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STABILITY OF PERIODIC TRAVELING WAVES

FOR NONLINEAR DISPERSIVE EQUATIONS

VERA MIKYOUNG HUR AND MATHEW A. JOHNSON

Abstract. We study the stability and instability of periodic traveling waves
for Korteweg-de Vries type equations with fractional dispersion and related,
nonlinear dispersive equations. We show that a local constrained minimizer
for a suitable variational problem is nonlinearly stable to period preserving
perturbations, provided that the associated linearized operator enjoys a Jordan
block structure. We then discuss when the linearized equation admits solutions
exponentially growing in time.

1. Introduction

We study the stability and instability of periodic traveling waves for a class of
nonlinear dispersive equations, in particular, equations of Korteweg-de Vries (KdV)
type

(1.1) ut −Mux + f(u)x = 0.

Here t ∈ R denotes the temporal variable and x ∈ R is the spatial variable in the
predominant direction of wave propagation; u = u(x, t) is real valued, representing
the wave profile or a velocity. Throughout we express partial differentiation either
by a subscript or using the symbol ∂. Moreover M is a Fourier multiplier, defined

as M̂u(ξ) = m(ξ)û(ξ) and characterizing dispersion in the linear limit, while f is
the nonlinearity. In many examples of interest, f obeys a power law.

Perhaps the best known among equations of the form (1.1) is the KdV equation

ut + uxxx + (u2)x = 0

itself, which was put forward in [Bou77] and [KdV95] to model the unidirectional
propagation of surface water waves with small amplitudes and long wavelengths in a
channel; it has since found relevances in other situations such as Fermi-Pasta-Ulam
lattices. Observe, however, that (1.1) is nonlocal unless the dispersion symbolm is a
polynomial of iξ; examples include the Benjamin-Ono equation (see [Ben67, Ono75],
for instance) and the intermediate long wave equation (see [Jos77], for instance), for
which m(ξ) = |ξ| and ξ coth ξ− 1, respectively, while f(u) = u2. Another example,
proposed by Whitham [Whi74] to argue for breaking of water waves, corresponds

to m(ξ) =
√
(tanh ξ)/ξ and f(u) = u2. Incidentally the quadratic nonlinearity is

characteristic of many wave phenomena.
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2 HUR AND JOHNSON

A traveling wave solution of (1.1) takes the form u(x, t) = u(x−ct), where c ∈ R

and u satisfies by quadrature that

Mu− f(u) + cu+ a = 0

for some a ∈ R. In other words, it steadily propagates at a constant speed without
changing the configuration. Periodic traveling waves of the KdV equation are known
in closed form, namely cnoidal waves; see [KdV95], for instance. Moreover Benjamin
[Ben67] calculated periodic traveling waves of the Benjamin-Ono equation. For a
broad range of dispersion symbols and nonlinearities, a plethora of periodic traveling
waves of (1.1) may be attained from variational arguments. To illustrate, we shall
discuss in Section 2 a minimization problem for a family of KdV equations with
fractional dispersion.

Benjamin in his seminal work [Ben72] (see also [Bon75]) explained that solitary
waves of the KdV equation are nonlinearly stable. By a solitary wave, incidentally,
we mean a traveling wave solution which vanishes asymptotically. Benjamin’s proof
hinges upon that the KdV “soliton” arises as a constrained minimizer for a suitable
variational problem and spectral information of the associated linearized operator.
Later it developed into a powerful stability theory in [GSS87], for instance, for a
general class of Hamiltonian systems and led to numerous applications. In the case
of m(ξ) = |ξ|α, α > 1, and f(u) = up+1, p > 1, in (1.1), in particular, solitary
waves were shown in [BSS87] (see also [SS90, Wei87]) to arise as energy minimizers
subject to the conservation of the momentum and to be nonlinearly stable if p < 2α
whereas they are constrained energy saddles and nonlinearly unstable if p > 2α.

We shall take matters further in Section 4 and establish that a periodic traveling
wave of a KdV equation with fractional dispersion is nonlinearly stable with respect
to period preserving perturbations, provided that it locally minimizes the energy
subject to conservations of the momentum and the mass and that the associated
linearized operator enjoys a Jordan block structure. Moreover we relate the latter
condition with the momentum and the mass as functions of Lagrange multipliers
arising in the traveling wave equation, generalizing that in [BSS87], for instance,
in the solitary wave setting. In the case of generalized KdV equations, i.e., m(ξ) =
ξ2 in (1.1), the nonlinear stability of a periodic traveling wave to same period
perturbations was determined in [Joh09], for instance, through spectral conditions,
which were expressed in terms of eigenvalues of the associated monodromy map
(or the periodic Evans function); see also [AP07, APBS06, BJK11, DK10, DN11].
Confronted with nonlocal operators, however, spectral problems may be out of
reach by Evans function techniques. Instead we make an effort to replace ODE
based arguments by functional analytic ones. The program was recently set out in
[BH14].

As a key intermediate step we shall demonstrate in Section 3 that the linearized
operator associated with the traveling wave equation is nondegenerate at a periodic,
local constrained minimizer for a KdV equation with fractional dispersion. That
is to say, its kernel is spanned merely by spatial translations. The nondegeneracy
of the linearization proves a spectral condition, which plays a central role in the
stability of traveling waves (see [Wei87, Lin08] among others) and the blowup (see
[KMR11], for instance) for the related, time evolution equation, and therefore it is of
independent interest. In the case of generalized KdV equations, the nondegeneracy
at a periodic traveling wave was identified in [Joh09], for instance, with that the
wave amplitude not be a critical point of the period. Furthermore it was verified in
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[Kwo89], among others, at solitary waves. These proofs utilize shooting arguments
and the Sturm-Liouville theory for ODEs, which may not be applicable to nonlocal
operatorors. Nevertheless, Frank and Lenzmann [FL13] obtained the property at
solitary waves for a family of nonlinear nonlocal equations, which we follow. The
idea lies in to find a suitable substitute for the Sturm-Liouville theory to count
the number of sign changes in eigenfunctions for a linear operator with a fractional
Laplacian.

The present development may readily be adapted to other, nonlinear dispersive
equations. We shall illustrate this in Section 5 by discussing equations of regularized
long wave type. We shall remark in Section 6 about Lin’s approach [Lin08] to linear
instability.

2. Existence of local constrained minimizers

We shall address the stability and instability mainly for the KdV equation with
fractional dispersion

(2.1) ut − Λαux + (u2)x = 0,

where 0 < α 6 2 and Λ =
√
−∂2

x is defined via the Fourier transform as Λ̂u(ξ) =
|ξ|û(ξ).

In the case of α = 2, notably, (2.1) recovers the KdV equation, and in the case
of α = 1 it corresponds to the Benjamin-Ono equation. In the case∗ of α = −1/2,
furthermore, (2.1) was argued in [Hur12] to have relevances to surface water waves in
two dimensions in the infinite depths. Observe that (2.1) is nonlocal for 0 < α < 2.
Incidentally fractional powers of the Laplacian occur in numerous applications, such
as dislocation dynamics in crystals (see [CDLFM07], for instance) and financial
mathematics (see [CT04], for instance).

The present treatment extends mutatis mutandis to general power-law nonlinear-
ities; see Remark 2.4. We focus on the quadratic nonlinearity, however, to simplify
the exposition.

Throughout we’ll work in the L2-based Sobolev spaces over the periodic interval
[0, T ], where T > 0 is fixed although at times it is treated as a free parameter. For
0 < α < 2 let

‖u‖2
H

α/2
per ([0,T ])

=

∫ T

0

(u2 + |Λα/2u|2) dx.

We employ the standard notation 〈· , ·〉 for the L2
per([0, T ])-inner product.

Notice that (2.1) may be written in the Hamiltonian form

(2.2) ut = JδH(u),

where J = ∂x is the symplectic form,

(2.3) H(u) =

∫ T

0

(1
2
|Λα/2u|2 − 1

3
u3

)
dx =: K(u) + U(u)

∗ Note that Λα∂x is non singular for α > −1.
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is the Hamiltonian and δ denotes variational differentiation; K and U correspond
to the kinetic and potential energies, respectively. Notice that (2.1) possesses, in
addition to H , two conserved quantities

P (u) =

∫ T

0

1

2
u2 dx(2.4)

and

M(u) =

∫ T

0

u dx,(2.5)

which correspond to the momentum and the mass, respectively. Conservation of P
implies that (2.1) is invariant under spatial translations thanks to Noether’s theorem
while M is a Casimir invariant of the flow induced by (2.1) and is associated with
that the kernel of the symplectic form is spanned by a constant. Notice that

(2.6) δP (u) = u and δM(u) = 1.

Moreover (2.1) remains invariant under

(2.7) u(x, t) 7→ λαu(λ(x− x0), λ
α+1t)

for any λ > 0 for any x0 ∈ R.

Remark 2.1 (Well-posedness). In the range α > −1, one may work out the local

in time well-posedness for (2.1) in H
3/2+
per ([0, T ]), combining an a priori bound and a

compactness argument. Without recourse to dispersive effects, the proof is identical
to that for the inviscid Burgers equation, i.e., α = 0. We omit the detail.

