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Abstract. When finding the nonzero eigenvalues for Hamiltonian eigenvalue problems it is especially
important to locate not only the unstable eigenvalues (i.e., those with positive real part), but also those
which are purely imaginary but have negative Krein signature. These latter eigenvalues have the property
that they can become unstable upon collision with other purely imaginary eigenvalues, i.e., they are a
necessary building block in the mechanism leading to the so-called Hamiltonian-Hopf bifurcation. In this
paper we review a general theory for constructing a meromorphic matrix-valued function, the so-called
Krein matrix, which has the property of not only locating the unstable eigenvalues, but also those with
negative Krein signature. These eigenvalues are realized as zeros of the determinant. The resulting finite
dimensional problem obtained by setting the determinant of the Krein matrix to zero presents a valuable
simplification. In this paper the usefulness of the technique is illustrated through prototypical examples
of spectral analysis of states that have arisen in recent experimental and theoretical studies of atomic Bose-
Einstein condensates. In particular, we consider one-dimensional settings (the cigar trap) possessing real-
valued multi-dark-soliton solutions, and two-dimensional settings (the pancake trap) admitting complex
multi-vortex stationary waveforms.
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1. Introduction

Hamiltonian eigenvalue problems have a time-honored history, as they arise in numerous applications
stemming from fluid mechanics, celestial mechanics, optical and atomic physics among many other disci-
plines; see for some recent examples the books [20, 29, 35]. Especially in higher dimensional settings these
problems can rapidly become fairly computationally intractable, at least as concerns providing the full
diagonalization of the relevant matrix (e.g., when it stems from the linearization around two-dimensional
vortex structures or three-dimensional vortex-rings [23]). It is therefore highly desirable to be able to re-
duce the dimensionality of the calculation by providing a technique that can capture the main features
of the linearization spectrum through suitable reductions to a finite dimensional eigenvalue problem. It
is the aim of the present work to provide a general overview, as well as a systematic set of case examples
of such a method. The approach that will be developed will be based on the so-called Krein matrix [13].
The Krein matrix is a meromorphic matrix-valued function constructed via a Lyapunov-Schmidt reduc-
tion, and consequently recasts the infinite-dimensional eigenvalues problem as a finite-dimensional one.
The construction is such that the eigenvalues are realized as points for which the Krein matrix is singular.
The computation and visualization of the determinant of this matrix can serve as a tool to identify the
eigenvalues of the original problem.

When determining the spectrum for the Hamiltonian eigenvalue problem, there are two spectral sets to
consider: those with positive real part, and those with negative Krein index (signature). The latter eigen-
values are purely imaginary; however, upon collision with eigenvalues of positive Krein signature it will
generically be the case that a Hamiltonian-Hopf bifurcation will occur, which leads to an oscillatory insta-
bility. While the eigenvalues with positive real part are easy to visually identify, an additional calculation
is necessary in order to identify the signature of a purely imaginary eigenvalue. As we will see later in this
paper, the Krein matrix is constructed in such a manner that the eigenvalues with negative signature can be
identified graphically. Consequently, all of the (potentially) unstable eigenvalues can be identified visually.

A related question is: how many (potentially) unstable eigenvalues are there to locate? For a given
problem it may be theoretically possible to establish an upper bound on the real part of all eigenvalues;
however, in many problems of interest there is no upper bound on the imaginary part of the eigenvalue.
The Hamiltonian-Krein index, which will be discussed in detail later in this paper, counts the number of
eigenvalues with positive real part, as well as the number of purely imaginary eigenvalues with negative
Krein signature. In the problems presented in this paper this index will be finite, and it will be related to
the number of negative directions of the constrained second variation of the energy (the underlying wave is
realized as a critical point of the constrained energy). Thus, while no bound is present on the imaginary part
of all of the eigenvalues, since there are only a finite number of (potentially) unstable eigenvalues, there
will be an upper bound for this set. A theoretical determination of this bound is probably not possible;
however, it can be determined numerically through the Krein matrix.

The computation of the Krein matrix in this paper will be numerical for each case study. Unfortunately,
at this point in time we do not know of any examples for which the Krein matrix can be explicitly computed.
Our hope is that for special problems, e.g., the nonlinear Schrödinger equation with the 1-soliton potential,
such a calculation may be possible. This will be the topic of future research. We note that there is reason to
be optimistic that this will be a fruitful direction for research, in that it is possible in some special cases to
explicitly construct the Evans function (another eigenvalue counting tool), e.g., see [15, Chapters 9.3 and
10.4] and the references therein.

Our presentationwill be structured as follows. In Section 2, we first provide an overview of the Hamiltonian-
Krein index theory for Hamiltonian eigenvalue problems. Afterwards, we focus on the construction of the
Krein matrix and provide a summary of its properties. In Section 3 we consider specific examples stem-
ming from the application of the Krein matrix analysis to vortex dynamical states that are of intense recent
interest in the field of atomic physics. In particular, we consider single (unit charge) vortex states that are
presently fairly routine to produce/observe [21], but also examine the case of the recently studied vortex
dipoles. For the sake of completeness, we also examine in Section 4 one-dimensional analogs of such vortex
states; namely, multi-dark soliton structures that have been studied theoretically (see e.g. [3, 5] and refer-
ences therein) and also have been observed experimentally in [32, 34]. Finally, in Section 5 we summarize
our findings and present our conclusions, as well as some potential topics for future study.



T. Kapitula, P. Kevrekidis, and D. Yan 3

Regarding the states studied in Section 3, it is known that the precessional dynamics of a single vortex
is connected with the negative Krein signature eigenvalues of the corresponding linearization spectrum,
see [6]. The vortex dipoles were produced by dynamical experiments involving flow past an obstacle [28],
or quenching through the Bose-Einstein condensation (BEC) transition [6]. Furthermore, their dynamical
properties and structural robustness were studied in considerable length in recent works in the physical
literature [24, 27, 31, 33]. Experimental works on this theme - especially, [27] - were concerned with issues
such as:

(a) the equilibrium configuration, which is also explored herein;

(b) the epicyclic motion around this equilibrium, which was analyzed through the negative Krein
signature eigenvalues of the dipole’s linearization spectrum.

It should be noted in passing that the study of spectral stability properties in BEC settings (and particularly
for single- and multi-charge vortices) is a subject rapidly gaining momentum, as evidenced by the recent
work of [22] on the subject.

Acknowledgments. TK gratefully acknowledges the support of the Jack and Lois Kuipers Applied Mathe-
matics Endowment, a Calvin Research Fellowship, and the National Science Foundation under grant DMS-
1108783. PGK and DY gratefully acknowledge support from AFOSR grant FA9550-12-1-0332, from NSF-
DMS grant of number 0806762, and PGK also from the Alexander von Humboldt Foundation and the
Binational Science Foundation, grant number 2010239.

2. Hamiltonian spectral theory

Consider the Hamiltonian eigenvalue problem

J Lu = λu, (2.1)

acting on a Hilbert space X with inner-product 〈·, ·〉. The operator J is skew-symmetric bounded operator
with a bounded inverse, and the operatorL : Y 7→ X is Hermitian with a compact resolvent. The space Y ⊂ X
is assumed to be dense. Under these assumptions it is well-known that the spectra of J L, namely σ(J L), is
all point spectra, each eigenvalue has finite multiplicity, and infinity is the only possible accumulation point
of the eigenvalues. If we further assume that each of the operators has zero imaginary part, i.e., Im(J ) =

Im(L) = 0, then the eigenvalues satisfy the quartet symmetry that if λ ∈ σ(J L), then the set {±λ,±λ} ⊂
σ(J L). Furthermore, the algebraic multiplicities of each of the eigenvalues in the quartet matches, e.g.,

ma(λ) = ma(λ).

