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Abstract

We consider projection algorithms for solving (nonconvex) feasibility prob-
lems in Euclidean spaces. Of special interest are the Method of Alternating
Projections (MAP) and the Douglas-Rachford algorithm (DR). In the case of
convex feasibility, firm nonexpansiveness of projection mappings is a global
property that yields global convergence of MAP and for consistent problems
DR. A notion of local sub-firm nonexpansiveness with respect to the intersec-
tion is introduced for consistent feasibility problems. This, together with a
coercivity condition that relates to the regularity of the collection of sets at
points in the intersection, yields local linear convergence of MAP for a wide
class of nonconvex problems, and even local linear convergence of nonconvex
instances of the Douglas-Rachford algorithm.
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1 Introduction

In the last decade there has been significant progress in the understanding
of convergence of algorithms for solving generalized equations for nonmono-
tone operators, and in particular those arising from variational problems such
as minimization or maximization of functions, feasibility, variational inequal-
ities and minimax problems. Early efforts focused on the proximal point
algorithm [12,23,32] and notions of (co)hypomonotonicity which is closely re-
lated to prox-regularity of functions [33]. Other works have focused on metric
regularity and its refinements [2, 3, 24]. Proximal-type algorithms have been
studied for functions satisfying the Kurdyka- Lojasiewicz Inequality in [4]. In
a more limited context, the method of alternating projections (MAP) has
been investigated in [8,27] with the aim of formulating dual characterizations
of regularity requirements for linear convergence via the normal cone and its
variants.

The framework we present here generalizes the tools for the analysis of
fixed-point iterations of operators that violate the classical property of firm
nonexpansiveness in some quantifiable fashion. As such, our approach is more
closely related to the ideas of [32] and hypomonotonicity through the resol-
vent mapping, however our application to MAP bears a direct resemblance
to the more classical primal characterizations of regularity described in [5]
(in particular what they call “linear regularity”). There are also some par-
allels between what we call (S, ε)-firm nonexpansiveness and ε-Enlargements
of maximal monotone operators [11], though this is beyond the scope of this
paper. Our goal is to introduce the essential tools we make use of with a cur-
sory treatment of the connections to other concepts in the literature, and to
apply these tools to the MAP and Douglas-Rachford algorithms, comparing
our results to the best known results at this time.

We review the basic definitions and classical definitions and results below.
In section 2 we introduce our relaxations of the notions of firm-nonexpansiveness
and set regularity. Our main abstract result concerning fixed-point iterations
of mappings that violate the classical firm-nonexpansive assumptions is in
section 3. We specialize in subsequent subsections to MAP and the Douglas-
Rachford algorithm. Our statement of linear convergence of MAP is as general
as the results reported in [8], with more elementary proofs, although our es-
timates for the radius of convergence are more conservative. The results on
local linear convergence of nonconvex instances of Douglas-Rachford are new
and provide some evidence supporting the conjecture that, asymptotically,
Douglas-Rachford converges more slowly (albeit still linearly) than simple al-
ternating projections. Our estimates of the rate of convergence for both MAP
and Douglas-Rachford are not optimal, but to our knowledge the most general
to date.

We also show that strong regularity conditions on the collection of affine

2



sets are in fact necessary for linear convergence of iterates of the Douglas-
Rachford algorithm to the intersection, in contrast to MAP where the same
conditions are sufficient, but not necessary [8]. This may seem somewhat
spurious to experts since, as is well-known, the Douglas-Rachford iterates
themselves are not of interest, but rather their shadows or projections onto
one of the sets [7, 28]. Indeed, in the convex setting where local is global,
the shadows of the iterates of the Douglas-Rachford algorithm could converge
even though the iterates themselves diverge. This happens in particular when
the sets do not intersect, but have instead best approximation points [7, The-
orem 3.13]. The nonconvex setting is much less forgiving, however. Indeed,
existence of local best approximation points does not guarantee convergence
of the shadows to best approximation points in the nonconvex setting [29], and
so convergence of the sequence itself is essential. As nonconvex settings are
our principal interest, we focus on convergence of the iterates of the Douglas-
Rachford algorithm instead of the shadows, and in particular convergence
of these iterates to the intersection of collections of sets. We leave a fuller
examination of the shadow sequences to future work.