With the help of techniques in nonlinear dispersive equations and specific prop-
erties of the equation, the global in time well-posedness for (2.1) may be established

in H
−1/2+
per ([0, T ]) in the case of α = 2, namely the KdV equation (see [CKS+03], for

instance), and in H0+
per([0, T ]) in the case of α = 1, the Benjamin-Ono equation (see

[Mol08], for instance). For non-integer values of α, however, the existence matter
for (2.1) seems not adequately understood in spaces of low regularities. The global
well-posedness in Hα/2(R) was recently settled in [KMR11] for (2.1), in the case of
1 < α < 2 and up+1 in place of u2, p 6 2α, but the proof seems to break down in
the periodic functions setting.

In what follows we shall work in a suitable subspace, say, X of H
α/2
per ([0, T ]),

where the initial value problem associated with (2.1) is well-posed for some interval
of time and H,P,M : X → R are smooth.

A periodic traveling wave of (2.1) takes the form u(x, t) = u(x− ct− x0), where
c ∈ R represents the wave speed, x0 ∈ R is the spatial translate and u is T -periodic,
satisfying by quadrature that

(2.8) Λαu− u2 + cu+ a = 0

for some a ∈ R (in the sense of distributions). Equivalently, it arises as a critical
point of

(2.9) E(u; c, a) = H(u) + cP (u) + aM(u).

Indeed

(2.10) δE(u; c, a) = 0
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agrees with (2.8).
Henceforth we shall write a periodic traveling wave of (2.1) as u = u(· ; c, a). In

a more comprehensive description, it is specified by four parameters c, a and T , x0.
Note, however, that T > 0 is arbitrary and fixed. Corresponding to translational
invariance (see (2.7)), moreover, x0 is inconsequential in the present development.
Hence we may mod it out.

In the present notation, a solitary wave whose profile vanishes asymptotically
corresponds, formally, to a = 0 and T = +∞.

In the case of α = 2, periodic traveling waves of (2.1), namely the KdV equation,
are well known in closed form, involving Jacobi elliptic functions; see [KdV95], for
instance. In the case of α = 1, moreover, Benjamin [Ben67] exploited the Poisson
summation formula and explicitly calculated periodic traveling waves of (2.1). In
general, the existence of periodic traveling waves of (2.1) follows from variational
arguments, although one may lose an explicit form of the solution. In the energy
subcritical case, in particular, a family of periodic traveling waves of (2.1) locally
minimizes the Hamiltonian subject to conservations of the momentum and the
mass, generalizing “ground states” in the solitary wave setting.

Proposition 2.2 (Existence, symmetry and regularity). Let 1/3 < α 6 2. A local

minimizer u for H subject to that P and M are conserved exists in H
α/2
per ([0, T ]) for

each 0 < T < ∞ and it satisfies (2.8) for some c 6= 0 and a ∈ R. It depends upon
c and a in the C1 manner.

Moreover u = u(· ; c, a) may be chosen to be even and strictly decreasing over the
interval [0, T/2], and u ∈ H∞

per([0, T ]).

Below we develop integral identities which a periodic solution of (2.8), or equiv-
alently (2.10), a priori satisfies and which will be useful in various proofs.

Lemma 2.3 (Integral identities). If u ∈ H
α/2
per ([0, T ]) ∩ L3

per([0, T ]) satisfies (2.8),
or equivalently (2.10), then

2P − cM − aT = 0,(2.11)

2K + 3U + 2cP + aM = 0.(2.12)

Proof. Integrating (2.8), or equivalently (2.10), over the periodic interval [0, T ] leads
to (2.11). Multiplying it by u and integrating over [0, T ] lead to (2.12). �

Proof of Proposition 2.2. We claim that it suffices to take a = 0 and c = 1. Suppose
on the contrary that a 6= 0. We then assume without loss of generality that c and
M are of opposite sign and a > 0. For, in case c and M are of the same sign, since
(2.1) is time reversible, we make the change of variables t 7→ −t in (2.1) to reverse
the sign of c in (2.8) while leaving other components of the equation invariant.
Once we accomplish that c and M are of opposite sign, a > 0 must follow since
P > 0 and T > 0 by definition. We shall then devise the change of variables
u 7→ u+ 1

2 (
√
c2 + 4a− c) and rewrite (2.8) as

(2.13) Λαu− u2 + γu = 0, where γ =
√
c2 + 4a > 0.

Therefore it suffices to take a = 0 in (2.8). This is reminiscent of that (2.1) enjoys
Galilean invariance under u(x, t) 7→ u(x, t) + u0 for any u0 ∈ R. By virtue of
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scaling invariance (see (2.7)), we shall further devise the change of variables u(x) 7→
1/γu(x/γα) and rewrite (2.13) as

(2.14) Λαu− u2 + u = 0.

To recapitulate, it suffices to take a = 0 and c = 1 in (2.8) and seek a local minimizer
for H + P . (But we shall not a priori assume that a = 0 or c = 1 in the stability
proof in Section 4.)

Since H
α/2
per ([0, T ]) in the range α > 1/3 is compactly embedded in L3

per([0, T ]) by
a Sobolev inequality, it follows from calculus of variations that for each parameter

(abusing notation) U < 0† there exists u ∈ H
α/2
per ([0, T ]) such that

(2.15) K(u) + P (u) = inf
{
K(φ) + P (φ) : φ ∈ Hα/2

per ([0, T ]), U(φ) = U
}
.

The proof is rudimentary. We merely pause to remark that K(φ)+P (φ) amounts to

‖φ‖2
H

α/2
per ([0,T ])

and the constraint is compact in H
α/2
per ([0, T ]). Moreover, u satisfies

Λαu+ u = θu2

for some θ 6= 0 in the sense of distributions. By a scaling argument, we may choose

U to ensure that θ = 1. Consequently (abusing notation) u ∈ H
α/2
per ([0, T ]) attains

the constrained minimization problem (2.15) and satisfies (2.14). Note from (2.12)
that 2K(u) + 3U(u) + 2P (u) = 0.

Furthermore we claim that

(2.16) E(u) = inf{E(φ) : φ ∈ Hα/2
per ([0, T ]), φ 6≡ 0, 2K(φ) + 3U(φ) + 2P (φ) = 0}.

Since

(2.17) E(φ) = H(φ)+P (φ) = K(φ)+U(φ)+P (φ) =
1

3
(K(φ)+P (φ)) = −1

2
U(φ)

and 2K(φ) + 2P (φ) = −3U(φ) > 0 whenever 2K(φ) + 3U(φ) + 2P (φ) = 0, φ 6≡ 0,
it suffices to show that

(2.18) U(u) = sup{U(φ) : φ ∈ Hα/2
per ([0, T ]), φ 6≡ 0, 2K(φ) + 3U(φ) + 2P (φ) = 0}.

Suppose that φ ∈ H
α/2
per ([0, T ]), φ 6≡ 0 and 2K(φ) + 3U(φ) + 2P (φ) = 0. We define

b =

(
U(u)

U(φ)

)1/3

,

and observe that (2.18) follows if b 6 1 so that 0 > U(u) > U(φ). Indeed we infer
from (2.17) that

2K(bφ) + 3U(bφ) + 2P (bφ) =2b2K(φ) + 3b3U(φ) + 2b2P (φ)

=2b2(1 − b)(K(φ) + P (φ)).

Moreover, since U(bφ) = b3U(φ) = U(u) and since u attains the constrained mini-
mization problem (2.15), it follows that

K(u) + P (u) 6 K(bφ) + P (bφ).

† Note from (2.12) that if u ∈ H
α/2
per ([0, T ]), α > 1/3, satisfies (2.14) then K(u) + P (u) > 0

and U(u) < 0 unless u ≡ 0.
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Consequently

0 = 2K(u) + 3U(u) + 2P (u) 62K(bφ) + 3U(bφ) + 2P (bφ)

=2b2(1− b)(K(φ) + P (φ)),

whence b 6 1. This proves the claim. Since

〈δH(φ) + δP (φ), φ〉 = 2K(φ) + 3U(φ) + 2P (φ)

for all φ ∈ H
α/2
per ([0, T ]), furthermore, u solves the constrained minimization problem

(2.16) if and only if u minimizes H + P among its critical points. The existence
assertion therefore follows. Clearly, u depends upon c and a in the C1 manner.

To proceed, since the symmetric decreasing rearrangement of u does not increase∫ T

0
|Λα/2u|2 dx for 0 < α < 2 (see [Par11], for instance, for a proof in the solitary

wave setting) while leaving
∫ T

0
u3 dx invariant, it follows from the rearrangement

argument that a local minimizer for H subject to conservations of P and M must
symmetrically decrease away from a point of principal elevation. The symmetry and
monotonicity assertion then follows from translational invariance in (2.7). (Note
that unlike in the solitary waves setting, for which a = 0 and T = +∞, a periodic,
local constrained minimizer needs not be positive everywhere.)

