenvalue λN (A(x∞)) = 1. Actually, the number of stationary clusters
can be directly computed from the multiplicity of leading spectral eigenvalues of λN (A(x∞)).

Proposition 3.2. Assume that the crowd of N agents {pi(t)}Ni=1 is partitioned into K clusters,

{1, 2, . . . , N} = ∪K(t)
k=1 Ck. Then, the number of clusters, K = K(t), equals the geometric

multiplicity of λN (A(x(t)) = 1,

(3.9) K(t) = {#λN (A(x(t)) | λN (A(x(t)) = 1} .
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Proof. We include the rather standard argument for completeness. Suppose that the dynamics

of (3.1) at time t consists of K = K(t) clusters, ∪K(t)
k=1 Ck. Define the vector rk = (rk1 , . . . , r

k
N )>

such that:

rkj =

{
1 if j ∈ Ck
0 otherwise

.

We obtain (
Ark

)
i

=
∑
j

aijr
k
j =

∑
j∈Ck

aij .

Using the fact that A is a stochastic matrix and that aij = 0 if xi and xj are not in the same
cluster, we deduce ∑

j∈Ck

aij =

{
1 if i ∈ Ck
0 otherwise

}
= rki ,

and therefore Ark = rk. Thus, associated with each cluster Ck, there is an eigenvector rk

corresponding to λN (A) = 1. To conclude the proof, we have to show that there are no other
vectors r satisfying Ar = r. Indeed, assume that Ar = r,∑

j

aijrj = ri for any i.,

Fix a cluster Ck. Then for any p ∈ Ck we have∑
j∈Ck

apjrj = rp for any p ∈ Ck.

Denote by rq the maximal entry of rj ’s on the left, corresponding to some q ∈ Ck: since∑
j∈Ck apj = 1 with apj > 0, we deduce that for any p ∈ Ck we have rp =

∑
apjrj ≤

∑
apjrq =

rq. Thus, the entries of r are constant on the cluster Ck, so that r ∝ rk. �

3.3. Numerical simulations with local dynamics. We illustrate the emergence of clusters
with one- and two-dimensional simulations of the opinions dynamics model (1.2b),

(3.10)
d

dt
xi =

∑
j

φij∑
k φik

(xj − xi), xi(t) ∈ Rd.

The influence function, φ, was taken as the characteristic function of the interval [0, 1]: φ(r) =
χ[0,1], and we use the Runge-Kutta method of order 4 with a time step of ∆t = .05, for the
time discretization of the system of ODEs (3.10).

As a first example, we run a simulation of the one-dimensional opinion model, d = 1, subject
to initial configuration of N = 100 agents uniformly distributed on the interval [0, 10]. In the
figure 3.1 (Left), we plot the evolution of the opinions xi(t) in time. We observe the formation
of 4 clusters after 15 unit time. The histogram of the distribution of agents at the final time
t = 40 (figure 3.1 right) shows that the distance between the clusters is greater than 1 as
predicted by proposition 3.1. We also observe that the number of opinions contained in each
cluster differs (respectively 35, 14, 31 and 20 agents). Indeed, the larger cluster at x ≈ 2 with
35 opinions is a merge between 3 branches (figure 3.1) with one branch in the middle connecting
the two external branches. When the two external branches finally connect at t ≈ 8.5 (their
distance is less than 1), we observe an abrupt change in the dynamics following by a merge of
the 3 branches into a single cluster.

To analyze the cluster formation, we also look at the evolution of the eigenvalues of the
matrix of interaction A(x(t)) in (3.10), aij = φij/

∑
k φik. In the figure 3.2, we represent the
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Figure 3.1. The opinion model (1.2b) with M = 100 agents and φ = χ[0,1] (Left

figure) and the histogram of the distribution of xi at t = 40 unit time (Right figure).

We observe the formation of 4 clusters separated by a distance greater than 1.

evolution of the 8 first eigenvalues of the matrix A. From t = 0 to t ≈ 3.5, we observe that
the 4 first eigenvalues converge to 1 which counts for the fact that only 4 clusters remains at
this time. Then the matrix A(x(t)) remains constant in time from t ≈ 3.5 to t ≈ 8.5. At
t ≈ 8.5, two branches (see figure 3.1) re-connect, and the two eigenvalues λ5 and λ6 equal
zero. This confirms proposition 3.2 where the additional multiplicity of the spectral eigenvalue
λN (A(x(t)) = 1, indicates the formation of a new cluster.
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Figure 3.2. Absolute values of the eigenvalues of the matrix A (3.10) during the

simulation given in figure 3.1. The number of eigenvalues equal to 1 corresponds to the

number of clusters.

Next we turn to illustrate the dynamics of the two-dimensional, d = 2, opinion model
(1.2b). With this aim, we run the model starting with an initial condition of N = 1000 agents
distributed uniformly on the square [0, 10]× [0, 10]. We present, in figure 3.3, several snapshots
of the simulations at different time (t = 0, 2, 4, 6, 12 and 30 unit time). As in the 1D case,
we first observe a fast transition to a cluster formation (from t = 0 to t = 6). However at
time t = 12, the dynamics does not have yet converged to a stationary state, we observe at
the upper-left that three branches are at distance less than 1. This scenario is similar to the
one observed in figure 3.1 with the apparition of 3 branches. At t = 30, the three clusters at
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the upper left have finally merged and the system has reached a stationary state: each cluster
it at distance greater than 1 from each other.

4. K = 1: uniform connectivity implies consensus

The emergence of a consensus in the opinion or flocking models (1.4) implies that the
underlying graph associated with the dynamics must remain connected, namely |xi(t)−xi(t)| �
R at least for t � 1. In this section we discuss the converse statement, namely, that uniform
connectivity implies consensus. The implication of consensus in the symmetric case is based
on a straightforward application of algebraic connectivity and is outlined in section 4.1. The
corresponding question of consensus in non-symmetric connected models is carried out in
section 4.2 using an energy method. We emphasize that consensus in both cases depend on
the time-dependent behavior of intensity of connectivity, beyond the mere graph connectivity.
Recall that the graph associated with (1.1), GA := (P, A(P)), is connected if every two agents
pi(t) and pj(t) are connected through a path Γij := {k1 = i < k2 < . . . < kr = j} of length
rij ≤ N . We measure the uniform connectivity by its “weakest link”.

Definition (Uniform connectivity). The self-organized dynamics (1.1) is connected if there
exists µ(t) > 0 such that for all paths Γij,

(4.1) min
k`∈Γij

ak`,k`+1
(P(t)) ≥ µ(t) > 0, for all i, j.

In particular, if µ(t) ≥ µ > 0 then we stay that P(t) is uniformly connected.

Alternatively, uniform connectivity of (1.1) requires the existence of µ = µA > 0 independent
of time, such that (

AN (P(t))
)
ij
≥ µN > 0.