1.1 Basics/Notation

E is a Euclidean space. We denote the closed unit ball centered at the origin by
B and the ball of radius δ centered at x ∈ E by Bδ(x) := {x ∈ E|‖x− x‖ ≤ δ}.
When the δ-ball is centered at the origin we write Bδ. The notation “⇒”
indicates that this mapping in general is multi-valued. The composition of two
multi-valued mappings T1, T2 is pointwise defined by T2 T1x = ∪y∈T1xT2y. A
nonempty subset K of E is a cone if, for all λ > 0, λK := {λk | k ∈ K} ⊆ K.
The smallest cone containing a set Ω ⊂ E is denoted cone(S).

Definition 1. Let Ω ⊂ E be nonempty, x ∈ E. The distance of x to Ω is
defined by

d (x,Ω) := inf
y∈Ω

‖x− y‖ . (1.1)

Definition 2 (projectors/reflectors). Let Ω ⊂ E be nonempty and x ∈ E.
The (possibly empty) set of all best approximation points from x to Ω denoted
PΩ(x) (or PΩx), is given by

PΩ(x) := {y ∈ Ω | ‖x− y‖ = d (x,Ω)} . (1.2)

The mapping PΩ ⇒ Ω is called the metric projector, or projector, onto Ω.
We call an element of PΩ(x) a projection. The reflector RΩ : E ⇒ E to the
set Ω is defined as

RΩx := 2PΩx− x, (1.3)

for all x ∈ E.
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Since we are on a Euclidean space E convexity and closedness of a subset
C ⊂ E is sufficient for the projector (respectively the reflector) to be single
valued. Closedness of a set Ω suffices for the set Ω being proximinal, i.e.
PCx 6= ∅ for all x ∈ E (For a modern treatment see [6, Corollary 3.13].

Definition 3 (Method of Alternating Projections). For two sets A,B ⊂ E

we call the mapping

TMAPx = PAPBx (1.4)

the Method of Alternating Projections operator. We call the MAP algorithm,
or simply MAP, the corresponding Picard iteration,

xn+1 ∈ TMAPxn, n = 0, 1, 2, . . . (1.5)

for x0 given.

Definition 4 (Averaged Alternating Reflections/Douglas Rachford). For two
sets A,B ⊂ E we call the mapping

TDRx =
1

2
(RARBx + x) (1.6)

the Douglas-Rachford operator. We call the Douglas-Rachford algorithm, or
simply Douglas-Rachford, the corresponding Picard iteration,

xn+1 ∈ TDRxn, n = 0, 1, 2, . . . (1.7)

for x0 given.

Example 5. The following easy examples will appear throughout this work and
serve to illustrate the regularity concepts we introduce and the convergence
behavior of the algorithms under consideration.

(i) Two lines in R
2:

A =
{

(x1, x2) ∈ R
2 | x2 = 0

}
⊂ R

2 (1.8)

B =
{

(x1, x2) ∈ R
2 | x1 = x2

}
⊂ R

2. (1.9)

We will see that MAP and Douglas-Rachford converge with a linear rate
to the intersection.

(ii) Two lines in R
3:

A =
{

(x1, x2, x3) ∈ R
3 | x2 = 0, x3 = 0

}
⊂ R

3 (1.10)

B =
{

(x1, x2, x3) ∈ R
3 | x1 = x2, x3 = 0

}
⊂ R

3. (1.11)

After the first iteration step MAP shows exactly the same convergence
behavior as in the first example. Douglas-Rachford does not converge to
{0} = A∩B. All iterates from starting points on the line {t(0, 0, 1) | t ∈
R} are fixed points of the Douglas Rachford operator. On the other
hand, iterates from starting points in A+B stay in A+B, and the case
then reduces to Example (i).
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(iii) A line and a ball intersecting in one point:

A =
{

(x1, x2) ∈ R
2 | x2 = 0

}
⊂ R

2 (1.12)

B =
{

(x1, x2) ∈ R
2 | x21 + (x2 − 1)2 ≤ 1

}
. (1.13)

MAP converges to the intersection, but not with a linear rate. Douglas-
Rachford has fixed points that lie outside the intersection.

(iv) A cross and a subspace in R
2:

A =R× {0} ∪ {0} × R (1.14)

B =
{

(x1, x2) ∈ R
2 | x1 = x2

}
. (1.15)

This example relates to the problem of sparse-signal recovery. Both
MAP and Douglas-Rachford converge globally to the intersection {0} =
A ∩ B, though A is nonconvex. The convergence of both methods is
covered by the theory built up in this work.