2.1. The Hamiltonian-Krein index

The Hamiltonian-Krein index theory has a long history (see Chugunova and Pelinovsky [2], Deconinck
and Kapitula [4], Hǎrǎguş and Kapitula [11], Kapitula et al. [17, 18], Pelinovsky [30] and the references
therein). The index theory is used to relate n(L), which is the total number (including multiplicity) of
negative eigenvalues of L, to the total number of eigenvalues λ ∈ σ(J L) with positive real part. In general,
for Hermitian operators H we will denote the number of negative eigenvalues including multiplicity) by
n(H).

The details for the following discussion can be found in, e.g., [4], and an abbreviated version is in-
cluded here for the sake of completeness. The eigenvalue problem (2.1) arises from linearizing a particular
Hamiltonian system about some type of steady state solution (solitary wave, spatially periodic wave, etc.).
The underlying system has N symmetries, which means that dim[ker(L)] ≥ N , as each symmetry gener-
ates an element of the kernel, and the kernel elements generated in this fashion are linearly independent.
We will henceforth assume that dim[ker(L)] = N , with ker(L) = span{φ1, . . . ,φN }. Now, the generalized
kernel is found by solving Lu = J −1φ, where φ ∈ ker(L). Now, the symmetries generate conserved quanti-
ties, and it turns out to be the case the manner in which these quantities are generated allows us to solve
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Lu = J −1φj for each j = 1, . . . ,N : denote these solutions as ψj (see Grillakis et al. [9, 10]). Thus, mg(0) =N ,

and ma(0) ≥ 2N . If we set D ∈RN×N as

Dij = 〈ψi ,Lψj 〉, i, j = 1, . . . ,n,

then by the Fredholm alternative it will be the case that ma(0) = 2N if and only if D is nonsingular: this
will henceforth be assumed.

In uλ is a solution to (2.1) for λ , 0, then by the Fredholm alternative it must be the case that for any
φ ∈ ker(L),

0 = −〈J −1uλ,φ〉 = 〈uλ,J
−1φ〉 = 〈uλ,Lψ〉.

Consequently, the eigenvalue problem is not solved on all ofY , but is instead solved on theN co-dimensional
constrained space S⊥, where S = span{Lψ1, . . . ,LψN }. Thus, it will be important not to calculate n(L), but
instead n(LS⊥), where LS⊥ = PS⊥LPS⊥ : S

⊥ 7→ S⊥, and PS⊥ : X 7→ S⊥ is the orthogonal projection. It was most
recently shown in [14] that

n(LS⊥) = n(L)−n(D); (2.2)

thus, the matrix D also plays a significant role in determining the number of negative eigenvalues for the
constrained operator.

We are now ready to state the main result regarding the number of eigenvalues for J L which have
positive real part. Let

• kr: the total number of positive real-valued eigenvalues (including algebraic multiplicity)

• kc: the total number of complex eigenvalues with positive real and imaginary part (including
algebraic multiplicity)

Our assumptions on J and L imply the four-fold eigenvalue symmetry {±λ,±λ}, so there will be kr + 2kc
eigenvalues with positive real part. There is one more set of eigenvalues which we wish to count. First, for a
self-adjoint operator T and a subspace Z with basis {z1, . . . , zd }, let the Hermitian matrix TZ ∈C

d×d be given
by

(TZ )ij = 〈zi ,T zj 〉, i, j = 1, . . . ,d.

With this notation, for each nonzero eigenvalue λ ∈ iR+ with associated eigenspace Eλ, let

k−i (λ)≔ n(LEλ ).

The quantity k−i (λ) is known as the negative Krein index of the eigenvalue, and if k−i (λ) ≥ 1 the eigenvalue
is said to have negative Krein signature. Counting only those purely imaginary eigenvalues with positive
imaginary part, we say the total negative Krein index is given by

k−i =
∑

λ∈σ(J L)∩(iR+\{0})

k−i (λ).

Although we will not prove it here, it can easily be shown that k−i (λ) = k
−
i (λ) for λ ∈ σ(J L)∩ iR. Conse-

quently, there will be 2k−i purely imaginary eigenvalues with negative Krein signature. The Hamiltonian-
Krein index is the weighted sum of these indices; namely;

KHam = kr +2kc +2k−i . (2.3)

The first two terms in the index count the total number of eigenvalues with positive real part, and the last
term counts all those purely imaginary eigenvalues with negative Krein signature. The major result is that
the Hamiltonian-Krein index is intimately related to the number of negative eigenvalues of the constrained
operator,

KHam = n(L)−n(D) (2.4)

[11, 30]. As a consequence of (2.4) we know that there is a finite and prescribed number of (potentially)
unstable eigenvalues, which, as we will see in subsequent sections, greatly assists in a numerical search for
these eigenvalues.
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Remark 2.1. Additional implications of (2.4) are:

(a) if KHam is odd, then kr ≥ 1, so that the underlying wave is spectrally unstable

(b) if KHam = 0, then it is generically the case that the wave is orbitally stable

(c) if KHam is even, then the wave may be spectrally stable with kr = kc = 0; however, the orbital
stability of the wave is generally not known

Remark 2.2. The Krein signature has important implications beyond what is present in the Hamiltonian-
Krein index. If two purely imaginary eigenvalues collide, then after the collision they can attain a nonzero
real part (this is the so-called Hamiltonian-Hopf bifurcation) if and only if they have opposite signature. If
the two eigenvalues have the same signature, they will simply pass through each other. For a more detailed
discussion see Kapitula and Promislow [15, Chapter 7.1]. Consequently, we can think of eigenvalues having
negative Krein signature as being potentially unstable eigenvalues.

Remark 2.3. If the eigenvalue problem is canonical, i.e., of the form

−L+u = λv, L−v = λu,

where L± are self-adjoint operators, then it is possible to derive a lower bound on kr. For example, if
dim[ker(L+)] = 1 and dim[ker(L−)] = 0, then it is true that if |n(L+) − n(L−)| ≥ 2, then kr ≥ 1 [8, 12]. This
result will be discussed in further detail in Section 4.

Before we can construct the Krein matrix associated with the general Hamiltonian spectral problem
(2.1), we must first find an equivalent self-adjoint pencil. In addition, we must relate the Hamiltonian-
Krein index for the original problem to that of the pencil problem. First suppose that Reλ > 0. Upon
setting v = J −1u, and defining

L+ = L, L− = −J LJ ,

it is not difficult to see that solving (2.1) is equivalent to solving the canonical system

L+u = λv, L−v = −λu. (2.5)

We continue by writing down an equivalent eigenvalue problem for which the operators involved no longer
have a nontrivial kernel. Regarding ker(L±) we have

ker(L+) = ker(L), ker(L−) = span{J −1φ1, . . . ,J
−1φN } = J

−1ker(L) :

the discussion in the previous subsection allows us to say that ker(L+) ⊥ ker(L−). Upon setting Π : X 7→
[ker(L+) ⊕ ker(L−)]

⊥ to be the orthogonal projection, it is known from [17, Section 3] that for nonzero
eigenvalues (2.5) is equivalent to the system

−ΠL+Πu = λv, ΠL−Πv = λu. (2.6)

Each of the operatorsΠL±Π are self-adjoint, and the assumption that D is nonsingular implies that each is
also nonsingular on the range of Π. This allows us to introduce the invertible self-adjoint operators

R≔ΠL+Π, S
−1
≔ΠL−Π, (2.7)

and note that J ,Π being a bounded operators implies that from our original assumptions on L we have
R,S−1 : Y 7→ X. and rewrite (2.6) as the quadratic pencil

(R+λ2S )u = 0, u ∈ Y.

In a similar fashion, if we initially assumed that λ ∈ iR+, the the equivalent pencil would be

(R+λ2S )[Imu] = 0, Reu = (Imλ)J S [Imu].