It remains to address the smoothness of a periodic solution of (2.8), or equiva-
lently,

(2.19) u = (Λα + 1)−1u2

after reduction to a = 0, c = 1 and after inversion. The validity of (2.19) is to be

specified in the course the proof. We claim that if u ∈ H
α/2
per ([0, T ]) satisfies (2.19)

then u ∈ L∞
per([0, T ]). In the case of α > 1 this follows immediately from a Sobolev

inequality, whereas in the case of 1/3 < α 6 1 a proof based upon resolvent bounds
for (Λα + 1)−1 is found in [FL13, Lemma A.3], for instance, albeit in the solitary

wave setting. Indeed, the Fourier series 1̂
|n|α+1 lies in ℓr(Z) for 0 < α < 1 for

r > 1
1−α by the Hausdorff-Young inequality, whence u ∈ L∞

per([0, T ]) after iterating

(2.19) sufficiently many times.

We then promote u ∈ H
α/2
per ([0, T ])∩L∞

per([0, T ]) toH
α
per([0, T ]) since the Plancherel

theorem leads to that

‖Λαu‖L2 =
∥∥∥ Λα

Λα + 1
u2

∥∥∥
L2

=
∥∥∥ |ξ|α
|ξ|α + 1

û2
∥∥∥
L2

6 ‖û2‖L2 = ‖u2‖L2 6 ‖u‖L∞‖u‖L2 < ∞.

Furthermore the fractional product rule (see [CW91], for instance) leads to that

‖Λ2αu‖L2 =
∥∥∥ Λ2α

Λα + 1
u2

∥∥∥
L2

6 ‖Λαu2‖L2 6 C‖u‖L∞‖Λαu‖L2 < ∞

for C > 0 a constant independent of u. After iterations, therefore, u ∈ H∞
per([0, T ])

follows. �

Remark 2.4 (Power-law nonlinearities). One may rerun the arguments in the
proof of Proposition 2.2 in the case of the general power-law nonlinearity

(2.20) ut − Λαux + (up+1)x = 0
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and obtain a periodic traveling wave, where 0 < α 6 2 and 0 < p < pmax is an
integer such that

(2.21) pmax :=

{
2α
1−α for α < 1,

+∞ for α > 1.

It locally minimizes in H
α/2
per ([0, T ]) the Hamiltonian
∫ T

0

(1
2
|Λα/2u|2 − 1

p+ 2
up+2

)
dx

subject to conservations of P and M , defined in (2.4) and (2.5), respectively. Note
that 0 < p < pmax, which is vacuous if α > 1, ensures that (2.20) isHα/2-subcritical

and H
α/2
per ([0, T ]) ⊂ Lp+2

per ([0, T ]) compactly. In the case of p = 1, it is equivalent to
that α > 1/3.

Remark 2.5 (Periodic vs. solitary waves). In the non-periodic functions setting,
Weinstein [Wei87] (see also [FL13]) proved that (2.8) in the range α > 1/3 admits
a solitary wave, for which a = 0 and T = +∞. In the case of α > 1/2 so that (2.8)
is L2-subcritical, the solitary wave further arises as an energy minimizer subject
to the conservation of the momentum. Periodic, local constrained minimizers for
(2.8), constructed in Proposition 2.2, are then expected to tend to the solitary wave
as their period increases to infinity. This in some sense generalizes the homoclinic
limit in the case of α = 2.

In the case of 1/3 < α < 1/2, on the other hand, local constrained minimizers for
(2.8) exist in the periodic wave setting, but they are unlikely to achieve a limiting
state with bounded energy (the Hα/2-norm) as the period increases to infinity.

In the L2-critical case, i.e. α = 1/2, periodic traveling waves with small energy
tend to the solitary wave as their period increases to infinity. Their stability is,
however, delicate and outside the scope of the present development. We refer the
reader to [KMR11], for instance.

For a broad range of dispersion operators and nonlinearities, including α > −1
in (2.1), one is able to construct periodic traveling waves of (1.1) at least with small
amplitudes from perturbation arguments such as the Lyapunov-Schmidt reduction;
see [HJ14], for instance. In the solitary wave setting, in stark contrast, Pohozaev
identities techniques dictate that (2.8) (a = 0) in the range α 6 1/3 does not admit
any nontrivial solutions in Hα/2(R) ∩ L3(R).

3. Nondegeneracy of the linearization

Throughout the section, let u(· ; c, a) be a periodic traveling wave of (2.1), whose
existence follows from Proposition 2.2. We shall examine the L2

per([0, T ])-null spaces
of the linearizations associated with (2.8) and (2.1).

Proposition 3.1 (Nondegeneracy). Let 1/3 < α 6 2. If u(· ; c, a) ∈ H
α/2
per ([0, T ])

for some c 6= 0, a ∈ R and for some T > 0 locally minimizes H subject to that P
and M are conserved then the associated linearized operator

(3.1) δ2E(u; c, a) = Λα − 2u+ c

acting on L2
per([0, T ]) is nondegenerate. That is to say,

ker(δ2E(u; c, a)) = span{ux}.
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The nondegeneracy of the linearization associated with the traveling wave equa-
tion is of paramount importance in the stability of traveling waves and the blowup
for the related, time evolution equation; see [Wei87, Lin08, KMR11], among others.
To prove the property is far from being trivial, however. Actually, one may cook up
a polynomial nonlinearity, say, f , for which the kernel of −∂2

x − f ′(u) at a periodic
traveling wave u is two dimensional at isolated points.

In the case of generalized KdV equations, for which α = 2 in (2.1) but the non-
linearity is arbitrary, the nondegeneracy of the linearization at a periodic traveling
wave was shown in [Joh09], for instance, to be equivalent to that the wave amplitude
not be a critical point of the period; the proof uses the Sturm-Liouville theory for
ODEs. Furthermore it was verified in [Kwo89], among others, at solitary waves (in
all dimensions). Amick and Toland [AT91] demonstrated the property in the case
of α = 1 in (2.1), namely the Benjamin-Ono equation, in the periodic and solitary
wave settings, by relating via complex analysis techniques the nonlocal, traveling
wave equation to a fully nonlinear ODE; unfortunately, the arguments are specific
to the equation. Angulo Pava and Natali [APN08] made an alternative proof based
upon the theory of totally positive operators, but it necessitates an explicit form of
the solution. A satisfactory understanding of the nondegeneracy of the linearization
thus seems largely missing for nonlocal equations. The main obstruction is that
shooting arguments and other ODE methods, which seem crucial in the arguments
for local equations, may not be applicable.

Nevertheless, Frank and Lenzmann [FL13] recently obtained the nondegeneracy
of the linearization at solitary waves for a family of nonlinear nonlocal equations
with fractional derivatives. Their idea is to find a suitable substitute for the Sturm-
Liouville theory to estimate the number of sign changes in eigenfunctions for a
fractional Laplacian with potential. Our proof of Proposition 3.1 follows along the
same line as the arguments in [FL13, Section 3], but with appropriate modifications
to accommodate the periodic nature of the problem.

Lemma 3.2 (Oscillation of eigenfunctions). Under the hypothesis of Proposition 3.1,

an eigenfunction in H
α/2
per ([0, T ])∩C0

per([0, T ]) corresponding to the j-th eigenvalue

of δ2E(u), j = 1, 2, 3, changes its sign at most 2(j − 1) times over the periodic
interval [0, T ].

We shall present the proof in Appendix A.

Remark 3.3 (Oscillation of higher eigenfunctions). Lemma 3.2 holds for all j =
1, 2, 3, . . . . See [HJM15], where the proof and applications are studied.

Below we gather some facts about δ2E(u).

Lemma 3.4 (Properties of δ2E(u)). Under the hypothesis of Proposition 3.1, the
followings hold:

(L1) ux ∈ ker(δ2E(u)) and it corresponds to the lowest eigenvalue of δ2E(u)
restricted to the sector of odd functions in L2

per([0, T ]);

(L2) 1 6 n−(δ
2E(u)) 6 2, where n−(δ

2E(u)) means the number of negative
eigenvalues of δ2E(u) acting on L2

per([0, T ]);

(L3) 1, u, u2 ∈ range(δ2E(u)).

Proof. Differentiating (2.8) with respect to x implies that δ2E(u)ux = 0. Moreover
Proposition 2.2 implies that u may be chosen to satisfy ux(x) < 0 for 0 < x < T/2.
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The lowest eigenvalue of δ2E(u) acting on the sector of odd functions in L2
per([0, T ]),

denoted L2
per,odd([0, T ]), on the other hand, must be simple and the corresponding

eigenfunction is strictly positive (or negative) over the half interval [0, T/2]; a proof
based upon the Perron-Frobenious argument is rudimentary and hence we omit the
detail. Therefore zero is the lowest eigenvalue of δ2E(u) restricted to L2

per,odd([0, T ])
and ux is a corresponding eigenfunction.

To proceed, recall that ux belongs to the kernel of δ2E(u) and attains zero twice
over the periodic interval [0, T ]. Since an eigenfunction associated with the lowest
eigenvalue of δ2E(u) is strictly positive (or negative), δ2E(u) acting on L2

per([0, T ])
must have at least one negative eigenvalue.

Moreover, since u locally minimizes H , and hence E, subject to conservations of
P and M , necessarily,

(3.2) δ2E(u)|{δP (u),δM(u)}⊥ > 0.

This implies by Courant’s mini-max principle that δ2E(u) has at most two negative
eigenvalues, asserting (L2).

Lastly, differentiating (2.10) with respect to c and a, respectively, we use (2.6)
to obtain that

(3.3) δ2E(u)uc = −δP (u) = −u and δ2E(u)ua = −δM(u) = −1.

