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Abstract

Let Φ be a uniformly distributed randomk-SAT formula withn variables andm clauses. We prove
that theWalksat algorithm from Papadimitriou (FOCS 1991)/Schöning (FOCS1999) finds a satisfying
assignment ofΦ in polynomial time w.h.p. ifm/n ≤ ρ · 2k/k for a certain constantρ > 0. This is an
improvement by a factor ofΘ(k) over the best previous analysis ofWalksat from Coja-Oghlan, Feige,
Frieze, Krivelevich, Vilenchik (SODA 2009).
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1 Introduction

Let Φ = Φk(n,m) be ak-CNF onn Boolean variablesx1, . . . , xn with m clauses chosen uniformly
at random (k ≥ 3). The interest in randomk-SAT stems largely from theexperimentalobservation that
for certain densitiesr the random formulaΦ is a challenging algorithmic benchmark [7, 15]. However,
analyzingalgorithms on random formulas is notoriously difficult. Indeed, the current rigorous results for
randomk-SAT mostly deal with algorithms that are extremely simple both to state and to analyze, or with
algorithms that were specifically designed so as to allow fora rigorous analysis. More precisely, the present
analysis techniques are essentially confined to simple algorithms that aim to construct a satisfying assign-
ment by determining the value of one variable at a timefor good, without any backtracking or reassigning
variables at a later time. By contrast, most ‘real-life’ satisfiability algorithms actually rely substantially on
reassigning variables.

Maybe the simplest example of a natural algorithm that eludes the standard analysis techniques is
Walksat [17, 18]. Similar local search algorithms are quite successful in practical SAT-solving [19].
Starting from the all-true assignment,Walksat tries to find a satisfying assignment of its inputk-CNF
formulaΦ = Φ1 ∧ · · · ∧ Φm as follows. If the current assignmentσ is satisfying, then clearly there is
nothing to do and the algorithm terminates. Otherwise, the algorithm picks an indexi such that clause
Φi is unsatisfied uniformly at random among all such indices. ClauseΦi is a disjunction ofk literals
Φi1∨· · ·∨Φik. Walksat picks an indexj ∈ {1, . . . , k} uniformly at random and flips the value assigned
to the variable underlying the literalΦij . Of course, this ensures that under the new assignment clause
Φi is satisfied, but flippingΦij may create new unsatisfied clauses. If after a certain numberTmax of
iterations no satisfying assignment is found,Walksat gives up and concedes failure. The pseudocode is
shown in Figure 1. In the worst case, it can be shown that(2− 2/k)(1+o(1))n executions ofWalksatwith
independent coins tosses will find a satisfying assignment of a satisfiable input formulaΦ onn variables
with probability1− o(1), for a suitableTmax = Tmax(k) = O(n) [18].

AlthoughWalksat is conceptually very simple, analyzing this algorithm on random formulas is a
challenge. Indeed,Walksat does not follow the naive template of the previously analysed algorithms that
assign one variable at a time for good, because its random choices may (and will) leadWalksat to flipping
quite a few variables several times over. This causes stochastic dependencies that seem to render the
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Algorithm 1.1 Walksat(Φ, Tmax)
Input: A k-CNFΦ = Φ1 ∧ · · · ∧ Φm over the variablesx1, . . . , xn and a numberTmax ≥ 0.
Output:An assignmentσ : V → {0, 1}.

0. Initially, let σ(xi) = 1 for i = 1, . . . , n.
1. Repeat the followingTmax times (with independent random choices)
2. If σ is a satisfying assignment, then halt and outputσ.
3. Otherwise, choose an indexi such that clauseΦi is unsatisfied underσ uniformly at random.
4. Suppose thatΦi = Φi1 ∨ · · · ∨ Φik.

Choose an indexj ∈ {1, . . . , k} uniformly at random.
Flip the value of the variable underlying the literalΦij in the assignmentσ.

5. Return ‘failure’.

Figure 1: TheWalksat algorithm.

differential equation method, the mainstay of the previousanalyses of randomk-SAT algorithms, useless.
The goal of the present paper is to present an analysis ofWalksat via a different approach that allows us
to deal with the stochastic dependencies. Our main result isas follows.

Theorem 1.2 There is a constantk0 > 3 such that for anyk ≥ k0 and

0 < m/n ≤ 1

25
· 2k/k,

Walksat(Φ, ⌈n/k⌉) outputs a satisfying assignment w.h.p.

1.0.1 Related work.

To put Theorem 1.2 in perspective, let us compare it with other results on randomk-SAT algorithms. The
simplest conceivable one is presumablyUnitClause. Considering all variables unassigned initially,
UnitClause sets one variable at a time as follows. If there is a clause in whichk−1 variables have been
assigned already without satisfying that clause (a ‘unit clause’), the algorithm has to assign thekth variable
so as to satisfy the unit clause. If there is no unit clause, a currently unassigned variable is chosen randomly
and is assigned a random truth value. AsUnitClause is extremely simple and does not backtrack, it can
be analyzed via the method of differential equations [1]. The result is thatUnitClause finds a satisfying
assignment with a non-vanishing probability so long asm/n < (1 − ok(1))

e
2 · 2k/k, whereok(1) hides

a term that tends to0 ask gets large [6]. Furthermore,ShortestClause, a natural generalization of
UnitClause, succeeds form/n < (1−ok(1))e

2/8·2k/k with highprobability [8]. Indeed, the algorithm
can be modified so as to succeed with high probability even form/n < (1.817− ok(1)) ·2k/k by allowing
a very limited amount of backtracking [11]. Finally, the algorithm Fix from [9], which was specifically
designed for solving randomk-SAT instances, succeeds up tom/n < (1 − ok(1))2

k ln(k)/k. By com-
parison, non-constructive arguments show that the threshold for theexistenceof a satisfying assignment is
(1 + ok(1)) · 2k ln 2 [2, 3].

In summary, Theorem 1.2 shows thatWalksat is broadly competitive with the other known algorithms
for randomk-SAT. That said, the main point of this paper is not to producea better algorithmic bound for
randomk-SAT, but to address the methodological challenge of analyzing algorithms such asWalksat
that may reassign variables. This difficult aspect did not occur or was sidestepped in the aforementioned
previous analyses [1, 8, 9, 11]. Indeed, the lack of techniques for such analyses is arguably one of the most
important shortcomings of the current theory of random discrete structures.

Theorem 1.2 improves substantially on the previous analyses of Walksat, at least for generalk.
The best previous result for this case showed that w.h.p.Walksat will find a satisfying assignment with
Tmax = n if m/n < ρ′ · 2k/k2, for a certain constantρ′ > 0 [10]. The proof of this result is based on a
rather simple observation that allows to sidestep the analysis of the stochastic dependencies that arise in the
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execution ofWalksat. However, it is not difficult to see that this argument is confined to clause/variable
densitiesm/n < 2k/k2. Theorem 1.2 improves this result by a factor ofΘ(k).

Furthermore, the techniques of Alekhnovich and Ben-Sasson[4] show that for anyk Walksat will
w.h.p. find a satisfying assignment withinO(n) iterations ifm/n < rk−pure, whererk−pure is the ‘pure
literal threshold’. The analysis in [4] depends heavily on the fact that the combinatorial structure of the
hypergraph underlying the randomk-CNF Φ is extremely simple form/n < rk−pure. Furthermore,
becauserk−pure → 0 in the limit of largek [16], this result is quite weak for generalk. Yet [4] remains the
best known result for ‘small’k. For instance, in the casek = 3 the pure literal bound isr3−pure ≈ 1.63 [5].

Monasson and Semerjian [20] applied non-rigorous techniques from statistical mechanics to study the
Walksat algorithm on random formulas. Their work suggests thatWalksat(Φ, O(n)) will find a satis-
fying assignment w.h.p. ifm/n < (1 − ok(1))2

k/k. Theorem 1.2 confirms this claim, up to the constant
factor1/25.

In contrast to the previous ‘indirect’ attempts at analyzing Walksat on random formulas [4, 10], in
the present paper we develop a technique for tracing the execution of the algorithm directly. This allows
us to keep track of the arising stochastic dependencies explicitly. Before we outline our analysis, we need
some notation and preliminaries.

2 Preliminaries

We letΩk(n,m) be the set of allk-SAT formulas with variables fromV = {x1, . . . , xn} that contain
exactlym clauses. To be precise, we consider each formula an orderedm-tuple of clauses and each clause
an orderedk-tuple of literals, allowing both literals to occur repeatedly in one clause and clauses to occur
repeatedly in the formula. Thus,|Ωk(n,m)| = (2n)km. LetΣk(n,m) be the power set ofΩk(n,m), and
let P = Pk(n,m) be the uniform probability measure. Throughout, we assume thatm = ⌈rn⌉ for a fixed
numberr > 0, thedensity.

As indicated above, we denote a uniformly random element ofΩk(n,m) by Φ. In addition, we use
the symbolΦ to denote specific (i.e., non-random) elements ofΩk(n,m). If Φ ∈ Ωk(n,m), thenΦi

denotes theith clause ofΦ, andΦij denotes thejth literal ofΦi. If Z ⊂ [m] is a set of indices, then we
let ΦZ =

∧

i∈Z Φi. If l ∈ {x1, x̄1, . . . , xn, x̄n} is a literal, then we denote its underlying variable by|l|.
Furthermore, we definesign(l) = −1 if l is a negative literal, andsign(l) = 1 if l is positive.

Recall that afiltration is a sequence(Ft)0≤t≤τ of σ-algebrasFt ⊂ Σk(n,m) such thatFt ⊂ Ft+1

for all 0 ≤ t < τ . For a random variableX : Ωk(n,m) → R we letE [X |Ft] denote theconditional
expectation. Thus,E [X |Ft] : Ωk(n,m) → R is a Ft-measurable random variable such that for any
A ∈ Ft we have

∑

Φ∈A

E [X |Ft] (Φ) =
∑

Φ∈A

X(Φ).

Also remember thatP [·|Ft] assigns a probability measureP [·|Ft] (Φ) to anyΦ ∈ Ωk(n,m), namely

P [·|Ft] (Φ) : A ∈ Σk(n,m) 7→ E [1A|Ft] (Φ),

where1A is the indicator of the eventA. We need the following well-known bound.

Lemma 2.1 Let (Ft)0≤t≤τ be a filtration and let(Xt)1≤t≤τ be a sequence of non-negative random vari-
ables such that eachXt isFt-measurable. Assume that there are numbersξt ≥ 0 such thatE [Xt|Ft−1] ≤
ξt for all 1 ≤ t ≤ τ . ThenE[

∏

1≤t≤τ Xt|F0] ≤
∏

1≤t≤τ ξt.

Proof. For1 ≤ s ≤ τ we letYs =
∏s

t=1 Xt. Let s > 1. SinceYs−1 isFs−1-measurable, we obtain

E [Ys|F0] = E [Ys−1Xs|F0] = E [E [Ys−1Xs|Fs−1] |F0] = E [Ys−1E [Xs|Fs−1] |F0] ≤ ξsE [Ys−1|F0] ,

whence the assertion follows by induction. ✷

We also need the following tail bound (“Azuma-Hoeffding”, e.g. [13, p. 37]).
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Lemma 2.2 Let(Mt)0≤t≤τ be a super-martingale with respect to a filtration(Ft)0≤t≤τ such thatM0 = 0.
Suppose that there exist numbersct such that|Mt −Mt−1| ≤ ct for all 1 ≤ t ≤ τ . Then for anyλ > 0 we
haveP [Mτ > λ] ≤ exp

[

−λ2/(2
∑τ

t=1 c
2
t )
]

.

A k-CNFΦ = Φ1 ∧ · · · ∧Φm gives rise to a bipartite graph whose vertices are the variablesV and the
clauses{Φi : i ∈ [m]}, and in which each clause is adjacent to all the variables that occur in it. This is the
factor graphof Φ. For a vertexv of the factor graph we denote byN(v) = NΦ(v) the neighborhood ofv
in the factor graph. For a setZ ⊂ [m] we letN(ΦZ) =

⋃

i∈Z N(Φi) be the set of all variables that occur
in the sub-formulaΦZ .