4.1. Consensus in local dynamics – symmetric models. We consider the symmetric
dynamics (1.1) with associated graph GA := (P, A(P)). Fix the positions of any two agents
pi(t) and pj(t) and their (shortest) connecting path Γij of length rij . Thus, rij measures
the degree of separation between agents (i, j), and if we let the maximal degree of separation
denote the diameter of the graph, diam(GA) := maxij rij , then

|pi − pj |2 ≤ diam(GA)
∑
k`∈Γij

|pk`+1
− pk` |2, diam(GA) ≤ N.

By uniform connectivity µ ≤ ak`+1,k` along each path and hence

(4.2)
µ

diam(GA)
|pi − pj |2 ≤

∑
k`∈Γij

ak`+1,k` |pk`+1
− pk` |2 ≤

∑
ij

aij |pi − pj |2,

and summation over all pairs yields
µ

diam(GA)

∑
ij

|pi − pj |2 ≤ N2
∑
ij

aij |pi − pj |2.

Now we recall our notation qi := pi − 〈p〉: invoking (2.19) we find,

(4.3) λ2(LA) = min∑
qk=0

〈LAq,q〉
〈q,q〉 = min

p

(1/2)
∑

ij aij |pi − pj |2
(1/2N)

∑
ij |pi − pj |2

≥ µ

Ndiam(GA)
.

Thus, the scaled connectivity factor µ/(Ndiam(GA)) ≥ µ/N2 serves as a lower bound for
the Fiedler number associated with the symmetric dynamics of (1.1) (counting the number of
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Figure 3.3. Simulation of the opinion model (1.2b) in 2D with M = 1000 agents

and φ = χ[0,1]. The dynamics converges to a cluster formation (17 clusters) with each

cluster separated by a distance greater than 1.
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“maximal” edges, yields the slightly sharper lower bound λ2 ≥ 4µ/N2, [87]).
Using theorem 2.6 we conclude the following.

Theorem 4.1 (Connectivity implies consensus: the symmetric case). Let P(t) = {pk(t)}k be
the solution of a symmetric self-organized dynamics

d

dt
pi(t) = α

∑
j 6=i

aij(P(t))(pj(t)− pi(t)), aij = aji.

If P(t) remains connected in time with “sufficiently strong” connectivity µA(P(s)) > 0, then it
approaches the consensus 〈p〉(0), namely,

∨p(t) . exp

(
− α

N2

∫ t

0
µA(P(s))ds

)
∨p(0), ∨2

p(t) :=
1

N

∑
|pi(t)− 〈p〉(0)|2.

In particular, if P(t) remains uniformly connected in time, (4.1), then it approaches an emerg-
ing consensus, pi(t)→ p∞ = 〈p〉(0) with a convergence rate,

(4.4) ∨p(t) . e
−α µ

N2
t
∨p(0) .

It is important to notice that theorem 4.1 requires the intensity of connectivity to be suffi-
ciently strong: connectivity alone, with a rapidly decaying µ(t), is not sufficient for consensus
as illustrated by the following.
Counterexample. Consider the symmetric dynamics (1.2a) with 5 agents, x1, . . . , x5, subject
to initial configuration

(4.5) x1(0) = −x5(0), x2(0) = −x4(0), x3(0) = 0,

with (x4(0),x5(0)) to be specified below inside the box D := {1
2 < x4 < 1 < x5 <

3
2}. We fix

the influence function φ(r) = (1 + r)2(1 − r)2χ[0,1], compactly supported on [0, 1]; note that
φ′(0) = φ′(1) = 0. By symmetry, the initial ordering in (4.5) is preserved in time. In particular,
x3(t) ≡ 0, and (x4(t),x5(t)) 7→ (x(t), y(t)) preserve the original ordering, 1

2 < x(t) < 1 < y(t),
the symmetric opinion dynamics (1.2a) (with α = 5 for simplicity), is reduced to

(4.6)
ẋ = −φ(|x|)x+ φ(|y − x|)(y − x)
ẏ = φ(|x− y|)(x− y)

An equilibrium for the system is given by x = y = 1. The eigenvalues of the linearized system
at (1, 1) are λ1 = 0 and λ2 = −2, therefore the equilibrium is unstable. We would like to prove
that there exists an initial condition (x(0), y(0)) close to (1, 1) which converges toward this
unstable equilibrium. We use for that a variant of the antifunnel theorem [68].

We study the phase portrait of the dynamical system (4.6) close to the unstable equilibrium
(1, 1). Take ε such that 0 < ε < 1

2 and consider the 3 curves (see figure 4.1):

α(s) = (2− s, s), β(s) = (1, s) for s ∈ (1, 1 + ε]

γ(s) = (2− s, 1 + ε) for s ∈ [1, 1 + ε]

We denote by Dε the domain enclosed by the 3 curves:

Dε = {2− y ≤ x ≤ 1 , 1 < y ≤ 1 + ε}.
Notice that on the domain Dε, we have ẏ < 0. Thus, given a solution of (4.6) starting on γ,
there are 3 possibilities: the solution exits the domain passing through the curves α, or it exits
passing through β or it converges to the equilibrium (1, 1).
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Figure 4.1. Left: a solution of the symmetric model that stays connected but
does not converge to a consensus. Right: in phase space, the counter example
is a solution that stays in the antifunnel formed by the curve α and β.

To prove the existence of solutions in the third category, we notice that the curves α and β
form an antifunnel for the dynamical system. Starting on the curve β, since ẋ > 0, the solution
exits the domain Dε (see figure 4.1). Similarly, on the curve α, since ẋ < ẏ, the solution exits
the domain Dε as well.

We denote by γα the set of initial conditions contained in γ such that the solution exits
through α. The set γa is non-empty since (1 − ε, 1 + ε) ∈ γa. Moreover, using the same
arguments as in [68], we find out that γα is open. Similarly, we denote by γβ ⊂ γ the set of
initial conditions such that the solution exits through β and we deduce that γβ is open and
non-empty. Since γα ∩ γβ = ∅, by connectivity of the set γ, there exists (x∗, y∗) which does
not belong to γα ∪ γβ. Thus, the solution (x(t), y(t)) starting from (x∗, y∗) stays in between α
and β:

2− y(t) ≤ x(t) ≤ 1 , 1 ≤ y(t) ≤ 1 + ε, for all t ≥ 0.

Since y(t) is decreasing and lower bounded, y(t) converges: y(t)
t→∞−→ y∞. Moreover, the

solution (x(t), y(t)) is globally Lipschitz, thus ẏ converges to zero. Then, combining (4.6) with

φ(|y(t) − x(t)|)≥m> 0, we deduce that x(t)
t→∞−→ y∞. Since there is only one equilibrium in

the domain Dε, we necessarily have y∞ = 1, and therefore (x(t), y(t))
t→∞−→ (1, 1).

4.2. Consensus in local non-symmetric opinion dynamics. Next we turn to consider
the question of consensus for the non-symmetric opinion model (1.2b).