In conclusion, we have that solving the original eigenvalue problem (2.1) is equivalent to solving the
linear pencil

(R− zS )u = 0, z≔ −λ2 (−π/2 < argλ ≤ π/2), (2.8)
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which is precisely the spectral problem that was studied by Grillakis [8]. The effect of the eigenvalue
mapping is illustrated in Figure 1. Eigenvalues with positive real part and nonzero imaginary part are
mapped in a one-to-one fashion to eigenvalues with nonzero imaginary part, and the four-fold symmetry is
reduced to the reflection symmetry {z,z}. The system (2.6) has an unstable eigenvalue λ with positive real
part if and only if the system (2.8) has an eigenvalue z with z < 0 or with Imz , 0.

Let us conclude by computing the Hamiltonian-Krein index for the pencil (2.8). First consider the
purely imaginary eigenvalues. It is straightforward to show that

LEλ = 2REz
,

where z = −λ2 ∈R+, and Ez = ImEλ. Since E±λ = ReEλ ± i ImEλ, it is consequently the case that

k−i (z) = k
−
i (λ) + k

−
i (−λ) = 2k−i (λ),

where for z ∈R+ the Krein index is found by computing

k−i (z) = n(REz
).

Thus, the total negative Krein index is the same for the pencil as it is for the original problem. Now consider
those eigenvalues for the original problem with nonzero real part. Set kr(z) to be the multiplicity of the real-
valued eigenvalue z ∈ R+, and let kc(z) be the multiplicity of the eigenvalue for Imz , 0 (it is clearly the case
that kc(z) = kc(z)). Since

(R− (±λ)2S )u±λ = 0,

we clearly have that
kr(z) = 2kr(λ), kc(z) = 2kc(λ).

Here we are using the notation that kr(λ) is the multiplicity of the positive real-valued eigenvalue for (2.1),
and kc(λ) is the multiplicity of an eigenvalue with positive real and imaginary parts. Upon summing over
all of the eigenvalues, and using (2.3), we get the new result that the Hamiltonian-Krein index for the
original problem is related to that of the pencil (2.8) in the following manner:

Lemma 2.4. Consider the linear pencil (2.8) as derived from the eigenvalue problem (2.1). For the pencil let
kr denote the total number of negative real-valued eigenvalues (counting multiplicity), kc the total number of
eigenvalues with positive imaginary part (counting multiplicity), and k−i the total negative Krein index of all the
positive real-valued eigenvalues, where the index for a single eigenvalue z ∈ R+ with associated eigenspace Ez is
given by

k−i (z) = n(REz
).

Then with the Hamiltonian-Krein index given as in (2.4), the eigenvalues for the pencil satisfy

kr +2kc +2k−i = 2KHam.

Remark 2.5. Abusing notation a bit, we will, e.g., denote kr(z) as the total number of negative real eigen-
values for the pencil, and kr(λ) the total number of positive real eigenvalues for the original eigenvalue
problem. We can then summarize the above discussion to say

kr(z) = 2kr(λ), kc(z) = 2kc(λ), k−i (z) = 2k−i (λ),

and that the indices are
(
kr +2kc +2k−i

)
(λ) = KHam, problem (2.1)

(
kr +2kc +2k−i

)
(z) = 2KHam, problem (2.8).

It will be convenient to relate the Hamiltonian-Krein index to n(S−1) = n(R) (the equality follows from
the fact that J has bounded inverse). As for the number of negative directions for S−1, we have

n(S−1) = n(−(J LJ )ker(L)⊥) = n(L[J −1 ker(L)]⊥) = n(L)−n(D) = KHam. (2.9)
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The first equality follows from the definition of S−1 and the fact that constrained operator maps the sub-
space ker(L)⊥ to itself, the second equality follows from a simple change of variables, the third equality
follows from (2.2), and the fourth equality is from (2.4). Thus, since the number of negative directions is
invariant under inversion, with respect to the pencil alone we can rewrite the conclusion of Lemma 2.4 as

(
kr +2kc +2k−i

)
(z) = 2n(S ). (2.10)

It can be concluded that if the underlying wave is orbitally stable, then S is positive definite; otherwise, the
operator must be indefinite, although it will necessarily have only a finite number of negative directions.

Re λ

Im λ

Re z

Im z
z=−λ2

Figure 1: (color online) Six sets of eigenvalues and their images under the map. The (red) circles
denote two quads of complex eigenvalues under the four-fold symmetry {±λ,±λ} and their images,
kc = 2. The (green) crosses denote two pairs of real eigenvalues {±λ} and their images on the negative
real axis, kr = 2. The (blue) boxes denote two pairs of purely imaginary eigenvalues {±λ} and their
images on the positive real axis. The filled square has a positive Krein signature, while the empty
square has a negative Krein signature, so that k−i = 1.

2.2. The Krein matrix

We now turn to the problem of constructing a meromorphic matrix-valued function, the Krein matrix,
which has the property that it is singular precisely for those values of z which correspond to nonzero
eigenvalues for the pencil

(R− zS )u = 0 (2.11)

where R,S are defined in (2.7). The Krein matrix was introduced in [13], and the interested reader should
consult that work for the details associated with the following discussion (also see [14, Section 3]). We
construct the Krein matrix by projecting off the finite-dimensional negative space of the operator S , which
as we have already seen in (2.9) has dimension KHam, and then using a Lyapunov-Schmidt reduction to
compute an equivalent eigenvalue problem.

LetN (S ) denote the KHam-dimensional negative subspace of S, and let P : X 7→N (S )⊥ be the orthogonal
projection. Define the constrained operators

R2 ≔ PRP, S+ ≔ PSP.

The operator S+ is positive definite and symmetric, whereas from the Index Theorem [14, Theorem 2.1] the
symmetric operatorR2 satisfies

n(R2) = n(R)−n(R−1N (S )) = KHam −n(R
−1
N (S )).
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Since S+ is positive definite we can define the conjugated operator

R̃≔ S−1/2+ R2S
−1/2
+ ,

and note that the invertibility of S yields

n(R̃) = n(R2).

Upon writing a potential eigenfunction to the linear pencil as

u =

KHam∑

j=1

cjs
−
j + s

+, s+ ∈N (S )⊥,

where {s1, . . . , sKHam
} is an orthonormal spectral basis for N (S ), and applying the projection P to (2.11), the

pencil problem becomes

(R2 − zS2)s
+ +

KHam∑

j=1

cjPRsj = 0.

On the other hand, upon applyingQ = I −P to (2.11), where I is the identity operator, and taking the inner
product of the resulting equation with sℓ for ℓ = 1, . . . ,KHam, yields the system of equations

〈Rs+, sℓ〉+

KHam∑

j=1

cj〈Rsj , sℓ〉 = cℓzλℓ ,

where Ssℓ = λℓsℓ. Solving the first equation for s+ and plugging this result into the second equation yields
the problem

K(z)c = 0, K(z)≔RN (S ) − zSN (S ) − (R̃ − z)
−1

S−1/2+ PRN (S )
. (2.12)

Here we are using the notation

S−1/2+ PRN (S )≔ {S−1/2+ PRs− : s− ∈N (S )}.

The matrix K(z) is known as the Krein matrix.
We now relate the properties of the problem (2.12) to those for the original pencil (2.11). By construction

z is an eigenvalue for the pencil (2.8) with corresponding eigenfunction u if and only if K(z)c = 0, where
c = (c1, . . . , cKHam

)T. If for a particular eigenvalue z it is true that u < N (S )⊥, then it is necessarily true that
detK(z) = 0. On the other hand, if u ∈ N (S )⊥, then c = 0, so it can be the case that detK(z) , 0. Now, if
Imz , 0, then it will always be the case that z is an eigenvalue if and only if detK(z) = 0. On the other
hand, if z ∈R− is an eigenvalue with detK(z) , 0, then it is the case that for the Krein matrix constructed by
projecting off of the negative directions ofR, say KR(z), we would necessarily have detKR(z) = 0. Finally, if
z ∈ R+ is an eigenvalue with detK(z) , 0, then the eigenvalue has positive Krein signature. In this case the
eigenvalue is realized as a removable singularity of the Krein matrix, i.e., z = zp is a pole of the Krein matrix
for which the residue is the zero matrix. If the eigenvalue has negative Krein signature, it will necessarily
be the case that detK(z) = 0.