Let A,B be two disjoint sets of vertices of the factor graph. Recall that al-fold matching fromA to B
is a setM of A-B-edges such that eacha ∈ A is incident with preciselyl edges fromM , while eachb ∈ B
is incident with at most one edge fromM . We will make use of the following simple expansion property
of the factor graph of random formulas.

Lemma 2.3 There is a constantk0 > 0 such that for allk ≥ k0 and form/n ≤ 2k ln 2 the random
formulaΦ has the following property w.h.p.

For any setZ ⊂ [m] of size|Z| ≤ n/k2 there is a0.9k-fold matching fromΦZ to N(ΦZ). (1)

Proof. We start by proving that w.h.p. the random formulaΦ has the following property.

For any setU of ≤ n/k variables we have|{i ∈ [m] : N(Φi) ⊂ U}| ≤ 1.1|U |/k. (2)

To prove (2) we use a ‘first moment’ argument. For setU ⊂ V we letXU = 1 if |{i ∈ [m] : N(Φi) ⊂ U}| >
1.1|U |/k, and we setXU = 0 otherwise. Then

E [XU ] = P [XU = 1] ≤
(

m

1.1|U |/k

)

(|U |/n)1.1|U|.

Furthermore, for any1 ≤ u ≤ n/k we letXu =
∑

U⊂V :|U|=u XU . Assuming thatk ≥ k0 is sufficiently
large, we obtain

E [Xu] ≤
∑

U⊂V :|U|=u

E [XU ] ≤
(

n

u

)(

m

1.1u/k

)

(u

n

)1.1u

≤





en

u
·
[

(

em

1.1u/k

)1/k

· u
n

]1.1




u

≤





en

u

[

(

e2kk ln 2

1.1
· n
u

)1/k

· u
n

]1.1




u

≤
[

e
(u

n

)0.1−1/k
(

e2kk ln 2

1.1

)1.1/k
]u

≤
[

e2
(u

n

)0.09
]u

.

Summing the last expression over1 ≤ u ≤ n/k and assuming thatk ≥ k0 is large enough, we see that

E
∑

1≤u≤n/k

Xu ≤
∑

1≤u≤ln2 n

[

e2
(u

n

)0.09
]u

+
∑

ln2 n<u≤n/k

[

e2k−0.09
]u

≤ ln2 n · e2(ln2 n/n)0.09 + n

k
·
[

e2k−0.09
]ln2 n

= o(1).

Thus,
∑

1≤u≤n/k Xu = 0 w.h.p. by Markov’s inequality. Hence, (2) holds true w.h.p.
Now, assume thatΦ satisfies (2). LetZ ⊂ [m] be a set of size|Z| ≤ n/k2. Let Y ⊂ Z and

let U = N(ΦY ). Then |U | ≤ n/k, andN(Φi) ⊂ U for any i ∈ Y . Therefore, (2) implies that
|Y | ≤ 1.1|U |/k, i.e.,|U | ≥ k

1.1 |Y | ≥ 0.9k|Y |. Hence, the assertion follows from the marriage theorem.✷

The following lemma states a second expansion-type property.
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Lemma 2.4 There exists a constantk0 > 0 such that for allk ≥ k0 and for anyε > 0, λ > 4 satisfying
ε ≤ k−3 andελ ≤ 1

e (2e)
−4k the random formulaΦ withm/n ≤ 2k ln 2 has the following property w.h.p.

Let Z ⊂ [m] be any set of size|Z| ≤ εn. If i1, . . . , il ∈ [m] \ Z is a sequence of
pairwise distinct indices such that

|N(Φis) ∩N(ΦZ∪{ij :1≤j<s})| ≥ λ for all 1 ≤ s ≤ l,

thenl ≤ εn.

(3)

Proof. It is clearly sufficient to prove that the desired property holds w.h.p. for all setsZ of sizeprecisely
|Z| = εn. Assume that there is a setZ and a sequencei = (i1, . . . , il) of pairwise distinct indices in
[m] \ Z of lengthl = εn such that|N(Φis) ∩ N(ΦI∪{ij :1≤j<s})| ≥ λ for all 1 ≤ s ≤ l. Then the sets

Y =
⋃l

j=1 N(Φij ) \N(ΦZ) ⊂ V andZ have the following properties.

a. |Y | ≤ ε(k − λ)n.

b. There is a setI ⊂ [m] \ Z of size|I| = εn such thatN(Φi) ⊂ N(ΦZ) ∪ Y for all i ∈ I.

Property a. holds because each clauseΦij adds no more thank − λ ‘new’ variables toY , and b. is true for
the setI = {ij : 1 ≤ j ≤ l}.

To prove that w.h.p. there do not existZ andi of lengthl = εn as above, we are going to show by a
first moment argument that w.h.p. the random formulaΦ does not feature setsY, Z that satisfy a. and b.
More precisely, for setsZ ⊂ [m] of size|Z| = εn, Y ⊂ V of size|Y | = ε(k − λ)n, andI ⊂ [m] \ Z of
size|I| = εn we letE(Z, Y, I) be the event thatN(Φi) ⊂ N(ΦZ) ∪ Y for all i ∈ I. Then for any fixed
Z, Y, I we have

P [E(Z, Y, I)] ≤
(

k|Z|+ |Y |
n

)k|I|

≤ (ε(2k − λ))kεn,

because each of thek|I| variable occurrences in the clausesΦI is uniformly distributed overV . Hence, by
the union bound, for large enoughk

P [∃Z, Y, I : E(Z, Y, I)] ≤
∑

Z,Y,I

P [E(Z, Y, I)] ≤
(

m

εn

)2(
n

εn(k − λ)

)

(ε(2k − λ))kεn

≤
[

(em

εn

)2
(

e

ε(k − λ)

)k−λ

(ε(2k − λ))k

]εn

≤
[

(

e2k

ε

)2(
e(2k − λ)

k − λ

)k−λ

(2kε)λ

]εn

≤
[

(

e2k

ε

)2

exp (2k) (2kε)λ

]εn

≤
[

(2e)2k ελ/2
]εn

, (4)

where the last inequality follows from our assumption thatε ≤ k−3 with k ≥ k0 sufficiently large. Due
to our assumption thatελ ≤ 1

e e(2e)
−4k, (4) yieldsP [∃Z, Y, I : E(Z, Y, I)] ≤ exp(−εn) = o(1), whence

the assertion follows. ✷

Finally, it will be convenient to assume in our proof of Theorem 1.2 that the formula densityr = m/n
is ‘not too small’ and that the clause lengthk is sufficiently large. These assumptions are justified as the
case of smallk or very smallr is already covered by [10].

Theorem 2.5 ([10]) There is a constantk0 > 3 such that for allk ≥ k0 and all r ≤ 1
6 · 2k/k2 w.h.p.

Walksat(Φ, n) will find a satisfying assignment.
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3 Outline of the analysis

Throughout this section we assume thatk ≥ k0 for some large enough constantk0 > 0, and thatr =
m/n ∼ ρ · 2k/k with k−2 ≤ ρ < ρ0 = 1/25. We can make these assumptions as otherwise the assertion
of Theorem 1.2 already follows from Theorem 2.5. Furthermore, let

λ =
√
k andε = exp(−k2/3). (5)

The standard approach to analyzing an algorithm on randomk-SAT formulas is themethod of deferred
decisions, which often reduces the analysis to the study of a system of ordinary differential equations that
capture the dynamics of the algorithm [1]. Roughly speaking, the method of deferred decisions applies
where the state of the algorithm after a given number of stepscan be described by a simple probability
distribution, depending only on a very few parameters determined by the past decisions of the algorithm.
This is typically so in the case of simple backtrack-free algorithms such asUnitClause.

However, in the case ofWalksat, this approach does not apply because the algorithm is boundto flip
many variables more than once. This entails that the algorithms’ future steps depend on past events in a
more complicated way than the method of deferred decisions can accommodate. Hence, our approach will
be to use the method of deferred decisions to trace the effectof flipping a variablefor the first time. But we
will need additional arguments to deal with the dependencies that arise out of flipping the same variable
several times.

To get started, let us investigate the effect of thefirst flip that Walksat performs. Letσ = 1 be
the assignment that sets every variable to true. Clearly, a clauseΦi is unsatisfied underσ iff it consists
of negative literals only. AsΦ consists ofm uniformly random and independent clauses, the number of
unsatisfied clauses has a binomial distributionBin(m, 2−k), and thus there will be(1+o(1))2−km ∼ ρn/k
all-negative clauses w.h.p. To perform its first flip,Walksat chooses an indexi ∈ [m] such thatΦi is
all-negative uniformly at random, then chooses a literal indexj ∈ [k] uniformly, and setsσ(|Φij |) to false,
thereby satisfying clauseΦi.

But, of course, flipping|Φij |may well generate new unsatisfied clauses. We need to study their number.
As Φi is just a uniformly random all-negative clause, the random variable|Φij | is uniformly distributed
over the set of alln variables, and thus we may assume without loss that|Φij | = x1. Furthermore, if a
clauseΦl becomes unsatisfied because variablex1 got flipped, thenx1 must have been the only variable
that appears positively inΦl. Now, the number of clauses whose only positive literal isx1 has distribution
Bin(m, k/(n2k)+O(1/n2)). Indeed, the probability that a random clause has preciselyone positive literal
is k/2k, and the probability that this positive literal happens to bex1 is 1/n; theO(1/n2) accounts for the
number of clauses in which variablex1 occurs more than once. Hence, theexpectednumber of newly
created unsatisfied clauses equals(1 + o(1)) km

2kn
∼ ρ.

In summary, as we are assuming thatρ ≤ ρ0 = 1/25 < 1, the expected changein the number of
unsatisfied clauses as a result of the first flip is bounded fromabove by

ρ− 1 + o(1) < 0.

(The precise value is even smaller becausex1 may occur in further all-negative clauses.) Thus, we expect
that the first flip will indeed reduce the number of unsatisfiedclauses. Of course, this simple calculation
does not extend to the further steps ofWalksat because knowing the outcome of the first flip renders the
various above statements about clauses/literals being uniformly distributed invalid.

To analyze the further flips, we will describeWalksat as a stochastic process. Our time parameter
will be the number of iterations of the main loop (Steps 2–4 inFigure 1), i.e., the number of flips performed.
To represent the conditioning of the random input formula imposed up to timet, we will define a sequence
of random maps(πt)t≥0. These maps reflect for each pair(i, j) ∈ [m]× [k] the conditional distribution of
the literalsΦij , given the information thatWalksat has revealed after performing the firstt flips. More
precisely, the value ofπt(i, j) will either be just thesignof the literalΦij , or the actual literalΦij itself.
In the initial mapπ0, we haveπ0(i, j) = sign(Φij) for all (i, j) ∈ [m]× [k].

At timest ≥ 1 the mapπt will feature the occurrences of all variables that have beenflipped thus far.
That is, for any pair(i, j) such thatWalksat has flipped the variable|Φij | at least once by timet, we

6



PI0. If the assignmentσt−1 satisfiesΦ, then the process terminates.
PI1. Otherwise, choose an indexit such thatΦit is unsatisfied underσt−1 uniformly at random from the

set of all such indices. In addition, choosejt ∈ [k] uniformly at random. Defineσt : V → {0, 1} by
lettingσt(|Φitjt |) = 1− σt−1(|Φitjt |) andσt(x) = σt−1(x) for all x 6= |Φitjt |.

PI2. Initially, let Zt = Zt−1 andNt = Nt−1.
While there is an indexi ∈ [m] \ Zt such thatΦi is (At−1 ∪ Nt ∪ {|Φitjt |})-negative and either

• there are at leastk1 indicesj ∈ [k] with |Φij | ∈ At−1 ∪ {|Φitjt |}, or

• there are more thanλ indicesj ∈ [k] with |Φij | ∈ Nt,

add the least such indeximin toZt and add the variables{|Φiminj | : j ∈ [k]} toNt.
PI3. LetAt = (At−1 ∪ {|Φitjt |}) \ Nt.

Define the mapπt : [m]× [k] → {−1, 1} ∪ L by letting

πt(i, j) =

{

Φij if |Φij | ∈ At ∪ Nt,
sign(Φij) otherwise.

Figure 2: the construction of the mapsπt

let πt(i, j) = Φij . This information will be necessary for us to investigate the effect of flipping the same
variable more than once.