Theorem 4.2 (Connectivity implies consensus: non-symmetric opinion dynamics). Let P(t) =
{pk(t)}k be the solution of the non-symmetric opinion dynamics (1.2b) with compactly sup-
ported influence function, Supp{φ(·)} = [0, R),

σi
d

dt
xi(t) = α

∑
j

φij(xi(t)− xj(t)), σi =
∑
k

φik.
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If P(t) remains uniformly connected in time in the sense that each pair of agents (i, j) is
connected through a path Γij such that2

min
k`∈Γij

φ(|xk` − xk`+1
|) ≥ µ > 0, for all i, j,

then it has bounded time-variation and consequently, P(t) approaches an emerging consensus,
xi(t)→ x∞ with a convergence rate,

(4.7) |xi(t)− x∞| . e−αm(t−t0)[x(0)], m = min
r≤R/2

φ(r) > 0.

Proof. We introduce the energy functional,

(4.8a) E(t) := α
∑
i,j

Φ(|xj(t)− xi(t)|), Φ(r) :=

∫ r

s=0
sφ(s)ds,

which is decreasing in time,

d

dt
E(t) = α

∑
i,j

φij〈ẋj − ẋi , xj − xi〉 = −2α
∑
i,j

φij〈ẋi , xj − xi〉(4.8b)

= −2
∑
i

〈ẋi , α
∑
j 6=i

φij (xj − xi)〉 = −2
∑
i

σi|ẋi|2 ≤ 0.

To upperbound the expression on the right of (4.8a), sum (1.2b) against xi to find,

α

2

∑
i,j

φij |xi − xj |2 = −α
∑
i,j

φij〈xi − xj ,xi〉 =
∑

σi〈xi, ẋi〉(4.9)

≤
√∑

i

σi|xi|2
√∑

i

σi|ẋi|2 ≤ N max
i
|xi(0)|

√∑
i

σi|ẋi|2.

We end up with the energy decay

(4.10)
d

dt
E(t) ≤ −1

2
α2C2

0

∑
i,j

φij |xi − xj |2
2

, C0 =
1

N maxi |xi(0)| .

Hence, since ∫ ∞∑
i,j

φij(t)|xi(t)− xj(t)|2
2

dt <
2

α2C2
0

E(0) <∞,

the sum
∑

i,j φij(t)|xi(t)−xj(t)|2 must become arbitrarily small at some point of time, namely,
there exists t0 > 0 such that

(4.11)
∑
i,j

φij(t0)|xi(t0)− xj(t0)|2 ≤ µ

4N
R2,

and by uniform connectivity, consult (4.2),

(4.12)
µ

N
|xi(t0)− xj(t0)|2 ≤

∑
k`∈Γij

φk`,k`+1
(t0)|xk`(t0)− xk`+1

(t)|2 ≤ µ

4N
R2.

2Observe that here we measure connectivity in terms of the influence function φij rather than the adjacency
matrix, aij as (4.1); the two are equivalent up to obvious scaling of the degree σi.
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Thus, the dynamics at time t0 concentrate so that its diameter, [x(t0)] = maxi,j |xi(t0) −
xj(t0)| ≤ R/2, and since [x(·)] is non-increasing in time, [x(t)] ≤ R/2 thereafter. Arguing
along the lines of proposition 2.4, we conclude that there is an exponential time decay,

Naij ≥ φ(|xi(t)− xj(t)|) ≥ min
r≤[x(t)]

φ(r) ≥ min
r≤R/2

φ(r) = m, t > t0,

and consensus follows from corollary (2.3). �

The decreasing energy functional E(t) can be used to estimate the first “arrival” time of
concentration t0. To this end, observe that:

Φ(|xj − xi|) =

∫ |xj−xi|

s=0
sφ(s)ds ≤M

∫ |xj−xi|

s=0
sds = M

|xj − xi|2
2

, M := max
r
φ(r).

Using the assumption of uniform connectivity, there exists µ > 0 and a path Γij such that:

|xj − xi|2 ≤
N

µ

∑
k`∈Γij

φk`,k`+1
|xk`+1

− xk` |2 ≤
N

µ

∑
ij

φi,j |xj − xi|2.

Combining the last two inequalities, we can upperbound the energy E :

E =
∑
ij

Φij ≤
MN3

4µ

∑
ij

φi,j |xj − xi|2.

Hence, (4.10) implies the Riccati equation

d

dt
E(t) ≤ −1

2
α2C2

0

(
4µ

MN3
E
)2

= −Cµ
2

N6
E2,

which shows the energy decay

E(t) .
1

1 +
Cµ2t

N6

.

Thus, the arrival time of concentration t0 (4.11) is at most of the order of O(N7/µ3). This
bound on the first arrival time can be improved.3

We close this section by noting the lack of a consensus proof for our non-symmetric model
of flocking dynamics (1.3b) is due to the lack of a proper decreasing energy functional.

5. Heterophilious dynamics enhances consensus — simulations

As we noted earlier, the large-time behavior of local models for self-organized dynamics
depend on the details of the interactions, {aij}, and in the particular case of local models
(3.1), on the profile of the compactly supported influence function φ. Here we explore how the
profile of φ dictates cluster formation in the opinion dynamics model (1.2b). The numerical
simulations presented in this section leads to the main conclusion that an increasing profile of
φ reduces the number of clusters {Ck}Kk=1. In particular, if the profile of φ is increasing fast
enough, then K = 1; thus, heterophilious dynamics enhances the emergence of consensus.

3In fact, the energy E(t) decays exponentially in time.
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In the following, we employ a compactly supported influence function φ which is a simple
step function,

(5.1) φ(r) =


a for r ≤ 1√

2

b for 1√
2
< r ≤ 1

0 for r > 1.

The essential quantity here is the ration b/a which measures the balance between the influence
of “far” and “close” neighbors (see figure 5.1). We initiate the opinion dynamics (1.2b) with
random initial configuration {xi(0)}i.

0 1

φ

b

a

1√
2

Figure 5.1. Influence functions φ used in the simulations. The larger b/a is, the

more heterophilious is the dynamics.

5.1. 1D simulations. We begin with four simulations of the 1D opinion dynamics (1.2b)
subject to 100 opinions distributed uniformly on [0, 10], the same initial configuration as in
figure 3.1. To explore the impact of the influence step function (5.1) on the dynamics, we
used four different ratios of b/a = .1, 1, 2 and 10. As b/a increases, we reduce the influence of
the closer neighbors and increase the influence of neighbors further away; thus, increasing b/a
reflects the tendency to “bond with the other”. As observed in figure 5.2, the increase in the
ratio b/a = .1, 1, 2 and 10, reduces the corresponding number of limit clusters to K = 6, 4, 2,
and for b/a = 10, the dynamics converged to a consensus, K = 1. The simulations of figure
5.2 indicate that reducing the influence of closer neighbors and hence increasing the weight for
the influence of neighbors further away, will favor increased connectivity and the emergence of
consensus.