Therefore 1, u ∈ range(δ2E(u)). Incidentally

Mc(u(·; c, a)) = 〈δM(u), uc〉 = 〈−δ2E(u)ua, uc〉(3.4)

= 〈ua,−δ2E(u)uc〉 = 〈ua, δP (u)〉 = Pa(u(·; c, a)).
Since

δ2E(u)u = Λαu− 2u2 + cu = −u2 − a

by (2.8), moreover, u2 ∈ range(δ2E(u)). �

Proof of Proposition 3.1. Consider the orthogonal decomposition

L2
per([0, T ]) = L2

per,odd([0, T ])⊕ L2
per,even([0, T ]).

Since u may be chosen to be even by Proposition 2.2, it follows that L2
per,odd([0, T ])

and L2
per,even([0, T ]) are invariant subspaces of δ2E(u). Since (L1) of Lemma 3.4

implies that

ker(δ2E(u)|L2

per,odd
([0,T ])) = span{ux},

moreover, it remains to show that ker(δ2E(u)|L2
per,even([0,T ])) = {0}.

Suppose on the contrary that there were a nontrivial function φ ∈ L2
per,even([0, T ])

such that δ2E(u)φ = 0. Since δ2E(u) has at most two negative eigenvalues by (L2)
of Lemma 3.4, it follows from Lemma 3.2 that φ changes its sign at most twice over
the half interval [0, T/2]. Consequently, unless φ is positive (or negative) through-
out the periodic interval [0, T ], either there exists T1 ∈ (0, T/2) such that φ is
positive (or negative) for 0 < |x| < T1 and negative (or positive, respectively) for
x ∈ (−T/2, T1)∪ (T1, T/2), or there exist T1 < T2 in [0, T/2) such that φ is positive
for |x| < T1 and T2 < |x| < T/2 (with the understanding that the first interval is
empty in case T1 = 0) and φ is negative for x ∈ (−T2,−T1) ∪ (T1, T2).



STABILITY OF PERIODIC WAVES 11

Since φ lies in the kernel of δ2E(u), on the other hand, it must be orthogonal to
range(δ2E(u)) and, in turn, to the subspace span{1, u, u2} by (L3) of Lemma 3.4.
In particular, 〈φ, 1〉 = 0, whence φ cannot be positive (or negative) throughout
[0, T ]. In case φ positive for 0 < |x| < T1 and negative for T1 < |x| < T/2, for
instance, since u is symmetrically decreasing away from the origin over the interval
(−T/2, T/2), we find that

u(x)− u(T1) > 0 for |x| < T1 and u(x)− u(T1) < 0 for T1 < |x| < T/2.

Consequently 〈φ, u − u(T1)〉 > 0, and φ cannot be orthogonal to {1, u}. In case φ
changes signs at x = ±T1 and x = ±T2, where T1 < T2, correspondingly, we find
that (u− u(T1))(u − u(T2)) is positive in (−T/2,−T2) ∪ (−T1, T1) ∪ (T2, T/2) and
negative in (−T2,−T1)∪(T1, T2), deducing that φ cannot be orthogonal to {1, u, u2}.
A contradiction therefore proves that ker(δ2E(u)|L2

per,even([0,T ])) = {0}. �

Remark 3.5 (Power-law nonlinearities). One may rerun the arguments in the proof
of Proposition 3.1 for (2.20) in the range 0 < α 6 2 and 0 < p < pmax, where pmax

is in (2.21), and establish the nondegenracy of the linearization associated with the
traveling wave equation at a periodic, local constrained minimizer, provided that

up+1 − up+1(T1)− up+1(T2)

u(T1)− u(T2)
u+

u(T1)u(T2)(u
p(T1)− up(T2))

u(T1)− u(T2)

for T1 < T2 ∈ [0, T/2) changes its sign at x = ±T1 and x = ±T2 but nowhere else
over the interval (−T/2, T/2). Indeed 1, u, up+1 ∈ range(δ2E(u)) in place of (L3) of
Lemma 3.4, but otherwise the proof is identical to that in the case of the quadratic
nonlinearity.

Unlike in the solitary wave setting, where n−(δ
2E) = 1 at a ground state, δ2E

may have up to two negative eigenvalues at a periodic, local constrained minimizer,
which is characterized by

n−(δ
2E(u; c, a)) =n−

(
Ma(u(· ; c, a)) Pa(u(· ; c, a))
Mc(u(· ; c, a)) Pc(u(· ; c, a))

)

=# of sign changes in 1,Ma(u(· ; c, a)), (MaPc −McPa)(u(· ; c, a)),(3.5)

provided that

(3.6) (MaPc −McPa)(u(· ; c, a)) 6= 0.

A proof based upon “an index formula” may be found in [BH14, Lemma 19].

Notice that (3.6) ensures that the mapping (c, a) 7→ (P,M) is of C1 and locally
invertible. Below we show that it further ensures that the generalized L2

per([0, T ])-
null space of the linearized operator associated with (2.1) supports a Jordan block
structure, which will play a central role in the stability proof in the subsequent
section.

Proposition 3.6 (Jordan block structure). Let 1/3 < α 6 2. If u(· ; c, a) ∈
H

α/2
per ([0, T ]) for some c 6= 0, a ∈ R and for some T > 0 locally minimizes H subject

to that P and M are conserved and if it satisfies (3.6) then zero is an L2
per([0, T ])-

generalized eigenvalue of the linearized operator associated with (2.1),

(3.7) Jδ2E(u(· ; c, a)) = ∂x(Λ
α − 2u+ c),

with algebraic multiplicity three and geometric multiplicity two.
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Proof. The proof follows from the Fredholm alternative and may be found in [BH14,
Lemma 6]; see [BJK11] in the case of generalized KdV equations. Here we merely
hit the main points.

Differentiating (2.2) with respect to x, a, and c, we use (2.6) to find that

Jδ2E(u)ux = Jδ2E(u)ua = 0 and Jδ2E(u)uc = −ux.

Note from Proposition 2.2 that ua, uc are even and ux is odd. Since ker(Jδ2E) is
at most two dimensional by Proposition 3.1, therefore, ker(Jδ2E) = {ux, ua}. By
a duality argument and the Fredholm alternative, we then find that ker((Jδ2E)†) =
{1, u}, where the dagger means adjoint. Thus, if φ ∈ ker((Jδ2E(u))2)/ ker(Jδ2E(u))
then Jδ2E(u)φ = ux by the Fredholm alternative and (3.6), which, in turn, has no
solution other than uc by the Fredholm alternative and (3.6). �

In the solitary wave setting, zero is an L2(R)-eigenvalue of Jδ2E(u) with alge-
braic multiplicity two and geometric multiplicity one, provided that Pc 6= 0 at the
underlying wave. Incidentally a solitary wave corresponds to a = 0 and T = +∞
in (2.8), and hence it depends, up to spatial translations, merely upon the wave
speed. Proposition 3.6 therefore indicates that (3.6) is a natural analogue in the
periodic wave setting of the familiar condition in the solitary wave setting.

In the case of α = 1, namely the Benjamin-Ono equation, (3.6) holds for all
periodic traveling waves; see [BH14, Section 3.4] for the detail. Concluding the
section we shall verify (3.6) in the solitary wave limit.

Lemma 3.7 (Solitary wave limit). Let 1/2 < α 6 2. If u(· ; c, a, T ) locally min-

imizes H in H
α/2
per ([0, T ]) subject to that P and M are conserved for some c 6= 0,

a ∈ R and T > 0 then

Ma(u(· ; c, a, T )) < 0 and (MaPc −McPa)(u(· ; c, a, T )) > 0

for |a| sufficiently small and T sufficiently large.

Proof. The proof may be found in [BH14, Lemma 20]. Here we include the detail
for completeness.

We recall from Remark 2.5 that in the range 1/2 < α 6 2 periodic traveling
waves of (2.1), constructed in Proposition 2.2 as local constrained minimizers, tend
to the solitary wave as a → 0 and T → +∞ satisfying aT → 0, namely in the
solitary wave limit, which minimizes the Hamiltonian subject to the conservation
of the momentum. It follows from (2.7) that (2.8) remains invariant under

u(· ; c, a, T ) 7→ c−1u(· ; 1, c−2a, c−1/αT ).

Accordingly we may take without loss of generality c = 1 and we find that

P (1, a, T ),M(1, a, T ), Pc(1, a, T ),Mc(1, a, T ) = O(1)

for |a| sufficiently small and T > 0 sufficiently large; see [BH14, Lemma 3.10] for
the detail. Differentiating (2.11) with respect to a and evaluating near the solitary
wave limit, we use (3.4) to obtain that

Ma(1, a, T ) = −T + 2Mc(1, a, T ) = −T +O(1) < 0

for |a| sufficiently small and T > 0 sufficiently large. Since an explicit calculation
dictates that Pc(u(·; 1, a, T )) > 0, furthermore,

(MaPc −McPa)(1, a, T ) = (MaPc −M2
c )(1, a, T ) = −Pc(1, a, T )T +O(1) < 0

for |a| sufficiently small and T > 0 sufficiently large. �
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4. Stability of constrained energy minimizers

We turn the attention to the stability of a periodic, local constrained minimizer
for (2.8) with respect to period preserving perturbations.

