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Abstract

Let ® be a uniformly distributed randoi+SAT formula withn variables andn clauses. We prove
that thewalksat algorithm from Papadimitriou (FOCS 1991)/Schoning (FA©89) finds a satisfying
assignment off in polynomial time w.h.p. ifm/n < p - 2* /k for a certain constant > 0. This is an
improvement by a factor @ (k) over the best previous analysisiilksat from Coja-Oghlan, Feige,
Frieze, Krivelevich, Vilenchik (SODA 2009).
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1 Introduction

Let ® = ®;(n,m) be ak-CNF onn Boolean variables;, ..., z, with m clauses chosen uniformly
at random k > 3). The interest in randork-SAT stems largely from thexperimentabbservation that
for certain densities the random formulap is a challenging algorithmic benchmafk [7.] 15]. However,
analyzingalgorithms on random formulas is notoriously difficult. &®tl, the current rigorous results for
randomk-SAT mostly deal with algorithms that are extremely simpi¢hito state and to analyze, or with
algorithms that were specifically designed so as to allovafagorous analysis. More precisely, the present
analysis techniques are essentially confined to simpleiggas that aim to construct a satisfying assign-
ment by determining the value of one variable at a tioregood without any backtracking or reassigning
variables at a later time. By contrast, most ‘real-lifeisg@bility algorithms actually rely substantially on
reassigning variables.

Maybe the simplest example of a natural algorithm that edutie standard analysis techniques is
Walksat [17,[18]. Similar local search algorithms are quite sudtsss practical SAT-solving[[19].
Starting from the all-true assignmemtalksat tries to find a satisfying assignment of its ing4CNF
formula® = &, A --- A &, as follows. If the current assignmedtis satisfying, then clearly there is
nothing to do and the algorithm terminates. Otherwise, tgerdhm picks an index such that clause
®; is unsatisfied uniformly at random among all such indicesau€g®; is a disjunction ofk literals
D1 V- VP, Walksat picks anindex € {1,..., k} uniformly at random and flips the value assigned
to the variable underlying the literdl;;. Of course, this ensures that under the new assignmenteclaus
®, is satisfied, but flippingp;; may create new unsatisfied clauses. If after a certain nutfigr of
iterations no satisfying assignment is foumd,1 ksat gives up and concedes failure. The pseudocode is
shown in Figur€ll. In the worst case, it can be shown(that2/k)(1+°(1)" executions ofialksat with
independent coins tosses will find a satisfying assignmeatsatisfiable input formul& onn variables
with probability 1 — o(1), for a suitablel},.x = Tmax(k) = O(n) [18].

Althoughwalksat is conceptually very simple, analyzing this algorithm ondam formulas is a
challenge. Indeedialksat does not follow the naive template of the previously analyagorithms that
assign one variable at a time for good, because its randoimeghmay (and will) leatialksat to flipping
quite a few variables several times over. This causes s$tichdependencies that seem to render the
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Algorithm 1.1 Walksat(®, Timax)
Input: A k-CNF® = &, A --- A O, Over the variablesy, . .., x,, and a number,,,, > 0.
Output: An assignment : V' — {0, 1}.
Initially, leto(x;) = 1fori=1,...,n.
1 Repeat the followind ...« times (with independent random choices)
2 If o is a satisfying assignment, then halt and output
3. Otherwise, choose an indésuch that claus@; is unsatisfied under uniformly at random.
4 Suppose thab;, = ®;; V -+ -V Oy,
Choose an index € {1, ..., k} uniformly at random.
Flip the value of the variable underlying the lited); in the assignment.
5.  Return ‘failure’.

©

Figure 1: Thevalksat algorithm.

differential equation method, the mainstay of the previamualyses of randork-SAT algorithms, useless.
The goal of the present paper is to present an analysia bksat via a different approach that allows us
to deal with the stochastic dependencies. Our main resadt fsllows.

Theorem 1.2 There is a constarit, > 3 such that for anyt > £y and
0<m/n< Lo /k
MM = o8 ’
Walksat(®, [n/k]) outputs a satisfying assignment w.h.p.

1.0.1 Related work.

To put Theorer 112 in perspective, let us compare it with otbgults on randormk-SAT algorithms. The
simplest conceivable one is presumablyitClause. Considering all variables unassigned initially,
UnitClause Sets one variable at a time as follows. If there is a clauséich — 1 variables have been
assigned already without satisfying that clause (a ‘ualist’), the algorithm has to assign #th variable

so as to satisfy the unit clause. If there is no unit clausarently unassigned variable is chosen randomly
and is assigned a random truth value.UAsi t Clause is extremely simple and does not backtrack, it can
be analyzed via the method of differential equatians [1}e Tésult is thatnitCclause finds a satisfying
assignment with a non-vanishing probability so longra&: < (1 — 0;(1))% - 2*/k, whereo (1) hides

a term that tends t6 ask gets largel[b]. FurthermorshortestClause, a natural generalization of
UnitClause,succeeds fom/n < (1—ox(1))e?/8-2% /k with highprobability [8]. Indeed, the algorithm
can be modified so as to succeed with high probability evemfar < (1.817 — o (1)) - 2% /k by allowing
avery limited amount of backtracking [11]. Finally, the algornitteix from [9], which was specifically
designed for solving randomSAT instances, succeeds upitg/'n < (1 — ox(1))2¥In(k)/k. By com-
parison, non-constructive arguments show that the thieé$biothe existencef a satisfying assignment is
(14 o0r(1))-2¥In2 [2,[3].

In summary, Theorefm 1.2 shows thatl k sat is broadly competitive with the other known algorithms
for randomk-SAT. That said, the main point of this paper is not to prodabetter algorithmic bound for
randomk-SAT, but to address the methodological challenge of amadyalgorithms such asalksat
that may reassign variables. This difficult aspect did neuoor was sidestepped in the aforementioned
previous analyse5[[L] 8,[9,111]. Indeed, the lack of tectesdar such analyses is arguably one of the most
important shortcomings of the current theory of randomreéigcstructures.

Theoren{ 1P improves substantially on the previous analgéeialksat, at least for generat.
The best previous result for this case showed that wWapksat will find a satisfying assignment with
Tmax = n if m/n < p’ - 2% /K2, for a certain constant > 0 [L0]. The proof of this result is based on a
rather simple observation that allows to sidestep the aisadf the stochastic dependencies that arise in the



execution ofialksat. However, it is not difficult to see that this argument is coaefl to clause/variable
densitiesn/n < 2% /k%. Theoreni LR improves this result by a factoiGuf ).

Furthermore, the techniques of Alekhnovich and Ben-Saf&oshow that for anyk Wwalksat will
w.h.p. find a satisfying assignment within(n) iterations ifm/n < ry—pure, Wherery_p.,. is the ‘pure
literal threshold’. The analysis in][4] depends heavily ba fact that the combinatorial structure of the
hypergraph underlying the randomaCNF @® is extremely simple fomn/n < 7i_pure. Furthermore,
because;_,... — 0in the limit of largek [16], this result is quite weak for general Yet [4] remains the
best known result for ‘smalk:. For instance, in the cage= 3 the pure literal bound ig;_ ;.. ~ 1.63 [5].

Monasson and Semerjian [20] applied non-rigorous tectesidom statistical mechanics to study the
Walksat algorithm on random formulas. Their work suggests thetksat (®,O(n)) will find a satis-
fying assignment w.h.p. if/n < (1 — 0x(1))2%/k. TheoreniZLP confirms this claim, up to the constant
factor1/25.

In contrast to the previous ‘indirect’ attempts at analgaialksat on random formulas[4,°10], in
the present paper we develop a technique for tracing theuggeof the algorithm directly. This allows
us to keep track of the arising stochastic dependenciegikplBefore we outline our analysis, we need
some notation and preliminaries.

2 Preliminaries

We let 2, (n,m) be the set of alk-SAT formulas with variables froft" = {z;,...,,} that contain
exactlym clauses. To be precise, we consider each formula an ordettegle of clauses and each clause
an ordered:-tuple of literals, allowing both literals to occur repedliein one clause and clauses to occur
repeatedly in the formula. Thu),(n, m)| = (2n)*™. Let X (n, m) be the power set dRx(n, m), and
letP = Pj(n, m) be the uniform probability measure. Throughout, we assimagit = [rn] for a fixed
numberr > 0, thedensity

As indicated above, we denote a uniformly random elemeiit;df, m) by ®. In addition, we use
the symbol® to denote specific (i.e., non-random) elementpfn, m). If & € Qi (n,m), thend;
denotes théth clause of®, and®;; denotes thgth literal of ®;. If Z C [m] is a set of indices, then we
letdy = N;cp @i Il € {1,71,...,2,, T, } is aliteral, then we denote its underlying variable|Hy
Furthermore, we definggn(l) = —1 if [ is a negative literal, andgn(l) = 1 if [ is positive.

Recall that Hiltration is a sequencéF; )<<, of o-algebrasF, C Xy (n,m) such thatF, C F;4+1
forall 0 <t < 7. For arandom variabl& : Q;(n,m) — R we letE [X|F;] denote theconditional
expectation Thus,E [X|F;] : Qr(n,m) — R is a F;-measurable random variable such that for any

A € F; we have
SCEIXIF(@) =) X(®).

PcA PeA

Also remember thaP [-| ;] assigns a probability measurd:|F;| (®) to any® € Q. (n, m), namely
P[|F] (@) : A € Zg(n,m) — E[1a|F] (D),
wherel 4 is the indicator of the event. We need the following well-known bound.

Lemma 2.1 Let (F;)o<:<, be afiltration and le{ X;);<:<, be a sequence of non-negative random vari-
ables such that eacH; is F;-measurable. Assume that there are numigers 0 such thafe [X;|F;—1] <
LGforalll <t <. ThenE[HlStST Xi|Fo] < ngtgr &.

Proof. Forl < s < 7 we letY; = [];_, X;. Lets > 1. SinceY,_, is F,_;-measurable, we obtain
E Dfs|]:0] = E [Y571X5|]:0] =E [E [Y571X5|]:571] |]:0] =k [stlE [Xs|fsfl] |‘7:0] S gsE D/sfl|‘/—'.0] )

whence the assertion follows by induction. a
We also need the following tail bound (“Azuma-Hoeffding'ge[13, p. 37]).