To make a systematic analysis of the cluster formation dependence on the ratio b/a, we
made several simulations with random initial conditions for a given ratio b/a. Then we make
an average of the number of clusters, denoted by 〈S〉, at the end of each simulation (t = 100).
To compute the number of clusters, we estimate the number of connected components of the
matrix A (3.10) using a depth-first search algorithm. As observed in figure 5.3, the number of
clusters 〈S〉 decreases as b/a increases. Moreover, 〈S〉 approaches 1 when b/a approaches 10,
implying that a consensus is likely to occur when b/a is large enough.

5.2. Clusters and branches. We revisit the opinion model (1.2b) with an influence step
function (5.1). As noted before, the increasing value of b/a increases the probability to reach a
consensus. The simulations in figure 5.2 with b/a = 2 and with b/a = 10, show the apparition
of branches, where subgroups of agents have converged to the same opinion yet, in contrast to
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Figure 5.2. Simulation of the opinion dynamics model with different interacting

function φ. When the influence of close neighbors is reduced (i.e. b/a large), the

number of cluster decreases. For b/a = 10, the dynamics converges to a consensus.

clustering, these branches of opinions are still interacting with outsiders, which are in distance
which is strictly less than R = 1. In particular, when b/a = 10, the distribution of opinions
{xi(t)}i, aggregate to form distinct branches seen in figure 5.2: at t ∼ 5, one can identify in
figure 5.4, the formation of 10 branches which are separated by a distance of approximately .7
spatial units. Since the distance between two such branches is always less than the diameter
R = 1 of φ, these branches are not qualified as isolated clusters, as they continue to be
influenced by “outsiders” from the nearby branches. Over time, these branches merge into
each other before they emerge into one final cluster, the consensus, at t ∼ 33. Thus, the
decisive factor in the consensus dynamics is not the number of branches but their large time
connected components. Indeed, figure 5.2 with b/a = 10, shows that the agents in the different
branches remain in the same connected component at distance ∼ .7, corresponding to the
discontinuity of φ(·), which experience a jump from .1 to 1 at 1/

√
2 ≈ .7.
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Figure 5.3. Average number of clusters 〈S〉 depending on the ratio b/a (Left figure).

The larger b/a is, the fewer the number of clusters. The decay is logarithmic on [1, 10]

(Right figure). For each value of b/a, we run 100 simulations to estimate the mean

number of clusters 〈S〉. Simulations are run with ∆t = .05 and a final time equals to

t = 100 unit time.

To illustrate the apparition of the distance 1/
√

2 between two nearest branches, we repeat
the simulations, this time with special initial configurations where all the opinions are uniformly
spaced with |xi+1 − xi| = d∗ with 0 < d∗ < 1. As we observe in figure 5.5, the agents {xi}i
readjust their “opinion” such that the distance between nearest neighbors |xi+1−xi| approaches
1/
√

2 as t� 1.
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Distribution of opinions xi at t = 5

Figure 5.4. The distribution of {xi}i in the simulation of figure 5.2 with b/a = 10

at time t = 5. The distance between two picks of density is around 1/
√

2 ≈ .7 space

unit. This distance corresponds to the discontinuity of the function φ(r).

5.3. 2D simulations. We made several 2D simulations with different influence functions φ.
As a first illustration, we made a 2D simulation with the same initial configuration used in
figure 3.3, but this time we used the influence step function φ in (5.1) with b/a = 10. In figure
5.6, one can observe a concentration phenomenon (from t = 0 to t = 2.5) — the opinions
aggregate into 5 final clusters, compared with the 17 clusters observed in figure 3.3 with the
influence function φ = χ[0,1]. Thus, as in the 1D case, a more heterophilious influence function
increases the clustering effect.
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figure) and |xi+1−xi| = .6 (Right figure). Nearest neighbor readjust their distance to

1/
√

2 ≈ .7 unit space, we observe a concentration of the trajectories in the left figure

and a spread of the trajectories in the right figure.

We also estimate the average number of clusters 〈S〉 depending on the ratio b/a. As observed
in figure 5.7, 〈S〉 is a decreasing function of b/a and once again the decay of 〈S〉 as a function
of b/a ∈ [0, 10] is logarithmic.

6. Heterophilious dynamics with a fixed-number of neighbors

Careful observations of startling flocks led the Rome group [25, 26, 27] to the fundamental
conclusion that their dynamics is driven by local interaction with a fixed number of nearest
neighbors. This motivates our study of nearest neighbor models for opinion dynamics which
take the form

(6.1a)
d

dt
xi = α

∑
{j: |j−i|≤q}

φij
σi

(xj − xi), xi ∈ Rd,

where the degree σi is given by one of two forms, depending on the symmetric and non-
symmetric version of the opinion dynamics in (1.2)

(6.1b)


the symmetric case : σi =

1

2q

the nonsymmetric case : σi =
∑

{j:|j−i|≤q}

φij .

Thus, each agent i is assumed to interact only with its 2q agents i− q, . . . , i+ q. Typically,
q is small (the observation in [25, 26, 27] report on six to seven active nearest neighbors).
We analyze the connectivity of the particular case of two nearest neighbors, q = 1. Here we
prove that such local models preserve connectivity and hence converge to a consensus provided
the influence function φ is increasing. This result supports our findings in section 5 that
heterophilious dynamics is an efficient strategy to reach a consensus.

6.1. A fixed-number of neighbors with global influence function. We begin by noting
that the different approaches for consensus of global models apply in the present framework of
local nearest neighbor models (6.1). For example, consider the non-symmetric nearest neighbor



28 SEBASTIEN MOTSCH AND EITAN TADMOR

0

2

4

6

8

10

0 2 4 6 8 10

Opinions xi at t = 0

0

2

4

6

8

10

0 2 4 6 8 10

Opinions xi at t = 2.5

0

2

4

6

8

10

0 2 4 6 8 10

Opinions xi at t = 5

0

2

4

6

8

10

0 2 4 6 8 10

Opinions xi at t = 10

0

2

4

6

8

10

0 2 4 6 8 10

Opinions xi at t = 15

0

2

4

6

8

10

0 2 4 6 8 10

Opinions xi at t = 30

Figure 5.6. The heterophilious effect: diminishing the influence of close neigh-

bors relative to those further away, increases the clustering effect. 2D simulation

of the opinion model (1.2b) with M = 1000 agents using a step influence function

φ = .1χ[0,1/
√
2] + χ[1/

√
2,1] leads to 5 clusters which remains at the end of the simula-

tion. This should be compared with 17 clusters with φ = χ[0,1] (see figure 3.3).
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is logarithmic on [1, 10] (Right figure). For each value of b/a, we made 100 simulations
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model

(6.2) σi
d

dt
xi = α

∑
{j:|j−i|≤q}

φij(xj − xi), σi =
∑

{j:|j−i|≤q}

φij .