In conclusion, we can use detK(z) as a meromorphic function whose zeros correspond to eigenvalues.
The (potential) singularities of the Krein matrix arise through (R̃ − z)−1

S−1/2+ PRN (S )
at the eigenvalues of the

self-adjoint operator R̃. In order to use the Krein matrix to say something about the Krein signature of a real
positive eigenvalue, it will be helpful to factor the determinant as a finite product. One can easily observe
that K(z) is symmetric for all z, i.e., K(z)T = K(z); in particular, it is Hermitian for z ∈ R. This allows us for
z ∈ R to extract the KHam eigenvalues of the Krein matrix, rj (z), hereafter called the Krein eigenvalues, in
a meromorphic fashion. Thus, instead of finding eigenvalues by looking for the zeros of the determinant
of the Krein matrix, we can look for the zeros of each individual Krein eigenvalue. There will be precisely
KHam of these Krein eigenvalues.
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Remark 2.6. Although we will not pursue this line of thought herein, each Krein eigenvalue can be thought
of as a real meromorphic analogue of the Evans function [1]. Both Krein eigenvalues and the Evans function
detect eigenvalue for a linear eigenvalue problem through the zeros. Until recently the Evans function was
constructed solely via a dynamical systems argument, which necessitated that the eigenvalue problem be
essentially in one space variable. Since the Krein matrix is constructed via a functional analytic argument,
the spatial dimension associated with the eigenvalue problem is not relevant.

r1(z)

r2(z)

Figure 2: (color online) A cartoon of the graphs of the Krein eigenvalues for z ∈ R+ in the case that
KHam = 2. The Krein eigenvalue r1(z) is denoted by a thick (green) dashed curve, and its vertical
asymptotes are given by a thin (green) dashed curve. The Krein eigenvalue r2(z) is denoted by a
thick (black) curve, and its vertical asymptotes are given by a thin (black) curve. The eigenvalues for
the pencil (2.11) with positive Krein index are denoted by (blue) squares, and those with negative
index are shown as (red) circles.

For real-valued z, the properties of the Krein eigenvalues are as follows. First,

lim
z→−∞

rj (z)

z
> 0,

so that each Krein eigenvalue is negative for large negative z. This follows from the fact that SN (S ) is a
negative definite matrix. Second, if zp is a pole of the the Krein eigenvalue rj (z), it will then be the case that

lim
z→z±p

rj (z) = ±∞.

Furthermore, if z∗ is a simple eigenvalue of R̃, so that z∗ is a pole of the Krein matrix, then it will be the case
that z∗ is a simple pole for only one of the Krein eigenvalues. In other words, for all but one of the Krein
eigenvalues the pole z∗ of the Krein matrix is a removable singularity. Finally, if z0 is a simple positive zero
of the Krein eigenvalue rj (z), then it is true that

k−i (z0) = −sign[r
′
j (z0)];

in other words, the slope of the Krein eigenvalue at a zero gives definitive information regarding the Krein
index of the eigenvalue. This is the most useful of the properties of the Krein eigenvalues, for it allows us
graphically locate those eigenvalues which have negative Krein signature. This discussion is summarized
in Figure 2.

Remark 2.7. If the zero of a Krein eigenvalue is not simple, then for the eigenvalue in question there will be
an associated Jordan chain which has length equal to the order of the zero. Furthermore, this situation can
only arise upon the collision of an (almost) equal number of purely imaginary eigenvalues with positive
and negative Krein signature (see [13, Section 2.2] for the details).
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2.3. Summarizing remarks

Following Remark 2.5 we know that for the original eigenvalue problem (2.1) the Hamiltonian-Krein index
is (

kr +2kc +2k−i
)
(λ) = KHam,

while for the pencil (2.11) the index is

(
kr +2kc +2k−i

)
(z) = 2KHam.

The individual indices are related via

kr(z) = 2kr(λ), kc(z) = 2kc(λ), k−i (z) = 2k−i (λ).

For the original eigenvalue problem there will be an infinite number of purely imaginary eigenvalues, all of
which but a finite number will have positive Krein index. The purely imaginary eigenvalues with negative
Krein signature can be determined by first constructing the Krein matrix of (2.12) for the pencil (2.11),
and then plotting the resultant Krein eigenvalues for z ∈ R. In particular, the eigenvalues with negative
signature will correspond to those values of z ∈ R such that for some 1 ≤ j ≤ KHam,

rj (z) = 0, r ′j (z) > 0.

If the order of a zero of a Krein eigenvalue is two or higher, then a collision of eigenvalues of opposite Krein
signature has occurred.

Remark 2.8. The discussion in this section assumed that the original Hamiltonian eigenvalue problem is
not in the canonical form of Remark 2.3. If the problem is in canonical form, adjustments must be made:
this is discussed in the application presented in Section 4.

3. Application: spectral analysis for vortices of the GP equation

We now wish to use the Krein matrix to identify the eigenvalues of (2.1) which have nonzero real part,
or which are purely imaginary and have negative Krein signature. We intend to explore these spectral
features and confirm them against a full linear stability analysis for an example of significant interest to
recent experimental applications, namely the study of a single vortex [6] and of a pair of vortices [27, 28]
in two-dimensional Bose-Einstein condensates as described by the GP Equation. The Hamiltonian-Krein
index of (2.10) tells us howmany of these zeros for the pencil we need to find in order to fully capture all of
the (potentially) unstable eigenvalues. The real eigenvalues for the linearized problem correspond to neg-
ative real eigenvalues for the pencil, and the eigenvalues with nonzero real part correspond to eigenvalues
with nonzero imaginary part for the pencil. Regarding the eigenvalues with negative signature, from the
discussion of the previous section this means that we need to identify the real and positive eigenvalues for
the pencil (2.8) for which a Krein eigenvalue has a zero, and the slope of the curve at the zero is positive.

The model under consideration for the case of pancake-shaped Bose-Einstein condensates [6, 21, 27] is
the (2+1)-dimensional Gross-Pitaevskii equation in the dimensionless form

i∂tu = −
1

2
∆u +V (x,y)u + |u|2u − µu. (3.1)

Here, u is the macroscopic wave function, V (x,y) = Ω
2
(
x2 + y2

)
/2 is the external harmonic potential, Ω is

the frequency of the trap, µ is the chemical potential, and ∆ is the Laplace operator, i.e., ∆ = ∂xx +∂yy . For
the problem discussed herein, we assume Ω = 0.2.

We begin by assuming that the steady-state problem is solved, and we will denote that solution by
u0(x,y) =U0(x,y) + iV0(x,y). Here U0,V0 are real-valued functions. Writing

U0(x,y) + iV0(x,y) = ρ(r,θ)e
iφ(r,θ), tanθ = y/x,
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where r2 = x2+y2, the wave will have the property that ρ(r,θ)→ 0 exponentially fast as r→ +∞. As for the
associated eigenvalue problem, abusing notation a bit and writing

u 7→U0 + iV0 + ǫ(u + iv), 0 < ǫ≪ 1,

we see that at O(ǫ) we have the linear problem

∂tu = J Lu, u = (u,v)T,

where

J =

(
0 1
−1 0

)
, L =

(
−1
2∆− µ+V (r) + 3U2

0 +V 2
0 2U0V0

2U0V0 −1
2∆− µ+V (r) +U2

0 +3V 2
0

)
.