Lemma 2.2 Let(M;)o<i<- be a super-martingale with respect to a filtratioh; ) o<,< - such thati/, = 0.
Suppose that there exist numbersuch thatM; — M;_1| < ¢; forall 1 < ¢ < 7. Then for anyA > 0 we
haveP [M, > \] < exp [-A?/(2>°]_; ¢})] .

A k-CNF® = &, A --- A D, gives rise to a bipartite graph whose vertices are the vi@saband the
clauseq ®; : i € [m]}, and in which each clause is adjacent to all the variablesitrur in it. This is the
factor graphof ®. For a vertex of the factor graph we denote by (v) = N4 (v) the neighborhood of
in the factor graph. For a sét C [m] we letN(®) = |J,., N(®;) be the set of all variables that occur
in the sub-formulab ;.

Let A, B be two disjoint sets of vertices of the factor graph. Red¢wdt &/-fold matching fromA to B
is a setM of A-B-edges such that eaah= A is incident with precisely edges from\/, while eachh € B
is incident with at most one edge frofd. We will make use of the following simple expansion property
of the factor graph of random formulas.

i€z

Lemma 2.3 There is a constamt, > 0 such that for allk > ky and form/n < 2¥In2 the random
formula® has the following property w.h.p.

For any setZ C [m)] of size|Z| < n/k? there is a0.9k-fold matching from® , to N (® ). (1)
Proof. We start by proving that w.h.p. the random form@éas the following property.
For any seU of < n/k variables we havi(i € [m] : N(®;) C U}| < 1.1|U|/k. 2)

To prove[(2) we use a ‘first moment’ argument. Foriget V we letXy = 1if [{i € [m] : N(®;) C U}| >
1.1|U|/k, and we sef{;; = 0 otherwise. Then

EXy]|=P[Xy=1< (11|Tg|/k:) (|U|/n)1.1|U\.

Furthermore, for any < u < n/k we letX, = ZUCV:\U|:u Xy. Assuming thak > kg is sufficiently
large, we obtain

n m w11
E[X < E[Xy] < -
Xl = Z Xul < (u) (1.1u/kz) (n)
UcV:|U|=u
117" 117
en em \'F u < |en e2km2 n\'* w
u 1.1lu/k n “lu 1.1 u n
<

ey (2™ o]

Summing the last expression ovek u < n/k and assuming that > k is large enough, we see that

0.097"
E < 2 (E) 27.—0.097%
S oxos ¥ [T e 2 e
1<u<n/k 1<u<In?n In? n<u<n/k
2
< In?n-e?(ln?n/n)%% + % - [ek00] e o(1).

Thus,21<u<n/k X, = 0w.h.p. by Markov's inequality. Hencé 1(2) holds true w.h.p.

Now, assume thaf satisfies[(R). LetZ C [m] be a set of sizeéZ| < n/k?. LetY C Z and
let U = N(®y). Then|U| < n/k, andN(®;) C U for anyi € Y. Therefore,[(R) implies that
Y| < 1.1{U|/k,i.e.,|U| > £|Y| > 0.9k|Y|. Hence, the assertion follows from the marriage theorem.

The following lemma states a second expansion-type prppert



Lemma 2.4 There exists a constait > 0 such that for allk > ky and for any= > 0, A > 4 satisfying
e < k73 ande* < 1(2e)~*" the random formulap with m/n < 2¥In 2 has the following property w.h.p.

Let Z C [m] be any set of siz&Z| < en. Ifi1,...,i; € [m]\ Z is a sequence of
pairwise distinct indices such that

thenl < en.

Proof. It is clearly sufficient to prove that the desired propertidison.h.p. for all setsZ of sizeprecisely
|Z] = en. Assume that there is a sgtand a sequence= (iy,...,7;) of pairwise distinct indices in
[m] \ Z of lengthl = en such thaf N (®;,) N N(®zyyi;:1<j<qp)| = Aforalll < s < [. Then the sets

Y = Ué‘:l N(®;,) \ N(®z) C V andZ have the following properties.
a. Y| <e(k—Mn.
b. Thereisaset C [m]\ Z of size|I| = en such thatV (®;) C N(®z)UY foralli € I.

Property a. holds because each claiseadds no more thah — A ‘new’ variables toY’, and b. is true for
thesetl = {i; : 1 <j <lI}.

To prove that w.h.p. there do not existandi of length! = en as above, we are going to show by a
first moment argument that w.h.p. the random formBildoes not feature sets 7 that satisfy a. and b.
More precisely, for set& C [m] of size|Z| = en, Y C V of size|Y| = e(k — \)n, andI C [m] \ Z of
size|I| = en we let&(Z,Y, I) be the event thaV (®;) C N(®) UY forall i € I. Then for any fixed
Z,Y, I we have

k2] + 1Y)

n

k|1
PE(Z,Y,I)] < ( ) < (e(2k — \))ken,

because each of thigI| variable occurrences in the claugks is uniformly distributed ovel”. Hence, by
the union bound, for large enough

S PEZ YD) < (;)2<m(k”_ )\)>(5(2k ke

PEZ,Y,1:E£(Z,Y,1)] < 2
< _(%)2 (m> (c(2k — A))’C] ’
() () o]
< :(%)pr(%)(zkg)krg[(Qe)”"gwr", (4)

where the last inequality follows from our assumption that k=3 with k& > k&, sufficiently large. Due

to our assumption that* < le(2e)~**, @) yieldsP [3Z,Y,I: £(Z,Y,I)] < exp(—en) = o(1), whence

the assertion follows. a
Finally, it will be convenient to assume in our proof of ThemfL.2 that the formula density= m/n

is ‘not too small’ and that the clause lengths sufficiently large. These assumptions are justified as the

case of smalk or very smallr is already covered by [10].

Theorem 2.5 ([10]) There is a constant, > 3 such that for allk > ko and allr < % - 2% /K2 w.h.p.
Walksat(®,n) will find a satisfying assignment.



3 Outline of the analysis

Throughout this section we assume that k, for some large enough constaky > 0, and thatr =
m/n ~ p-2F/kwith k=2 < p < po = 1/25. We can make these assumptions as otherwise the assertion
of Theoreni 1]2 already follows from Theollend 2.5. Furtheeniet

A = Vk ande = exp(—k>/?). (5)

The standard approach to analyzing an algorithm on rankk@AT formulas is themethod of deferred
decisionswhich often reduces the analysis to the study of a systemdafiary differential equations that
capture the dynamics of the algorithid [1]. Roughly speakthg method of deferred decisions applies
where the state of the algorithm after a given number of stepsbe described by a simple probability
distribution, depending only on a very few parameters deitged by the past decisions of the algorithm.
This is typically so in the case of simple backtrack-freealyms such agnitClause.

However, in the case ofalksat, this approach does not apply because the algorithm is btoutig
many variables more than once. This entails that the alguost future steps depend on past events in a
more complicated way than the method of deferred decisiansaccommodate. Hence, our approach will
be to use the method of deferred decisions to trace the efféigiping a variabldor the first time But we
will need additional arguments to deal with the dependeritiat arise out of flipping the same variable
several times.

To get started, let us investigate the effect of tinst flip that walksat performs. Letc = 1 be
the assignment that sets every variable to true. Clearllawse®; is unsatisfied under iff it consists
of negative literals only. A® consists ofmn uniformly random and independent clauses, the number of
unsatisfied clauses has a binomial distributin(mz, 2—*), and thus there will bél +o0(1))2~*m ~ pn/k
all-negative clauses w.h.p. To perform its first flipp Lk sat chooses an indek € [m] such that®, is
all-negative uniformly at random, then chooses a literdeky € [k] uniformly, and sets (|®,;|) to false,
thereby satisfying claus®;.

But, of course, flipping®, ;| may well generate new unsatisfied clauses. We need to stedytimber.
As @; is just a uniformly random all-negative clause, the randamable|®,;| is uniformly distributed
over the set of alh variables, and thus we may assume without loss|@at = ;. Furthermore, if a
clause®; becomes unsatisfied because variahlgot flipped, then:; must have been the only variable
that appears positively i#®;. Now, the number of clauses whose only positive literaljisias distribution
Bin(m, k/(n2¥)+0(1/n?)). Indeed, the probability that a random clause has preais@ypositive literal
is k /2%, and the probability that this positive literal happenséarbis 1/n; theO(1/n?) accounts for the
number of clauses in which variablg occurs more than once. Hence, #gectechumber of newly
created unsatisfied clauses equals- o(1)) &2 ~ p.

In summary, as we are assuming that po = 1/25 < 1, the expected change the number of
unsatisfied clauses as a result of the first flip is bounded &bove by

p—1+o0(1) <0.

(The precise value is even smaller becausenay occur in further all-negative clauses.) Thus, we expect
that the first flip will indeed reduce the number of unsatistiedises. Of course, this simple calculation
does not extend to the further stepsiafl k sat because knowing the outcome of the first flip renders the
various above statements about clauses/literals beirfigromy distributed invalid.

To analyze the further flips, we will describm1ksat as a stochastic process. Our time parameter
will be the number of iterations of the main loop (Steps 2-Bigure[l), i.e., the number of flips performed.
To represent the conditioning of the random input formulpased up to time, we will define a sequence
of random map$m;).>o. These maps reflect for each péir;j) € [m] x [k] the conditional distribution of
the literals®;;, given the information thatalksat has revealed after performing the fitdtips. More
precisely, the value of, (7, j) will either be just thesign of the literal®;;, or the actual literafp;; itself.

In the initial mapr, we haver (i, j) = sign(®,;) forall (i, j) € [m] x [k].

At timest > 1 the mapr; will feature the occurrences of all variables that have Hdéeped thus far.

That is, for any paif(i, j) such thatialksat has flipped the variablgp;;| at least once by time, we



P10. If the assignment;_; satisfies®, then the process terminates.