It admits an energy functional,

E(t) := α
∑

{i,j:|i−j|≤q}

Φ(|xj(t)− xi(t)|), Φ(r) :=

∫ r

s=0
sφ(s)ds,

which is decreasing in time, E(t) ≤ E(0) and we conclude

Theorem 6.1. (Global connectivity) Consider the nearest neighbor model (6.2) with an influ-
ence function φ, Supp{φ(·)} = [0, R) and assume αΦ(R) > E(0). Then min|i−j|≤q φij(t) > m∞
where m∞ := minr<R φ(r). Hence, the nearest neighbor dynamics (6.2) remains connected and
consensus follows.

Proof. Since E is decreasing in time,

αΦ(|xi(t)− xj(t)|) < E(0) ≤ αΦ(R) for any |i− j| ≤ q,

and since Φ(r) =
∫ r
sφ(s)ds is an increasing function, |xi(t) − xj(t)| < R, hence φij > m∞

and consensus follows. �

We note, however, that since m∞ ≤ φ ≤ 1, then Φ(r) has a quadratic bounds, m∞r
2 ≤

2Φ(r) ≤ r2, and hence the assumption made in theorem 6.1 implies

αΦ(R) > E(0)  R2 > m∞
∑
|i−j|≤q

|xi − xj |2.

Namely, the support of φ should be sufficiently large to cover a globally connected path in
phase space.
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6.2. Two-neighbor dynamics. In this section we prove uniform connectivity and hence con-
vergence to a consensus of a symmetric two nearest neighbor model, (6.1),
(6.3)
d

dt
xi =

α

2

(
κi+ 1

2
(xi+1 − xi) + κi− 1

2
(xi−1 − xi)

)
, κi+ 1

2
:=

{
0, i = 0, N
φ(|xi+1 − xi)|), 1 ≤ i ≤ N.

We assume that the initial configuration of agents can be enumerated such that {xi(0)}i is
connected

(6.4) max
i
|xi+1(0)− xi(0)| < R, Supp{φ(·)} = [0, R).

The configuration of such “purely” local interactions applies to the one-dimensional setup
where each agent is initially connected to its left and right neighbors; we emphasize that these
configurations are not necessarily restricted to the one dimensional setup.

Forward differencing of (6.3) implies that ∆i+ 1
2

:= ∆i+ 1
2
(t) := xi+1(t)− xi(t) satisfy

d

dt
∆i+ 1

2
=

α

2

(
κi+ 3

2
(xi+2 − xi+1) + κi+ 1

2
(xi − xi+1)− κi+ 1

2
(xi+1 − xi)− κi− 1

2
(xi−1 − xi)

)
=

α

2

(
κi+ 3

2
∆i+ 3

2
− 2κi+ 1

2
∆i+ 1

2
+ κi− 1

2
∆i− 1

2

)
, i = 1, 2, . . . , N − 1.

The missing ∆’s for i = 1
2 and i = N + 1

2 are defined as ∆ 1
2

= ∆N+ 1
2

= 0. Let ∆p+ 1
2

denote

the maximal difference, |∆p+ 1
2
| = maxi |∆i+ 1

2
| measured in the `2-norm. Then

1

2

d

dt
|∆p+ 1

2
|2 =

α

2

(
κp+ 3

2
〈∆p+ 3

2
,∆p+ 1

2
〉 − 2κp+ 1

2
|∆p+ 1

2
|2 + κp− 1

2
〈∆p− 1

2
,∆p+ 1

2
〉
)

≤ α

2

(
κp+ 3

2
− 2κp+ 1

2
+ κp− 1

2

)
|∆p+ 1

2
|2.

Now, if φ is non-decreasing influence function, then

|∆p+ 1
2
| ≥ |∆i+ 1

2
|  2κp+ 1

2
= 2φ(|∆p+ 1

2
|) ≥ φ(|∆p− 1

2
|) + φ(|∆p+ 3

2
|),

and hence |∆p+ 1
2
(t)| = maxi φ(|xi+1(t) − xi(t)|) ≤ maxi φ(|xi+1(0) − xi(0)|). We deduce the

following theorem.

Theorem 6.2. Consider the nearest neighbor dynamics (6.3) subject to initial configuration,
x(0) which is connected, (6.4),

max
i
|xi+1(0)− xi(0)| < R, Supp{φ(·)} = [0, R).

Assume that the influence function, φ, is non-decreasing. Then the dynamics (6.3) remains
connected and converges to a consensus, x∞ = 〈x〉(0),

(6.5)
∑
i

|xi(t)− 〈x〉(0)|2 . exp

(
−2φ(0)t

N

)∑
i

|xi(0)− 〈x〉(0)|2, 〈x〉 :=
1

N

∑
i

xi.

It is important to notice that theorem 6.2 requires an non-decreasing influence function.
Indeed, the steeper the increase of φ is, the better the connectivity is. This is concrete ram-
ification of our main statement that heterophilious dynamics enhances consensus. Note that
a two-nearest neighbor dynamics driven by a decreasing φ will not guarantee consensus as
illustrated by the following.
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Counterexample. We revisit the counterexample in section 4.1, of five agents symmetrically
distributed around x3(t) ≡ 0 with 1

2 < x4(t) < 1 < x5(t) < 3
2 , governed by

ẋ4 = −φ(|x4|)x4 + φ(|x5 − x4|)(x5 − x4),

ẋ5 = φ(|x5 − x5|)(x4 − x5),

with a compactly supported influence function φ(r) = (1 − r)2(1 + r)2χ[0,1]. Observe that
this configuration amounts to a two-nearest neighbor dynamics. Its concentration into three
separate clusters {−1, 0, 1} shown in figure 4.1, requires a rapidly decreasing influence function
(to be precise — φ(r)r ↓ for r ∼ 1), which is not covered by the two-nearest neighbors’
heterophilious dynamics sought in theorem 6.2.

Proof. The adjacency matrix associated with (6.3), ẋ = α(Ax− x) is given by the tridiagonal
matrix A = {aij}, given by

aij =


1

2
κ i+j

2
, κ i+j

2
= φ(|xi − xj |) |i− j| = 1,

1− 1

2
κi, κi := φi,i+1 + φi,i−1 i = j.

The corresponding Laplacian associated with A is given by

(6.6) LA =
1

2



−κ1 κ 3
2

κ 3
2
−κ2 κ 5

2

κ 5
2
−κ3 κ 7

2

. . .
. . .

. . .

κN− 3
2
−κN−1 κN− 1

2

κN− 1
2
−κN


.

Since |xi+1(t) − xi(t)| < R, the off-diagonal entries κi+ 1
2

= φ(|xi+1 − xi|) > 0 and hence, the

graph GA = ({x(t)}, A(x(t))) remains connected with µ = mini κi+ 1
2

and diam(GA) = N . By

(4.3) we find

λ2(LA) ≥
mini κi+ 1

2

N2
≥ φ(0)

N2
.