Recall from Section 2 that the initial value problem associated with (2.1) is well-

posed in X ⊂ H
α/2
per ([0, T ]) for some interval of time, where H,P,M : X → R are

smooth. It suffices to take X = Hβ
per([0, T ]), β > 3/2.

Throughout the section let 1/3 < α 6 2, fixed, and let u0(· , c0, a0) ∈ H
α/2
per ([0, T ])

locally minimize H subject to that P and M are conserved for some c0 6= 0, a0 ∈ R

and for some T > 0. In light of Proposition 2.2, u0 ∈ X and it makes a T -periodic,
traveling wave of (2.1).

Notice that the evolution of (2.1) remains invariant under a one-parameter group
of isometries corresponding to spatial translations. This motivates us to define the
group orbit of u ∈ X as

Ou = {u(· − x0) : x0 ∈ R}.

Roughly speaking, u0(· ; c0, a0) is said orbitally stable if a solution of (2.1) remains
close to Ou0

under the norm of X for all future times whenever the initial datum is
sufficiently close to the group orbit of u0 under the norm of X . We shall elaborate
this below in Theorem 4.1.

The present account of orbital stability is inspired by the Lyapunov method. Let

(4.1) E0(u) = H(u) + c0P (u) + a0M(u).

Proposition 2.2 implies that δE0(u0) = 0, i.e., u0 is a critical point of E0. Moreover,
Proposition 3.1 implies that the kernel of δ2E0(u0) is spanned by u0x. Intuitively,
u0 is expected to be orbitally stable if E0 is “convex” at u0. As a matter of fact,
one may easily verify that if the spectrum of δ2E0(u0), except the simple eigenvalue
at the origin generated by translation invariance, were positive and bounded away
from zero then u0 would indeed be orbitally stable.

However, (L2) of Lemma 3.4 indicates that δ2E0(u0) admits one or two negative
eigenvalues and one zero eigenvalue. In other words, u0 is a degenerate saddle point
of E0 on X . The Lyapunov method therefore may not be directly applicable. In
order to control potentially unstable directions and achieve stability, nevertheless,
observe that the evolution under (2.1) does not take place in the entire spaceX , but
rather on a smooth submanifold of co-dimension two, along which the momentum
and the mass are conserved. Specifically let

Σ0 = {u ∈ X : P (u) = P0, M(u) = M0},

where

(4.2) P0 = P (u0(· ; c0, a0)) and M0 = M(u0(· ; c0, a0)).

Note that Ou0
⊂ Σ0 and a solution of (2.1) with initial datum in Σ0 remains in

Σ0 at all future times. We shall then demonstrate the “convexity” of E0 on Σ0,
provided that the associated linearization admits a Jordan block structure.

Theorem 4.1 (Orbital stability). Let 1/3 < α 6 2. If u0(·; c0, a0) ∈ H
α/2
per ([0, T ])

for some c0 6= 0, a0 ∈ R and for some T > 0 locally minimizes H subject to that P
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and M are conserved and if the matrix

(4.3)

(
Ma(u(· ; c, a)) Pa(u(· ; c, a))
Mc(u(· ; c, a)) Pc(u(· ; c, a))

)

is not singular at u0(· ; c0, a0) then for any ε > 0 sufficiently small there exists a
constant C = C(ε) > 0 such that:

if φ ∈ X and ‖φ‖X 6 ε and if u(·, t) is a solution of (2.1) for some interval of
time with the initial condition u(·, 0) := u0 + φ then u(·, t) may be continued to a
solution for all t > 0 such that

(4.4) sup
t>0

inf
x0∈R

‖u(·, t)− u0(· − x0)‖X 6 C‖φ‖X .

The condition that the matrix (4.3) is not singular at the underlying wave ensures
that the mapping (c, a) 7→ (P,M) is of C1 and locally invertible. In other words,
Σ0 is nondegenerate. Moreover it ensures by Proposition 3.6 that the generalized
L2
per([0, T ])-null space of Jδ2E0(u0(· ; c0, a0)) possesses a Jordan block structure.

At a solitary wave u0(· ; c0) of (2.1), let P (u) =
∫
R

1
2u

2 dx denote the momentum
and note that Σ0 consists of all functions such that P (u) = P (u0(· ; c0)). The
condition that (4.3) is not singular then reduces to that Pc(u(· ; c)) 6= 0 at u0(· ; c0)
which, in the case of f(u) = up+1, holds for all p 6= 4.

To interpret Theorem 4.1, therefore, a periodic, local constrained minimizer for
(2.8) is orbitally stable with respect to period preserving perturbations, provided
that the matrix (4.3) is not singular at the underlying wave so that the linearized
operator associated with (2.1) enjoys a Jordan block structure. In particular, nearby
solutions need not be in Σ0. Note, however, that they are near Σ0.

A solitary wave u0(· ; c0) of (2.1) (not necessarily a ground state), in comparison,
was shown in [GSS87], for instance, to be orbitally stable, provided that

(4.5) ker(δ2E0(u0)) = span{u0x}, n−(δ
2E0(u0)) = 1, Pc(u0(· ; c0)) > 0.

(Note that the assumption in [GSS87] that the symplectic form of a Hamiltonian
system be onto is dispensable in the proof; see the remark directly following [GSS87,
Theorem 2].) Conditions in (4.5) were, in turn, shown in [BSS87] (see also [SS90,
Wei87]) to hold if and only if α > 1/2. In the range α > 1/2, incidentally, a solitary
wave of (2.1) minimizes the energy subject to the conservation of the momentum;
see Remark 2.5. Theorem 4.1 may therefore be regraded as to extend the well-
known result about solitary waves.

In the case of α > 1/2, recall from Remark 2.5 that periodic, local constrained
minimizers for (2.8) are expected to tend to the solitary wave as the period increases
to infinity, which are orbitally stable near the solitary wave limit by Theorem 4.1 and
Lemma 3.7, and the limiting solitary wave is orbitally stable, as well; see [BSS87],
for instance. In the case of 1/3 < α < 1/2, on the other hand, Theorem 4.1
indicates that orbitally stable, local constrained minimizers for (2.8) may exist in
the periodic wave setting, but they are unlikely achieve a limiting wave form with
finite energy as the period increases to infinity.

An obvious approach toward Theorem 4.1 is to rerun the arguments in the proof
in [GSS87] and derive stability criteria, analogous to (4.5); see [Joh09], for instance,
where the last condition in (4.5) was suitably modified in the case of generalized
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KdV equations. However, it is in general difficult to count the number of negative
eigenvalues in the periodic wave setting. We instead exploit variational properties
of the equation — the underlying wave arises as a local constrained minimizer and
the associated linearization is nondegenerate. Our proof of Theorem 4.1 does not
require information about n−(δ

2E0), apart from the upper bound in Lemma 3.4.

As a key intermediate step, below we establish the coercivity of E0 on Σ0 in a
neighborhood of the group orbit of u0, provided that (4.3) is not singular. Let

(4.6) Σ′
0 = {δP (u0), δM(u0)}⊥

be the tangent space in X to the sub-manifold Σ0 at u0.

Lemma 4.2. Under the hypothesis of Theorem 4.1,

inf{
〈
δ2E0(u0)v, v

〉
: ‖v‖X = 1, v ∈ Σ′

0, v ⊥ u0x} > 0.

Proof. Let Π : L2
per([0, T ]) → Σ′

0 be the self-adjoint projection onto Σ′
0, and consider

Πδ2E0(u0) : Σ
′
0 ⊂ X → Σ′

0.

Since u0 locally minimizes H , and hence E0, subject to that P = P0 and M = M0,
necessarily,

(Πδ2E0(u0))|Σ′
0
> 0.

Accordingly

inf{
〈
δ2E0(u0)v, v

〉
: ‖v‖X = 1, v ∈ Σ′

0, v ⊥ ker(Πδ2E0(u0))} > 0.

The assertion then follows by Proposition 3.1 if

(4.7) ker(Πδ2E0(u0)) = ker(δ2E0(u0)) = span{u0x}.
Note that u0x ∈ Σ′

0 and Πδ2E0(u0)u0x = 0. The kernel of Πδ2E0(u0) is
thus at least one dimensional, containing u0x. Since 1, u0 ∈ ker(δ2E0(u0))

⊥, and
δ2E0(u0)

−1(1) = −∂au0, δ
2E0(u0)

−1(u0) = −∂cu0, moreover, an “index formula”
(see [KP12, Theorem 2.1], for instance) implies that

dim(ker(Πδ2E0(u0))) = dim(ker(δ2E0(u0))) +

{
1 if MaPc −McPa = 0,

0 if MaPc −McPa 6= 0.

This completes the proof, since dim(ker(Πδ2E0(u0))) = 1 by the hypothesis of
Theorem 4.1. �

Remark. To better understand (4.7), note from (3.3) that

Πδ2E0(u0)(Mc∂au0 −Ma∂cu0) = Π(−Mc +Mau0) = 0

andMc∂au0−Ma∂cu0 ∈ Σ′
0 if and only if (4.3) is singular. In other words,Mc∂au0−

Ma∂cu0 belongs to the T -periodic kernel of Πδ2E0(u0) (and linearly independent
of u0x) only if (4.3) is singular.