In addition, we need to pay particular attention to clauses that contain many variables that have been
flipped at least once. The reason is that these clauses have ‘too little randomness’ left for a direct analysis,
and thus we will need to study them separately. More precisely, in our mapπt we will fully reveal all
clausesΦi in which at least

k1 = 0.57 k (6)

literalsΦij have been flipped at least once. Furthermore, we will also recursively reveal all clauses that
contain at leastλ variables from clauses that were fully revealed before. This recursive process ensures
that we can separate the analysis of clauses that are ‘heavily conditioned’ by the past steps ofWalksat
from the bulk of the formula.

Throughout this process that mirrors the execution ofWalksat, all variables whose occurrences have
been revealed will be labeled either with an asterisk or witha zero. Those variables that got revealed
because they occur either in a ‘heavily conditioned’ clauseor in another clause that got revealed by the
recursive process described in the previous paragraph willbe labeled0. All other variables that have been
flipped byWalksat at least once are labeled∗. We will let At denote the set of all variables labeled∗,
andNt the set of all variables labeled0.

Let us now define the mapsπt and the setsAt,Nt formally. Eachπt is a map[m]× [k] → {−1, 1}∪L,
with L = {x1, x̄1, . . . , xn, x̄n} the set of literals. As mentioned above, we letπ0(i, j) = sign(Φij) for all
(i, j) ∈ [m]× [k]. Additionally, letA0 = N0 = Z0 = ∅, and letσ0 : V → {0, 1} , x 7→ 1 be the all-true
assignment. For a setS ⊂ V we call a clauseΦi S-negativeif for all j ∈ [k] with sign(Φij) = 1 we have
Φij ∈ S. (In other words,Φi is S-negative if all of its positive literals lie inS.) For t ≥ 1, we define the
mapsπt along with the setsAt,Nt,Zt inductively via the process shown in Figure 2. Intuitively,the set
Zt contains the clauses that are ‘heavily conditioned’ at timet, andNt is the set of variables that occur in
such clauses. Moreover,At is the set of all variables that have been flipped at least onceby time t except
the ones that belong toNt.

LetT be the stopping time of this process, i.e., the minimumt such thatσt satisfiesΦ (or∞ if there is
no sucht). Fort > T , we defineπt = πT , σt = σT , At = AT , Nt = NT , andZt = ZT .

StepsPI0–PI1 mirror the main loop of theWalksat algorithm; in particular, the stopping timeT
equals the total number of iterations of the main loop ofWalksat before a satisfying assignment is found.
The purpose of the remaining steps is to ‘update’ the setsAt andZt and the mapπt as described above.
Before we continue, it may be useful to illustrate the construction of the mapsπt with an example.

Example 3.1 Let us go through the example of a 5-SAT formula with6 clauses on10 variables. For the
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sake of this example, we will work withk1 = 2 andλ = 2. (Recall that in our proof we actually assume
thatk ≥ k0 is large enough,k1 is as in (6) andλ =

√
k.) We will represent the mapsπt by tables whose

columns correspond to the clausesΦi. Thus, thejth entry in columni represents the valueπt(i, j). To
improve readability, we just write+ and− instead of±1. Suppose that the initial mapπ0, containing the
signs of all literals, reads

π0 =

− − − + + +
− + − + − +
− − − − − +
− − − − + +
− − − − + +

The initial assignmentσ0 is the all-true assignment, andA0 = N0 = Z0 = ∅. Throughout, we will mark
the variables inAt by an asterisk∗ and the variables inNt by a0.

Being all-negative, clausesΦ1 andΦ3 are unsatisfied underσ0. Therefore, at timet = 1 stepPI1
choosesi1 ∈ {1, 3} randomly; say, the outcome isi1 = 1. In addition, PI1 choosesj1 ∈ [k] =
{1, 2, 3, 4, 5} uniformly at random. Suppose the result isj1 = 5. To carry on, we need to reveal the
variable |Φ15|. Thus far, the process has not imposed any conditioning on|Φ15|, and therefore this vari-
able is uniformly distributed over the set of all ourn = 10 variables. Assume that indeed|Φ15| = x1.
ThenPI1 setsσ1(x1) = 0 andσ1(x) = 1 for all x 6= x1.

To implementPI2 we need to reveal all occurrences ofx1 in our random formula. As there is no
previous conditioning on any of variables|Φij | with (i, j) 6= (1, 5), these variables remain independently
uniformly distributed over the set of all variables, and thus the events{|Φij | = x1} occur independently
with probability1/n. Suppose thatx1 occurs at the following positions:

π0 =

− − − x1 + +
− x1 − + − +
− − − − x̄1 +
− − − − + +
x̄1 − − − + x1

Then there is no clause with at leastk1 occurrences of a variable fromA0 ∪N0 ∪ {x1} = {x1}, and thus
stepPI2 is void. Hence, at the end of the first iteration we haveA1 = {x1}, N1 = Z1 = ∅, and

π1 =

− − − x∗
1 + +

− x∗
1 − + − +

− − − − x̄∗
1 +

− − − − + +
x̄∗
1 − − − + x∗

1

At timet = 2 there are two unsatisfied clauses:Φ2, whose only positive literal got flipped to false, and
Φ3, which was unsatisfied initially. StepPI1 chooses one of them randomly, sayi2 = 2, and also chooses
a random positionj2 ∈ [k], sayj2 = 2. As we already know from the first step, the literal in this position
is Φ22 = π1(2, 2) = x1. In effect, the second iteration reverses the flip made in thefirst one and thusσ2

is the all-true assignment. Since we have revealed all the occurrences ofx1 already, stepPI2 is void and
π2 = π1, A2 = {x1}, andN2 = Z2 = ∅.

At the start of the third iteration the unsatisfied clauses areΦ1,Φ3. SupposePI1 choosesi3 = 1 and
j3 = 1. Then we need to reveal the variable|Φ11|. At this point, the only conditioning imposed on this
variable is that it is different fromx1, because all occurrences ofx1 have been revealed already. Thus,
|Φ11| is uniformly distributed overx2, . . . , x10. Suppose that|Φ11| = x2. Thenσ3(x2) = 0 andσ3(x) = 1
for all x 6= x2. To reveal the occurrences ofx2 all over the formula, note that by the same argument we
applied to|Φ11| all spots marked± in π2 hide variables that are uniformly distributed overx2, . . . , x10.
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Let us assume thatx2 occurs in the following positions.

π1 =

x̄2 − − x∗
1 + +

− x∗
1 − + − +

− − x̄2 − x̄∗
1 +

− − − − + x2

x̄∗
1 − − − + x∗

1

As clauseΦ1 is A2 ∪ N2 ∪ {x2} = {x1, x2}-negative and containsk1 = 2 occurrences of variables
fromA2 ∪ {x2} = {x1, x2}, PI2 setsZ3 = {1}, reveals the remaining three variables inΦ1, and adds all
variables that occur inΦ1 toN3. Suppose that the remaining variables inΦ1 are |Φ12| = x3, |Φ13| = x4,
|Φ13| = x5. ThenN3 = {x1, x2, x3, x4, x5}; in particular, x1, x2 are now labeled0. The new0 label
‘overwrites’ the∗ becausePI3 ensures thatA3 = (A2 ∪ {x2}) \ N3 = ∅. In order to carry outPI2, we
need to reveal all occurrences of variables fromN3. Suppose this yields

π1 =

x̄0
2 − − x0

1 + +
x̄
0

3
x0
1 − x

0

5
− +

x̄
0

4
− − − x̄0

1 +
x̄
0

5
− − x̄

0

4
x
0

3
x0
2

x̄0
1 − x̄

0

5
x̄
0

3
x
0

4
x0
1

Then clauseΦ4 has becomeA2∪N3∪{x2} = {x1, . . . , x5}-negative (as there is no+-sign left in column
four), and thusPI2 setsZ3 = {1, 4}. To proceed, we need to reveal the remaining−-sign ofΦ4, add the
underlying variable toN3, and reveal all of its occurrences. Suppose that this yields

π1 =

x̄0
2 − − x0

1 + +
x̄0
3 x0

1 − x0
5 − +

x̄0
4 − − x̄

0

6
x̄0
1 x

0

6

x̄0
5 − − x̄0

4 x0
3 x0

2

x̄0
1 − x̄0

5 x̄0
3 x0

4 x0
1

At this pointPI2 stops, because clausesΦ5,Φ6 have+-signs left and clausesΦ2,Φ3 contain only one
variable labeled0. Thus, at the end of the third iteration we haveA3 = ∅,N3 = {x1, . . . , x6},Z3 = {1, 4},
and

π3 =

x̄0
2 − − x0

1 + +
x̄0
3 x0

1 − x0
5 − +

x̄0
4 − − x̄0

6 x̄0
1 x0

6

x̄0
5 − − x̄0

4 x0
3 x0

2

x̄0
1 − x̄0

5 x̄0
3 x0

4 x0
1

As the fourth iteration commences, the only unsatisfied clause left isΦ3, whencei4 = 3. Moreover,
assume thatj4 = 1. As we have revealed all occurrences ofx1, . . . , x6, at this point we know that|Φ31|
is uniformly distributed over{x7, x8, x9, x10}. Suppose that indeed|Φ31| = x7. Thus,PI1 setsσ4(x2) =
σ4(x7) = 0 andσ4(x) = 1 for all x 6= x2, x7. Suppose that revealing all occurrences ofx7 yields

π3 =

x̄0
2 − x̄7 x0

1 + x7

x̄0
3 x0

1 − x0
5 x̄7 +

x̄0
4 x̄7 − x̄0

6 x̄0
1 x0

6

x̄0
5 − − x̄0

4 x0
3 x0

2

x̄0
1 − x̄0

5 x̄0
3 x0

4 x0
1

Then there are noA3 ∪ N3 ∪ {x7}-negative clausesΦi with i 6∈ Z3 that have at least two occurrences of
a variable fromA3 ∪ {x7}. Therefore,PI2 is void, and at the end of the fourth iteration we have

π4 =

x̄0
2 − x̄∗

7 x0
1 + x∗

7

x̄0
3 x0

1 − x0
5 x̄∗

7 +
x̄0
4 x̄∗

7 − x̄0
6 x̄0

1 x0
6

x̄0
5 − − x̄0

4 x0
3 x0

2

x̄0
1 − x̄0

5 x̄0
3 x0

4 x0
1

,

9



A4 = {x7}, N4 = {x1, . . . , x6}, andZ4 = {1, 4}. Asσ4 is satisfying the process stops andT = 4. ✷

To trace the processPI0–PI3 over time we define a filtration(Ft)t≥0 by lettingFt be theσ-algebra
generated by the random variablesis, js andπs(i, j) with s ≤ t and(i, j) ∈ [m]× [k]. Then intuitively, a
random variableX is Ft-measurable if its value is determined by the firstt steps of the processPI0–PI3.
In particular, we have the following.

Fact 3.2 For anyt ≥ 1, anyx ∈ V , and anyi ∈ [m] the events{σt(x) = 1}, {Φi is satisfied underσt},
{x ∈ At}, {i ∈ Zt}, {x ∈ Nt}, and{T = t} areFt-measurable.

Proof. The construction in stepsPI2 andPI3 ensures that for anyt ≥ 1 we haveΦitjt ∈ At ∪ Nt and
thusπt(it, jt) = Φitjt This implies that for any variablex ∈ V the event{σt(x) = 1} is Ft-measurable.
In fact, we haveσt(x) = 1 iff the number|{1 ≤ s ≤ t : |πt (is, js) | = x}| of timesx has been flipped is
even (becauseσ0 is the all-true assignment).

This implies that for anyi ∈ [m] the event{Φi is satisfied underσt} isFt-measurable. In fact, if there
is an indexj ∈ [k] such thatπt(i, j) = 1, thenΦij is a positive literal whose underlying variable has not
been flipped before, whenceσt satisfiesΦi. Moreover, if there is an indexj ∈ [k] such thatΦij 6= ±1,
then by the previous paragraph the event that the literalΦij = πt(i, j) is true underσt is Ft-measurable.
If there is such a satisfied literalΦij , thenΦi is satisfied. Conversely, if there is noj ∈ [k] such that either
πt(i, j) = 1 or πt(i, j) is a literal that is satisfied underσt, then clauseΦi is unsatisfied. Hence, the event
{σt is satisfying} isFt-measurable as well, and therefore so is the event{T = t}.