PI11. Otherwise, choose an indéxsuch that®;, is unsatisfied under;_; uniformly at random from the
set of all such indices. In addition, chogges [k] uniformly at random. Define; : V' — {0, 1} by
Ietting Ut(|¢’i,,j,,|) =1- Ut—l(l(I’izjf,l) andot(m) = O’t_l(l') forall z 75 |‘I’itjt|'

PI2. Initially, let Z, = Z;_; andN; = N;_;.

While there is an index € [m] \ Z; such that®; is (A;_1 UN; U {|®;,;,|})-negative and either

e there are at leadt; indices;j € [k] with |®,;| € A1 U {|®;,;,|}, or
e there are more thakindices; € [k] with |®;;| € N,

add the least such indéx,;, to Z; and add the variableg®;, . ;| : j € [k]} toN;.
PI3. LetAt = (.Atfl U{|’~I’zt]t|})\./\/'t
Define the mapr; : [m] x [k] — {—1,1} U L by letting

7T (Z ) - ‘I>ij if |‘I’ij| c .At U./\/t,
W)= sign(@;;)  otherwise

Figure 2: the construction of the maps

let (¢, j) = ®,;. This information will be necessary for us to investigate #ffect of flipping the same
variable more than once.

In addition, we need to pay particular attention to claukes tontain many variables that have been
flipped at least once. The reason is that these clauses loavétie randomness’ left for a direct analysis,
and thus we will need to study them separately. More precigelour mapm; we will fully reveal all
clausesP; in which at least

k1 =0.57k (6)

literals @;; have been flipped at least once. Furthermore, we will alsorsaely reveal all clauses that
contain at leash variables from clauses that were fully revealed before.s Tacursive process ensures
that we can separate the analysis of clauses that are ‘heaviitioned’ by the past steps Bh1ksat
from the bulk of the formula.

Throughout this process that mirrors the execution@fksat, all variables whose occurrences have
been revealed will be labeled either with an asterisk or aitbero. Those variables that got revealed
because they occur either in a ‘heavily conditioned’ clamisen another clause that got revealed by the
recursive process described in the previous paragraplvavithbeled. All other variables that have been
flipped bywalksat at least once are labeled We will let A; denote the set of all variables labeled
and\; the set of all variables labeled

Let us now define the maps and the sets!;, \V; formally. Eachr, is a mapm| x [k] — {—1,1}UL,
with L = {x1,Z1,..., 2, T, } the set of literals. As mentioned above, wertgti, j) = sign(®;;) for all
(i,7) € [m] x [k]. Additionally, let Ay = Ny = Zy = 0, and letog : V — {0,1}, 2 — 1 be the all-true
assignment. For a sétC V we call a claus@; S-negativef for all j € [k] with sign(®;,;) = 1 we have
®;; € S. (In other words@®, is S-negative if all of its positive literals lie it¥.) Fort > 1, we define the
mapsm; along with the setsd;, \V;, Z; inductively via the process shown in Figlide 2. Intuitivehe set
Z, contains the clauses that are ‘heavily conditioned’ at tiend.\; is the set of variables that occur in
such clauses. Moreoved, is the set of all variables that have been flipped at least bpdene ¢ except
the ones that belong ;.

LetT be the stopping time of this process, i.e., the minintisuch that; satisfies® (or cc if there is
no sucht). Fort > T, we definer; = w7, 0y = o7, As = Ar, N; = N7, andZ; = Zr.

StepsPI0-PI1 mirror the main loop of thetalksat algorithm; in particular, the stopping timg
equals the total number of iterations of the main loop@i ksat before a satisfying assignment is found.
The purpose of the remaining steps is to ‘update’ the detand Z, and the mapr; as described above.
Before we continue, it may be useful to illustrate the cartton of the maps: with an example.

Example 3.1 Let us go through the example of a 5-SAT formula Wittlauses orl 0 variables. For the



sake of this example, we will work with = 2 and A = 2. (Recall that in our proof we actually assume
thatk > ko is large enoughk; is as in [8) and\ = v/k.) We will represent the maps by tables whose
columns correspond to the claus®s. Thus, thejth entry in columni represents the valug; (i, j). To
improve readability, we just write- and — instead oft1. Suppose that the initial mag,, containing the
signs of all literals, reads
— + —
THh=- - - — —
- - - - 4+
- - - - +

+

+
+

+++++

The initial assignment is the all-true assignment, andy = Ny = Z, = 0. Throughout, we will mark
the variables in4; by an asterisk and the variables idV; by a0.

Being all-negative, clause®,; and ®5 are unsatisfied under,. Therefore, at tim¢ = 1 stepPI1
choosesi; € {1,3} randomly; say, the outcome is = 1. In addition, PI1 choosesj; € [k] =
{1,2,3,4,5} uniformly at random. Suppose the resultjis= 5. To carry on, we need to reveal the
variable |®15|. Thus far, the process has not imposed any conditioningbag|, and therefore this vari-
able is uniformly distributed over the set of all our= 10 variables. Assume that indeé® 5| = .
ThenPI1 setsoy(x1) = 0andoy(z) = 1 forall x # z;.

To implemenPI2 we need to reveal all occurrences of in our random formula. As there is no
previous conditioning on any of variablé®; ;| with (¢, j) # (1, 5), these variables remain independently
uniformly distributed over the set of all variables, anddtthe event$|®,;| = =, } occur independently
with probability1/n. Suppose that; occurs at the following positions:

- - - x + 4+
- xx - + - +
e
- - - - 4+ +
X1 — — — + X1

Then there is no clause with at ledstoccurrences of a variable frotdy U Ny U {x1} = {1}, and thus
stepPI2 is void. Hence, at the end of the first iteration we halie= {z1}, V7 = 2, = (), and

R
-z - + - +
m= - - — — fik +
- - - 4+ +

o - - 1 @

Attimet = 2 there are two unsatisfied clauseB;, whose only positive literal got flipped to false, and
&3, which was unsatisfied initially. Stéfl1 chooses one of them randomly, say= 2, and also chooses
a random positiory, € [k], sayj> = 2. As we already know from the first step, the literal in thisipos
is @9y = m(2,2) = x1. In effect, the second iteration reverses the flip made iditsieone and thus-
is the all-true assignment. Since we have revealed all tleeiroences ofi, already, ste@I2 is void and
Ty = T, AQ = {IEl}, andN2 =2y = 0.

At the start of the third iteration the unsatisfied clauses @i, 3. Supposél1l chooses; = 1 and
js = 1. Then we need to reveal the variabhfe,;|. At this point, the only conditioning imposed on this
variable is that it is different from:;, because all occurrences of have been revealed already. Thus,
|®1, | is uniformly distributed ovets, . .., z19. Suppose thd®,| = z5. Thenos(z2) = 0andos(z) =1
for all x # x2. To reveal the occurrences of all over the formula, note that by the same argument we
applied to|®4,]| all spots markedt in 7 hide variables that are uniformly distributed ovey, . . ., 21¢.



Let us assume that, occurs in the following positions.

Xo — — =z} + +
- - + = 4+
- - X2 — I +
— - - = 4+ x
7 - - - +

As clause® is Ay UN> U {zs} = {x1, 25 }-negative and containk, = 2 occurrences of variables
from Ay U {22} = {x1, 22}, PI2 setsZ5 = {1}, reveals the remaining three variablesdn , and adds all
variables that occur inb; to V3. Suppose that the remaining variableshn are |®13| = x3, |®13]| = 4,
|®13] = z5. ThenN; = {z1, 22,73, x4, x5 }; in particular, x1, zo are now labeled). The new0 label
‘overwrites’ thex becauseP13 ensures thatds = (A2 U {x2}) \ N3 = 0. In order to carry outPI2, we
need to reveal all occurrences of variables frofig. Suppose this yields

2 - - 29 + +
)_(g ac(l) — xg -+
% - - - ¥ +
Xg - - X§ x3 a3
o - x5 Xg oxq af
Then clauseb, has becomels UN3U{z2} = {z1, ..., x5 }-negative (as there is ne-sign left in column

four), and thusP12 setsZ3; = {1,4}. To proceed, we need to reveal the remainingign of®,, add the
underlying variable toV3, and reveal all of its occurrences. Suppose that this yields

9 - )+ 4+
?oal - m - 4
2 - - %% 2 xP
TEo- - & ay
B — 2 oz 2§ af

At this pointPI2 stops, because clausds;, @5 have+-signs left and clause®,, 5 contain only one
variable labeled). Thus, atthe end of the third iteration we hattge = 0, N3 = {z1, ..., 26},23 = {1,4},
and

- - 2y 4+ +
Tgoay - ag -+
=12y — — I3 ) 2y
o - moay o
Wo— g g 2] 2

As the fourth iteration commences, the only unsatisfiedseldeft is®3, whencei, = 3. Moreover,
assume thaj, = 1. As we have revealed all occurrencestof. . ., zg, at this point we know tha®s; |
is uniformly distributed ovefxr, x5, x9, 210 }. Suppose that indeé®s;| = x7. Thus,PI1 setsoy(x2) =
o4(x7) =0andoy(x) = 1 for all z # x9, z7. Suppose that revealing all occurrenceseefyields

fg — X7 x(l) + X7
ig z(l) — xg X7 +
) % — oz 2y 2
i’g - - x4 l’g 9
79 22 7 2 2

Then there are nel; U N3 U {z7}-negative clause®; with i ¢ Z3 that have at least two occurrences of
a variable fromAs U {z7}. ThereforePI2 is void, and at the end of the fourth iteration we have

2 - 3 o2 +
2 2 — 22 @ 4+
m=x9 ¥ — =z 19 2,
j;g - - 9 wg 9
2 — 722 79 2 af



Ay ={z7}, Ny ={z1,...,26},and Z4 = {1, 4}. Aso, is satisfying the process stops afid=4. O

To trace the proces8l0—PI3 over time we define a filtratio(7;),>( by letting 7; be thes-algebra
generated by the random variablesj, andr (i, j) with s < ¢t and(i, j) € [m] x [k]. Then intuitively, a
random variableX is F;-measurable if its value is determined by the firsteps of the proce$3l0—PI3.
In particular, we have the following.

Fact3.2 For anyt > 1, anyz € V, and anyi € [m] the eventdo,(z) = 1}, {®, is satisfied undes, },
{z € A}, {i € Z¢}, {xz € Ni}, and{T = t} are F;-measurable.