To proceed, we introduce the semi-distance ρ : X → R, defined by

ρ(u, v) = inf
x0∈R

‖u− v(· − x0)‖X

and rewrite (4.4) as supt>0 ρ(u(·, t), u0) 6 C‖u(·, 0)−u0‖X . Below we establish the
coercivity of E0 on Σ0, provided that (4.3) is not singular.
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Proposition 4.3 (Coercivity). Under the hypothesis of Theorem 4.1 there exist
ε > 0 and C = C(ε) > 0 such that if u ∈ Σ0 with ρ(u, u0) < ε then

(4.8) E0(u)− E0(u0) > Cρ(u, u0)
2.

Proof. The proof closely resembles that of [GSS87, Theorem 3.4] or [Joh09, Propo-
sition 4.3]. Here we include the detail for completeness.

Throughout the proof and the following, C means a positive generic constant;
C which appears in different places in the text needs not be the same.

Thanks to the implicit function theorem (see [BSS87, Lemma 4.1], for instance),
for ε > 0 sufficiently small and for an ε-neighborhood Uε := {u ∈ X : ρ(u, u0) < ε}
of Ou0

we find a unique C1 map ω : Uε → R such that

ω(u0) = 0 and 〈u(·+ ω(u)), u0x〉 = 0

for all u ∈ Uε. Since E0 is invariant under spatial translations, it suffices to show
(4.8) along u(· + ω(u)). Since u0 locally minimizes H , and hence E0, constrained
to that P = P0 and M = M0, necessarily,

(4.9) δ2E0(u0)|Σ′
0
> 0,

where Σ′
0 is defined in (4.6). We fix u ∈ Uε ∩ Σ0 and write

(4.10) u(·+ ω(u)) = u0 + C1δP (u0) +
(
C2 − C1

〈δM(u0), δP (u0)〉
〈δM(u0), δM(u0)〉

)
δM(u0) + y,

where C1, C2 ∈ R and y ∈ Σ′
0 ∩ {u0x}⊥. Note that C1 = C2 = y = 0 at u = u0.

Let φ = u(·+ω(u))−u0. We may assume that ‖φ‖X < ε possibly after replacing
u0 by u0(· − x0) for some x0 ∈ R. Since P and M remain invariant under spatial
translations, Taylor’s theorem manifests that

(4.11)
P (u) = P (u(·+ ω(u))) = P (u0) + 〈δP (u0), φ〉+O(‖φ‖2X),

M(u) = M(u(·+ ω(u))) = M(u0) + 〈δM(u0), φ〉 +O(‖φ‖2X).

Since 〈δM(u0), φ〉 = C2〈δM(u0), δM(u0)〉 = C2T by (4.10) and (2.6), we infer from
the latter equation in (4.11) that C2 = O(‖φ‖2X). Similarly, since

〈δP (u0), φ〉 =C1

(
〈δP (u0), δP (u0)〉 −

〈δM(u0), δP (u0)〉2
〈δM(u0), δM(u0)〉

)
+ C2〈δP (u0), δM(u0)〉

=C1

(
‖u0‖2L2

per(0,T ]) −
M2

0

T

)
− C2M0,

the Cauchy-Schwarz inequality, the former equation in (4.11) and (2.6) lead to that
C1 = O(‖φ‖2X).

Since E0 remains invariant under spatial translations, furthermore, Taylor’s the-
orem manifests that

E0(u) = E0(u(·+ ω(u))) = E0(u0) +
1

2
〈δ2E0(u0)φ, φ〉+ o(‖φ‖2X).

We then use (4.10) and C1, C2 = O(‖φ‖2X) to find that

E0(u)− E0(u0) =
1

2
〈δ2E0(u0)φ, φ〉 + o(‖φ‖2X) =

1

2
〈δ2E0(u0)y, y〉+O(‖φ‖2X).

Since y ∈ Σ′
0 ∩ {u0x}⊥, it follows by Lemma 4.2 that

〈δ2E0(u0)y, y〉 > C‖y‖2X .
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Finally a straightforward calculation reveals that

‖y‖X >

∣∣∣‖φ‖X −
∥∥∥C1δP (u0) +

(
C2 − C1

〈δM(u0), δP (u0)〉
〈δM(u0), δM(u0)〉

)
δM(u0)

∥∥∥
X

∣∣∣

> ‖φ‖X − C‖φ‖2X ,

whence

E0(u)− E0(u0) > C‖φ‖2X = C‖u(·+ ω(u))− u0‖2X > Cρ(u, u0)
2.

�

Proof of Theorem 4.1. The proof resembles that of [Joh09, Lemma 4.1] in the case
of generalized KdV equations.

Let ε0 > 0 be such that Proposition 4.3 holds and let φ ∈ X satisfy ρ(u0+φ, u0) 6
ε for some 0 < ε < ε0 sufficiently small. By replacing φ by φ(·−x0) for some x0 ∈ R,
if necessary, we may assume without loss of generality that ‖φ‖X 6 ε. Since u0 is a
critical point of E0, then, Taylor’s theorem implies that E0(u0+φ)−E0(u0) 6 Cε2.
Furthermore, notice that if u0 + φ ∈ Σ0 then the unique solution u(·, t) of (2.1)
with the initial condition u(·, 0) = u0 + φ must lie in Σ0 as long as the solution
exists. Since E0(u(·, t)) = E0(u(·, 0)) = E0(u0+φ) independently of t, on the other
hand, Proposition 4.3 implies that ρ(u(·, t), u0)

2 6 Cε2 for all t > 0.

In case u0 + φ is not required to be in Σ0, we utilize the nondegeneracy of the
constraint set, i.e., the mapping

(c, a) 7→ (P (u(·; c, a)),M(u(·; c, a)))
is a period-preserving diffeomorphism from a neighborhood of (c0, a0) onto a neigh-
borhood of (P0,M0). We may therefore find c, a ∈ R such that |c|+ |a| = O(ε) and
uε(· ; c0 + c, a0 + a) is a T -periodic traveling wave of (2.1) satisfying that

P (uε(·; c0 + c, a0 + a)) = P (u0 + φ) and M(uε(·; c0 + c, a0 + a)) = M(u0 + φ).

Let
Eε(u) = E0(u) + cP (u) + aM(u).

We may furthermore assume that uε minimizes Eε subject to that P and M are
conserved. We then rerun the argument in the proof of Proposition 4.3 and show
that

Eε(u)− Eε(uε) > Cρ(u, uε)
2

so long as ρ(u, uε) is sufficiently small. Since uε is a critical point of Eε, moreover,
Eε(u(·, t))−Eε(uε) = Eε(u0 +φ)−Eε(uε) 6 Cε2 for all t > 0. Finally the triangle
inequality implies that

ρ(u(·, t), u0)
2 6C

(
ρ(u(·, t), uε)

2 + ρ(uε, u0)
2
)

6C(Eε(u(·, t))− Eε(uε)) + ‖uε − u0‖X 6 Cε2

for all t > 0. In other words, u0(· ; c0, a0) is orbitally stable to small perturbations
that “slightly” change P and M . �

One may rerun the arguments in the proof of Theorem 4.1 mutatis mutandis to
establish the orbital stability of a periodic, local constrained minimizer for (2.20)
in the range 0 < α 6 2 and 0 < p < pmax, where pmax is in (2.21), provided that
the matrix (4.3) is not singular at the underlying wave.
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5. Adaptation to equations of regularized long wave type

The results in Section 2 through Section 4 are readily adapted to other, nonlinear
dispersive equations. We shall illustrate this by discussing equations of regularized
long wave type

(5.1) ut − ux + Λαut + (u2)x = 0,

where 0 < α 6 2.
In the case of α = 2, notably, (5.1) recovers the Benjamin-Bona-Mahony (BBM)

equation, which was advocated in [BBM72] as an alternative to the KdV equation.
In fact solutions of the initial value problem associated with the BBM equation were
argued to enjoy a better smoothness property than those with the KdV equation,
whereby it was named the regularized long wave equation. For other values of α,
similarly, (5.1) “regularizes” its KdV counterpart in (2.1). In a small amplitudes
and long wavelengths regime, where ux + ut = o(1), furthermore, (5.1) is formally
equivalent to (2.1).

The present treatment extends mutatis mutandis to general power-law nonlinear-
ities; see Remark 2.4. We choose to work with the quadratic nonlinearity, however,
to simplify the exposition.

In the range α > 0, one may work out the local in time well-posedness for (5.1)
in Hβ

per([0, T ]), β > max(0, (3 − α)/2), via the energy method, corroborating that
(5.1) regularizes (2.1); see Remark 2.1. The proof is rudimentary. Hence we omit
the detail. With the help of the smoothing effects of (1− ∂2

x)
−1, the global in time

well-posedness for (5.1) may be established in H0+(R) in the case of α = 2, namely
the BBM equation; see [BT09], for instance. In the periodic functions setting,
however, the existence matter for (5.1) seems not adequately understood in spaces
of low regularities.

Throughout the section we shall work in a suitable subspace (abusing notation)

X ofH
α/2
per ([0, T ]), where the initial value problem associated with (5.1) is well-posed

for some interval of time; T > 0, the period, is fixed.