Using theorem 2.6 (see (2.21)) we end up with

∑
i

|xi(t)− 〈x〉(0)|2 . e
−αφ(0)t

N2
∑
i

|xi(0)− 〈x〉(0)|2,

which concludes the proof. �

Remark. The worst case scenario for the decaying of the |xi(t)−〈x〉| is to have many opinions
xi concentrate at two extreme values with just one path of opinion connecting the two extremes
(see figure 6.1).



32 SEBASTIEN MOTSCH AND EITAN TADMOR
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Figure 6.1. The worst case scenario for the decaying of the norm of the vector ∆:

the formation is connected but there are two large groups with extreme values.

7. Self-alignment dynamics with discrete time steps

Models for opinion dynamics were originally introduced as a discrete algorithms. In this
section we therefore extend our results on the semi-discrete continuous opinion dynamics (1.2b)
to the fully discrete case,

(7.1)
xi(t+ ∆t)− xi(t)

∆t
= α

∑
j φij(xj(t)− xi(t))∑

j φij
.

In particular, for α = 1/∆t we find that xni = xi(n∆t) satisfies the Krause model [11, 12, 75]

(7.2) xn+1
i =

∑
j φijx

n
j∑

j φij
, φij = φ(|xnj − xni |).

In the following, we study the properties of the discrete dynamics (7.2).

7.1. Consensus with global interactions. Many results of the continuous dynamics (1.2b)
can be translated to the discrete dynamics (7.2). For example, the convex hull of the opinions
Ω (2.3) is still decreasing in time:

Ω(n+ 1) ⊂ Ω(n).

The discrete dynamics (7.2) will also converge to a consensus if initially all agents interact
with each other. More precisely, arguing along the lines of proposition 2.4 gives the following
result.

Theorem 7.1. Assume that m = minr∈[0,[x(0)]] φ(r) > 0. Then, the diameter of the discrete
dynamics (7.2) satisfies

(7.3) [xn] ≤ (1−m)n[x0]
n→∞−→ 0.

and convergence to a consensus, xni
n→∞−→ x∞ ∈ Ω(0) follows.

Proof. Using the contraction estimate (2.7) followed by the bound η
A
≥ maxθ θ · λ(θ) yield

[xn+1] ≤ (1− η
A

)[xn] ≤ (1− θ · λ(θ, tn))[xn], aij =
φij∑
` φ`j

.

Fix θ = m/N then Λ(θ) includes all agents, λ(θ, tn) = N , and we conclude

[xn+1] ≤
(
1−m

)
[xn],

which proves (7.3). �
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7.2. Clustering with local interactions. As in the continuous dynamics, we would like to
investigate the behavior of the discrete dynamics (7.2) with local interactions; in particular,
we are interested in the formation of clusters. Our aim is to reproduce the discrete analog of
proposition 3.1.

Proposition 7.2. Let Pn = {xnk}k be the solution of the discrete opinion dynamics (7.2)
with compactly supported influence function Supp{φ(·)} = [0, R). Assume that it approaches a
steady state fast enough so that

(7.4)

∞∑
n=m

∑
i

|xn+1
i − xni |

m→∞−→ 0.

Then {xn} approaches a stationary state, x∞, which is partitioned into clusters, {Ck}k, such
that {1, 2, . . . , N} = ∪Kk=1Ck and

(7.5) xni −→ x∞Ck , for all i ∈ Ck.
Proof. By assumption (7.4)

|xn2
i − xn1

i | ≤
n2−1∑
n=n1

|xn+1
i − xni | � 1, for n2 > n1 � 1,

and hence xn approach a limit, xni
n→∞−→ x∞i . The discrete dynamics (7.2) can be written in

the following form: ∑
j

φij
(
xn+1
i − xni

)
=
∑
j

φij(x
n
j − xni ).

Taking the scalar product against xni , summing in i and using the symmetry of φij yields∑
ij

φij
〈(

xn+1
i − xni

)
,xni
〉

=
∑
ij

φij〈xnj − xni , xni 〉 = −1

2

∑
ij

φij |xnj − xni |2.

Since φij , xni and by assumption, the tail
∑∞

m |xn+1
i − xni | are bounded, we conclude that the

sum on the right converges to zero

φij |xnj − xni |2
n→∞−→ φ(x∞j − x∞i |)|x∞j − x∞i |2 = 0.

Hence, either x∞j and x∞i are in separate clusters, |x∞j − x∞i | > R or else, they are in the
limiting point of the same cluster, say i, j ∈ C` so that x∞j = x∞i . �

We now turn our attention to the convergence toward consensus for the discrete dynamics
(7.2). As for the continuous dynamics (1.2), there exists a Lyapunov functional energy for
the dynamics under the additional assumption that the influence function φ is non-increasing.
Consequently, we deduce the analog of theorem 4.2 for the discrete dynamics.

Theorem 7.3. Let Pn = {xnk}k be the solution of the discrete opinion dynamics (7.2) with
non-increasing, compactly supported influence function Supp{φ(·)} = [0, R). If Pn remains
uniformly connected for any n, then Pn converges to a consensus.

Proof. First, we prove that the energy functional En is also a Lyapunov function for the discrete
dynamics:

(7.6) En :=
∑
ij

Φ(|xnj − xni |), Φ(r) =

∫ r

0
sφ(s)ds.
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Introducing ϕ(r2) = Φ(r), we have ϕ(r) =
∫ √r

0 sφ(s)ds = 1
2

∫ r
0 φ(
√
y)dy. By assumption φ is

non-increasing, thus ϕ is concave-down. Therefore,

En+1 − En =
∑
ij

ϕ(|xn+1
j − xn+1

i |2) − ϕ(|xnj − xni |2)

≤ 1

2

∑
ij

φ(|xnj − xni |)
(
|xn+1
j − xn+1

i |2 − |xnj − xni |2
)
.

Using |a|2 − |b|2 = 〈a− b , a + b〉, we deduce:

En+1 − En ≤ 1

2

∑
ij

φij〈∆tx
n
j −∆tx

n
i , xn+1

j − xn+1
i + xnj − xni 〉

=
∑
ij

φij〈∆tx
n
j , xn+1

j − xn+1
i + xnj − xni 〉,

since φij = φji. Writing xn+1
j = xnj + ∆tx

n
j , we obtain:

En+1 − En ≤
∑
ij

φij〈∆tx
n
j , 2(xnj − xni ) + ∆tx

n
i −∆tx

n
j 〉.

Combining with the equality:

(7.7)
∑
j

φij∆tx
n
i =

∑
j

φij(x
n
j − xni ).

we conclude

En+1 − En ≤
∑
ij

φij〈∆tx
n
i , −∆tx

n
i −∆tx

n
j 〉 = −

∑
ij

φij |∆tx
n
i |2,

where we use once again the symmetry of the coefficients φij . Thus, En is decaying.
Now, we would like to combine the decay of En and the strong connectivity of Pn. Noting

σi =
∑

j φij , the equality (7.7) yields:

1

2

∑
i,j

φij |xnj − xni |2 =
∑
i

σi〈xni ,∆tx
n
i 〉 ≤ N max

i
|x0
i |
√∑

i

σi|∆txni |2,

Thus,

En+1 − En ≤ −C2
0

∑
i,j

φij |xnj − xni |2
2

, C0 =
1

2N maxi |xi(0)| .