(v) A circle and a line:

A =
{

(x1, x2) ∈ R
2 | x2 =

√
2/2

}
⊂ R

2 (1.16)

B =
{

(x1, x2) ∈ R
2 | x21 + x22 = 1

}
. (1.17)

This example is of our particular interest, since it is a simple model
case of the phase retrieval problem. So far the only direct nonconvex
convergence results for Douglas-Rachford are related to this model case,
see [1, 10]. Local convergence of MAP is covered by [8, 27] as well as by
the results in this work.

1.2 Classical results for (firmly) nonexpansive map-

pings

To begin, we recall (firmly) nonexpansive mappings and their natural associa-
tion with projectors and reflectors on convex sets. We later extend this notion
to nonconvex settings where the algorithms involve set-valued mappings.

Definition 6. Let Ω ⊂ E be nonempty. T : Ω → E is called nonexpansive, if

‖Tx− Ty‖ ≤ ‖x− y‖ (1.18)

holds for all x, y ∈ Ω.
T : Ω → E is called firmly nonexpansive, if

‖Tx− Ty‖2 + ‖(Id−T )x− (Id−T )y‖2 ≤ ‖x− y‖2 (1.19)

holds for all x, y ∈ Ω.
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Lemma 7 (Proposition 4.2 [6]). Let Ω ⊂ E be nonempty and let T : Ω → E.
The following are equivalent

(i) T is firmly nonexpansive on Ω

(ii) 2T − Id is nonexpansive on Ω

(iii) ‖Tx− Ty‖2 ≤ 〈Tx− Ty, x− y〉 for all x, y ∈ Ω

Theorem 8 (best approximation property - convex case). Let C ⊂ E be
nonempty and convex, x ∈ E and x ∈ C. x is the best approximation point
x = PC(x) if and only if

〈x− x, y − x〉 ≤ 0 for all y ∈ C. (1.20)

If C is a affine subspace then (1.20) holds with equality.

Proof. For (1.20) see Theorem 3.14 of [6], while equality follows from Corollary
3.20 of the same.

Theorem 9 ((firm) nonexpansiveness of projectors/reflectors). Let C be a
closed, nonempty and convex set. The projector PC : E → E is a firmly
nonexpansive mapping and hence the reflector RC is nonexpansive. If, in
addition, C is an affine subspace then following conditions hold.

(i) PC is firmly nonexpansive with equality, i.e.

‖PCx− PCy‖2 + ‖(Id−PC)x− (Id−PC)y‖2 = ‖x− y‖2 , (1.21)

for all x ∈ E.

(ii) For all x ∈ E

‖RCx− c‖ = ‖x− c‖ (1.22)

holds for all c ∈ C.

Proof. For the first part of the statement see [15, Theorems 4.1 and 5.5], [19,
Chapter 12], [20, Propositions 3.5 and 11.2] and [35, Lemma 1.1]. The well-
known refinement for affine subspaces follows by a routine application of the
definitions and Theorem 8.

2 (S, ε)-firm nonexpansiveness

Up to this point, the results have concerned only convex sets, and hence the
projector and related algorithms have all been single-valued. In what follows,
we generalize to nonconvex sets and therefore allow multi-valuedness of the
projectors.
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Lemma 10. Let A,B ⊂ E be nonempty and closed. Let x ∈ E. For any
element x+ ∈ TDRx there is a point x̃ ∈ RARBx such that x+ = 1

2(x̃ + x).
Moreover, TDR satisfies the following properties.

(i)

‖x+ − y+‖2 + ‖(x− x+) − (y − y+)‖2 =
1

2
‖x− y‖2 +

1

2
‖x̃− ỹ‖2 (2.1)

where x and y are elements of E, x+ and y+ are elements of TDRx and
TDRy respectively, and x̃ ∈ RARBx and ỹ ∈ RARBy are the correspond-
ing points satisfying x+ = 1

2(x̃ + x) and y+ = 1
2(ỹ + y).

(ii) For all x ∈ E

TDRx = {PA(2z − x) − z + x | z ∈ PBx} . (2.2)

Proof. By Definition 4

x+ ∈ TDRx (2.3)

⇐⇒ x+ ∈ 1
2(RARBx + x) (2.4)

⇐⇒ 2x+ − x ∈ RARBx. (2.5)

Defining x̃ = 2x+ − x yields x+ = 1
2(x̃ + x), where x̃ ∈ RARBx.