Notice that (5.1) possesses three conserved quantities (abusing notation)

H(u) =

∫ T

0

(1
2
u2 − 1

3
u3

)
dx(5.2)

and

P (u) =

∫ T

0

1

2
(u2 + |Λα/2u|2) dx,(5.3)

M(u) =

∫ T

0

u dx,(5.4)

which correspond to the Hamiltonian and the momentum, the mass, respectively.
Throughout the section we shall use H and P,M for those in (5.2) and (5.3), (5.4).
Notice that H,P,M : X → R are smooth. Notice moreover that (5.1) may be
written in the Hamiltonian form

ut = JδH(u),

where J = (1 + Λα)−1∂x.
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We seek a periodic traveling wave u(x, t) = u(x− ct− x0) of (5.1), where c ∈ R,
x0 ∈ R and u is T -periodic, satisfying by quadrature that

(5.5) c(1 + Λα)u+ u− u2 + a = 0

for some a ∈ R, or equivalently (abusing notation)

(5.6) δE(u; c, a) := δ(H(u) + cP (u) + aM(u)) = 0.

We’ll write a periodic traveling wave of (5.1) as u = u(· ; c, a) with the understanding
that T > 0 is arbitrary but fixed and that we may mod out x0 ∈ R.

Below we record the existence, symmetry, and regularity properties for a family
of periodic traveling waves of (5.1), which arise as local energy minimizers subject
to conservations of the momentum and the mass.

Lemma 5.1 (Existence, symmetry and regularity). Let 1/3 < α 6 2. A local
minimizer u for H, defined in (5.2), subject to that P and M , defined in (5.3) and

(5.4), respectively, are conserved exists in H
α/2
per ([0, T ]) for each 0 < T < ∞ and

it satisfies (5.5) for some c 6= 0 and a ∈ R. It depends upon c and a in the C1

manner. Moreover u = u(· ; c, a) may be chosen to be even and strictly decreasing
over the interval [0, T/2], and u ∈ H∞

per([0, T ]).

Proof. If u(x; c, a) is T -periodic and satisfies (5.5) for some c 6= 0 and a ∈ R then,
by a scaling argument,

(c+ 1)u
((c+ 1

c

)1/α

x; 1, c2a
)

is
(

c+1
c

)1/α

T -periodic and satisfies

(1 + Λα)u+ u− u2 + c2a = 0.

Therefore it suffices to take c = 1 in (5.5), which brings us to (2.8), where c = 2.
The proof is then identical to that of Proposition 2.2. We omit the detail. �

We promptly address the nondegeneracy of the linearization associated with (5.6)
at a periodic, local constrained minimizer for (5.5).

Lemma 5.2 (Nondegeneracy). Let 1/3 < α 6 2. If u(· ; c, a) ∈ H
α/2
per ([0, T ]) for

some c 6= 0, a ∈ R and for some T > 0 locally minimizes H, defined in (5.2),
subject to that P and M , defined in (5.3) and (5.4), respectively, are conserved
then the associated linearized operator

(5.7) δ2E(u; c, a) = c (1 + Λα) + 1− 2u

acting on L2
per([0, T ]) satisfies that

ker(δ2E(u; c, a)) = span{ux}.
Proof. Notice that Lemma 3.2 holds for δ2E(u) in (5.7); indeed one may modify
the arguments in Appendix A and prove it. Notice moreover that (L1) and (L2) of
Lemma 3.4 hold for (5.7); see Section 3 for the detail.

We claim that (L3) of Lemma 3.4 holds for δ2E(u) in (5.7). Differentiating (5.6)
with respect to c and a, respectively, we obtain that

δ2E(u)uc = −δP (u) and δ2E(u)ua = −δM(u).
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Since

δP (u) = (1 + Λα)u and δM(u) = 1

moreover 1, (1+Λα)u ∈ range(δ2E(u)). Unfortunately (1+Λα)umay not be strictly
monotone over [0, T/2]. Appealing to (5.5), on the other hand, we find that

c(1 + Λα)u = u2 − u− a.

Therefore u2 − u ∈ range(δ2E). Since

δ2E(u)u = c(1 + Λα)u + u− 2u2 = −u2 − a,

furthermore, u, u2 ∈ range(δ2E). This proves the claim. The proof is then identical
to that of Proposition 3.1. We omit the detail. �

Repeating the arguments in the proofs of Theorem 4.1 and Proposition 4.3, we
ultimately establish the orbital stability of a periodic, local constrained minimizer
for (5.5), provided that the associated linearized operator supports a Jordan block
structure. We summarize the conclusion.

Theorem 5.3 (Orbital stability). Let 1/3 < α 6 2 and u0(· ; c0, a0) ∈ H
α/2
per ([0, T ])

for some c0 6= 0, a0 ∈ R and for some T > 0 locally minimizes H, defined in (5.2),
subject to that P and M , defined in (5.3) and (5.4), respectively, are conserved. If
the matrix (

Ma(u(· ; c, a)) Pa(u(· ; c, a))
Mc(u(· ; c, a)) Pc(u(· ; c, a))

)

is not singular at u0(· ; c0, a0) then for any ε > 0 sufficiently small there exists a
constant C = C(ε) > 0 such that:

if φ ∈ X and ‖φ‖X 6 ε and if u(·, t) is a solution of (5.1) for some time interval
with the initial condition u(·, 0) = u0+φ then u(·, t) may be continued to a solution
for all t > 0 such that

sup
t>0

inf
x0∈R

‖u(·, t)− u0(· − x0)‖X 6 C‖φ‖X .

Related stability results in the case of α = 1, 2 are found, respectively, in [ASB11]
and [Joh10], among others.

6. Remark on linear instability

We shall complement the nonlinear stability result in Section 4 by discussing the
linear instability of periodic traveling waves for the KdV type equation

(6.1) ut −Mux + f(u)x = 0.

Here M is a Fourier multiplier defined as M̂u(ξ) = m(ξ)û(ξ), satisfying that

(6.2) C1|ξ|α 6 m(ξ) 6 C2|ξ|α, |ξ| ≫ 1

for some α > 1 and for some C1, C2 > 0, while f : R → R is C1, satisfying that

(6.3) f(0) = f ′(0) = 0 and lim
u→∞

f(u)

u
= ∞.

Clearly (2.1) fits into the framework. We assume that (6.1) possesses two conserved
quantities

P (u) =

∫ T

0

1

2
u2 dx
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and

M(u) =

∫ T

0

u dx,

interpreted as the momentum and the mass, respectively.

We assume that (6.1) supports a smooth, four-parameter family of periodic trav-
eling waves, denoted u = u(· − x0; c, a, T ), where c and a form an open set in R2,
x0 ∈ R is arbitrary (and hence we may mod it out), T0 < T < ∞ for some T0 > 0,
and u is T -periodic, satisfying by quadrature that

(6.4) Mu− f(u) + cu+ a = 0.

For a broad range of dispersion symbols and nonlinearities, the existence of periodic
traveling waves of (6.1) follows from variational arguments, e.g., the mountain pass
theorem applied to a suitable functional whose critical point satisfies (6.4).

Linearizing (6.1) about a (nontrivial) periodic traveling wave u = u(·; c, a, T ) in
the frame of reference moving at the speed c, we arrive at that

(6.5) vt = ∂x(M− f ′(u) + c)v =: ∂xL(u; c, a)v.
Seeking solutions of the form v(x, t) = eµtv(x), moreover, we arrive at the spectral
problem

(6.6) µv = ∂xL(u; c, a)v.
We say that u is linearly unstable if the L2

per([0, T ])-spectrum of L(u) intersects the
open, right half plane of C.

We shall derive a criterion governing linear instability of periodic traveling waves
of (6.1), which do not necessarily arise as local constrained minimizers. In light of
Theorem 4.1, a local constrained minimizer for (6.4) is expected nonlinearly stable
under the flow induced by (6.1) under certain assumptions.

Theorem 6.1 (Linear instability). Under the assumptions (6.2) and (6.3), let
u = u(· ; c, a, T ) be a nontrivial, periodic traveling wave of (6.1) for some c 6= 0,
a ∈ R and for some T > T0 > 0. Let Π : L2

per([0, T ]) → L2
per([0, T ]) denote

the orthogonal projection onto the subspace of L2
per([0, T ]) of mean zero functions,

defined by

Πu = u− 1

T

∫ T

0

u(x) dx.

Assume that ΠL(u; c, a) acting on ΠL2
per([0, T ]) satisfies that

(6.7) ker(ΠL(u; c, a)) = span{ux}.
Then (6.5) admits a nontrivial solution of the form eµtv(x), v ∈ Hα

per([0, T ]) and
µ > 0, if either

(1) n−(ΠL(u; c, a)) is odd and Pc(u(·; c, a, T )) < 0, or
(2) n−(ΠL(u; c, a)) is even and Pc(u(·; c, a, T )) > 0.

Recall that n−(ΠL(u; c, a)) is the number of negative eigenvalues of ΠL(u; c, a)
acting on ΠL2

per([0, T ]).
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A complete proof is found in [Lin08], for instance, albeit in the solitary wave
setting; see also [APBSO13] for a Boussinesq equation. The arguments in [Lin08,
Section 4] readily extend to the periodic wave setting. Here we merely hit the main
points.