Furthermore, observe thati ∈ Zt iff for all j ∈ [k] we haveπt(i, j) 6∈ {−1, 1}. For if i ∈ Zt, then
for all j ∈ [k] we have|Φij | ∈ Nt and thusπt(i, j) = Φij 6= ±1 due toPI3. Conversely, ifk ≥ k0
is large enough, anyi ∈ [k] such thatπt(i, j) 6∈ {−1, 1} for all j ∈ [k] must satisfy one of the two
conditions that leadPI2 to addi to Zt. Hence, for anyi ∈ [m] the event{i ∈ Zt} is Ft-measurable.
As by constructionNt = {πt(i, j) : i ∈ Zt, j ∈ [k]}, we conclude that for any variablex ∈ V the event
{x ∈ Nt} isFt-measurable.

Finally, the construction inPI3 ensures thatAt = {|πt(is, js)| : 1 ≤ s ≤ t} \ Nt. As for anyx the
events{x ∈ {|πt(is, js)| : 1 ≤ s ≤ t}} and{x ∈ Nt} areFt-measurable, so is the event{x ∈ At}. ✷

If πt(i, j) = ±1, then up to timet the processPI0–PI3 has only taken the sign of the literalΦij into
account, but has been oblivious to the underlying variable.The only conditioning is that|Φij | 6∈ At ∪ Nt

(because otherwisePI3 would have replaced the±1 by the actual literal). Since the input formulaΦ is
random, this implies that|Φij | is uniformly distributed overV \ (At ∪ Nt). In fact, for all (i, j) such
thatπt(i, j) = ±1 the underlying variables are independently uniformly distributed overV \ (At ∪ Nt).
Formally, we can state this key observation as follows.

Fact 3.3 Let t ≥ 0. LetEt be the set of all pairs(i, j) such thatπt(i, j) ∈ {−1, 1}. The conditional joint
distribution of the variables(|Φij |)(i,j)∈Et

givenFt is uniform over(V \ (At ∪ Nt))
Et . That is, for any

mapf : Et → V \ (At ∪ Nt) we have

P [∀(i, j) ∈ Et : |Φij | = f(i, j)|Ft] = |V \ (At ∪ Nt)|−|Et|.

Let
T ∗ = θn with θ = 0.38/k.

Our overall goal is to prove that the stopping time of the processPI0–PI3 satisfiesT ≤ T ∗ w.h.p. (The
numberθ is chosen somewhat arbitrarily; for the analysis to work it seems to be essential thatθ = c/k for
somec > 0 that is neither “too small” nor “too large”. The concrete constant above happens to work.) To
prove this, we will define non-negative random variablesSt, Ht such thatSt +Ht = 0 implies thatσt is a
satisfying assignment. We will then traceSt, Ht for 1 ≤ t ≤ T ∗.

For anyt ≥ 1 let
Dt = {i ∈ [m] : Φi isAt ∪ Nt-negative} .

As PI3 ensures thatΦi is At ∪ Nt-negative iffπt(i, j) 6= 1 for all j ∈ [k], the event{i ∈ Dt} is Ft-
measurable for anyi ∈ [m]. We define

S0 = |D0| and St = |Dt| − |At| for t ≥ 1. (7)
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Any clauseΦi with i 6∈ Dt is satisfied underσt. For if j ∈ [k] is such thatπt(i, j) = 1, thenΦij is a
positive literal andσt(Φij) = 1, becauseWalksat starts with the all-true assignmentσ0 and the variable
Φij has not been flipped up to timet. Clearly, in order to study the random variableSt it is crucial to
estimate|Dt|. This is the purpose of the following proposition, whose proof we defer to Section 4.

Proposition 3.4 W.h.p. we have|Dt| ≤ 22−km for all t ≤ T ∗.

To define the random variablesHt, let us call an assignmentτ : Nt → {0, 1} rich for Zt if in each
clauseΦi with i ∈ Zt at least0.8k literalsΦij are satisfied underτ .

Proposition 3.5 W.h.p. there is a sequence(τt)1≤t≤T∗ with the following properties.

1. For any1 ≤ t ≤ T ∗, τt is a rich assignment forZt.

2. For any1 < t ≤ T ∗ and anyx ∈ Nt−1 we haveτt(x) = τt−1(x).

Moreover,τt isFt-measurable for allt.

Assuming that there is a sequence(τt)1≤t≤T∗ as in Proposition 3.5, we defineH0 = 0 and

Ht = |{x ∈ Nt : σt(x) 6= τt(x)}| for 1 ≤ t ≤ T ∗,

andHt = |Nt| for t > T ∗. For the sake of completeness, we also letHt = |Nt| if there is no such sequence
(τt)1≤t≤T∗ . The proof of Proposition 3.5 hinges upon the following fact.

Proposition 3.6 W.h.p. we have|Zt| ≤ εn for all t ≤ T ∗.

We defer the proof of Proposition 3.6 to Section 5. Assuming Proposition 3.6, we can derive Proposition 3.5
rather easily.

Proof of Proposition 3.5 (assuming Proposition 3.6).By Lemma 2.3, we may assume thatΦ has the
expansion property (1). Furthermore, by Proposition 3.6 wemay assume that|Zt| ≤ εn for all t ≤ T ∗.
Under these assumptions we will construct the sequence(τt)1≤t≤T∗ by induction ont ≥ 1. Thus, suppose
that1 ≤ t ≤ T ∗ and that we have already got assignmentsτs with 1 ≤ s < t that satisfy 1.–2.

The setZ = Zt \ Zt−1 of indices thatZt gained at timet has size|Z| ≤ |Zt| ≤ εn. Therefore, (1)
ensures that there is a0.9k-fold matchingM fromZ to the set

N = N(ΦZ) = {|Φij | : (i, j) ∈ Z × [k]} ⊂ Nt

of variables that occur in the clausesΦi with i ∈ Z. The construction inPI2 ensures that none of these
clausesΦi has more thanλ occurrences of a variable fromNt−1 (as otherwisei ∈ Zt−1). Therefore, in
the matchingM ′ obtained fromM by omitting all edgese = {i, x} with i ∈ Z andx ∈ Nt−1 each clause
Φi with i ∈ Z is incident with at least0.9k − λ ≥ 0.8k edges. Now, for each edgee = {i, x} ∈ M ′ let
τt(x) be the truth value that makes the corresponding literal inΦi evaluate to true. Furthermore, for all
y ∈ Nt−1 let τt(y) = τt−1(y), and for all other variablesx′ ∈ Nt let τt(x′) = 1. This ensures thatτt
satisfies the conditions in Proposition 3.5. ✷

Having defined the random variablesSt, Ht, we are now going to verify that they suit their intended
purpose, i.e., thatSt +Ht = 0 implies thatσt is satisfying.

Proposition 3.7 Let1 ≤ t ≤ T ∗. If St +Ht = 0, thenσt is a satisfying assignment.

Proof. Let Ut be the number of clause indicesi ∈ [m] \ Zt such thatΦi is unsatisfied underσt. We claim
that

Ut ≤ St = |Dt| − |At|. (8)

To see this, recall that any indexi ∈ [m] such thatΦi is unsatisfied underσt belongs toDt. Therefore, to
prove (8) it suffices to construct injective mapsst : At → Dt such that for anyx ∈ At the clauseΦst(x) is
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satisfied underσt. In fact, the mapst will have the property that for eachx ∈ At there is an indexj ∈ [k]
such thatx = |Φst(x)j | and such that the literalΦst(x)j is true underσt.

The construction of the mapsst is inductive. Fort = 0 we haveA0 = ∅ and thus there is nothing to
do. Thus, suppose that1 ≤ t ≤ T and that we have definedst−1 already. Lety = |Φitjt | be the variable
flipped at timet. If it 6∈ Zt, theny ∈ At and we definest(y) = it. Moreover, we letst(x) = st−1(x) for
all x ∈ At \ {y} ⊂ At−1. (Note that it is possible thaty ∈ At−1 asy may have been flipped before.) For
t > T we setst = st−1.

To verify thatst has the desired properties, assume thatT ≥ t and observe thatPI1 ensures thatΦit

was unsatisfied underσt−1. Thus,it ∈ Dt−1 ⊂ Dt. But asPI1 setsσt(y) = 1− σt−1(y), Φit is satisfied
underσt. Furthermore, for allx ∈ At \ {y} we haveσt(x) = σt−1(x), and thus each of these variables
contributes a true literal to its clauseΦst(x) = Φst−1(x) by induction. Sincest−1 is injective butΦit was
unsatisfied underσt−1, we haveit 6∈ Im(st−1), whencest is injective. This establishes (8).

As (8) shows,St = 0 impliesUt = 0, i.e.,σt satisfies all clausesΦi with i 6∈ Zt. To complete the
proof, we need to show that ifHt = 0, thenσt also satisfies all clausesΦi with i ∈ Zt. But if Ht = 0,
thenσt(x) = τt(x) for all x ∈ Nt, andτt is a satisfying assignment ofΦZt

. ✷

Finally, we have all the pieces in place to prove Theorem 1.2.

Proof of Theorem 1.2 (assuming Propositions 3.4 and 3.6).Proposition 3.7 shows that

P [T ≥ T ∗] = P [T ≥ T ∗ ∧ ∀1 ≤ t ≤ T ∗ : St +Ht > 0] .

We are going to bound the probability on the r.h.s. To this end, we work with two random variablesS′
t, H

′
t

that are easier to analyze than the originalSt, Ht. Namely, we letS′
0 = H ′

0 = 0, and

S′
t = S′

t−1 −
{

1 if πt−1(it, jt) = −1,
0 otherwise

(t ≥ 1).

In other words, we letS′
t = S′

t−1 − 1 if the variable flipped at timet had not been flipped before and does
not occur in any of the ‘exceptional’ clausesΦZt−1

. Otherwise,S′
t = S′

t−1.
We claim that

St ≤ |Dt|+ k |Zt|+ S′
t for anyt ≥ 0. (9)

To see this, recall from (7) thatSt = |Dt| − |At|. By PI3, the setAt contains all variables|Φisjs | such
thatπs−1(is, js) = −1 with s ≤ t, except the ones that belong toNt. Since|Nt| ≤ k |Zt|, we obtain (9).

Furthermore, we letH ′
0 = 0 and

H ′
t = H ′

t−1 +







−1 if |Φitjt | ∈ Nt−1 andσt(|Φitjt |) = τt(|Φitjt |),
1 if |Φitjt | ∈ Nt−1 andσt(|Φitjt |) 6= τt(|Φitjt |),
0 otherwise

(t ≥ 1).

Thus, starting at0, we decrease the value ofH ′
t by one if the variable flipped at timet lies inNt−1 and its

new value coincides with the ‘ideal’ assignmentτt, while we increase by one if these values differ.
We claim that

Ht ≤ k |Zt|+H ′
t for anyt ≥ 0. (10)

ForH0 = H ′
0 and

Ht −Ht−1 = |{x ∈ Nt : σt(x) 6= τt(x)}| − |{x ∈ Nt−1 : σt−1(x) 6= τt−1(x)}|
≤ |Nt \ Nt−1|+H ′

t −H ′
t−1 ≤ k |Zt \ Zt−1|+H ′

t −H ′
t−1 for anyt ≥ 1.

Combining (9) and (10) with Propositions 3.4 and 3.6, we see that w.h.p.

St +Ht ≤ |Dt|+ 2k |Zt|+ S′
t +H ′

t

≤ 22−km+ 2k |Zt|+ S′
t +H ′

t ≤
4ρn

k
+ 2kεn+ S′

t +H ′
t for anyt ≤ T ∗. (11)
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Hence, we are left to analyzeS′
t +H ′

t.
The sequence(S′

t +H ′
t)t is a super-martingale. More precisely, we claim that withγ = 0.429 we have

E [S′
t +H ′

t|Ft−1] < S′
t−1 +H ′

t−1 − γ for all t ≤ min {T, T ∗} . (12)

There are two cases to consider.