The eigenvalue problem of the form (2.1), i.e.,

J Lu = λu, (3.2)

arises upon using the separation of variables ansatz u 7→ ueλt .
With respect to the standard inner-product on L2(R2) × L2(R2) the operator J is boundedly invertible

and skew-symmetric, while the operator L is self-adjoint. Furthermore, since the potential V (r) grows
quadratically, and the magnitude of the solution |u0(x,y)| = ρ(r,θ) decays exponentially fast as r → +∞, it
is the case that L has a compact resolvent. In order to construct the Krein matrix for the spectral problem
we first follow (2.5) and set

L+ = L, L− = −J LJ .

The construction of the Krein matrix requires that we consider the spectral problem on the space perpendic-
ular to the kernel of both operators. The fact that solutions to (3.1) are invariant under u(x,y) 7→ u(x,y)eiφ

and the spatial rotation u(x,y) 7→ u(xcosθ −y sinθ,x sinθ +y cosθ) means that (generically) the kernel of L
will be two-dimensional, so that (generically)

ker(L) = ker(L+) = span{

(
−V0
U0

)
,

(
(∂θρ)cosφ − (∂θφ)V0
(∂θρ)sinφ + (∂θφ)U0

)
}

ker(−J LJ ) = ker(L−) = span{

(
U0

V0

)
,

(
(∂θρ)sinφ + (∂θφ)U0

−(∂θρ)cosφ + (∂θφ)V0

)
}.

(3.3)

If the solution has a radially symmetric density, i.e., ρ = ρ(r), then the dimension of each kernel is (generi-
cally) one with

ker(L+) = span{

(
−V0
U0

)
}, ker(L−) = span{

(
U0

V0

)
}.

With this information at hand, and setting Π : L2(R2)×L2(R2) 7→ [ker(L+)⊕ker(L−)]
⊥ to the the orthogonal

projection, we can now compute the restricted operators

R =ΠL+Π, S
−1 =ΠL−Π

to create the pencil
(R− zS )u = 0, z = −λ2.

The Krein matrixK(z) ∈ Cn(S )×n(S ) (see (2.12)) will be created from this pencil using the algorithm described
in the previous section.

3.1. Single vortex state

Here we assume that the solution is a vortex of charge one. The solution is of the form

u0(x,y) = ρ(r)e
iθ ,
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Figure 3: (color online) The single vortex state for a trap strength Ω = 0.2 and chemical potential
µ = 3. The left panel shows the contour plot of the density, and the right panel is the phase plot for
the wave function. In this case, the total number of grid points is n = 120, and the spatial step size is
∆x = 0.25.

where the density profile satisfies ρ(0) = 0, and the phase rotates by 2π around the vortex core, justifying
the topological charge of the structure [21, 22]. The density and phase profiles for the single vortex state
are shown in Figure 3, and the corresponding linearization spectrum is shown in Figure 4. The absolute
value of this configuration is radially symmetric (a feature not shared by the vortex dipole state considered
below), while its decay for r→∞ is dictated by the underlying linear problem being exponential for small
µ [19] and resembling an inverted parabola for large µ [31] (the latter decay features are also shared by the
vortex dipoles below). The dependence of the relevant eigenvalues as a function of the canonical parameter
of the system, namely the chemical potential µ associated with the number of atoms in the condensate, has
been quantified previously; see e.g. [22, 26]. We will confirm these findings via the Krein matrix, and
showcase particular examples for a few representative values of µ. As we saw above, the kernels of the
operators L± each have dimension one. For small amplitude vortices where the nonlinear interactions are
(almost) negligible it can be shown via an analysis similar to that presented in [19] that the Hamiltonian-
Krein index satisfies KHam = 2. Following the discussion in Section 2.3 we then know that for the pencil

(
kr +2kc +2k−i

)
(z) = 4, (3.4)

while for the original problem (
kr +2kc +2k−i

)
(λ) = 2. (3.5)

Thus, if for the pencil there are two positive real zeros of the Krein eigenvalues which correspond to an
eigenvalue with negative Krein index, the rest of the spectrum for the pencil must be positive and purely
real. In other words, if for the original eigenvalue problem there is a purely imaginary eigenvalue with
negative Krein index, the rest of the spectrum must be purely imaginary with positive Krein index. Conse-
quently, once we numerically find one purely imaginary eigenvalue with negative Krein signature, or one
set of eigenvalues with nonzero real part which satisfy the Hamiltonian eigenvalue symmetry, we need not
search for any additional unstable eigenvalues. They simply do not exist.

Regarding the numerical solution and analysis of the problem, we first discretize the differential op-
erator via a centered finite difference scheme using n data points and a spatial interval of ∆x. The single
vortex state - indeed, any stationary solution - is found by applying Newton’s method to the discretized
problem, treating it as a two-dimensional boundary value problem and starting from a suitably proximal
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Figure 4: (color online) The real and imaginary parts of the eigenfrequencies defined by ω = iλ for
vortex dipole state when n = 120 and ∆x = 0.25 as a function of the chemical potential µ. Since
the (red) dashed curve emanating from ω = 0.2 corresponds to an eigenvalue with negative Krein
signature, the fact that KHam = 2 means that there are no other eigenvalues with positive real part
(see (3.5)). The wave is spectrally stable for all considered values of the chemical potential. The
eigenvalue which has negative Krein signature is highlighted as the (red) dashed line. Larger (in
magnitude) eigenvalues along the imaginary axis have a positive Krein signature and do not lead to
instabilities.

to it initial guess. As for the spectral problem, the smallest (in norm) eigenvalues are computed using the
MATLAB function “eigs” on the discretized version of the operator J L; i.e., we construct the lineariza-
tion operator on the same domain as used for the fixed point iteration and utilize standard routines (such
as an implicitly restarted Arnoldi method within MATLAB) to compute some of the smallest magnitude
eigenvalues of the corresponding spectral problem. This provides us with the linear stability results that
will be compared with the Krein matrix ones in the figures that follow. It is worth noting here that these
spectral linearization results can only be obtained by taking advantage of the sparse structure of the un-
derlying discretization matrix. Should the full eigenvalue spectrum of the linearization problem be sought
in this highly-demanding two-dimensional computation, MATLAB’s routine “eig” would have been unable
to produce the corresponding numerical results.

We now turn to a direct comparison of the numerical results for eigenvalues obtained from the linear
stability analysis (which has partially been presented in earlier publications, see e.g. [26]) and from the
Krein matrix, presented for the first time for vortex patterns of the GP equation herein. Here, we have
confirmed the above findings with µ = 0.45 in Figure 5, and µ = 0.75 in Figure 6. In both of these figures a
spatial discretization spacing of ∆x = 0.5 was used. Similar results were found with smaller values of ∆x.
In the right panel of each figure the spectrum of J L was computed for both the original formulation of
(3.2) and the corresponding pencil formulation (2.8), and the results of the two were found to agree within
the accuracy of the eigenvalue solver. These spectral results were then compared with the prediction of the
Krein matrix in the right panel. The agreement is excellent.

Unexpectedly, it turns out to be the case that for the problem at hand the Krein matrix is a meromorphic
multiple of the identity; hence, the two Krein eigenvalues coincide. In both figures it is clear that there are
then two zeros of the Krein eigenvalues at which the slope of the curve is positive: this corresponds to an
purely imaginary eigenvalue with negative Krein signature. As stipulated by Hamiltonian-Krein index in
(3.6), the rest of the spectrum must be purely imaginary, and this is indeed seen to be the case.