(i) For x+ ∈ TDRx (respectively y+ ∈ TDRy) choose x̃ ∈ RARBx (respec-
tively ỹ) such that x+ = (x̃ + x)/2 (respectively y+). Then

‖x+ − y+‖2 + ‖(x− x+) − (y − y+)‖2 (2.6)

=

∥∥∥∥
1

2
x̃ +

1

2
x− 1

2
ỹ − 1

2
y

∥∥∥∥
2

+

∥∥∥∥
1

2
x− 1

2
x̃− 1

2
y +

1

2
ỹ

∥∥∥∥
2

(2.7)

=
1

2
‖x− y‖2 +

1

2
‖x̃− ỹ‖2 +

1

2
〈x̃− ỹ, x− y〉 − 1

2
〈x̃− ỹ, x− y〉

(2.8)

=
1

2
‖x− y‖2 +

1

2
‖x̃− ỹ‖2 . (2.9)

(ii) This follows easily from the definitions. Indeed, we represent v ∈ RBx
as v = 2z − x for z ∈ PBx so that

TDRx =

{
1

2
(RAv + x)

∣∣∣∣ v ∈ RBx

}
(2.10)

=

{
1

2
(RA(2z − x) + x)

∣∣∣∣ z ∈ PBx

}
, (2.11)

=

{
1

2
(2PA(2z − x) − (2z − x) + x)

∣∣∣∣ z ∈ PBx

}
(2.12)

= {PA(2z − x) − z + x | z ∈ PBx} . (2.13)
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Remark 11. In the case where A and B are convex, then as a consequence
of Lemma 10 i) and the fact that the reflector RΩ onto a convex set Ω is
nonexpansive, we recover the well-known fact that TDR is firmly nonexpansive
and (2.1) reduces to

‖TDRx− TDRy‖2 + ‖(Id−TDR) x− (Id−TDR) y‖2

=
1

2
‖x− y‖2 +

1

2
‖RARBx−RARBy‖2 , (2.14)

while (2.2) reduces to

TDRx = x + PARBx− PBx. (2.15)

�

We define next an analog to firm nonexpansiveness in the nonconvex case
with respect to a set S.

Definition 12 ((S, ǫ)-(firmly-)nonexpansive mappings). Let D and S be nonempty
subsets of E and let T be a (multi-valued) mapping from D to E.

i) T is called (S, ε)-nonexpansive on D if

‖x+ − x+‖ ≤
√

1 + ε ‖x− x‖
∀x ∈ D, ∀x ∈ S, ∀x+ ∈ Tx, ∀x+ ∈ Tx.

(2.16)

If 2.16 holds with ǫ = 0 then we say that T is S-nonexpansive on D.

ii) T is called (S, ε)-firmly nonexpansive on D if

‖x+ − x+‖2 + ‖(x− x+) − (x− x+)‖2 ≤ (1 + ε) ‖x− x‖2

∀x ∈ D, ∀x ∈ S, ∀x+ ∈ Tx, ∀x+ ∈ Tx.
(2.17)

If 2.17 holds with ǫ = 0 then we say that T is S-firmly nonexpansive on
D.

Note that, as with (firmly) nonexpansive mappings, the mapping T need
not be a self-mapping from D to itself. In the special case where S =
FixT , mappings satisfying (2.16) are also called quasi-(firmly-)nonexpansive
[6]. Quasi-nonexpansiveness is a restriction of another well-known concept,
Fejér monotonicity, to Fix T . Equation (2.17) is a relaxed version of firm
nonexpansiveness (1.19). The aim of this work is to expand the theory for
projection methods (and in particular MAP and Douglas-Rachford) to the
setting where one (or more) of the sets are nonconvex. The classical (firmly)
nonexpansive operator on D is (D, 0)-(firmly) nonexpansive on D.

Analogous to the relation between firmly nonexpansive mappings and av-
eraged mappings (see [6, Chapter 4] and references therein) we have the fol-
lowing relationship between (S, ε)-firmly nonexpansive mappings and their
1/2-averaged companion mapping.
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Lemma 13 (1/2−averaged mappings). Let D,S ⊂ E be nonempty and T :
D ⇒ E. The following are equivalent

(i) T is (S, ε)-firmly nonexpansive on D.