Proof. The construction in stepBl2 andPI3 ensures that for any > 1 we have®,,;, € A; UN; and
thusm, (i, j:) = ®4,5, This implies that for any variable € V' the evenf{o;(x) = 1} is F;-measurable.
In fact, we haver,(x) = 1 iff the number|{1 < s <t : |m (is, js) | = «}| of timesz has been flipped is
even (because, is the all-true assignment).

This implies that for any € [m] the evenf{ ®, is satisfied undes, } is F;-measurable. In fact, if there
is an indexj € [k] such thatr, (i, j) = 1, then®,; is a positive literal whose underlying variable has not
been flipped before, whenee satisfies®;. Moreover, if there is an index € [k] such that®;; # +1,
then by the previous paragraph the event that the li@fal= 7, (i, j) is true undew, is F,-measurable.
If there is such a satisfied literd, ;, then®, is satisfied. Conversely, if there is riae [k] such that either
m(i,7) = 1 orm(i, j) is a literal that is satisfied undet, then claus@, is unsatisfied. Hence, the event
{0 is satisfying is F;-measurable as well, and therefore so is the e{@nt ¢}.

Furthermore, observe thate Zz, iff for all j € [k] we haver:(i,j) € {—1,1}. Forifi € Z;, then
for all j € [k] we have|®,;;| € N, and thusm,(i,j) = ®,; # +1 due toPI3. Conversely, ifk > kg
is large enough, any € [k] such thatr,(i,5) ¢ {—1,1} for all j € [k] must satisfy one of the two
conditions that leadPl2 to add: to Z;. Hence, for anyi € [m] the event{i € Z;} is F;-measurable.
As by constructionV; = {m(i,7) : i € Z,j € [k]}, we conclude that for any variablec V' the event
{z € N;} is Fi-measurable.

Finally, the construction ifP13 ensures thatd; = {|m:(is,js)] : 1 < s <t} \ N;. As for anyz the
events{z € {|m(is,js)| : 1 < s <t}} and{z € N;} areF;-measurable, soisthe event € A,}. O

If m(4,7) = +£1, then up to time the proces®10-PI3 has only taken the sign of the literd,; into
account, but has been oblivious to the underlying variabie only conditioning is tha@®, ;| ¢ A; UN;
(because otherwisel3 would have replaced th&1 by the actual literal). Since the input formudais
random, this implies that®;;| is uniformly distributed oved” \ (A; U N;). In fact, for all (¢, j) such
thatm; (i, j) = +1 the underlying variables are independently uniformlyritisited overl \ (A; U N;).
Formally, we can state this key observation as follows.

Fact 3.3 Lett > 0. Let&; be the set of all pairgi, j) such thatr: (i, j) € {—1,1}. The conditional joint
distribution of the variable$|®;;|)(; j ce, givenF; is uniform over(V \ (A, UN;))%. Thatis, for any
mapf : & — V \ (A, UN;) we have

PV(i,§) € & : | @45 = £(i, 7)1 Fi] = |V \ (A UN;)| e

Let
T* =6n  with 6 = 0.38/k.

Our overall goal is to prove that the stopping time of the pesPl10—PI3 satisfiesT” < T w.h.p. (The
numberd is chosen somewhat arbitrarily; for the analysis to worle#rss to be essential thtat= ¢/ k for
somec > 0 that is neither “too small” nor “too large”. The concrete stant above happens to work.) To
prove this, we will define non-negative random variatfigsH; such thatS; + H; = 0 implies thato; is a
satisfying assignment. We will then trasg, H, for1 <t < T™*.
For anyt > 1 let
Dy ={i € [m] : ®; is A; U N;-negative .

As PI3 ensures tha; is A; U N;-negative iffm;(i,5) # 1 for all j € [k], the event{i € D;} is F;-
measurable for anyc [m]. We define

So = |D0| and Sy = |Dt| — |At| fort > 1. (7)
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Any clause®; with i ¢ D, is satisfied undes,. For if j € [k] is such thatr,(i, j) = 1, then®,; is a
positive literal andr, (®;;) = 1, becaus@alksat starts with the all-true assignmernj and the variable
®;; has not been flipped up to timte Clearly, in order to study the random varialflgit is crucial to
estimatd D;|. This is the purpose of the following proposition, whoseginoe defer to Sectionl4.

Proposition 3.4 W.h.p. we havéD;| < 22~*m forall t < T*.

To define the random variabld$;, let us call an assignment: A; — {0, 1} rich for Z; if in each
clause®; with i € Z, at least).8k literals ®;; are satisfied under.

Proposition 3.5 W.h.p. there is a sequen¢a ), <:<7~ with the following properties.
1. Foranyl <t < T*, 7, is arich assignment fog;.
2. Foranyl <t < T* and anyz € N;_; we haver;(z) = 7_1(z).
Moreover,r; is F;-measurable for alt.
Assuming that there is a sequer{eg);<.<7~ as in Propositiof3]5, we defidé, = 0 and
Hy=H{z € Ny :ou(x) #m(x)}] forl <t <77,

andH; = |N;| fort > T*. For the sake of completeness, we alsddet= | V; | if there is no such sequence
(7¢)1<t<7+- The proof of Proposition3l5 hinges upon the following fact

Proposition 3.6 W.h.p. we havez;| < enforall t < T*.

We defer the proof of Propositign 3.6 to Secfidn 5. AssumirggpBsitior{ 3.6, we can derive Proposition]3.5
rather easily.

Proof of Propositio 35 (assuming Propositibn]3.@y Lemmal2.B, we may assume th&thas the
expansion property{1). Furthermore, by Proposifionh 3.6wey assume tha;| < en for all ¢t < T™*.
Under these assumptions we will construct the sequéen¢ec;<r- by induction ot > 1. Thus, suppose
thatl <t < T* and that we have already got assignmentwith 1 < s < ¢ that satisfy 1.-2.

The setZ = Z, \ Z,_, of indices thatZ, gained at timeg has sizdZ| < |Z;| < en. Therefore,[{I)
ensures that there is0a9%-fold matchingM from Z to the set

N =N(®z) ={|®i|: (i,5) € Z x [k]} C N

of variables that occur in the claus®s with ¢ € Z. The construction ifP12 ensures that none of these
clauses®; has more than occurrences of a variable froi;_; (as otherwisé € Z,_;). Therefore, in
the matching\/’ obtained from\/ by omitting all edges = {i, z} with i € Z andz € N;_; each clause
®, with ¢ € Z is incident with at least.9% — A\ > 0.8k edges. Now, for each edge= {i,xz} € M’ let
7:(x) be the truth value that makes the corresponding liter@ jrevaluate to true. Furthermore, for all
y € Ny—1 let (y) = 7—1(y), and for all other variables’ € N let 7.(z') = 1. This ensures that,
satisfies the conditions in Propositionl3.5. ]

Having defined the random variabl8g H;, we are now going to verify that they suit their intended
purpose, i.e., that, + H; = 0 implies thato, is satisfying.

Proposition 3.7 Let1 <t < T*. If Sy + H; = 0, theno; is a satisfying assignment.

Proof. Let U; be the number of clause indicés [m] \ Z; such thai®; is unsatisfied under,. We claim
that

U <S¢ =D — | A (8)

To see this, recall that any indéx [m] such tha#®; is unsatisfied under, belongs toD;. Therefore, to
prove [8) it suffices to construct injective maps .A; — D; such that for any: € A, the clauseb,, ,) is
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satisfied undes,. In fact, the map; will have the property that for eache A; there is an indey < [k]
such thatr = |®,, ;| and such that the literd, ., is true undewp;.

The construction of the maps is inductive. Fort = 0 we haveAdy = () and thus there is nothing to
do. Thus, suppose that< ¢ < T and that we have defineg_, already. Lety = |®;, ;,| be the variable
flipped at timet. If i; ¢ Z;, theny € A; and we define,(y) = ;. Moreover, we lek;(x) = s;_1(z) for
all z € A; \ {y} € A:—:1. (Note that it is possible that € A;_, asy may have been flipped before.) For
t > T we sets; = s¢_1.

To verify thats; has the desired properties, assume hat ¢ and observe thal1 ensures tha®,,
was unsatisfied under_;. Thus,i; € D, C D;. ButasPIl setso;(y) = 1 — 0y—1(y), ®;, is satisfied
undero;. Furthermore, for al € A, \ {y} we haveo,(z) = o;—1(z), and thus each of these variables
contributes a true literal to its claude,, ,y = ®,,_, (») by induction. Since;_, is injective but®;, was
unsatisfied undef;_;, we havei; ¢ Im(s;_1), whences; is injective. This establishels](8).

As (8) shows,S; = 0 impliesU; = 0, i.e., o; satisfies all clause®; with i ¢ Z;. To complete the
proof, we need to show that il; = 0, theno, also satisfies all clausaB; with : € Z,. Butif H; = 0,
theno,(z) = (z) for all z € Ny, andr; is a satisfying assignment @ z, . O

Finally, we have all the pieces in place to prove Thedrer 1.2.
Proof of Theoreri 112 (assuming Propositibng 3.4[ant P&)positiod 317 shows that

PIT>T*=P[T>T*AV1<t<T*:5 +H, >0.

We are going to bound the probability on the r.h.s. To this @medwork with two random variable$;, H;
that are easier to analyze than the origifiglH,. Namely, we letS; = H{, = 0, and

Q! 1 If ﬂ-tfl(itajt) = 717
Sp =51 - { 0 otherwise (t=1).