Case 1:it 6∈ Zt−1. The construction in stepPI2 ensures that there are fewer thanλ indicesj such that
|Φitj | ∈ Nt−1. Furthermore,PI2 ensures that there are less thank1 indicesj such that|Φitj | ∈
At−1. Moreover, there is no indexj such thatπt−1(it, j) = 1, because otherwise clauseΦit would
have been satisfied underσt−1. This means that for at leastk − k1 − λ indicesj ∈ [k] we have
πt−1(it, j) = −1. Therefore, asjt ∈ [k] is chosen uniformly at random, with probability at least
1 − (k1 + λ)/k ≥ 0.43 − λ/k we haveS′

t = S′
t−1 − 1. In addition, asΦit contains at mostλ

variables fromNt−1, the probability thatH ′
t = H ′

t−1+1 is bounded from above byλ/k < 0.00001.
Thus, (12) holds.

Case 2:it ∈ Zt−1. As the assignmentτt−1 is rich, there are at least0.8k indicesj such thatτt(Φitj) =
τt−1(Φitj) = 1. However, for all of these indicesj we haveσt−1(Φitj) = 0, becauseΦit is
unsatisfied underσt−1. Hence, the probability thatτt(Φitjt) = 1 andσt−1(Φitjt) = 0 is at least
0.8, and if this event indeed occurs thenσt(Φitjt) = τt(Φitjt) = 1. Therefore,H ′

t − H ′
t−1 has

expectation≤ −0.8 + 0.2 ≤ −0.6. Moreover,S′
t ≤ S′

t−1 with certainty. This implies (12).

To complete the proof, we are going to apply Azuma’s inequality (Lemma 2.2 in Section 2) to the
random variableS′

T∗ + H ′
T∗ . The inequality applies because (12) shows that(S′

t + H ′
t)t≥0 is a super-

martingale. However, there is a minor technical intricacy:to use the inequality, we need an upper bound on
theexpectationE [S′

T∗ +H ′
T∗ ]. But as (12) only holds fort ≤ min {T, T ∗}, this would require knowledge

of the probability thatT ≥ T ∗, the very quantity that we want to estimate.
To circumvent this problem, we define further random variablesRt by letting Rt = S′

t + H ′
t for

t ≤ min {T ∗, T} andRt = Rt−1 − γ for t > min {T ∗, T}. ThenR0 = 0 andE [Rt|Ft−1] ≤ Rt−1 − γ
for all t ≥ 0. Thus,E [RT∗ ] ≤ −γ T ∗. Recalling the definition (5) ofε, we obtain fork ≥ k0 sufficiently
large andρ ≤ ρ0 = 1/25 the bound

E [RT∗ ] ≤ −γ · T ∗ ≤ −4ρn/k− 10kεn. (13)

Furthermore,|Rt − Rt−1| ≤ 2 for all t ≥ 0 by the definitions ofS′
t, H

′
t. Therefore, Azuma’s inequality

and (13) yield

P [RT∗ > −4ρn/k − 2kεn] ≤ P
[

RT∗ > E [RT∗ ] + n2/3
]

≤ exp

[

−n4/3

8T ∗

]

= o(1). (14)

Finally, we obtain from (9), (10), and Proposition 3.7

P [T > T ∗] ≤ P [∀t ≤ T ∗ : |Dt|+ 2k |Zt|+Rt > 0] ≤ P [|DT∗ |+ 2k |ZT∗ |+RT∗ > 0]

≤ P [|DT∗ |+ 2k |ZT∗ | > 4ρn/k + 2kεn] + P [RT∗ > −4ρn/k − 2kεn]
(11), (14)
= o(1),

thereby completing the proof. ✷

Our remaining task is to establish Propositions 3.4 and 3.6.From a formal point of view, we should start
with Proposition 3.6 because the proof of Proposition 3.4 depends on it. However, the argument that is used
in the proof of Proposition 3.4 is conceptually similar to but technically far simpler than the one that we
use to prove Proposition 3.6. Hence, for didactical reasonswe will start with the proof of Proposition 3.4
in Section 4 and postpone the proof of Proposition 3.6 to Section 5.

4 Proof of Proposition 3.4

In this section we keep the notation and the assumptions fromProposition 3.4.
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Our goal is to bound the number|DT∗ | of AT∗ ∪NT∗ -negative clausesΦi, i.e., clauses whose positive
literals all belong toAT∗ ∪ NT∗ . Thus, we need to study how the processPI0–PI3 ‘hits’ the positions
(i, j) ∈ [m]× [k] that represent positive literals by adding their underlying variable toAT∗ ∪NT∗ . To this
end, we consider the two random variables

K∗
t (i, j) =

{

1 if πt−1(i, j) = 1 andΦij ∈ At,
0 otherwise,

(15)

K0
t (i, j) =

{

1 if πt−1(i, j) = 1 andΦij ∈ Nt,
0 otherwise,

(16)

for any (i, j) ∈ [m] × [k] and t ≥ 1. Recall thatπt−1(i, j) = sign(Φij) iff Φij is a literal such that
|Φij | 6∈ At−1 ∪ Nt−1 (cf. PI3). To simplify the notation, we define for a setI ⊂ [m]× [k]

K∗
t (I) =

∏

(i,j)∈I

K∗
t (i, j), K0

t (I) =
∏

(i,j)∈I

K0
t (i, j).

If I∗, I0 ⊂ [m]× [k] are both non-empty, then

K∗
t (I∗) ·K0

t (I0) = 0. (17)

Indeed, suppose thatK0
t (I0) 6= 0. ThenPI2 must have added at least one clause toZt. But the construction

in PI2 ensures that the first clause that gets added toZt contains the variable|Φitjt | flipped at timet. Thus,
At ⊂ At−1 by PI3, and thus there cannot be a pair(i, j) with K∗

t (i, j) = 1. In effect,K∗
t (I∗) = 0.

Lemma 4.1 Let t ≥ 1 and ∅ 6= I∗ ⊂ [m] × [k]. Let E∗
t (I∗) be the event that|Φij | = |Φitjt | 6∈

At−1 ∪ Nt−1 for all (i, j) ∈ I∗, and that(it, jt) 6∈ I∗. Then

P [E∗
t (I∗)|Ft−1] ≤ max {1, |V \ (At−1 ∪ Nt−1)|}−|I∗|

. (18)

Proof. Since clauseΦit is unsatisfied underσt−1, Φit isAt−1 ∪Nt−1-negative and thusπt−1(it, jt) 6= 1.
Hence,PI3 ensures that either|Φitjt | ∈ At−1 ∪ Nt−1 or πt−1(it, jt) = −1. If E∗

t (I∗) occurs, then
|Φitjt | 6∈ At−1 ∪Nt−1 and thusπt−1(it, jt) = −1. Furthermore, ifI∗ occurs, then|Φij | 6∈ At−1 ∪Nt−1

for all (i, j) ∈ I∗, and thusπt−1(i, j) ∈ {−1, 1} by PI3. Thus, by Fact 3.3|Φitjt | and |Φij | with
(i, j) ∈ I∗ are independently uniformly distributed overV \ (At−1 ∪ Nt−1). Therefore,

P [E∗
t (I∗)|Ft−1] ≤ max {1, |V \ (At−1 ∪ Nt−1)|}−|I∗|

,

as claimed. ✷

Corollary 4.2 For anyt ≥ 1, I∗ ⊂ [m]× [k] we have

E [K∗
t (I∗)|Ft−1] ≤ max {1, |V \ (At−1 ∪Nt−1)|}−|I∗|

.

Proof. If
∏

(i,j)∈I∗ K∗
t (i, j) = 1, then the eventE∗

t (I∗) occurs. Hence, Lemma 4.1 implies that

E





∏

(i,j)∈I∗

K∗
t (i, j)|Ft−1



 ≤ P [E∗
t (I∗)|Ft−1] ≤ max {1, |V \ (At−1 ∪ Nt−1)|}−|I∗|

, (19)

as claimed. ✷

Lemma 4.3 For anyt ≥ 1, δt ≥ 0 andI0 ⊂ [m]× [k] we have

E
[

K0
t (I0) · 1 {|Zt \ Zt−1| ≤ δt} |Ft−1

]

≤
(

kδt
max {1, |V \ (At−1 ∪ Nt−1)| − kδt}

)|I0|
.
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Proof. We may assume thatI0 6= ∅. We may also assume thatπt−1(i, j) = 1 for all (i, j) ∈ I0 as
otherwiseK0

t (I0) = 0. We are going to work with the conditional distribution

p [·] = P [·|Ft−1] .

Let E0 be the event thatK0
t (I0) = 1 and|Zt \ Zt−1| ≤ δt. Then our goal is to estimatep

[

E0
]

.
If the eventE0 occurs, thenπt−1(it, jt) = −1 and |Φitjt | ∈ Nt. Indeed, being unsatisfied under

the assignmentσt−1, clauseΦit is At−1 ∪ Nt−1-negative, and thusπt−1(it, jt) 6= 1. Furthermore, if
πt−1(it, jt) = Φitjt , then|Φitjt | ∈ At−1 ∪ Nt−1 by PI3, and thusZt = Zt−1 andNt = Nt−1 by the
construction in stepPI2. But if Nt = Nt−1, thenK0

t (I0) = 0 by definition.
Thus, assume thatπt−1(it, jt) = −1 and|Φitjt | ∈ Nt. We need to trace the process described inPI2

that enhances the setsNt andZt. This process may add a sequence of clause indices to the setZt and
the variables that occur in these clauses toNt. As these variables get added to the setNt one by one, we
will study the probability that they occur in one of the positions(i, j) ∈ I0. The first clause thatPI2 adds
to Zt necessarily contains the newly flipped variable|Φitjt |, and thus we may assume that this is the first
variable that gets added toNt. In addition, if|Zt \ Zt−1| ≤ δt, PI2 may add up tokδt−1 further variables
toNt. To track this process, we need a bit of notation.

Let s1, . . . , sy be the clause indices thatPI2 adds toZt, in the order in which they get added by the
process. Lety∗ = min {y, δt}. For each1 ≤ i ≤ y∗ let 1 ≤ ji,1 < · · · < ji,li ≤ k be the unique sequence
of indices such thatπt−1(si, ji,q) = −1 and

|Φsiji,q | 6∈ {|Φitjt |} ∪ Nt−1 ∪
i−1
⋃

h=1

N(Φsh) ∪
{

|Φsiji,u | : u < q
}

for all q ≤ li.

This means that
{

|Φsiji,q | : 1 ≤ q ≤ li
}

are the new variables thatΦsi contributes toNt and that did not
belong toAt−1 already. Letξ0 = |Φitjt | and letξ1, . . . , ξL be the sequence of variables|Φsiji,q | with
q = 1, . . . , li andi = 1, . . . , y∗. Hence,ξ0, . . . , ξL is the sequence of variables not inAt−1 thatPI2 adds
to Nt, in the order in which the process adds these variables toNt. By our choice ofy∗, the total number
of these variables satisfies

L+ 1 ≤ ky∗ ≤ kδt.

Of course,L andξ0, . . . , ξL are random variables.
If E0 occurs, then each of the variablesΦij with (i, j) ∈ I0 occurs in the sequenceξ0, . . . , ξL. Hence,

there exists a mapf : I0 → {0, 1, . . . , kδt − 1} such thatf(i, j) ≤ L andΦij = ξf(i,j) for all (i, j) ∈ I0.
For a givenf let E0(f) denote this event. Then by the union bound,

p
[

E0
]

≤
∑

f :I0→{0,1,...,kδt−1}

p
[

E0(f)
]

≤ (kδt)
|I0| max

f :I0→{0,1,...,kδt−1}
p
[

E0(f)
]

. (20)

We claim that

p
[

E0(f)
]

≤ max {1, |V \ (At−1 ∪Nt−1)| − kδt}−|I0| (21)

for anyf . To prove (21), letI0
l = f−1(l) be the set of positions(i, j) ∈ I0 where the variableξl occurs

(0 ≤ l ≤ L). Moreover, letE0
l (f) be the event that

a. Φij = ξl for all (i, j) ∈ I0
l , and

b. Φij 6= ξl for all (i, j) ∈ I0 \ I0
l .