For the spectrum there is not only the eigenvalue at λ = 0 which is due to the phase U(1) gauge invari-
ance of the model, there is also a double eigenvalue at λ = ±0.2i. The latter frequency of double multiplicity
is the so-called dipolar mode of the condensate and pertains to a symmetry (oscillation of the entire con-
densate cloud in the x− or y− direction with the trap frequency), and is hence invariant with respect to
variations in µ. One of these modes pertains to a pole of the Krein matrix, while the other is a zero of a
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Figure 5: (color online) The numerically generated spectral plot for n = 48, µ = 0.45, ∆x = 0.45. In
the left panel the left plot is the numerically generated plot of the KHam = 2 Krein eigenvalues.
For this problem the Krein matrix is a meromorphic multiple of the identity; hence, the two Krein
eigenvalues coincide. The (red) crosses are the poles of the Krein matrix. If the pole is removable
(e.g., for z ∼ 0.155), then it corresponds to an eigenvalue with positive Krein signature. Here we see
two positive real zeros of the Krein eigenvalues for which the functions have positive slope. Thus, for
the pencil k−i (z) = 2 with kr(z) = kc(z) = 0, which means that for the original problem (3.2) k−i (λ) = 1
with kr(λ) = kc(λ) = 0. The wave is spectrally stable, but is not a (local) minimizer for the constrained
Hamiltonian. In the right figure the eigenvalues for J L are denoted by (blue) circles. The (green)
crosses represent the poles of the Krein matrix, and the (red) triangles are the eigenvalues of J L
which are realized as zeros of the Krein eigenvalues. The purely imaginary eigenvalue with negative
Krein signature is shown as a filled (red) triangle.
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Single vortex µ=0.75, Ω=0.2

Figure 6: (color online) The numerically generated spectral plot for n = 48, µ = 0.75, dx = 0.45. In the
left panel the left plot is the numerically generated plot of the KHam = 2 Krein eigenvalues. For this
problem the Krein matrix is a meromorphic multiple of the identity; hence, the two Krein eigenvalues
coincide. The (red) crosses are the poles of the Krein matrix, and the removable singularities (e.g.,
z ∼ 0.08) correspond to eigenvalues with positive Krein signature. Here we again see two positive
real zeros of the Krein eigenvalues for which the functions have positive slope. The wave is then
spectrally stable with k−i (λ) = 1 for the problem (3.2). The notation used in the right figure is similar
to that in Figure 5.

Krein eigenvalue. The eigenvalue with negative Krein signature always lies between the origin and this
double pair and is known to tend to the origin as the chemical potential µ increases [22, 26]. Since the
eigenvalue has negative signature, as predicted by the theory it is realized as a zero of a Krein eigenvalue.

To showcase the relevance of this pole, the residues of the poles of the Krein matrix are computed. If the
numerically computed residue of the pole is of O(10−12), then we say that the pole is removable, and hence
it corresponds to an eigenvalue with positive Krein signature. The residue is computed via the numerical
integration

Res(K(z), zp) =
1

2πi

∮

C
K(z)dz ∼

1

2πi

n∑

i=1

K(zp,i )∆zp,i .

Here zp is the relevant pole of the Krein matrix, n is the number of integration points on the simple pos-
itively oriented closed contour C which surrounds the pole (here the contour is without loss of generality
chosen to be a square centered on the pole), zp,i is the point on the integration contour around the pole,
and ∆zp,i is the segment on the integration path.

When the chemical potential µ = 0.45 the first relevant pole we choose is located at zp = 0.0021. For the

increment of |∆zp,i | = 5 ∗ 10−6 it is seen that

∮

C
K(z)dz =

(
−8.4 ∗ 10−12 − i2.1 ∗ 10−14 −4.5 ∗ 10−22 − i9.5 ∗ 10−20

−2.8 ∗ 10−21 − i1.1 ∗ 10−19 −8.4 ∗ 10−12 − i2.1 ∗ 10−14

)
,

so that |Res(K(z),0.0021)| =O(10−12). The simple pole is removable, and corresponds to a purely imaginary
eigenvalue (the first red cross above zero in Figure 5). The fact that the singularity is removable is evidenced
by the fact that neither of the Krein eigenvalues has a singularity at the point. Now consider the pole at
zp = 0.0478. It is seen that

∮

C
K(z)dz =

(
−i0.0057 −8.6 ∗ 10−18 − i3.0 ∗ 10−15

−5.5 ∗ 10−18 − i2.2 ∗ 10−15 −i0.0057

)
,
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Figure 7: (color online) The vortex dipole state for a trap strength Ω = 0.2 and chemical potential
µ = 3. The left panel shows the contour plot of the density, and the right panel is the phase plot for
the wave function. In this case, the total number of grid points is n = 120, and the spatial step size is
dx = 0.25.

so that |Res(K(z),0.0478)| = O(10−3), which is nonzero by our criterion. Alternatively, we see that the pole
is not removable because the Krein eigenvalues have a singularity at that point. Since the singularity is not
removable, this point does not correspond to an eigenvalue.

3.2. Vortex dipole state

We now turn to a spectral analysis for the vortex dipole state, which is a stationary vortex-antivortex state
(see Figure 7 for a typical example of its density and phase). WhenΩ = 0.2 the vortex dipole state exists for
µ > 0.68. It is interesting to note here that, as shown in [24, 26], such states do not exist at the linear limit,
but only bifurcate through a supercritical pitchfork (symmetry-breaking) event at a critical point from the
dark soliton, which corresponds to the real-valued (first) excited state of the two-dimensional harmonic
oscillator. Since the density is not radially symmetric, it will (generically) be the case that dim[ker(L±)] = 2.
Furthermore, it is seen numerically that n(S ) = KHam = 2, so that by Lemma 2.4 we have the same index
count for the pencil as (3.6); namely,

(
kr +2kc +2k−i

)
(z) = 4 ⇔

(
kr +2kc +2k−i

)
(λ) = 2. (3.6)

As in the previous example, there will be two Krein eigenvalues to be plotted. Unlike the previous
example, the Krein matrix will not be a meromorphic multiple of the identity; hence, the Krein eigenvalues
will not generically overlap. If there are two positive real zeros of the Krein eigenvalues for which the curves
have positive slope, then the spectrum for the pencil will be positive and purely real with k−i (z) = 2(k−i (λ) =
1). Otherwise the underlying wave will be unstable. As we will see, in our examples this instability will
arise when kc(z) = 2(kc(λ) = 1). It is important to note here that for the pencil it must be the case that
if k−i (z) = 2, then each Krein eigenvalue has a positive zero at precisely the same point. This fact is a
consequence of the relationship of the spectrum between the original eigenvalue problem and the pencil;
in particular, the fact that the spectrum of the pencil “doubles up” the nonzero spectrum for the original
problem.
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Figure 8: (color online) The real and imaginary parts of the eigenfrequencies defined by ω = iλ for
vortex dipole state when n = 480 and dx = 0.0625 as a function of the chemical potential µ. The
wave is spectrally unstable with kc(λ) = 1, (kc(z) = 2) when Imω > 0. When kc(λ) = 1 we know by the
Hamiltonian-Krein index for the wave that there are no other unstable eigenvalues. When kc(λ) =
kr(λ) = 0 in the figure, the eigenvalue associated with (red) circles has negative Krein signature. By
the Hamiltonian-Krein index we then know that there are no other non-plotted eigenvalues with
positive real part, so that in this case the wave is spectrally stable.
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Figure 9: (color online) The numerically generated spectral plot for the vortex dipole when Ω = 0.2
and µ = 0.71. The left panel is the plot of the two Krein eigenvalues: the (red) crosses represent the
poles of the Krein matrix, and the removable singularities correspond to eigenvalues with positive
Krein signature. Note that k−i (z) = 2 for the pencil, and that as expected the zeros of the Krein eigen-
values which correspond to eigenvalues with negative Krein signature coincide. In the right panel
the (blue) circles are the eigenvalues for J L, the (red) triangles are the eigenvalues which correspond
to zeros of the Krein eigenvalues, and the (green) crosses are the eigenvalues which correspond to
removable singularities of the Krein matrix - these eigenvalues have positive Krein signature. The
purely imaginary eigenvalue with negative Krein signature is shown as a filled (red) triangle. The
labeling of eigenvalues in the right panel is the same as for Figure 5.
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Figure 10: (color online) The numerically generated spectral plot for the vortex dipole when Ω = 0.2
and µ = 0.80. The left panel is the plot of the two Krein eigenvalues: the (red) crosses represent the
poles of the Krein matrix, and the removable singularities correspond to eigenvalues with positive
Krein signature. Since there are no positive real zeros with positive slope, it must be the case that
for the pencil kc(z) = 2. In the right panel the (blue) circles are the eigenvalues for J L, the (red)
triangles are the eigenvalues which correspond to zeros of the Krein eigenvalues, and the (green)
crosses are the eigenvalues which correspond to removable singularities of the Krein matrix - these
eigenvalues have positive Krein signature. The labeling of eigenvalues in the right panel is the same
as for Figure 5. The only difference is that the (blue) stars represent the complex eigenvalues with
nonzero real part as found by the zeros of the Krein eigenvalues.
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The spectrum once again features the twofold degenerate dipolar modes which are associated with the
oscillation with the trap frequency of the whole condensate in the x− and y− directions. In addition to these
modes, there exists a negative Krein signature mode, which in this case collides with the mode departing
from zero. This, in turn, leads to the formation of an interval of µ-values where the spectrum possesses
complex eigenfrequencies associated with oscillatory instability. Therefore, when studying the computa-
tion of the Krein matrix of the vortex dipole state and comparing its eigenvalues against the linearization
analysis, we select two cases, namely µ = 0.71 and µ = 0.80. As we see in Figure 8, the former is before the
collision of the two modes (i.e., kc(λ) = 0), and the latter is after the collision has occurred (i.e., kc(λ) = 1).
For larger values of µ the complex-valued eigenvalues return to the imaginary axis.