In other words, we lef; = S;_, — 1 if the variable flipped at time had not been flipped before and does
not occur in any of the ‘exceptional’ claus®s:, .. OtherwiseS; = S;_;.
We claim that

Sy < Dy +Ek|Z|+ S, for anyt > 0. 9)

To see this, recall froni{7) that, = |D;| — |A:|. By PI3, the setA, contains all variableg®;_;. | such
thatms_1(is, js) = —1 with s < ¢, except the ones that belongh§. Since|NV;| < k| Z;|, we obtain[(D).
Furthermore, we leH{ = 0 and

=1 if [®,5,] € N1y andoy (| @i, 5. |) = 72(|®s, 5 |),
Hi=H; +{ 1 if[®i;]€N1ando(|®i;]) # 7e(|®i]), (t>1).
0  otherwise

Thus, starting at, we decrease the value & by one if the variable flipped at timelies inV;_; and its
new value coincides with the ‘ideal’ assignmentwhile we increase by one if these values differ.
We claim that

Hy, < kl|Z/|+H, for anyt > 0. (10)
For Hy = H{, and

Hi—Hey = [{zeN:o(e) #n@)}] - {z € Mooy or1 (@) # 7o (2)
< Mg\ Nioa| + H — H,_| <k|Z\ Z4-1| + H{ — H,_, foranyt > 1.
Combining [9) and(T0) with Propositiohs B.4 3.6, we baew.h.p.
Se+Hy < |Dy| +2k|2| + S; + H;

, 4
< 227Fm 42k 2|+ S) + H] < % +2ken+ S; + H,  foranyt <T*. (11)
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Hence, we are left to analyz& + Hj.
The sequenceS; + H;); is a super-martingale. More precisely, we claim that witk 0.429 we have

E[S; + H{|Fi—1) < S{_y + H{_; — v forallt < min {T,T*}. (12)
There are two cases to consider.

Case 1:i; ¢ Z;,_1. The construction in stepI2 ensures that there are fewer thaindices; such that
|®;,;| € N;—1. FurthermorePI2 ensures that there are less thanindices; such thaf®,, ;| €
A;_1. Moreover, there is no indeksuch thatr,_; (i;, j) = 1, because otherwise claude, would
have been satisfied under_;. This means that for at least— k; — A indices; € [k] we have
m—1(it,j) = —1. Therefore, ag; € [k] is chosen uniformly at random, with probability at least
1— (k1 4+ X\)/k > 043 — \/k we haveS; = S;_; — 1. In addition, as®;, contains at mosh
variables fromV;_1, the probability tha#/; = H]_, + 1 is bounded from above by/k < 0.00001.
Thus, [12) holds.

Case 2:i; € Z,_1. As the assignment,_; is rich, there are at least8k indices; such thatr,(®;,;) =
Ti—1(®;,;) = 1. However, for all of these indices we haveo,_1(®,,;,) = 0, because®;, is
unsatisfied undes;_,. Hence, the probability that, (®;,;,) = 1 ando;_1(®;,;,) = 0 is at least
0.8, and if this event indeed occurs thepn®,,,,) = 7(®;,;,) = 1. Therefore,H; — H;_; has
expectatior< —0.8 + 0.2 < —0.6. Moreover,S; < S;_, with certainty. This implied(12).

To complete the proof, we are going to apply Azuma’s inedqudliemmalZ.2 in Sectioh]2) to the
random variables’.. + H’... The inequality applies becau$el(12) shows {t#t+ H):>( is a super-
martingale. However, there is a minor technical intricaoyuse the inequality, we need an upper bound on
theexpectatiort [S).. + H’.]. But as[[IPR) only holds for < min {7", 7}, this would require knowledge
of the probability thafl” > 7, the very quantity that we want to estimate.

To circumvent this problem, we define further random vagali, by letting R, = S, + H] for
t < min {T*,T} andR; = Ry_1 — Y for ¢ > min {T*,T} ThenRy = 0 andE [Rt|]:t—1] < Ri—1—7
forall ¢ > 0. Thus,E [Rp-] < —yT*. Recalling the definitior{5) of, we obtain fork > k sufficiently
large andp < po = 1/25 the bound

E[Rp-] < —v-T* < —4pn/k — 10ken. (13)

Furthermore|R; — R;—1| < 2 for all ¢ > 0 by the definitions ofS;, H;. Therefore, Azuma’s inequality
and [I3B) yield

nA/3

8T

P[Rp- > —4pn/k —2ken] < P [RT* > E[Rr] +n2/3} < exp [— } =o(1). (14)

Finally, we obtain from[(9)[(70), and Proposition13.7

P[T>T" < PNt<T*:|Dy+2k|Z|+R: >0 <P[Dr-
P (|Dye| + 2k | 27+

+ 2k |27+ + Ry- > 0]
> 4pn/k + 2ken] + P [Rp+« > —4pn/k — 2ken] m:'m)o(l)

IN

)

thereby completing the proof. a

Our remaining task is to establish Proposition$ 3.4andE&@n a formal point of view, we should start
with Propositiol 36 because the proof of Propositioh 3gkdes on it. However, the argument that is used
in the proof of Proposition3l4 is conceptually similar ta bechnically far simpler than the one that we
use to prove Propositidn 3.6. Hence, for didactical reasanwill start with the proof of Propositidn 3.4
in Sectiorl% and postpone the proof of Proposifionh 3.6 toiGe&:

4 Proof of Proposition[3.4

In this section we keep the notation and the assumptionsPmpositio 3.4.
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Our goal is to bound the numbgP,-| of Ar- U N7«-negative clause®,, i.e., clauses whose positive
literals all belong tadr~ U N7«. Thus, we need to study how the proc&6-PI3 ‘hits’ the positions
(i,7) € [m] x [k] that represent positive literals by adding their undedyiariable taAr- U Np-. To this
end, we consider the two random variables

Kt*(l,j) { 1 if Wtfl(l,j) =1 andlI)ij S .At, (15)

0 otherwise,

0/: - _ 1 if wt,l(i,j):land@ij EM,
KiG,j) = { 0 otherwise, (16)

for any (i,j) € [m] x [k] andt > 1. Recall thatr,_; (i, j) = sign(®,;) iff ®;; is a literal such that
|®;;] & Ar—1 UN;_1 (cf. PI3). To simplify the notation, we define for a SBtC [m] x [k]

Kr @) = [ Kith), K@= [[ K5

(i,J)€T (i,9)€T
If Z*,7° C [m] x [k] are both non-empty, then
K} (T*)- K)(T°) = 0. (17)

Indeed, suppose that? (Z°) # 0. ThenPI2 must have added at least one clausgitoBut the construction
in P12 ensures that the first clause that gets addet] wontains the variablg;, ;, | flipped at timet. Thus,
A: C A:—1 by PI3, and thus there cannot be a p@irj) with K (i, j) = 1. In effect, K (Z*) = 0.

Lemmad.llett > 1 and() # Z* C [m] x [k]. Let&(Z*) be the event that®;;| = |®,,;,| ¢
A1 UN;_ forall (i, ) € Z*, and that(i¢, j;) € Z*. Then

P& (T*)|Feer] < max {1,V \ (A UN_1)]} (18)

Proof. Since claus@;, is unsatisfied under;_1, ®;, is A;—1 UN;_1-negative and thus; _; (i, j;) # 1.
Hence,PI3 ensures that eithe®;, ;,| € A;—1 UN;_1 or m_1(is,j5:) = —1. If & (Z*) occurs, then
|®i,,,| & Ar—1 UN;_1 and thust,_1 (is, j;) = —1. Furthermore, ifZ* occurs, then®;;| ¢ A,_1 UN;_1
for all (i,j) € Z*, and thusm,_1(4,7) € {—1,1} by PI3. Thus, by Faci313®;,,,| and|®;,| with
(,7) € Z* are independently uniformly distributed oviér\ (A;—; U AN;_1). Therefore,

PEN(TH)|Fir] < max{L,|[V\ (A UN;,_1)[}"F T,
as claimed. o
Corollary 4.2 Foranyt > 1,Z* C [m] x [k] we have

E[K;(Z%)|Fi—1] < max{l,|V\ (A1 Uj\/t_l)|}—\1*| _

Proof. If T]; jyez K7 (i,5) = 1, then the eveng; (Z*) occurs. Hence, Lemnia 4.1 implies that

< P& Fma) < max {1, [V \ (A UN_) |} (29)

E { I &iGalF

(i,)€T*

as claimed. O

Lemma 4.3 For anyt > 1,§; > 0 andZ® C [m] x [k] we have

2
B 12\ 2l <03 1] < <max{1,|V\<Athum_1>|—m) |
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Proof. We may assume that’ # (). We may also assume that (i, j) = 1 for all (4,5) € Z° as
otherwiseK?(Z") = 0. We are going to work with the conditional distribution

pl]=P[Fi-a].

Let £° be the event thak’?(Z°) = 1 and|Z; \ Z;_1| < 6;. Then our goal is to estimate[£°].

If the event&® occurs, thenr;_q(ir, ;) = —1 and|®;,;,| € A;. Indeed, being unsatisfied under
the assignment;_,, clause®;, is A;_; U N;_;-negative, and thus;_; (i1, j:) # 1. Furthermore, if
mi—1(it, jr) = ®4,j,, then|®,,;,| € A,_1 UN;—1 by PI3, and thusZ; = Z,_; andN; = N;_; by the
construction in stepI2. But if Ny = N;_1, thenK?(Z") = 0 by definition.

Thus, assume that,_ (i, j;) = —1 and|®;,;,| € N;. We need to trace the process describeih
that enhances the set§ and Z;. This process may add a sequence of clause indices to th# setd
the variables that occur in these claused/to As these variables get added to the Sgtone by one, we
will study the probability that they occur in one of the pasis (i, j) € Z°. The first clause tha®12 adds
to Z, necessarily contains the newly flipped varialdg, ;, |, and thus we may assume that this is the first
variable that gets added 1. In addition, if| Z; \ Z;_1| < &, P12 may add up td&4; — 1 further variables
to NV;. To track this process, we need a bit of notation.

Letsy,...,s, be the clause indices thRl2 adds toZ,, in the order in which they get added by the
process. Ley* = min{y,d,}. Foreachl <i <y*letl <j;1 <--- < j;;, <k bethe unique sequence
of indices such that,_1(s;,j:4) = —1 and

1—1
@5, & {1Pi |} UNe1 U [ N(®s,) U{[ @y, | s u < g} forallg <1s.
h=1

This means tha{|<I>Siji’q 1 <¢g< lz-} are the new variables thdt,, contributes toV; and that did not
belong to.A;_; already. Let{, = |®;,;,| and let{y,. .., ¢, be the sequence of variablgB, ;, . | with
g=1,....l;andi = 1,...,y*. Hence¢,..., & is the sequence of variables notily_; thatPI12 adds
to \V;, in the order in which the process adds these variablé§ tdBy our choice ofy*, the total number
of these variables satisfies

L+1<ky* <k,

Of course L and¢, . .., &, are random variables.