As πt−1(i, j) = 1 for all (i, j) ∈ I0
l , givenFt−1 the variablesΦij with (i, j) ∈ I0

l are independently
uniformly distributed overV \ (At−1 ∪ Nt−1) by Fact 3.3. Hence, given the event

⋂

ν<l E0
ν (f), the

variables|Φij | with (i, j) ∈ I0
l are uniformly distributed over the setV \ (At−1 ∪Nt−1 ∪ {ξ0, . . . , ξl−1})

(for if E0
ν (f) occurs for someν < l, thenΦij 6= ξν for all (i, j) ∈ I0

l ). Therefore, we obtain

p

[

E0
l (f)|

⋂

ν<l

E0
ν (f)

]

≤ max {1, |V \ (At−1 ∪ Nt−1)| − l + 1}−|I0

l | for any0 ≤ l ≤ L.
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Multiplying these conditional probabilities up for0 ≤ l ≤ L < kδt, we obtain (21). Finally, combin-
ing (18), (20), and (21) completes the proof. ✷

Corollary 4.4 For anyt ≥ 1, δt ≥ 0 andI∗, I0 ⊂ [m]× [k] we have

E
[

K∗
t (I∗)K0

t (I0)1 {|Zt \ Zt−1| ≤ δt} |Ft−1

]

≤ max {1, |V \ (At−1 ∪ Nt−1)|}−|I∗| ·
(

kδt
max {1, |V \ (At−1 ∪ Nt−1)| − kδt}

)|I0|
.

Proof. This is immediate from (17) and Corollary 4.2 and Lemma 4.3. ✷

Why does the bound provided by Corollary 4.4 “make sense”? First, observe that the only reason we
need to take the max of the respective expression and one is because a priori it could happen that, e.g.,
V \ (At−1 ∪ Nt−1) = ∅. Apart from this issue, the first factor basically comes fromthe fact that for
each pair(i, j) with πt−1(i, j) = 1 the variableΦij is uniformly distributed overV \ (At−1 ∪ Nt−1).
Hence, it seems reasonable that the probability that one such Φij equals the variable flipped at timet is
1/|V \ (At−1 ∪ Nt−1)|, and that these events occur independently. With respect tothe second factor, a
similar intuition applies. Due to the1 {|Zt \ Zt−1| ≤ δt} factor on the left hand side, at mostkδt variables
are added toNt that were not already inNt−1. Hence, for eachΦij with πt−1(i, j) = 1 there are now
kδt “good” cases that would makeK0

t (i, j) = 1. Moreover, as we reveal thekδt variables, there remain at
least|V \ (At−1 ∪Nt−1)| − kδt “possible” cases. We will now establish the following.

Proposition 4.5 W.h.p. we have eitherZT∗ > εn or |DT∗ | ≤ 22−km.

Proof. Let E be the event that|ZT∗ | ≤ εn but |DT∗ | > 22−km. Our goal is to show thatP [E ] = o(1). To
this end, we will decomposeE into various ‘sub-events’ that are sufficiently detailed for us to bound their
probabilities via Corollary 4.4. In order to bound the probability of E we will then use the union bound.

As a first step, we need to decomposeE according to the sequence(|Zt \ Zt−1|)t≥1 of increments of
the setsZt. More precisely, let∆ be the set of all sequencesδ = (δt)1≤t≤T∗ of non-negative integers with
∑T∗

t=1 δt ≤ εn. LetE(δ) be the event that|Zt \ Zt−1| ≤ δt for all 1 ≤ t ≤ T ∗ and|DT∗ | > 22−km. If the
eventE occurs, then there is a sequenceδ such that the eventE(δ) occurs. Hence, by the union bound

P [E ] ≤
∑

δ∈∆

P [E(δ)] ≤ |∆| ·max
δ∈∆

P [E(δ)] .

As it is well known that|∆| =
(

εn+T∗−1
T∗−1

)

≤
(

εn+T∗

εn

)

, we obtain

P [E ] ≤
(

εn+ T ∗

εn

)

max
δ∈∆

P [E(δ)] . (22)

Fixing any sequenceδ ∈ ∆, we now decompose the eventE(δ) further according to the precise setM
of clauses that end up inDT∗ , and according to the precise ‘reason’ why each clausei ∈ M belongs to
DT∗ . More precisely, letM ⊂ [m] be a set of sizeµ = 22−km. Moreover, for disjointQ∗, Q0 ⊂ M × [k]
let E0(Q∗, Q0) be the event that

π0(i, j) = 1 for (i, j) ∈ Q∗ ∪Q0, whileπ0(i, j) = −1 for (i, j) ∈ M × [k] \ (Q∗ ∪Q0).

Furthermore, for mapsτ∗ : Q∗ → [T ∗], τ0 : Q0 → [T ∗] let E(δ, τ∗, τ0) be the event that|Zt \ Zt−1| ≤ δt
for all 1 ≤ t ≤ T ∗ and

πτ∗(i,j)−1(i, j) = 1 while Φij ∈ Aτ∗(i,j) for all (i, j) ∈ Q∗,

πτ0(i,j)−1(i, j) = 1 while Φij ∈ Nτ0(i,j) for all (i, j) ∈ Q0.

If the eventE(δ) occurs, then there existQ∗, Q0 and τ∗, τ0 such that the eventsE0(Q∗, Q0) and
E(δ, τ∗, τ0) occur. In fact, ifE(δ) occurs, then|DT∗ | ≥ µ. Thus, select a subsetM ⊂ DT∗ of size
µ. By the definition ofDT∗ , eachi ∈ M is AT∗ ∪ NT∗ -negative. Thus, for anyj ∈ [k] such thatΦij is
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a positive literal there is a time1 ≤ t = t(i, j) ≤ T ∗ such thatπt−1(i, j) = 1 but πt(i, j) ∈ At ∪ Nt.
If πt(i, j) ∈ At(i,j), then include(i, j) in Q∗ and setτ∗(i, j) = t. Otherwise, add(i, j) to Q0 and let
τ0(i, j) = t. Then indeed bothE0(Q∗, Q0) andE(δ, τ∗, τ0) occur. Thus, by the union bound,

P [E(δ)] ≤
∑

Q∗,Q0,τ∗,τ0

P
[

E0(Q∗, Q0) ∩ E(δ, τ∗, τ0)
]

. (23)

The eventE0(Q∗, Q0) depends only on the signs of the literals and is thereforeF0-measurable. Fur-
thermore, as signs of the literalsΦij are mutually independent, we get

P
[

E0(Q∗, Q0)
]

= 2−kµ.

Therefore, (23) yields
P [E(δ)] ≤ 2−kµ

∑

Q∗,Q0,τ∗,τ0

P
[

E(δ, τ∗, τ0)|F0

]

. (24)

Thus, we are left to estimateP
[

E(δ, τ∗, τ0)|F0

]

.
We defined the random variablesK∗

t (·, ·), K0
t (·, ·) so that if the eventE(δ, τ∗, τ0) occurs, then

∏

(i,j)∈Q∗

Kτ∗(i,j)(i, j) ·
∏

(i,j)∈Q0

Kτ0(i,j)(i, j) ·
T∗
∏

t=1

1 {|Zt \ Zt−1| ≤ δt} = 1.

In order to apply Corollary 4.4 to the above expression, we are going to reorder the product according to
the time parameter. More precisely, letQ∗

t = τ∗−1(t) andQ0
t = τ0−1(t). Then

P
[

E(δ, τ∗, τ0)|F0

]

≤ E





∏

(i,j)∈Q∗

Kτ∗(i,j)(i, j)
∏

(i,j)∈Q0

Kτ0(i,j)(i, j)

T∗
∏

t=1

1 {|Zt −Zt−1| ≤ δt} = 1|F0





= E

[

T∗
∏

t=1

Kt(Q
∗
t )Kt(Q

0
t ) · 1 {|Zt \ Zt−1| ≤ δt} = 1|F0

]

.

If |Zt \ Zt−1| ≤ δt for all t ≤ T ∗, then|Nt−1| + kδt ≤ k
∑

s≤t δt ≤ kεn for all t ≤ T ∗. Furthermore,
|At| ≤ t ≤ T ∗ = n

k for all t ≥ 0. Hence,|V \ (At−1 ∪Nt−1)| − kδt ≥ n(1− kε− 1/k) ≥ n/1.01 for all
t ≤ T ∗, provided thatk ≥ k0 is large enough. Thus, Corollary 4.4 entails in combinationwith Lemma 2.1

P
[

E(δ, τ∗, τ0)|F0

]

=

(

1.01

n

)|Q∗|

·
∏

(i,j)∈Q0

1.01kδτ0(i,j)

n
. (25)

For anyM ⊂ [m] of sizeµ and any two disjointQ∗, Q0 ⊂ M × [k] let

S(M,Q∗, Q0) =
∑

τ∗,τ0

(

1.01

n

)|Q∗|

·
∏

(i,j)∈Q0

1.01kδτ0(i,j)

n
,

with the sum ranging over all mapsτ∗ : Q∗ → [T ∗], τ0 : Q0 → [T ∗]. Recall thatθ = T ∗/n. As
∑

t≤T∗ δt ≤ εn, we obtain

S(M,Q∗, Q0) ≤
(

1.01T ∗

n

)|Q∗|(
1.01k

n

)|Q0|
∑

τ0

∏

(i,j)∈Q0

δτ0(i,j)

=

(

1.01T ∗

n

)|Q∗|(
1.01k

n

)|Q0|
(

T∗

∑

t=1

δt

)|Q0|

≤ (1.01θ)
|Q∗|

(1.01εk)
|Q0|

. (26)
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Combining (24), (25), and (26), we thus get for anyδ ∈ ∆

P [E(δ)] ≤ 2−kµ
∑

M⊂[m]:|M|=µ

∑

Q∗,Q0⊂M×[k]:Q∗∩Q0=∅

S(M,Q∗, Q0)

≤ 2−kµ

(

m

µ

)

∑

q∗,q0:q∗+q0≤kµ

∑

Q∗,Q0:|Q∗|=q∗,|Q0|=q0

(1.01θ)
q∗

(1.01εk)
q0

≤ 2−kµ

(

m

µ

)

∑

q∗,q0:q∗+q0≤kµ

(

kµ

q∗, q0, kµ− q∗ − q0

)

(1.01θ)q
∗

(1.01kε)q
0

≤
(

m

µ

)(

1 + 1.01(θ+ kε)

2

)kµ

≤
[

em

µ
·
(

1 + 1.01(θ + kε)

2

)k
]µ

≤
[

e2k−2 ·
(

1 + 1.01(θ+ kε)

2

)k
]µ

≤ 0.999µ, (27)

provided thatk ≥ k0 is sufficiently big. Finally, combining (22) and (27), we obtain

P [E ] ≤
(

εn+ T ∗

εn

)

0.999µ ≤
(

e(εn+ θn)

εn

)εn

0.999µ ≤ (e(1 + θ/ε))
εn

0.999µ. (28)

By our assumption thatρ ≥ k−3 (cf. the first paragraph in Section 3), we haveµ = 22−km ≥ ρn/k ≥
k−4n. Hence, recalling thatθ ≤ 1/k andε = exp(−k2/3) (cf. (5)), we obtain from (28)

P [E ] ≤ exp
[

n
(

ε ln(2e/ε)− k−4
)]

≤ exp
[

n
(

k exp(−k2/3) + k−4 ln 0.999
)]

= exp(−Ω(n)) = o(1),

provided thatk ≥ k0 is sufficiently large. ✷

Finally, Proposition 3.4 is immediate from Propositions 3.6 and 4.5.

5 Proof of Proposition 3.6

Throughout this section we keep the notation and the assumptions of Proposition 3.6.

5.1 Outline

The goal in this section is to bound the size of the setZT∗ . There are two reasons why stepPI2 may add
a clause indexi ∈ [m] to the setZt for some1 ≤ t ≤ T ∗. First, the clauseΦi may feature at leastk1
variables from the setAt−1∪{|Φitjt |}, i.e., variables that have been flipped at least once. Second,Φi may
contain at leastλ variables that also occur in clauses that were added toZt previously. The key issue is to
deal with the first case. Once that is done, we can bound the number of clauses that get included for the
second reason via Lemma 2.4, i.e., via the expansion properties of the random formula.

Thus, we need to investigate how a clauseΦi comes to contain a lot of variables fromAt−1∪{|Φitjt |}
for somet ≤ T ∗. There are two ways in which this may occur. First,Walksat may have tried to satisfy
Φi ‘actively’ several times, i.e.,is = i for severals ≤ t. Second,Φi may contain several of the variables
|Φisjs | flipped at timess < t ‘accidentally’, i.e., withoutWalksat trying to actively satisfyi. More
precisely, for anyt ≥ 0 we call a pair(i, j) ∈ [m]× [k]

• t-activeif there is1 ≤ s ≤ t such that(i, j) = (is, js) andπs−1(i, j) = −1.