When µ = 0.71 we show the computation of the Krein eigenvalues (left panel) and the linearization spec-
trum (right panel) in Figure 9. In the right panel it can be observed that the zeros of the Krein eigenvalues
are consistent with the eigenvalues found via the linear stability analysis, except for the real eigenvalues,
which are O(10−3) and are the numerical approximation of the known zero eigenvalues. Regarding the left
panel it is seen from the inset that k−i (z) ≥ 2. From (3.6) we know that the Hamiltonian-Krein index for the
pencil is (

kr +2kc +2k−i
)
(z) = 4;

hence, for the pencil it is the case that k−i (z) = 2 with kr(z) = kc(z) = 0. For the original problem it is then true
that k−i (λ) = 1 with kr(λ) = kc(λ) = 0. The eigenvalue with negative Krein signature is denoted by a (red)
filled triangle in the right panel. As a consequence of the index theory we know that all other eigenvalues
must be purely imaginary with positive Krein signature.

When µ = 0.80 we show the computation of the Krein eigenvalues (left panel) and the linearization
spectrum (right panel) in Figure 10. Again, the zeros of the Krein eigenvalues are consistent with the
eigenvalues found via the linear stability analysis except for the real eigenvalues, which are O(10−3) and
are the numerical approximation of the known zero eigenvalues. From the right panel we see that kc(λ) ≥ 1.
Upon using (3.6) we then have that kc(λ) = 1(kc(z) = 2) with kr(λ) = k

−
i (λ) = 0. As we see in the left panel,

as expected the Krein eigenvalues have no negative zeros, and no positive zeros with positive slope; in
other words, all of the zeros of the Krein eigenvalues correspond to purely imaginary eigenvalues with
positive Krein signature. In conclusion, as a consequence of the index theory we know that except for the
one quartet of simple eigenvalues with nonzero real and imaginary parts, all other eigenvalues must be
purely imaginary with positive Krein signature. The unstable eigenvalues cannot be detected via the graph
of the Krein eigenvalues in the left panel of Figure 10. However, they can be found by providing a phase
plot for each Krein eigenvalue, which is done in Figure 11 when µ = 0.80. The axes denote the complex z-
plane, and the colorbar corresponds to the phase of the eigenvalues of the Krein matrix. The points where
the phase becomes singular correspond to the location of the complex eigenvalues, and are labeled by the
white spots. It is clear from a standard winding number argument that each zero of the Krein eigenvalue
is simple, which is a verification of the fact that kc(z) = 2.

4. Application: spectral analysis for multi-solitons of the GP

equation

The model under consideration is the (1+1)-dimensional Gross-Pitaevskii equation in the dimensionless
form

i∂tu = −
1

2
∂xxu +V (x)u + |u|2u − µu, (4.1)

where now V (x) =Ω
2x2/2 is the external harmonic potential. When doing numerical computations for this

problem we assume Ω = 1. For this problem we are interested in studying the spectrum associated with
real-valued solutions. These will be denoted by U0(x), and they will be realized as solutions of the ODE

−
1

2
∂xxU0 +V (x)U0 +U

3
0 − µU0 = 0.

The solutions will have the property that U0(x)→ 0 exponentially fast as |x| → +∞.
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Figure 11: (color online) Phase plot for the Krein eigenvalues when µ = 0.80. The colors represent
the argument of the Krein eigenvalues, arg(λ(E1(z))) and arg(λ(E2(z))). The two white spots on each
of the two panels represent the complex eigenvalues, corresponding to z = 0.021± i0.09.

The eigenvalue problem associated with the real-valued solution will be exactly that as given in (3.2),
except that now L will be diagonal, i.e., L = diag(L+,L−), with

L+ = −
1

2
∂2x − µ+V (x) + 3U2

0 , L− = −
1

2
∂2x − µ+V (x) +U2

0 .

The fact that L is diagonal, i.e., the eigenvalue problem is in the canonical form

L+u = −λv, L−v = λu,

means that not only can more be said about the Hamiltonian-Krein index for the original problem, but
the index for the associated pencil will also change. This latter amendment follows from the fact that
the pencil can be formed directly without first passing to the intermediate stage of “doubling-up” the
eigenvalue problem.

Because the operators L±
(a) are Sturmian (e.g., see [15, Chapter 2.3])

(b) contain the unbounded potential x2

(c) contain a potential which decays exponentially fast as |x| → +∞,
the general properties of σ(L±) are well-understood:

(a) σ(L±) ⊂ R is composed solely of point eigenvalues

(b) each eigenvalue is geometrically and algebraically simple.

The operator L+ will (generically) be invertible, while L−U0 = 0 implies that dim[ker(L−)] = 1. If we let
Π : X 7→ span{U0}

⊥ denote the orthogonal (spectral) projection, and set

R =ΠL+Π, S
−1 =ΠL−Π,

then the search for nonzero eigenvalues for the original problem is equivalent to finding the spectrum of
the pencil

(R− zS )u = 0, z = −λ2 ⇒ Ru = −λv, S−1v = λu.

The Hamiltonian-Krein index for the original eigenvalue problem is given by

KHam = n(R) + n(S )
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Figure 12: (color online) Linear stability analysis for the 3-dark-soliton states: left panel is Im(λ)
versus µ, while the right panel is the Re(λ) versus µ. The first critical value of µ where one pair of the
complex eigenvalues becomes purely imaginary is approximately µ = 4.46. The second critical value
where the other pair of complex eigenvalues becomes purely imaginary is approximately µ = 10.29.
The eigenvalue(s) which have negative Krein signature are shown as (red) dashed lines.

(compare with (2.4)). Since Π is a spectral projection, it will be the case that n(S ) = n(L−). As for n(R), by
using the Index Theorem in [13] it is the case that

n(R) = n(L+)−n(〈U0,L
−1
+ U0〉).