Summing in n, we deduce that the sum
∑

i,j φij |xnj − xni |2 becomes arbitrarily small. To
conclude, we proceed as in the proof of theorem 4.2. �

7.3. Numerical simulations of discrete dynamics. In this section we illustrate the differ-
ence between the continuous opinion model (1.2b) and its discrete version (7.2). To this end,
we run in parallel numerical simulations of the discrete and continuous model subject to the
same initial conditions.

First, we run a simulation with an influence function φ = χ[0,1] (figure 7.1). Discrete and
continuous dynamics are very similar, except that there are three branches in the continuous
dynamics which are not present in the discrete dynamics. For this reason, at the end of the
simulation, we count 4 clusters in the discrete dynamics and only 3 in the continuous version.
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Next we use the influence function (5.1) φ = aχ[0,1/
√

2] + bχ[1/
√

2,1] with b/a = 10. Here, the

discrete and continuous dynamics give very different results shown in figure 7.2. As we have
seen previously, the continuous dynamics converges to a distribution with uniformly spaced
clusters and then reach a consensus. In contrast, the discrete dynamics does not stabilize.
Order between the opinions {xi}i is no longer preserved, trajectories do cross. Even though
the total number of clusters has been diminished with b/a = 10 (from 4 to 3 clusters), the
effect of the ratio b/a on the clustering formation is less pronounced in the discrete dynamics.
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Figure 7.1. Simulations of the discrete (Left figure) and continuous dynamics

(Right figure) with φ = χ[0,1] starting with the same initial condition. Although

the two simulations are very similar, the discrete dynamics yields 4 clusters whereas

the continuous dynamics gives 3. We use a time discretization of ∆t = .05 to simulate

the continuous dynamics.

8. Mean-field limits: self-organized hydrodynamics

When the number of agents N is large, it is convenient to describe the evolution of the
resulting large dynamical systems as mean-field equation. We limit ourselves to a few classic
general references on this topic [28, 57, 101], and a few recent references in the context of
opinion hydrodynamics [19, 105], and in flocking hydrodynamics [22, 23, 40, 61, 73, 84, 88].

8.1. Opinion hydrodynamics. To derive the mean-field limit of the opinion dynamics model
(1.2b), we introduce the so-called empirical distribution ρ(t,x):

ρ(t,x) :=
1

N

N∑
j=1

δxj(t)(x),

where δ is a Dirac mass and {xj(t)}j is the solution of the consensus model (1.2b). Expressed
in terms of this empirical distribution, the non-symmetric model (1.2b) (with α = 1) reads,

(8.1) ẋi =

∫
y φ(|y − xi|)(y − xi)ρ(t,y) dy∫

y φ(|y − xi|)ρ(t,y) dy
=

(φ(|y|)y ∗ ρ)(xi)

(φ(|y|) ∗ ρ)(xi)
.
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Figure 7.2. Simulations of the discrete (Left figure) and continuous dynamics

(Right figure) with φ = .1χ[0,1/
√
2] + χ[1/

√
2,1] starting with the same initial condi-

tion. In contrast with figure 7.1, the two models produce very different output. There

is no uniformly spaced formation in the discrete model, we only observe cluster forma-

tion.

This equation describes the characteristics of the density ρ. Indeed, integrating ρ against a
test function ϕ yields4

d

dt

(
ρ, ϕ

)
=

d

dt

 1

N

N∑
j=1

ϕ(xj(t))

 =
1

N

N∑
j

〈ẋj(t),∇xϕ(xj(t))〉.

Using the expression (8.1), we deduce:

d

dt
(ρ, ϕ) =

1

N

N∑
j=1

〈
φ(|y|)y ∗ ρ(xj)

φ(|y|) ∗ ρ(xj)
,∇xϕ(xj(t))

〉
=

(
ρ,

〈
φ(|y|)y ∗ ρ
φ(|y|) ∗ ρ ,∇xϕ

〉)

=

(
−∇x ·

(
φ(|y|)y ∗ ρ
φ(|y|) ∗ ρ ρ

)
, ϕ

)
.

Thus, ρ = ρ(t,x) satisfies a continuum transport equation,

(8.2a) ∂tρ+∇x ·
(
ρu
)

= 0 with u(x) =

∫
y φ(|y−x|)(y−x) ρ(y) dy∫

y φ(|y−x|) ρ(y) dy
.

This is the hydrodynamic description of the agent-based opinion model (1.2b). Similarly, the
opinion hydrodynamics of the corresponding symmetric model (1.2a) (with α = 1) amounts to
the aggregation model [8, 19]

(8.2b) ∂tρ+∇x ·
(
ρu
)

= 0 with u(x) = ∇Φ ∗ ρ
We note that the transport equations (8.2) are non-linear due to the dependence of the velocity
field u = u(ρ). Main features of the particle description for opinion dynamics (1.2) carry over
the hydrodynamic model (8.2). Thus, for example, the symmetric model (8.2b) preserve the
center of mass, d

dt

(∫
x xρ(t,x) dx

)
= 0 where the non-symmetric model (8.2a) does not. We

4(·, ·) denotes the duality bracket between distributions and test functions
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distinguish between the two cases of global and local interactions.
The existence of regular solutions of the symmetric aggregation model (8.2b) for bounded
decreasing φ’s such that |φ′(r)r| . φ(r) was proved in [8]. This holds independently whether φ
is global or not. Moreover, if the kernel φ is globally supported, then one can argue along the
lines of the underlying agent-based model (8.1), to prove convergence of the hydrodynamics
toward a consensus, that is, ρ(t,x) converges to a single point asymptotically in time. If φ is
compactly supported, however, then the velocity field u need not be continuous with respect
to ρ due to the singularity when

∫
y φ(|y−x|) ρ(y) dy = 0. Then, existence and uniqueness of

solution of the non-symmetric model (8.2a) cannot be obtained through a standard Picard’s
iteration argument. The large time behavior of the dynamics in this local setup is completely
open. As in the agent-based dynamics, the generic solution ρ(t,x) is expected to concentrate
in a finitely many clusters, or “islands”; in particular, under appropriate assumption on the
persistence of connectivity among these islands, one may expect a consensus. Preliminary
simulations show that cluster formation tends to persist for the hydrodynamic model, but
analytical justification remains open.