Notice that (6.6) has a nontrivial solution in Hα
per([0, T ]) for some µ > 0, namely

a purely growing mode, if and only if

Aµ := c− c∂x
µ− c∂x

(M− f ′(u))

has a nontrivial kernel in Hα
per([0, T ]). Since

c∂x
µ− c∂x

→ 0 as µ → +∞

while

c∂x
µ− c∂x

→ Π as µ → 0+

strongly in L2
per([0, T ]) (see [Lin08] for the detail), the spectra of Aµ lie in the right

half plane of C for µ > 0 sufficiently large while Aµ converges to ΠL(u)Π strongly
in L2

per([0, T ]) as µ → 0+. We then examine eigenvalues of Aµ near the origin in the
left half plane of C from those of ΠL(u) via the moving kernel method. Specifically,
(6.7) ensures that for µ > 0 sufficiently small a unique eigenvalue eµ of Aµ exists in
the vicinity of the origin that depends upon µ analytically. A lengthy but explicit
calculation moreover reveals that

lim
µ→0+

eµ
µ

= 0 and lim
µ→0+

eµ
µ2

= −Pc(u(·; c, a, T )).

Theorem 6.1 therefore follows since if Aµ admits an odd number of eigenvalues in
the left half plane of C, signaling that the spectrum of Aµ crosses the origin at some
µ > 0, then a purely growing mode is found.

Concluding the section, we shall contrast Theorem 6.1 with Theorem 4.1 as it
applies to (2.1) near the solitary wave limit. It may not be immediately obvious
how they complement each other since Theorem 4.1 is variational in nature whereas
Theorem 6.1 uses spectral information of the associated linearized operator.

Below we relate spectral properties of ΠL(u) to those of L(u).
Lemma 6.2 (ΠL vs. L). Let 1/3 < α 6 2. If L(u) := L(u; c, a) is the linearized
operator associated with (2.1), which agrees with (3.1), then

n−(ΠL(u)) = n−(L(u)) −
{
1 if Ma > 0,

0 if Ma < 0.

Moreover

dim(ker(ΠL(u))) = dim(ker(L(u))) +
{
1 if Ma = 0,

0 if Ma 6= 0.

The proof follows from the “index formula” in [KP12, Theorem 2.1], for instance.
We merely note that 1 ∈ ker(L(u))⊥ and (L(u))−11 = −ua.
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In the case of 1/2 < α 6 2, we recall from Lemma 3.7 that Ma(c, a, T ) < 0 and
(MaPc − McPa)(c, a, T ) > 0 for |a| sufficiently small and T > 0 sufficiently large.
Lemma 6.2, Proposition 3.1 and (3.5) therefore imply that

n−(ΠL(u)) = n−(L(u)) = 1

near the solitary wave limit.
In the case of 1/2 < α 6 2, furthermore, Lemma 3.7 and (3.4) dictates that

Pc(c, a, T ) > 0 for |a| sufficiently small and T > 0 sufficiently large. Theorem 6.1 is
therefore inconclusive of local constrained minimizers for (2.8), in the L2-subcritical
case, near the solitary wave limit. This is consistent with the result in Theorem 4.1.
Indeed one may appeal to [GSS87], for instance, to argue for that local constrained
minimizers for (2.8) with large periods and small a’s are, in the range α > 1/2,
orbitally stable under the flow induced by (2.1).

Appendix A. Proof of Lemma 3.2

Note that Λα, 0 < α < 2, may be viewed as the Dirichlet-to-Neumann operator
for a suitable local problem in the periodic half strip [0, T ] × [0,∞). Specifically
(see [RS12, Theorem 1.1], for instance)

C(α)Λαu := lim
y→0+

y1−αwy(·, y),

where w = Eu solves the elliptic, boundary value problem

∆w +
1− α

y
wy = 0 in [0, T ]per × (0,∞), w = u on [0, T ]per × {0}

and C(α) is an explicit constant. Accordingly we may derive a variational charac-
terization of eigenvalues and eigenfunctions of (3.1) in terms of the Dirichlet type
functional

∫∫

[0,T ]per×(0,∞)

|∇w(x, y)|2y1−α dxdy +

∫ T

0

(−2u(x) + c)|w(x, 0)|2 dx

in a suitable function class.
Note from Proposition 2.2 that an eigenfunction φ of (3.1) is in H

α/2
per ([0, T ]) ∩

C0
per([0, T ]); see also [FL13] in the solitary wave setting. Similarly, the extension

Eφ belongs to C0([0, T ]per × [0,∞)).

Let N = {(x, y) ∈ [0, T ]per × [0,∞) : Eφ(x, y) = 0}, which is closed in [0, T ]per ×
[0,∞). We define the nodal domains of Eφ to be the connected components of the
open set [0, T ]per × [0,∞) \N in [0, T ]per × [0,∞).

Lemma A.1 (Nodal domain bound). Let 0 < α < 2. Suppose that (3.1) possesses
at least n eigenvalues

λ1 6 λ2 6 . . . 6 λn.

If φn ∈ H
α/2
per ([0, T ])∩C0

per([0, T ]) is a (real) eigenfunction of (3.1) associated with
eigenvalue λn then its extension Eφn has at most n nodal domains in [0, T ]per ×
[0,∞).

The proof follows from the nodal domain bound á la Courant and may be found
in [FL13, Theorem 3.9].
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Proof of Lemma 3.2. It follows from the Perron-Frobenius argument that eigen-
value λ1 is simple and a corresponding eigenfunction may be chosen to be strictly
positive (or negative) over [0, T ). Moreover it follows from the arguments of the
proof of [FL13, Theorem 3.1] that an eigenfunction φ2 associated with eigenvalue
λ2 changes its sign at most twice over [0, T ). This proves the claim for j = 1, 2.
Incidentally φ2 changes its sign at least once and the extension Eφ2 has at least
two nodal domains in [0, T )× [0,∞).

Let φ3 denote an eigenfunction associated with eigenvalue λ3. Suppose that φ3

changes its sign at least five times on [0, T ). We then find six points

0 < x1 < ξ1 < x2 < ξ2 < x3 < ξ3 < T

such that, up to multiplication by −1,

φ3(xk) > 0 and φ3(ξk) < 0, k = 1, 2, 3.

By continuity, moreover,

Eφ3(xk, ε) > 0 and Eφ3(ξk, ε) < 0, k = 1, 2, 3,

and 0 6 ε 6 ε0 for some ε0. Clearly Eφ3 has at least two nodal domains in
[0, T )× [0,∞). The proof of [FL13, Theorem 3.1], furthermore, dictates that Eφ3

have at least three nodal domains in [0, T )× [0,∞). For, in the case of exactly two
nodal domains, φ3 cannot change its sign more than twice. We therefore conclude
from Lemma A.1 that Eφ3 has exactly three nodal domains in [0, T )× [0,∞).

Since nodal domains are open and connected, and hence pathwise connected, in
[0, T )× [0,∞), we may find a continuous curve γ ∈ C0([0, 1]; [0, T ]× [0,∞)) such
that

γ(0) = xk, γ(1) = xℓ, 1 6 k < ℓ 6 3,

and

Eφ3(γ(t)) > 0 for all t ∈ [0, 1].

In particular, γ(t) belongs to the same nodal domain for all t ∈ (0, 1), denoted Ω1.
Indeed, if (xk, ε)’s, k = 1, 2, 3 and 0 < ε < ε0, belong to separate nodal domains
then Eφ3 has at least four nodal domains, since (ξk, ε)’s belong to different nodal
domains.

Suppose k = 1 and ℓ = 2. The Jordan curve theorem implies that there cannot be
a continuous curve in [0, T )× [0,∞) which connects ξ1 to either ξ2 or ξ3. Therefore
(ξ1, ε), 0 < ε < ε0, belongs to a second nodal domain, denoted Ω2, which is disjoint
from the nodal domains containing (ξ2, ε) and (ξ3, ε). Since Eφ3 has exactly three
nodal domains, (x3, ε), 0 < ε < ε0, must belong to the nodal domain Ω1. However,
this implies by the Jordan curve theorem that (ξ2, ε) and (ξ3, ε), 0 < ε < ε0, must
lie in separate nodal domains. A contradiction proves that x1 and x2 cannot belong
to the boundary of the same nodal domain.

To proceed, suppose k = 1 and ℓ = 3. The Jordan curve theorem similarly
implies that there cannot be a continuous curve in [0, T )× [0,∞) which connects ξ3
to either ξ1 or ξ2. Therefore, (ξ3, ε), 0 < ε < ε0, belongs to a second nodal domain,
which is disjoint from the nodal domains containing (ξ1, ε) and (ξ2, ε). Since Eφ3

has exactly three nodal domains, (x2, ε), 0 < ε < ε0, must belong to the nodal
domain Ω1, which is impossible by the same line of the argument as above.
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Lastly, suppose k = 1 and ℓ = 2. The Jordan curve theorem implies that there
cannot be a continuous curve in [0, T )× [0,∞) which connects ξ2 to either ξ1 or ξ3.
Therefore, (ξ2, ε), 0 < ε < ε0, belongs to a second nodal domain, which is disjoint
from the nodal domains containing (ξ1, ε) and (ξ3, ε). This is impossible by the
same line of the argument as above.

A contradiction therefore completes the proof. �
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