Upon using the fact that

L+(∂µU0) =U0 ⇒ 〈U0,L
−1
+ U0〉 =

1

2
∂µ〈U0,U0〉

we have the rewritten expression
n(R) = n(L+)−n(∂µ〈U0,U0〉).

In other words, the slope of the power curve P(µ) = 〈U0,U0〉 has a direct influence on the number of nega-
tive directions of the operator L+ (this is the so-called VakhitovKolokolov stability criterion for canonical
Hamiltonian eigenvalue problems). In conclusion, the Hamiltonian-Krein index for the canonical problem
is

KHam = n(L+) + n(L−)−n(P
′(µ)), P(µ) = 〈U0,U0〉. (4.2)

There is also an instability criterion. The classical result of Grillakis [7], Jones [12] (recently reproven
in [14] using the Krein matrix) allows us to say that a lower bound on kr(λ) is caused by a difference in the
number of negative directions of R and S . In other words,

kr(λ) ≥ |n(L−)− [n(L+)−n(P
′(µ))]|, (4.3)

which in particular implies the previously stated result that kr(λ) ≥ 1 if |n(L−)−n(L+)| ≥ 2.
Regarding the Hamiltonian-Krein index for the pencil, the fact that the original system no longer needs

to be “doubled-up” in order to be put into canonical form means that we just need to count eigenvalues
with respect to the eigenvalue mapping z = −λ2 (see Figure 1). In particular,

kr(λ) = kr(z), kc(λ) = kc(z), k−i (λ) = k
−
i (z),

which in the end means that the index for the pencil is precisely that for the original problem, and is given
in (4.2). Additionally, in the construction of the Krein matrix the size no longer directly depends on KHam;
instead, it will be of size n(S ) = n(L−).

In the previous section we considered the spectral stability of solutions for which two Krein eigenvalues
could be used to locate the spectrum. We now consider an example for which three Krein eigenvalues are



Krein Matrix: Theory and Applications 22

5 10 15
0

0.2

0.4

0.6

0.8

1

µ

po
w

er

−10 0 10
−3

−2

−1

0

1

2

3

x

u

 

 

Figure 13: (color online) The left panel shows the power P(µ) (see (4.2)) versus the chemical potential
µ: the power plotted here is scaled by the max(P(µ)). The right panel demonstrates the stationary
solutions as µ varies. The solid blue, dashed green, and dash-dotted red curves represent the cases
of µ = 4.2,4.6,10.3 respectively. Here the grid size is n = 800 and the spatial interval is ∆x = 0.025.
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Figure 14: (color online) The spectral picture when µ = 4.2, for which kc(λ) = 2 and k−i (λ) = 1. In
the left panel is the plot of the three Krein eigenvalues. As predicted by the theory, there is only one
positive zero of a Krein eigenvalue for which the slope is positive. In the right panel the eigenvalues
for J L are denoted by (blue) circles. The (red) triangles are the eigenvalues of J Lwhich are realized
as zeros of the Krein eigenvalues. The (blue) stars represent the complex eigenvalues with nonzero
real part as found by the zeros of the Krein eigenvalues. The eigenvaluewith negative Krein signature
is marked with a (red) filled triangle. Note that this eigenvalue is close to an eigenvalue with positive
Krein signature, which implies that the system is close to a Hamiltonian-Hopf bifurcation point.
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Figure 15: (color online) Similar to Figure 14, except now µ = 4.46 and kc(λ) = 1 with k−i (λ) = 2.

needed. The steady-state solution U0 to be considered, hereafter called a 3-dark-soliton, is realized as a

continuation of the Gauss-Hermite function (8x3 − 12x)e−x
2/2 from the chemical potential µ∗ = 3.5 (recall

that we assume Ω = 1). Let us first determine the Hamiltonian-Krein index associated with this solution.
A weakly nonlinear analysis along the lines of that presented in, e.g., [16], shows that for |µ − µ∗| small,
the power satisfies the relationship P ′(µ) > 0 (the details are left for the interested reader). As we see from
the numerics (see Figure 13), this relationship holds for all values of µ under consideration. Regarding the
indices of the operators L±, the combination of U0 having three zeros and Sturm-Liouville theory implies
that n(L−) = 3; consequently, in the Krein matrix analysis there will be three Krein eigenvalues to follow.
Regarding the operatorL+, it is the case that in the weakly nonlinear limit n(L+) = 3: again, this relationship
holds for all µ under consideration. Appealing to (4.2) we see that KHam = 6; unfortunately, the lower bound
of (4.3) on kr(λ) leads to no definitive conclusion. Regarding the types of (potentially) unstable eigenvalues,
we have the following possibilities:

kr(λ) 0 0 0 0 2 2 2 4 4 6

kc(λ) 0 1 2 3 0 1 2 0 1 0

k−i (λ) 3 2 1 0 2 1 0 1 0 0

In Figure 12 we show the location of the first few eigenvalues from the linear stability analysis as a
function of µ. It is always the case that kr(λ) = 0, while kc(λ) decreases from two to one to zero. The
decreasing of kc(λ) implies that k−i (λ) increases from one to two to three. The critical values of µ for which
kc(λ) decreases are approximately µ ∼ 4.465 and µ ∼ 10.29. In Figure 14 we show the plot of the Krein
eigenvalues (left panel) and full linearization spectrum (right panel) when µ = 4.2, when kc(λ) = 2 and
k−i (λ) = 1. The eigenvalue in the upper half-plane with negative Krein signature is denoted with a (red)
filled triangles. In Figure 15 we show the plot of the Krein eigenvalues (left panel) and full linearization
spectrum (right panel) when µ = 4.46, when kc(λ) = 1 and k−i (λ) = 2. The two eigenvalues in the upper half-
plane with negative Krein signature are denoted with (red) filled triangles. Finally, in Figure 16 we show
the plot of the Krein eigenvalues (left panel) and full linearization spectrum (right panel) when µ = 10.30,
when k−i (λ) = 3. The three eigenvalues in the upper half-plane with negative Krein signature are denoted
with (red) filled triangles.

Remark 4.1. In general, when considering N-dark-solitons to (4.1) it will be the case that P ′(µ) > 0 with
n(L+) = n(L−) = N . Consequently, when looking for the 2N (potentially) unstable eigenvalues for the
linearized problem it will be the case that N Krein eigenvalues must be plotted.
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Figure 16: (color online) Similar to Figure 14, except now µ = 10.30 and k−i (λ) = 3.

5. Conclusion

In the present work we have revisited Hamiltonian skew-adjoint eigenvalue problems that typically arise
in the linearization around a stationary state of a Hamiltonian nonlinear partial differential equation. We
presented a brief overview of the known facts for the eigenvalue counts of the corresponding (potentially)
unstable spectra. We especially focused on a novel, but straightforward, plan to implement finite dimen-
sional techniques to locate this spectrum via the singular points of the meromorphic Krein matrix. We
illustrate the value of the approach by considering realistic problems for recently observed experimen-
tally multi-vortex and multi-soliton solutions in atomic Bose-Einstein condensates. We believe that this
approach can provide a valuable alternative to the highly-demanding computations that require a diago-
nalization of the linearization matrix, especially in two- and three-dimensional settings.

Naturally, there are numerous possibilities for further exploration. It would be especially relevant for
the atomic physics applications to use the present method to examine the details of the spectra of three-
dimensional solutions such as vortex rings [23]. On the other hand, from a methodological perspective,
it would be also relevant to consider this approach for the case of solutions of other classes of Hamilto-
nian problems such as the Korteweg-de Vries equations and its generalizations, or nonlinear Klein-Gordon
equations. The latter also offer possibilities (e.g. in the realm of stability of traveling waves etc.) to consider
quadratic pencils instead of linear ones, whereby extensions of the Krein matrix method would be partic-
ularly desirable to develop from a rigorous mathematical viewpoint. These themes are currently under
study and will be reported in future publications.
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