• t-passiveif there is1 ≤ s ≤ t such that(i, j) 6= (is, js) but |Φij | = |Φisjs | andπs−1(i, j) ∈
{−1, 1}.

Furthermore, we say thati ∈ [m] is t-active if there arek2 = k1 − 10−6k indicesj such that(i, j)
is t-active. Similarly, we say thati is t-passiveif there arek3 = 10−6k indicesj such that(i, j) is t-
passive. These definitions ensure that anyi ∈ [m] for which there are at leastk1 indicesj ∈ [k] such that
|Φij | ∈ At−1 ∪ {|Φitjt |} is eithert-active ort-passive.
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To prove Proposition 3.6, we will deal separately witht-active andt-passive clauses. LetAt be the
number oft-active clauses, and letPt be the number oft-passive clauses.

Lemma 5.1 For any1 ≤ t ≤ T ∗ we haveP [At < εn/4 ∨ |Zt| > εn] ≥ 1− 1/n2.

We defer the proof of Lemma 5.1 to Section 5.2.

Lemma 5.2 For any1 ≤ t ≤ T ∗ we haveP [Pt < εn/4 ∨ |Zt−1| > εn] ≥ 1− 1/n2.

Proof. As in the proof of Proposition 4.5, we are going to break the event of interest, i.e.,

E = {Pt ≥ εn/4 ∧ |Zt−1| ≤ εn} ,

down into sub-events whose probabilities can be estimated via Lemma 4.1. Then we will use the union
bound to estimate the probability ofE .

For a setM ⊂ [m] of µ = εn/4 clause indices letE(M) be the event that|Zt−1| ≤ εn and alli ∈ M
aret-passive. IfE occurs, then there is a setM such that the eventE(M) occurs. Hence, by the union
bound

P [E ] ≤
∑

M⊂[m]:|M|=µ

P [E(M)] ≤
(

m

µ

)

max
M

P [E(M)] . (29)

Thus, fix a setM ⊂ [m] of sizeµ. Let Q ⊂ M × [k] be a set such that for eachi ∈ M there are
preciselyk3 indicesj ∈ [k] such that(i, j) ∈ Q. Let E(M,Q) be the event that|Zt−1| ≤ εn and all pairs
(i, j) ∈ Q aret-passive. If the eventE(M) occurs, then there exists a setQ such thatE(M,Q) occurs.
Therefore, again by the union bound

P [E(M)] ≤
∑

Q

P [E(M,Q)] ≤
(

k

k3

)µ

max
Q

P [E(M,Q)] . (30)

For a mapτ : Q → [t] let E(M,Q, τ) be the event that|Zt−1| ≤ εn and

τ(i, j) = min {s ∈ [t] : (i, j) is s-passive} for all (i, j) ∈ Q.

If the eventE(M,Q) occurs, then there is a mapτ such that the eventE(M,Q, τ) occurs. Consequently,
for anyM,Q we have

P [E(M,Q)] ≤
∑

τ

P [E(M,Q, τ)] ≤ t|Q| max
τ

P [E(M,Q, τ)] . (31)

Combining (29), (30), and (31), we see that

P [E ] ≤
(

m

µ

)(

k

k3

)µ

tk3µ max
M,Q,τ

P [E(M,Q, τ)] . (32)

Hence, fix anyM,Q, τ . Let Qs = τ−1(s) for any 1 ≤ s ≤ t, and letE∗
s (Qs) be the event that

|Φij | = |Φitjt | 6∈ At−1 ∪ Nt−1 for all (i, j) ∈ Qs, and(it, jt) 6∈ Qs. If E(M,Q, τ) occurs, then the
eventsE∗

s (Qs) occur for all1 ≤ s ≤ t. Moreover, the constructionPI0–PI3 ensures that|As| ≤ s, and
that|Ns−1| ≤ k|Zs−1| ≤ kεn for all 1 ≤ s ≤ t. Therefore, Lemma 4.1 implies

P [E(M,Q, τ)] ≤ P

[

t
⋂

s=1

E∗
s (Qs) ∩ {|Ns−1| ≤ kεn}

]

≤
t
∏

s=1

max {1, n− s+ 1− kεn}−|Qs| .(33)

As s ≤ t ≤ T ∗ ≤ n/k, ε = exp(−k2/3), and because we are assuming thatk ≥ k0 is sufficiently large,
we haven− s+ 1− kεn ≥ n/1.001. Hence, (33) yields

P [E(M,Q, τ)] ≤
t
∏

s=1

max {1, n− s+ 1− kεn}−|Qs| ≤ (1.001/n)µk3. (34)
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Finally, combining (32) and (34) and recalling thatθ = T ∗/n, we get

P [E ] ≤
(

m

µ

)(

k

k3

)µ

tk3µ(1.001/n)µk3 ≤
[

em

µ
·
(

1.001ekθ

k3

)k3

]µ

≤
[

4e2kρ

εk

(

1.001ekθ

k3

)k3

]µ

.

By our choice ofθ we have1.001ekθ ≤ 10. Hence, we obtain fork ≥ k0 large enough

P [E ] ≤
[

4e2kρ

εk
k
−k3/2
3

]µ

≤ exp(−µ) = o(1),

thereby completing the proof. ✷

Proof of Proposition 3.6.In order to bound|Zt| for 0 ≤ t ≤ T ∗, we are going to consider a superset
Yt ⊃ Zt whose size is easier to estimate. To defineYt, we letY∗

t be the set of alli that are eithert-active
or t-passive. Now,Yt is the outcome of the following process.

Initially, let Yt = Y∗
t .

While there is a clausei ∈ [m] \ Yt such that|{j ∈ [k] : |Φij | ∈ N(ΦYt
)}| ≥ λ, addi toYt.

Comparing the above process with the construction inPI2, we see that indeed

Yt ⊃ Zt. (35)

Also note thatYt ⊃ Yt−1 for all t ≥ 1.
To bound|Yt|, we proceed by induction ont. Let Yt be the event that either the random formulaΦ

violates the property (3), or|Yt| > εn. We claim thatP [Y0] = o(1) and that

P [Yt] ≤ P [Yt−1] + 2n−2 for all 1 ≤ t ≤ T ∗. (36)

Since triviallyY0 = ∅, Y0 is simply the event thatΦ violates (3). Hence, Lemma 2.4 shows directly
that

P [Y0] = o(1). (37)

Now, consider some1 ≤ t ≤ T ∗. Lemmas 5.1 (applied tot− 1) and Lemma 5.2 (applied tot) show that

P [At + Pt ≤ εn/2 ∨ |Zt−1| > εn] ≥ 1− 2/n2.

Furthermore, ifYt−1 does not occur, then we know that|Zt−1| ≤ |Yt−1| ≤ εn and that (3) is satisfied. If
in additionAt + Pt ≤ εn/2, then (3) ensures that|Yt| ≤ εn, and thusYt does not occur. Therefore,

P [Yt] = P [Yt−1] + P [Yt \ Yt−1] ≤ P [Yt−1] + P
[

At + Pt >
εn

2
∧ |Zt−1| ≤ εn

]

≤ P [Yt−1] + 2/n2.

Finally, (36) and (37) yield

P [|YT∗ | > εn] ≤ P [YT∗ ] ≤ P [Y0] +
T∗

∑

t=1

2/n2 = o(1) + 2T ∗/n2 = o(1).

In combination with (35), this implies the assertion. ✷

5.2 Proof of Lemma 5.1

How can a clauseΦi becomet-active? If this occurs, thenWalksat must have tried ‘actively’ to satisfy
Φi at leastk2 times by flipping one of its variables. But each time, the variable thatWalksat flipped to
satisfyΦi got flipped again because flipping it rendered another clauseunsatisfied.

More precisely, ifΦi is t-active, then there exist distinct ‘slots’j1, . . . , jk2
∈ [k] and timess1, . . . , sk2

∈
[t] such that(i, jl) is sl-active forl = 1, . . . , k2. This means that at the timessl, Walksat actively tried
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to satisfyΦi by flipping |Φijl | (l = 1, . . . , k2). However, asWalksat had to makek2 attempts, each
of the variables|Φijl | with l < k2 must have been flipped once more by timesl+1. Hence,|Φijl | occurs
positively in a clauseΦhl

that is unsatisfied at some timesl < ql < sl+1. In particular,hl ∈ Dql ⊂ Dt.
Thus, in order to prove Lemma 5.1 we are going to bound the probability that there are at leastεn/4

clausesΦi that admitj1, . . . , jk2
∈ [k] such that for each1 ≤ l < k2 there is another clauseΦhl

with the
following properties.

A1. We havesign(Φijl) = −1, and there is an indexj ∈ [k] such thatsign(Φhlj) = 1 andΦhlj = |Φijl |.

A2. hl ∈ Dt, i.e.,Φhl
isAt ∪ Nt-negative.

In order to deal withA1 we will need to refine our filtration. Given a subsetQ ⊂ [m]× [k] and a map
g : Q → [m]× [k], we letΩg be the event that

sign(Φij) = −1, sign(Φg(i,j)) = 1 and|Φij | =
∣

∣Φg(i,j)

∣

∣ for all (i, j) ∈ Q.

Since the literals of the random formulaΦ are independently uniformly distributed, we see that

P [Ωg] ≤ 2−|Q∪g(Q)|n−|Q|. (38)

We considerΩg as a probability space equipped with the uniform distribution (in other words, we are going
to condition onΩg). Further, we define a filtration(Fg,t)t≥0 onΩg by lettingFg,t = {E ∩Ωg : E ∈ Ft}.
In other words,Fg,t is the projection ofFt ontoΩg. Hence, Fact 3.2 directly implies the following.

Fact 5.3 For anyt ≥ 0, anyx ∈ V , and anyi ∈ [m] the events{σt(x) = 1}, {Φi is satisfied underσt},
{x ∈ At}, {i ∈ Zt}, {x ∈ Nt}, and{T = t} areFg,t-measurable.

Moreover, since the only conditioning we impose inΩg concerns the literalsΦij with (i, j) ∈ Q∪g(Q),
Fact 3.3 yields the following.

Fact 5.4 Let t ≥ 0. Let Et be the set of all pairs(i, j) ∈ [m] × [k] \ (Q ∪ g(Q)) such thatπt(i, j) ∈
{−1, 1}. The conditional joint distribution of the variables(|Φij |)(i,j)∈Et

givenFt,g is uniform over
(V \ (At ∪ Nt))

Et . That is, for any mapf : Et → V \ (At ∪ Nt) we have

P [∀(i, j) ∈ Et : |Φij | = f(i, j)|Ft,g] = |V \ (At ∪ Nt)|−|Et|.

Similarly, with respect to the random variablesK∗
t (·, ·) andK0

t (·, ·) defined in (15) and (16), Corol-
lary 4.4 implies the following.

Corollary 5.5 For anyt ≥ 1, δt ≥ 0 andI∗, I0 ⊂ [m]× [k] \ (Q ∪ g(Q)) we have

E
[

K∗
t (I∗)K0

t (I0)1 {|Zt \ Zt−1| ≤ δt} |Fg,t−1

]

≤ max {1, |V \ (At−1 ∪ Nt−1)|}−|I∗|

·
(

kδt
max {1, |V \ (At−1 ∪ Nt−1)| − kδt}

)|I0|
.

As a further preparation, we need the following lemma.

Lemma 5.6 Let 1 ≤ t ≤ T ∗. Setµ = εn/4 and letM ⊂ [m] be a set of size|M | = µ. Furthermore, let
Q ⊂ M × [k], let I ⊂ [m] be a set of size|I| ≤ |Q|, and letg : Q → I × [k]. LetE(M,Q, I, g) denote the
event that|Zt| ≤ εn and the following three statements hold.

a. For all (i, j) ∈ Q we havesign(Φij) = −1, sign(Φg(i,j)) = 1, andΦg(i,j) = |Φij |.

b. I ⊂ Dt.

c. For eachi ∈ I there isj ∈ [k] such that(i, j) ∈ g(Q).