If £° occurs, then each of the variabs; with (i, j) € Z° occurs in the sequenég, .. ., ... Hence,
there existsamap : 7° — {0,1,...,ké; — 1} such thatf (i, j) < L and®;; = £y, ) forall (i, j) € 7°.
For a givenf let £°(f) denote this event. Then by the union bound,

p[e] < 3 p[E°(F)] < (k) ™"l

F:Z0-{0,1,....ké; —1}

p[E°(N)]. (20)

X
F170-{0,1,..., k6, —1}

We claim that
p[E9N] < max{L[V\ (Ay UN;—1)| — ko, } % (21)

for any f. To prove[(2L), ley = f~!(I) be the set of positiong, j) € Z° where the variabl€; occurs
(0 <1 < L). Moreover, le€)( f) be the event that

a. ®;; = ¢ forall (4,5) € Z?, and
b. ®;; # & forall (4,5) € Z°\ Z0.

As m_1(i,j) = 1forall (i,7) € Z?, givenF;_, the variables;; with (i, j) € Z; are independently
uniformly distributed ove” \ (A,_; U N;_1) by Fact3B. Hence, given the evef},_, £)(f), the
variableg®;;| with (i, j) € Z} are uniformly distributed over the set\ (A;—1 UN;—1 U{&, ..., &—1})
(for if £2(f) occurs for somer < [, then®;; # &, for all (i, j) € Z}'). Therefore, we obtain

p lfzo(fﬂ N SB(f)] < max{1,[V\ (A1 UN,_)| — 1+ 135 foranyo <1< L.

v<l
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Multiplying these conditional probabilities up for < I < L < ké;, we obtain[(Z2ll). Finally, combin-
ing (I8), [20), and{21) completes the proof. O

Corollary 4.4 Foranyt > 1,46, > 0andZ*,Z° C [m] x [k] we have

E[K; (Z) K (Z°)1{|2: \ Zi-1| < 0} [Fia]

-1z | il .
< max {1, |V \ (A1 UN29)|} (max{1,|V\(At1UM1)| két}) .

Proof. This is immediate fron{{17) and Corolldry #.2 and Lenima 4.3. O

Why does the bound provided by Corollaryl4.4 “make sensetst,Fobserve that the only reason we
need to take the max of the respective expression and oneasige a priori it could happen that, e.g.,
V\ (A1 UN;—1) = 0. Apart from this issue, the first factor basically comes fritva fact that for
each pair(z, j) with 7, (i, j) = 1 the variable®;; is uniformly distributed ove®” \ (A;—1 U N;_1).
Hence, it seems reasonable that the probability that onfe ®ucequals the variable flipped at tintds
1/|[V \ (Ai—1 UN;_1)|, and that these events occur independently. With respebetsecond factor, a
similar intuition applies. Due to the{| 2, \ Z,_1| < ¢, } factor on the left hand side, at mds}, variables
are added toV; that were not already iV;_;. Hence, for eacl®;; with m,_1(4,j) = 1 there are now
kd, “good” cases that would maki€y (i, j) = 1. Moreover, as we reveal the, variables, there remain at
least|V \ (A;—1 UN;_1)| — kd; “possible” cases. We will now establish the following.

Proposition 4.5 W.h.p. we have eitheZ- > en or | D« | < 22 Fm.

Proof. Let £ be the event thdZr-| < en but|Dr-| > 22~%m. Our goal is to show tha? [€] = o(1). To
this end, we will decompos& into various ‘sub-events’ that are sufficiently detaileddis to bound their
probabilities via Corollar{/4]4. In order to bound the prbitity of £ we will then use the union bound.
As a first step, we need to decompdasaccording to the sequen¢eg; \ Z;_1|):>1 of increments of
the setsZ,. More precisely, le\ be the set of all sequencés= (4, )1<.<7~ 0f non-negative integers with
Zgl 5 < en. Let&(0) be the eventthdz; \ Z;_,| < 6; forall 1 <t < T* and|Dz-| > 22 % m. If the
event€ occurs, then there is a sequencaich that the eveidt(d) occurs. Hence, by the union bound

PE] <Y PEG) <Al max P [£(5)]

[ <PAN

As itis well known thaA| = (/7" 1) < (="*7"), we obtain

P €] < (En;T*) tnax P [£(9)] 22)

Fixing any sequencé € A, we now decompose the evef(ty) further according to the precise seft
of clauses that end up ir-, and according to the precise ‘reason’ why each clauseM belongs to
Dr-. More precisely, lef/ C [m] be a set of sizg = 22~%m. Moreover, for disjoinQ*, Q° ¢ M x [k]
let £ (Q*, Q°) be the event that

7o (i, 7) = 1for (i,5) € Q* UQP, whilemo(i,j) = —1for (i,5) € M x [k] \ (Q* U Q").

Furthermore, for maps* : Q* — [T*], 7° : Q° — [T*] let£(s, 7*,7°) be the event thatz; \ Z;_1| < 4,
forall1 <t <T*and
Treij)—1(6,7) =1 while ®;; € A, ;) forall (4,7) € Q"
7T7.0(i7j)_1(l.,j) =1 while ‘I’ij S Nro(i,j) for all (Z,j) S QO.
If the event£(d) occurs, then there exigp*, Q° and 7*, 70 such that the event§,(Q*, Q") and

E(5,7*,7°%) occur. In fact, if€(5) occurs, theDr-| > p. Thus, select a subsdt C Dp- of size
w. By the definition ofDr-, eachi € M is Ay« U Np«-negative. Thus, for any € [k]| such that®,; is
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a positive literal there is a timé < ¢ = ¢(4,j) < T* such thatr;_1(z,7) = 1 butm(4,5) € A U N
If 7:(4,7) € Aiu,j), then include(s, j) in Q* and setr* (i, j) = t. Otherwise, addi, j) to QY and let
79(i,7) = t. Then indeed bot#,(Q*, Q°) and& (4, 7*, %) occur. Thus, by the union bound,

PE@I< > Pl&@.Q)NEWG 7). (23)

Q*,Q0,7*, 0

The eventty(Q*, Q) depends only on the signs of the literals and is thereforeneasurable. Fur-
thermore, as signs of the literals; are mutually independent, we get

P [&(Q%, Q%] =27F

Therefore,[(2B) yields
PlE@)] <27h Y P[E@, 7,70 F0) - (24)
Q*7Q07T*7TU
Thus, we are left to estimate [£(6, 7%, 7°)| Fo | .
We defined the random variablé§ (-, -), K7 (-, -) so that if the evenf (5, 7*, 7°) occurs, then

H Kr«5)(3,7) H Ko 51, 5) H1{|Zt\zt 1| <6} =1.

(i,5)eQ* (,9)€Q°

In order to apply Corollarf4]4 to the above expression, veegaing to reorder the product according to
the time parameter. More precisely, @t = 7* ~1(¢) and@y = 7° ~1(¢). Then

P [£(5, 7, 70)|F] < [ H Koy (i, 7) H Koo (i, H1{|zt Z, 4| <8} =1F
(1,5)€Q* (i,5)€QO t=1

B |T] K@ K@) 112\ Zir| < 8} = 1T

t=1

If |2\ Zi—1| < 6, forallt < T* then|Ny_1| + kéy < kY., 0 < kenforallt < T*. Furthermore,
|Ay| <t <T*=%forallt > 0. Hence[V \ (Ai—1 UN;_1)| — k¢ > n(1 — ke — 1/k) > n/1.01 for all
t < T, provided thak > kg is large enough. Thus, Corolldry #.4 entails in combinatitth Lemmd 2.1

Q|

1.01 1.01kd,0(; ;)

P * 0 — i . 7j
[£(6, 7%, 7°)|Fo] ( ~ ) 11 ~ (25)
(3,7)eQ®
For anyM C [m] of sizeu and any two disjoinQ*, Q° c M x [k] let
SO0 = 3 <1.01>Q*' 1 1.01k8 00 ;)
) ) - T ! #7
7,70 (i,5)€Q0

with the sum ranging over all maps : Q* — [T%], 70 : Q° — [I*]. Recall that) = T*/n. As
Zth* 0; < en, we obtain

1017\ @71 /1.01k\ 19"
S(M,Q*,Q°%) < ( - ) ( - ) oo I b6

0 (5,1)€Q0
1017\ /10169 (& & . 0
_ < . ) < : ) Yoo <019)9 (1L01ek). (26)
n n
t=1
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Combining [(24),[(Zb), and(26), we thus get for ang A
PE@G)] < 270 )" > S(M,Q*,Q°)

MC[m]:[M|=p Q*,Q°CMx[k]:Q*NQ°=0

(M . 0
< 2 kﬂ(ﬂ) > > (1.016)7 (1.01ek)?
q*,q%:q* +¢° <kp Q*,Q%:|Q*|=¢*,|Q"|=q°
< ghu(™ 3 b (1.016)7 (1.01ke)"
p . 7, q° kp—q* —¢°
q*,q%:q* +q° <kp
_(m (L1000 +k)\* _ fem (1410100 4+ ke)\*]"
- i 2 o 2
i
1+1.01(0 + ke)\ "
< [e2k—2. (#) ] §0.999“, (27)

provided that: > kq is sufficiently big. Finally, combinind(22) and {27), we abt

T* 0 e
Pl < (5”; )0.999# < <W> 0.999* < (e(1+6/e))"0.999.  (28)
By our assumption thai > k~3 (cf. the first paragraph in Secti@h 3), we have= 22~%*m > pn/k >
k~*n. Hence, recalling that < 1/k ande = exp(—£2/?) (cf. @)), we obtain from[{28)

P[] < exp [n (5 In(2e/e) — k_4)} < exp [n (kz exp(fk2/3) +k *In 0.999)} =exp(—Q(n)) = o(1),

provided that: > kg is sufficiently large. a
Finally, Propositioi 34 is immediate from Propositibnd and4.b.