(ii) The mapping T̃ : D ⇒ E given by

T̃ x := (2Tx− x) ∀x ∈ D (2.18)

is (S, 2ε)-nonexpansive on D, i.e. T can be written as

Tx =
1

2

(
x + T̃ x

)
∀x ∈ D. (2.19)

Proof. For x ∈ D choose x+ ∈ Tx. Observe that, by the definition of T̃ , there
is a corresponding x̃ ∈ T̃ x such that x+ = 1

2(x + x̃), which is just formula
(2.19). Let z be any point in S and select any z+ ∈ Tz. Then

‖x+ − z+‖2 + ‖x− x+ − (z − z+)‖2 (2.20)

=
∥∥1
2 (x + x̃) − 1

2 (z + z̃)
∥∥2 +

∥∥1
2(x− x̃) − 1

2(z − z̃)
∥∥2 (2.21)

= 1
4

[
‖x− z‖2 + 2〈x− z, x̃− z̃〉 + ‖x̃− z̃‖2

]
(2.22)

+ 1
4

[
‖x− z‖2 − 2〈x− z, x̃− z̃〉 + ‖x̃− z̃‖2

]
(2.23)

= 1
2 ‖x− z‖2 + 1

2 ‖x̃− z̃‖2 (2.24)

!
≤ 1

2 ‖x− z‖2 + 1
2(1 + 2ε) ‖x− z‖2 (2.25)

= (1 + ε) ‖x− z‖2 (2.26)

where the inequality holds if and only if T̃ is (S, 2ε)−nonexpansive. By def-
inition, it then holds that T is (S, ǫ)-firmly nonexpansive if and only if T̃ is
(S, 2ε)−nonexpansive, as claimed.

We state the following theorem to suggest that the framework presented in
this work can be extended to a more general setting, for example the adaptive
framework discussed in [5]. It shows that the (S, ε)-firm nonexpansiveness is
preserved under convex combination of operators.

Theorem 14. Let T1 be (S, ε1)-firmly nonexpansive and T2 be (S, ε2)-firmly
nonexpansive on D. The convex combination λT1 + (1 − λ)T2 is (S, ε)-firmly
nonexpansive on D where ε = max{ε1, ε2}.

Proof. Let x, y ∈ D. Let

x+ ∈λT1x + (1 − λ)T2x, and (2.27)

y+ ∈λT1y + (1 − λ)T2y, (2.28)

⇒ x+ =λx
(1)
+ + (1 − λ)x

(2)
+ , where x

(1)
+ ∈ T1x, x

(2)
+ ∈ T2x (2.29)

y+ =λy
(1)
+ + (1 − λ)y

(2)
+ , where y

(1)
+ ∈ T1y, y

(2)
+ ∈ T2y. (2.30)
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By Lemma 13 (ii) one has nonexpansiveness of the mappings given by 2T1x−x
and 2T2x− x, x ∈ D that is

∥∥∥
[
2x

(1)
+ − x

]
−

[
2y

(1)
+ − y

]∥∥∥ ≤
√

1 + 2ε1 ‖x− y‖ , (2.31)
∥∥∥
[
2x

(2)
+ − x

]
−

[
2y

(2)
+ − y

]∥∥∥ ≤
√

1 + 2ε2 ‖x− y‖ . (2.32)

This implies

‖(2x+ − x) − (2y+ − y)‖ (2.33)

=
∥∥∥
(

2
[
λx

(1)
+ + (1 − λ)x

(2)
+

]
− x

)
−

(
2
[
λy

(1)
+ + (1 − λ)y

(2)
+

]
− y

)∥∥∥ (2.34)

=
∥∥∥λ

([
2x

(1)
+ − x

]
−

[
2y

(1)
+ − y

])
− (1 − λ)

([
2x

(2)
+ − x

]
−

[
2y

(2)
+ − y

])∥∥∥
(2.35)

≤λ
∥∥∥
[
2x

(1)
+ − x

]
−

[
2y

(1)
+ − y

]∥∥∥ + (1 − λ)
∥∥∥
[
2x

(2)
+ − x

]
−

[
2y

(2)
+ − y

]∥∥∥ (2.36)

≤
√

1 + 2ε ‖x− y‖ . (2.37)

Now using Lemma 13 (i) the proof is complete.

2.1 Regularity of Sets

To assure property (2.17) for the projector and the Douglas-Rachford op-
erator, we determine the inheritance of the regularity of the projector and
reflectors from the regularity of the sets A and B upon which we project. We
begin with some established notions of set regularity and introduce a new,
weaker form that will be central to our analysis.