ThenP [E(M,Q, I, g)] ≤ 2
(

T∗+εn
εn

)

(2n)−|Q|2−|I×[k]| exp(1.011kθ|I|).
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Proof. To estimateP [E(M,Q, I, g)], we need to decompose the eventE(M,Q, I, g) into ‘more detailed’
sub-events whose probabilities can be bounded directly viaCorollary 5.5. To this end, letI∗, I0 be two dis-
joint subsets ofI×[k]\g(Q), and lett∗ : I∗ → [T ∗], t0 : I0 → [T ∗] be two maps. LetE(M,Q, I, g, t∗, t0)
be the event that|Zt| ≤ εn and that the following statements are true.

a. For all(i, j) ∈ Q we havesign(Φij) = −1, sign(Φg(i,j)) = 1, andΦg(i,j) = |Φij |.

b. i. If (i, j) ∈ I × [k] \ (g(Q) ∪ I∗ ∪ I0), thensign(Φij) = −1.

ii. If (i, j) ∈ I∗, thensign(Φij) = πt∗(i,j)−1(i, j) = 1 andΦij ∈ At∗(i,j).

iii. If (i, j) ∈ I0, thensign(Φij) = πt0(i,j)−1(i, j) = 1 andΦij ∈ Nt0(i,j).

c. For eachi ∈ I there isj ∈ [k] such that(i, j) ∈ g(Q).

If the eventE(M,Q, I, g) occurs, then there existI∗, I0, t∗, t0 such that the eventE(M,Q, I, g, t∗, t0)
occurs. Indeed, the definition of the setDT∗ is such that ifi ∈ DT∗ , then for any(i, j) ∈ I × [k] such that
sign(Φij) = 1 we haveΦij ∈ AT∗ ∪ NT∗ . Thus, by the union bound,

P [E(M,Q, I, g)] ≤
∑

I∗,I0

∑

t∗,t0

P
[

E(M,Q, I, g, t∗, t0)
]

. (39)

Furthermore, letδ = (δ1, . . . , δt) be a sequence such that
∑t

s=1 δs ≤ εn. Let E(δ,M,Q, I, g, t∗, t0)
be the event that|Zs \ Zs−1| ≤ δs for all 1 ≤ s < t and thatE(M,Q, I, g, t∗, t0) occurs. Then by the
union bound,

P
[

E(M,Q, I, g, t∗, t0)
]

≤
∑

δ

P
[

E(δ,M,Q, I, g, t∗, t0)
]

≤
(

T ∗ + εn

εn

)

max
δ

P
[

E(δ,M,Q, I, g, t∗, t0)
]

. (40)

The eventE(δ,M,Q, I, g, t∗, t0) is sufficiently specific so that we can estimate its probability easily.
Namely, ifE(δ,M,Q, I, g, t∗, t0) occurs, thenΩg occurs and

∏

(i,j)∈I∗

K∗
t∗(i,j)(i, j)

∏

(i,j)∈I0

K0
t∗(i,j)(i, j)

t
∏

s=1

1 {|Zs \ Zs−1| ≤ δs} = 1. (41)

To bound the probability that (41) occurs, we reorder the product by the time parameter. That is, letting
I∗
s = t∗−1(s), I0

s = t0−1(s), we get

P
[

E(δ,M,Q, I, g, t∗, t0)|Fg,0

]

≤ E





∏

(i,j)∈I∗

Kt∗(i,j)(i, j)
∏

(i,j)∈I0

Kt∗(i,j)(i, j)

t
∏

s=1

1 {|Zs \ Zs−1| ≤ δs} = 1|Fg,0





≤ E

[

t
∏

s=1

K∗
s (I∗

s )K
0
s (I0

s )1 {|Zs \ Zs−1| ≤ δs} |Fg,0

]

. (42)

Since for anys ≤ t ≤ T ∗ we have|As| ≤ s ≤ T ∗ ≤ n
k , and as|Ns| ≤ k

∑s
q=1 δs ≤ kεn, we see that

|As ∪ Ns|+ kδs ≤ 0.001n for all s ≤ t. Hence, (42) and Corollary 5.5 yield

P
[

E(δ,M,Q, I, g, t∗, t0)|Fg,0

]

≤
t
∏

s=1

(

1.01

n

)|I∗

s |
(

1.01kδs
n

)|I0

s |

≤
(

1.01

n

)|I∗|+|I0|
∏

(i,j)∈I0

kδt0(i,j). (43)
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Furthermore, if the eventE(δ,M,Q, I, g, t∗, t0) occurs, then for all(i, j) ∈ I × [k] \ (g(Q) ∪ I∗ ∪ I0)
we havesign(Φij) = −1, while sign(Φij) = 1 for all (i, j) ∈ I∗ ∪ I0. This event isF0,g-measurable.
Hence, as the signs of the literalsΦij are independently uniformly distributed, we obtain from (43)

P
[

E(δ,M,Q, I, g, t∗, t0)|Ωg

]

≤ 2−|I×[k]\g(Q)|

(

1.01

n

)|I∗∪I0|
∏

(i,j)∈I0

kδt0(i,j). (44)

Combining (38) and (44), we get

P
[

E(δ,M,Q, I, g, t∗, t0)
]

= P [Ωg] P
[

E(δ,M,Q, I, g, t∗, t0)|Ωg

]

≤ (2n)−|Q|2−|I×[k]|

(

1.01

n

)|I∗∪I0|
∏

(i,j)∈I0

kδt0(i,j). (45)

As (39) and (40) show, in order to obtainP [E(M,Q, I, g)], we need to sum (45) over all possible
choices ofδ, I∗, I0, t∗, t0:

P [E(M,Q, I, g)] ≤
(

T ∗ + εn

εn

)

(2n)−|Q|
∑

I∗,I0

∑

t∗:I∗→[t]

∑

t0:I0→[t]

P
[

E(δ,M,Q, I, g, t∗, t0)
]

≤
(

T ∗ + εn

εn

)

(2n)−|Q|2−|I×[k]|
∑

I∗,I0

(

1.01

n

)|I∗∪I0|

t|I
∗|

∑

t0:I0→[t]

∏

(i,j)∈I0

kδt0(i,j)

≤
(

T ∗ + εn

εn

)

(2n)−|Q|2−|I×[k]|
∑

I∗,I0

(

1.01

n

)|I∗∪I0|

t|I
∗|

(

t
∑

s=1

kδs

)|I0|

≤
(

T ∗ + εn

εn

)

(2n)−|Q|2−|I×[k]|
∑

I∗,I0

(1.01t/n)
|I∗|

(1.01kε)
|I0|

[as
∑t

s=1 δs ≤ εn]

≤
(

T ∗ + εn

εn

)

(2n)−|Q|2−|I×[k]|(1 + 1.01(θ + kε))k|I|

Hence,

P [E(M,Q, I, g)] ≤ 2

(

T ∗ + εn

εn

)

(2n)−|Q|2−|I×[k]| exp(1.011k|I|θ).

as desired. ✷

Proof of Lemma 5.1.Let µ = εn/4 and fix some1 ≤ t ≤ T ∗. Let E be the event that|Zt| ≤ εn and
At ≥ µ. For a setM ⊂ [m] of size |M | = µ we letE(M) signify the event that all clausesi ∈ M are
t-active. IfE occurs, then there is a setM of sizeµ such thatE(M) occurs. Hence, by the union bound

P [E ] ≤
∑

M⊂[m]:|M|=µ

P [E(M)] ≤
(

m

µ

)

max
M

P [E(M)] . (46)

To bound the expression on the r.h.s., fix some setM ⊂ [m] of sizeµ. Let Q(M) be the set of all
Q ⊂ M × [k] such that for eachi ∈ M we have| {j ∈ [k] : (i, j) ∈ Q} | = k2 − 1. For a setQ ∈ Q(M)
let E(M,Q) be the event that|Zt| ≤ εn and

a. all pairs(i, j) ∈ Q ares(i, j)-active for somes(i, j) ≤ t, and

b. for eachi ∈ M there isj′ ∈ [k] such that(i, j′) is s-active at some times satisfying

max
j:(i,j)∈Q

s(i, j) < s ≤ t.
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If the eventE(M) occurs, then there existsQ ∈ Q(M) such thatE(M,Q) occurs. (In fact, ifE(M) occurs,
then by the definition oft-active, for anyi ∈ M there are at leastk2 indicesj such that(i, j) is s-active for
somes ≤ t. We can thus letQ contain the pairs(i, j) for the ‘earliest’k2 − 1 such indicesj.) Hence, by
the union bound

P [E(M)] ≤
∑

Q∈Q

P [E(M,Q)] ≤
(

k

k2 − 1

)µ

max
Q∈Q

P [E(M,Q)] . (47)

Now, fix a setM ⊂ [m], |M | = µ, and a setQ ∈ Q(M). If the eventE(M,Q) occurs, then there exist
I, g such that the eventE(M,Q, I, g) as in Lemma 5.6 occurs. Indeed, this is precisely what we pointed
out inA1, A2 above. Thus, by the union bound

P [E(M,Q)] ≤
∑

I,g

P [E(M,Q, I, g)] ≤
(k2−1)µ
∑

ν=1

∑

I⊂[m]:|I|=ν

∑

g:Q→I×[k]

P [E(M,Q, I, g)]

≤
(k2−1)µ
∑

ν=1

(

m

ν

)

(kν)(k2−1)µ max
I,g:|I|=ν,g:Q→I×[k]

P [E(M,Q, I, g)] . (48)

According to Lemma 5.6,

P [E(M,Q, I, g)] ≤ 2

(

T ∗ + εn

εn

)

(2n)−|Q|2−|I×[k]| exp(1.011kθν). (49)

Combining (48) and (49), we obtain

P [E(M,Q)] ≤ 2

(

T ∗ + εn

εn

)

(2n)−|Q|

(k2−1)µ
∑

ν=1

(

m

ν

)

(kν)(k2−1)µ2−kν exp(1.011kθν)

≤ 2

(

T ∗ + εn

εn

)

(2n)−|Q|

(k2−1)µ
∑

ν=1

( em

ν2k

)ν

(kν)(k2−1)µ exp(1.011kθν)

≤ 2

(

T ∗ + εn

εn

)

(2n)−|Q|

(k2−1)µ
∑

ν=1

(eρn

kν

)ν

(kν)(k2−1)µ exp(1.011kθν).

Since the largest summand is the one withν = (k2 − 1)µ and as|Q| = (k2 − 1)µ, we obtain

P [E(M,Q)] ≤ 2kµ

(

T ∗ + εn

εn

)(

exp(1 + 1.011kθ)ρ

2

)(k2−1)µ

(50)

Let ξ > 0 be such that
(

k
k2−1

)

= (2ξ)k2−1 and letζ = exp(1 + 1.011kθ). Plugging (50) into (47), we
get

P [E(M)] ≤ 2kµ

(

T ∗ + εn

εn

)(

k

k2 − 1

)µ(
ζρ

2

)(k2−1)µ

≤ 2kµ

(

T ∗ + εn

εn

)

(ξζρ)
(k2−1)µ

. (51)

Finally, (46) and (51) yield

P [E ] ≤ 2kµ

(

T ∗ + εn

εn

)(

m

µ

)

(ζξρ)(k2−1)µ ≤ 2kµ

(

T ∗ + εn

εn

)[

em

µ
(ζξρ)(k2−1)

]µ

≤ 2kµ

(

T ∗ + εn

εn

)[

4e2kρ

kε
(ζξρ)(k2−1)

]µ

. (52)

If ρ ≤ ρ0 = 1/25, then
4e2kρ

kε
(ζξρ)

(k2−1)
< exp(−k2/100) (53)
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for k ≥ k0 large enough. Hence, (52) and (53) yield fork ≥ k0 large enough

P [E ] ≤ 2kµ

(

T ∗ + εn

εn

)

exp(−k2µ/100) ≤ 2kµ

(

e(T ∗ + εn)

εn

)εn+1

exp(−k2µ/100)

≤ 2kµ

(

e (1/k + ε)

ε

)εn+1

exp(−k2µ/100)

≤ exp [2εn− εn ln ε− k2µ/100 + o(n)]

≤ exp [n (2ε− ε ln ε− k2ε/400 + o(1))] [by our choice ofµ]

≤ exp [−nk2ε/401] = o(1), [by our choice ofε, cf. (5)],

as desired. ✷
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