5 Proof of Proposition[3.6

Throughout this section we keep the notation and the assoinspdf Propositiofi 316.

5.1 OQutline

The goal in this section is to bound the size of theZgt. There are two reasons why stef{2 may add
a clause index € [m] to the setZ, for somel < ¢t < T*. First, the claus@; may feature at least;
variables from the setl;,_; U{|®,,;,|}, i.e., variables that have been flipped at least once. Sedanday
contain at leash variables that also occur in clauses that were addef] fareviously. The key issue is to
deal with the first case. Once that is done, we can bound théauai clauses that get included for the
second reason via LemmaP.4, i.e., via the expansion piepeftthe random formula.

Thus, we need to investigate how a cladsecomes to contain a lot of variables frady_1 U {|®;,;,|}
for somet < 7. There are two ways in which this may occur. Fiist1lksat may have tried to satisfy
®; ‘actively’ several times, i.es; = i for severals < t. Second@®; may contain several of the variables
|®,. ;.| flipped at timess < ¢ ‘accidentally’, i.e., withoutwalksat trying to actively satisfyi. More
precisely, for any > 0 we call a pair(i, j) € [m] x [k]

e t-activeif thereisl < s < ¢ such thati, j) = (is, js) andms_1(i,7) = —1.

e t-passiveif there is1l < s < t such that(s, j) # (is,Js) but|®;;| = |®,,;.| andms_1(4,5) €
{—1,1}.
Furthermore, we say thdt € [m] is t-activeif there areks = k; — 1075k indices; such that(i, j)
is t-active. Similarly, we say thatis t-passiveif there arek; = 10~°k indices; such that(i, j) is t-
passive. These definitions ensure that ary[m| for which there are at leagt indices;j € [k] such that
|®,;] € A1 U{|®;,,|} is eithert-active ort-passive.
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To prove Propositiof 316, we will deal separately withctive andt-passive clauses. Let; be the
number oft-active clauses, and |} be the number of-passive clauses.

Lemma5.1 Foranyl <t < T* we haveP [A; <en/4V |Z| >en] >1—1/n%

We defer the proof of Lemnia5.1 to Sect[onl5.2.

Lemma5.2 Foranyl <t < T*we haveP [P, < en/4V |Z,_1| > en] > 1 —1/n?.

Proof. As in the proof of Proposition 415, we are going to break theng¢of interest, i.e.,
E={P >en/AN|Z_1| <en},

down into sub-events whose probabilities can be estimagtlemmd4.]l. Then we will use the union
bound to estimate the probability &t

ForasetM C [m] of u = en/4 clause indices lef (M) be the event thdtz; ;| < en and alli € M
aret-passive. If€ occurs, then there is a s&f such that the everfi(M) occurs. Hence, by the union
bound

PlEl < Y P[&M)]s(jj) max P [£(M)] . (29)

M
MC[m]|M|=p

Thus, fix a setM C [m] of sizeu. Let@ C M x [k] be a set such that for ea¢he M there are
preciselyks indicesj € [k] such thati, j) € Q. LetE(M, Q) be the event thdiZ;_;| < en and all pairs
(1,7) € Q aret-passive. If the everf (M) occurs, then there exists a sgtsuch that€ (M, Q) occurs.
Therefore, again by the union bound

Pleon] = SPE0nQ) < () mxP o), (30)
Q

Foramapr: Q — [t] letE(M, Q, 7) be the event thdtZ;_,| < en and
7(i,7) =min{s € [t] : (i, 7) is s-passivé forall (i,7) € Q.

If the event(M, Q) occurs, then there is a mapsuch that the ever&(M, Q, 7) occurs. Consequently,
for any M, Q we have

PEM,Q)] < Y PIEM, Q7)) <t maxP [E(M,Q,7)]. (31)
Combining [29),[(3D), and(B1), we see that
m 12
piel < (7)(1) t pa plearQunl. @2)

Hence, fix anyM,Q, 7. Let Qs = 77!(s) foranyl < s < t, and let€(Qs) be the event that
|®ii] = |®i,j,| & A1 UN;—q forall (4,5) € Qs, and(iy, j¢) & Q5. If E(M,Q, ) occurs, then the
eventsE (Qs) occur for alll < s < t. Moreover, the constructioRl0O—PI3 ensures that4,| < s, and
that|NVs_1| < k|Z._1| < kenforall 1 < s < t. Therefore, Lemma4.1 implies

t

ﬂ EXQs) N{|Ns1] < ksn}] < H max {1,n — s+ 1 — ken} 19"/ (33)
s=1

s=1

PE(M,Q,7)] < P

Ass <t <T* <n/k, e = exp(—k?/3), and because we are assuming that k is sufficiently large,
we haven — s + 1 — ken > n/1.001. Hence,[(3B) yields

PIEM, Q7)) < [[max{l,n—s+1—ken} ' < (1.001/n)"k. (34)

s=1
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Finally, combining[(3R) and(34) and recalling tifat= 7* /n, we get

m\ (k" , em  (1.001ek0\"]"  [4e25p /1.001ek0"]"
< 31 (1. pks < == < .
PiEl < (M) </<?3> FRHL001/n) < [ % ( ks > ] T | ek < ks )

By our choice of) we havel.001ekf < 10. Hence, we obtain fok > &, large enough

4e2kp

m
20| < explon) = o)

P[] < {

thereby completing the proof. a

Proof of Propositio:316.In order to boundZ;| for 0 < ¢ < T*, we are going to consider a superset
Vi D Z, whose size is easier to estimate. To defihewe let); be the set of all that are eithet-active
or t-passive. Now); is the outcome of the following process.

Initially, let ), = V.
While there is a clausee [m] \ ), such that{j € [k] : |®;;| € N(®y,)}| > A, addi to ;.

Comparing the above process with the constructiddl) we see that indeed
Ve D 2. (35)

Also note thafy; D Y, forallt > 1.
To bound|):|, we proceed by induction oh LetY; be the event that either the random formd@la
violates the property{3), 4| > en. We claim that® [Y;] = o(1) and that

PIV;] <P[Yii]+2n72 foralll <t <T* (36)

Since trivially Yy = 0, Yy is simply the event tha® violates [3). Hence, Lemnia 2.4 shows directly
that
P [Yo] = o(1). (37)

Now, consider somé < ¢ < T*. Lemmag5.ll (applied to— 1) and Lemm&5J2 (applied ) show that
P[A; + P, <en/2V|Zi_1| >en] > 1—2/n%

Furthermore, ifY;_; does not occur, then we know tha; 1| < [V:—1| < en and that[(B) is satisfied. If
in additionA; + P; < en/2, then [3) ensures th&y;| < en, and thusy; does not occur. Therefore,

En
PlYy] = P[Yia]+P[Yi\Yia] <P[Viq]+P [At + P> A Z] < sn} < P[Yiq] +2/n>

Finally, (38) and[(3l7) yield

>en] <P Y] <P Yol + > 2/n = o(1) + 27" /n® = o(1).

t=1

P [|Yr-

In combination with[(3b), this implies the assertion. a

5.2 Proof of Lemmal5.1

How can a claus@; becomet-active? If this occurs, themalksat must have tried ‘actively’ to satisfy
P, at leastk, times by flipping one of its variables. But each time, the alalé thatwalksat flipped to
satisfy ®; got flipped again because flipping it rendered another clansatisfied.

More precisely, if®; is t-active, then there exist distinct ‘slotg, . . . , ji, € [k] andtimess, ..., sk, €
[t] such that(s, j;) is s;-active forl = 1,..., ko. This means that at the timeg Walksat actively tried
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to satisfy®; by flipping |®;;,| ( = 1,...,k2). However, asialksat had to make:, attempts, each
of the variableg®,;, | with [ < ks must have been flipped once more by time;. Hence,|®;;,| occurs
positively in a clause,, that is unsatisfied at some time< ¢; < s;41. In particularh; € Dy, C D;.

Thus, in order to prove Lemnia’.1 we are going to bound thegtitity that there are at least:/4
clausegp; that admitjy, . .., jx, € [k] such that for eaclh < | < k, there is another clause,,, with the
following properties.

Al. We havesign(®,;,) = —1, and there is an indeke [k] such thasign(®;,;) = 1 and®;,; = |®;;,|.
A2. hy € Dy, i.e., ®y, is A; U N;-negative.

In order to deal withAl we will need to refine our filtration. Given a subggtc [m] x [k] and a map
g: Q — [m] x [k], we letQ, be the event that

sign(®;;) = —1, sign(i’g(i_’j)) =1land|®;;| = ‘i’g(i_’j)’ forall (i, j) € Q.
Since the literals of the random formufaare independently uniformly distributed, we see that
P[Q,] < 9—1QUI(Q)],,— QI (38)

We considefl, as a probability space equipped with the uniform distritu(in other words, we are going
to condition onf2,). Further, we define a filtratioiF, ;).>0 on €}, by letting 7, , = {ENQ, : € € F}.
In other words,F,, ; is the projection ofF; onto(2,. Hence, Fadi3]2 directly implies the following.

Fact5.3 For anyt > 0, anyz € V, and anyi € [m] the eventdo,(z) = 1}, {®, is satisfied undes, },
{x € A}, {i € 21}, {x € i}, and{T = t} are F, ,-measurable.

Moreover, since the only conditioning we imposé&ipconcerns the literak®,; with (4, j) € QUg(Q),
Fac{3.3B yields the following.

Fact5.4 Lett > 0. Leté&, be the set of all pairgi, j) € [m] x [k] \ (Q U ¢(Q)) such thatr. (7, j) €
{—1,1}. The conditional joint distribution of the variabl€$®;|):; j)ce, givenF; , is uniform over
(V\ (A; UNY))E:. Thatis, for any magf : & — V' \ (A; UN;) we have

P[V(i,5) € & : |®ij| = (i, )| Fr.g] = |V \ (A UNG)|7IEL

Similarly, with respect to the random variabl&s (-, -) and K7 (-, -) defined in [Ib) and(16), Corol-
lary[4:4 implies the following.