8.2. Flocking hydrodynamics. We study the second-order flocking models (1.3) in terms of

the empirical distribution fN (t,x,v) := 1
N

∑N
j=1 δxj(t)(x)⊗δvj(t)(v), where δx⊗δv is the usual

Dirac mass on the phase space Rd × Rd. Consider the non-symmetric particle model system
for flocking (1.3b): expressed in terms of fN , it reads

dxi
dt

= vi,
dvi
dt

= αF [fN ](xi,vi), F [f ](x,v) := α

∫
y,w φ(|y−x|) (w−vi) f(y,w) dydw∫

y φ(|y−x|) f(y,w) dydw
,

which leads to Liouville’s equation,

(8.3) ∂tf + v · ∇xf +∇v · (F [f ] f) = 0.

Integrating the empirical distribution fN in the velocity variable v yields the hydrodynamic
description of flocking, expressed in terms of the density and momentum distributions of par-
ticles,

ρ(t,x) =

∫
v
f(t,x,v) dv

(
corresponding to 1

N

∑N
j=1 δxj(t)(x)

)
,

ρ(t,x)u(t,x) =

∫
v

vf(t,x,v) dv
(

corresponding to 1
N

∑N
j=1 vj(t)δxj(t)(x)

)
.

Integrating the kinetic equation (8.3) against the first moments (1,v) yields the system, cf.,
[61, 23, 88],

∂tρ+∇x · (ρu) = 0(8.4a)

∂t(ρu) +∇x · (ρu⊗ u + P) = αρ(u− u).(8.4b)

The expression on the right reflects alignment: the tendency of agents with velocity u to relax
towards the local average velocity, u(x), dictated by the normalized influence function a(x,y),

(8.4c) u(x) :=

∫
y
a(x,y)ρ(y)u(y) dy,

∫
y
a(x,y)ρ(y) dy = 1.
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This includes in particular, the hydrodynamic description of the symmetric and non-symmetric
flocking models, given respectively by

a(x,y) =


φ(|y − x|) C-S model (1.3a),

φ(|y − x|)∫
y φ(|y − x|)ρ(y) dy

non-symmetric model (1.3b).

The system (8.4) is not closed since the equation for ρu (8.4b) does depend on the third
moment of f which is encoded in the pressure term P :=

∫
v(v − u) ⊗ (v − u)f(t,x,v) dv.

If we neglect the pressure (in other words, assume a monophase distribution, f(t,x,v) =
ρ(t,x) δu(t,x)(v) so that P ≡ 0), then the flocking hydrodynamics (8.4) is reduced to the closed
system

(8.5)

 ∂tρ+∇x · (ρu) = 0,

∂tu + (u · ∇x)u = α(u− u).

The question of an emerging flock in (8.5) follows along the lines of our discussion on the
underlying agent-based models (1.3). The case of a global influence function is rather well-
understood: in particular, regularity of the one-dimensional “incompressible” case, ρ ≡ 1,
depends on initial critical threshold [81, 96]. Flocking hydrodynamics governed by locally
supported influence function requires a more intricate analysis, due to the realistic presence of
vacuum, [102]. The hydrodynamic description of self-organized dynamics give rise to systems
like (8.5) which involve nonlocal means. Questions of regularity and quantitative behavior of
such systems provide a rich source for future studies.

9. Further reading on self-organized dynamics

In this paper we discussed fundamental aspects which arise in the context of flocking and
opinion dynamics, as prototype models for self-organized dynamics. Specifically, we focused
here on the emerging large-time behavior of self-alignment and we highlight a few open ques-
tions aiming to attract further mathematical studies in this direction. The much broader
subject of self-organized dynamics lies at the crossroads of several fields. A comprehensive
review of the subject is beyond the scope of this paper, in particular, as it continues to attract
an increasing amount of attention reported in a rapidly growing literature. Instead, we refer
the interested reader to a selection of references outlined below. As with all multidisciplinary
fields, the work on self-organized dynamics can be classified into several different categories.
We shall mention five of them.
Different disciplines. A natural classification is offered by the underlying topic. Many mod-
els of self-organized dynamics are driven by examples from biology: these include aggregation
of bacteria and amoeba [6, 51, 59, 74, 98], dynamics of insects [14, 34], school of fish [1, 67, 111]
flocking of birds [4, 25, 26, 27, 37, 38, 61, 93, 103, 107], and related models in ecology [58].
Self-organized dynamics found its in many other areas, from pedestrian and traffic dynam-
ics [64, 92], social networks and economics [48, 66, 69, 77, 83], complex networks [5, 44, 90]
and opinion dynamics [7, 24, 42, 49, 50, 63, 75, 105, 109, 110], all the way to applications in
marketing [2, 3], production networks [94], robotics [33, 71, 113] and materials [99, 85], and
with somewhat more esoteric examples such as gossiping [13], collective motion at heavy metal
concerts [100] and self-organized phases in the Tour De France [106].
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Different models. Together with the different contexts, come different models of self-
organized dynamics. We mention a few of the more notable ones: Krause model for opinion
dynamics [75] and the follow-up works in [12, 19, 63, 76, 82], Axelrod models for marketing [2]
and the influential models for ”flocking” (at various “levels”) of Aoki, Reynolds and Couzin
[1, 34, 36, 80, 93, 111], Vicsek et. al, [107] and the follow-up works in [40, 41, 70], Cucker-Smale
model [37, 38] and related works in [10, 22, 60, 61, 62, 73, 88, 97], and the StarFlag project
[4, 25, 26, 27].
Different scales. Different models of self-organized dynamics are realized at different scales.
As examples for agent-based models (also known as Individual-Based Models (IBM)) we
mention [7, 34, 58, 75, 79, 91, 93]. Their mean-field limit leads to a kinetic description
[21, 22, 49, 61, 105] and macroscopic averaging then leads to hydrodynamic-scale description
as in [15, 23, 40, 41, 51, 73, 74, 78, 84, 85, 102].
Different approaches. In this paper, we focused our attention on mathematical aspects
which explain the large time behavior of self-alignment models. The study of general models
for self-organized dynamics includes several different approaches. Classified by the tools of the
trade, we mention statistical mechanics [10, 24, 101], clustering and spectral theory of graphs
[15, 32, 33, 70, 91], optimization and control [17, 43, 44, 71, 72, 90, 113], game theory [5, 65],
jump processes, nonlinear Markov chains and stochastic analysis [15, 52, 66, 107].
Different patterns. One of the most intriguing features of self-organized dynamics is the
formation of different patterns. In this paper, we limited ourselves to the simple pattern
of “consensus” (or a “flock”) but the format is much richer. We mention the example of
swarming and mill-like vortices [18, 21, 23, 47, 50, 78, 79, 80, 98, 104], phase transition [55, 107],
aggregation [15], biotic colonies [6, 74], lattices [89], leaders [35, 97], shocks [9, 102] and related
issues which arise in the context of control and stability [11, 47, 72, 79].

Finally, we recommend on several reviews on self-organization [16, 24, 51, 66, 110], and in
particular, the most recent comprehensive review of Vicsek and Zefeiris [108].
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