Corollary 5.5 Foranyt > 1,46, > 0 andZ*,Z° C [m] x [k] \ (Q U ¢(Q)) we have

B [K;(T)E)IO1{| 20\ 21| <0, [ Fpumr] < max {1, [V \ (Amy UN—) [}

k6, |z°|
'<max{17|V\(At—1UM—1)I —krét}> '
As a further preparation, we need the following lemma.

Lemma5.6 Letl <t < T*. Setu = en/4 and letM C [m] be a set of sizeM | = n. Furthermore, let
Q C M x [k],letI C [m] beasetofsizel| < |Q|, andletg : Q — I x [k]. LetE(M, Q, I, g) denote the
event that Z;| < en and the following three statements hold.

a. Forall (i, j) € Q we havesign(®;;) = —1, sign(®,(; ;) = 1, and®(; ;) = |®;;].
b. I C D;.
c. Foreachi € I thereisj € [k] such that(s, j) € g(Q).

ThenP [£(M, Q. I,9)] < 2(*7") (2n)~1Q12= 1%l exp(1.011%0| I]).
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Proof. To estimateP [£(M, Q, I, g)], we need to decompose the evéll/, Q, I, g) into ‘more detailed’
sub-events whose probabilities can be bounded directi@eiallary[5.5. To this end, I&F*, Z° be two dis-
joint subsets of x [k]\g(Q), and lett* : Z* — [T*],t° : Z° — [T*] be two maps. Lef (M, Q, I, g,t*,t°)
be the event thatZ;| < en and that the following statements are true.

a. Forall(i, j) € Q we havesign(®;;) = —1, sign(®,(; ;) = 1, and®; ;) = [®;].
b. 0. If (i,5) € I x [k]\ (9(Q) UZ* UZ®), thensign(®;;) = —1.

ii. If (4,7) € 7%, thensign(®;;) = (i j)—1(6,7) = 1 and®;; € Ag-(; 5.

iii. If (4,7) € Z°, thensign(®;;) = mo(; 5)-1(4,7) = 1 and®;; € Nyo(; ).
c. Foreach € I'thereisj € [k] such thali, j) € g(Q).

If the event&(M, Q, I, g) occurs, then there exigt*, Z°, ¢*,t° such that the ever® (M, Q, I, g,t*,t°)
occurs. Indeed, the definition of the gt~ is such that ifi € Dp+, then for any(i, j) € I x [k] such that
sign(®;;) = 1 we have®;; € Ar- U Np-. Thus, by the union bound,

PIE(M,Q,1,9)] < > > P[EM,Q,T,g,t",t°)]. (39)

T* 70 ¢* 10

Furthermore, let = (d4,...,0:) be a sequence such thEt‘;:1 §s < en. Let&(6, M, Q,I,g,t*,t°)
be the eventthatZ, \ Z,_1| < 6, forall 1 < s < t and that€ (M, Q, I, g,t*,t°) occurs. Then by the
union bound,

PE(M,Q.1,g,t",1)] < > PIEG,M,Q,1,g,t",t°)]

IN

T +en
en

> mngP [5(5, M,Q,I,g,t*,to)} . (40)

The event€ (5, M, Q, I, g,t*,t") is sufficiently specific so that we can estimate its probgbéasily.
Namely, if£(8, M, Q, I, g,t*,t°) occurs, ther®), occurs and

H K58, 5) H K*(”)zj H1{|Z \ Zs_1| <65} = 1. (41)
(4,5)€Z* (i,5)€Z°

To bound the probability thaf (#1) occurs, we reorder thedpob by the time parameter. That is, letting
Ir =t*"Y(s), 0 = "~ 1(s), we get

P [5(55 M; Q7 Iv g, t*7 t0)|]:970]

< E H Kt*z])l.j H Kt*(lj ’LJ H1{|Z \Zé 1|<6}_1|‘7:a

(’Lj )EL* (i,5)€Z°
E HKI(Iﬁ)KS(Z?)l {12s\ Zs1| <6} IF, ,01 : (42)
s=1
Since for anys <t < 7" we havelAs| < s < T* < 7, and agN| < k) ., &5 < ken, we see that

|As UN;| + kds < 0.001n for all s < ¢. Hence IEIZ) and Corollafy 5.5 yleld

ﬁ Lo\ % r1otks, |
ey n

|Z* | +|Z°|
1.01
<—> H k1033 j)- (43)

n o
(i,5)€Z°

IN

P [5(57 M7 Qa Iaga t*7t0)|fg,0]

IN
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Furthermore, if the ever(d, M, Q, I, g, t*,t") occurs, then for al(i, j) € I x [k] \ (¢(Q) UZ* UZ°)
we havesign(®;;) = —1, while sign(®,;) = 1 for all (i, j) € Z* UZ°. This event isF, ,-measurable.
Hence, as the signs of the literals; are independently uniformly distributed, we obtain frémB)4

|Z Uz
P [£(6, M, Q. 19,192 §2*”N@(?m) I kowen — (44)

n
(i,§)€Z°

Combining [38) and(44), we get

P[0, M,Q,1,9,t",t°)] = PQP[E(6,M,Q,1,g,t",t°)|Qy]
|Z*uzP)
1.01
< (2 >'@2“W](71) II #owiy- @49
(i,7)€Z°

As (39) and[(4D) show, in order to obtath[£(M, Q, I, g)], we need to suni(45) over all possible
choices of, 7*, 79, t*, t:

PE(M,Q,1,9)] < (T*+€n) )71eh Ny Z Z [E(6,M,Q,I,9,t",t%)]

en I, I0 t*:T*—[t] t0:Z0—

~1Qlg—Ix[K] Lo1\ el
i .
< (T e 5 (7) 2 L whews
I*,10° t0:Z0—[t] (i,5)€Z°
T + 1.o1\ /T a
EN . *
- RCRG!] 1.01 |Z*]
< ( ) > (M i ZM
VAA
T* +en —1Qlg—I1x k]| Iz 1| t
< (2n)~1@l2~ > (ott/n)* 1 (1.01ke) [asyt_, 9, <en]
VAA
< ( i m) )~1Qlo=IIXIMI(1 4 1.01(0 + ke))H!|
Hence,
T*
PE(M,Q,1,9)] < 2( +En)(2n)_|Q|2_|IX[k]exp(1.011k|l|9).
En
as desired. O

Proof of Lemm&5]llet u = en/4 and fix somel < ¢t < T*. Let & be the event thatZ;| < en and
A, > p. ForasetM C [m] of size|M| = p we letE(M) signify the event that all clausésc M are
t-active. If€ occurs, then there is a s&f of sizep such tha€€ (M) occurs. Hence, by the union bound

Plgl < Y Pl < (") maxPlE()). (46)
MC[m]:| M|=p (“) M

To bound the expression on the r.h.s., fix someldetC [m] of sizeu. Let Q(M) be the set of all
@ C M x [k] such that for eache M we have| {j € [k] : (i,7) € Q} | = ko — 1. Foraset) € Q(M)
letE(M, Q) be the event thdiZ;| < en and

a. all pairs(i, j) € Q ares(i, j)-active for somes(i, j) < t, and
b. foreachi € M there isj’ € [k] such tha(i, j') is s-active at some time satisfying

max s(¢ < s<t.
J:(1,5)€EQ ( j)
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If the event€ (M) occurs, then there exists € Q(M) such that (M, Q) occurs. (Infact, i€ (M) occurs,
then by the definition of-active, for any; € M there are at leadt, indices; such thati, j) is s-active for
somes < t. We can thus lef) contain the pairg:, j) for the ‘earliest'ks — 1 such indiceg.) Hence, by
the union bound

Sreonals (") mpeonol. (@7

Oeo QeEQ

Now, fix a setM C [m], |M| = u, and aset) € Q(M). If the eventE (M, Q) occurs, then there exist
I, g such that the everd(M, Q, I, g) as in Lemmd&5l6 occurs. Indeed, this is precisely what wetpdin
outinAl, A2 above. Thus, by the union bound

(k2 Dp

PE(M.Q)] < Y PIE(M,Q,Ig) Z > > PIEM,Q.19)]

= ICIm]:|I|=v g:Q—Ix[k]

(k2—1)p m
< > <V>(ku)(k21>“ max P[E(M,Q,1,9)]. (48)

y— I,g:|I|=v,9:Q—Ix[k]
According to Lemm&&]6,

T* +en

en

PE(M,Q,I,9)] < 2( ) (2n)~1QI2=IIXK]l oxp(1.011K0v). (49)

Combining [48) and{49), we obtain

T* 4 (k2— 1)#
PE(M,Q)] < 2( 5”)( -lel ( )ku )(k2=Dro=kY o1y (1.011k6v)

en

(kz 1)M
T*
2( +‘5">( -l@l Z ( ) (k) F2 =D exp(1.011k0v)

<
en —
—Vp
T 4+en epn
< IQI (ka—1)p
< 2( o )( g ( ) (kv) exp(1.011k6v).

Since the largest summand is the one witk (k2 — 1) and ag@| = (k2 — 1)u, we obtain

(50)

2

T + en) (exp(l + 1.011k9)p) (kz=1)u
En

PIEDLQ) < m(

Let¢ > 0 be such tha(kf_l) = (2¢)*2~1 and let{ = exp(1 + 1.011k6). Plugging [BD) into[(4l7), we

get
* (k2_1) *
PlE(M)] < 2k:u(T +5n) (kfl)“ (—?) " <o (T +5") (€cp) > ~Vr - (51)

En

Finally, (48) and[(5) yield
2hp <T* N 5") <m) (¢ ™" < 2kp (T* y 5”) [e—m (cgp)“”‘”] :
o en I

En

2ku(T*+m) [462 2P (¢epy ey r. (52)

en

IN

P €]

IN

If p < po=1/25,then

M 1270 (cep)®2 D < exp(—ka/100) (53)
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for k > kg large enough. Hencé,_(52) ad](53) yield foF kg large enough

* * en+1
P[] < 2kp (T ;En) exp(—kzp/100) < 2kp <W) exp(—kz/1/100)
en+1

< 2ku (M) exp(—kzj1/100)

< exp[2en —enlne — kap/100 + o(n)]

< exp[n(2e —elne — kae /400 + o(1))] [by our choice ofu]

< exp [—nkee/401] = o(1), [by our choice of, cf. (3)],
as desired. |
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