Definition 15 (Prox-regularity). A nonempty (locally) closed set Ω ⊂ E is
prox-regular at a point x ∈ Ω if the projector PΩ is single-valued around x.

What we take as the definition of prox-regularity actually follows from
the equivalence of prox-regularity of sets as defined in [33, Definition 1.1]
and the single-valuedness of the projection operator on neighborhoods of the
set [33, Theorem 1.3].

Definition 16 (normal cones). The proximal normal cone NP
Ω (x) to a set

Ω ⊂ E at a point x ∈ Ω is defined by

NP
Ω (x) := cone(P−1

Ω (x) − x). (2.38)

The the limiting normal cone NΩ(x) is defined as any vector that can be
written as the limit of proximal normals; that is, v ∈ NΩ(x) if and only if
there exist sequences (xk)k∈N in Ω and (vk)k∈N in NP

Ω (xk) such that xk → x
and vk → v.
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The construction of the limiting normal cone goes back to Mordukhovich
(see [34, Chap. 6 Commentary]).

Proposition 17 (Mordukhovich). The limiting normal cone or Mordukhovich
normal cone is the smallest cone satisfying the two properties

1. P−1
Ω (x) ⊆ (I +NΩ)(x) where P−1

Ω (x) is the preimage set of x under PΩ.

2. for any sequence xi → x in Ω any limit of a sequence of normals vi ∈
NΩ(xi) must lie in NΩ(x).

Definition 18 ((ε, δ)-(sub)regularity).

i) A nonempty set Ω ⊂ E is (ε, δ)-subregular at x̂ with respect to S ⊂ E if

〈vx, x− x〉 ≤ ε ‖vx‖ ‖x− x‖ (2.39)

holds for all x ∈ Bδ(x̂) ∩ Ω, x ∈ S ∩ Bδ(x̂), vx ∈ NP
Ω (x). We simply say

Ω is (ε, δ)-subregular at x̂ if S = {x̂}.

ii) If S = Ω in i) then we say that the set Ω is (ε, δ)-regular at x̂.

iii) If for all ǫ > 0 there exists a δ > 0 such that (2.39) holds for all x, x ∈
Bδ(x) ∩ Ω and vx ∈ NΩ(x), then Ω is said to be super-regular.

The definition of (ε, δ)-regularity was introduced in [9, Definition 9.1] and
is a generalization of the notion of super-regularity introduced in [27, Defini-
tion 4.3]. More details to (ε, δ)-regularity can be seen in [9]. Of particular
interest is the following proposition. Preparatory to this, we remind readers of
another well-known type of regularity, Clarke regularity. To avoid introducing
the Féchet normal which is conventionally used to define Clarke regularity,
we follow [27] which uses proximal normals.

Definition 19 (Clarke regularity). A nonempty (locally) closed set Ω ⊂ E is
Clarke regular at a point x ∈ Ω if, for all ε > 0, any two points u, z close
enough to x with z ∈ Ω, and any point y ∈ PΩ(u), satisfy 〈z − x, u− y〉 ≤
ε‖z − x‖‖u− y‖.

Proposition 20 (Prox-regular implies super-regular, Proposition 4.9 of [27]).
If a closed set Ω ⊂ E is prox-regular at a point in Ω, then it is super-regular
at that point. If a closed set Ω ⊂ E is super-regular at a point in Ω, then it is
Clarke regular at that point.

Super-regularity is something between Clarke regularity and amenability
or proxregularity. (ǫ, δ)-regularity is weaker still than Clarke regularity (and
hence super-regularity) as the next example shows.

Remark 21. (ǫ, δ)-regularity does not imply Clarke regularity
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Proof.

Ω :=

{
(x1, x2) ∈ R

2

∣∣∣∣
x2 ≤ −x1 if x1 ≤ 0
x2 ≤ 0 if x1 > 0

}
. (2.40)

For any x− ∈ ∂−Ω := {(x1, x2) | x2 = −x1, x1 < 0} and x+ ∈ ∂+Ω :=
{(x1, 0) | x1 > 0} one has

NΩ(x−) =
{

(λ, λ)
∣∣ λ ∈ R

+
}

(2.41)

NΩ(x+) =
{

(0, λ) | λ ∈ R
+
}

(2.42)

which implies NΩ(0) = NΩ(x−) ∪ NΩ(x+). Since NP
Ω (0) = {0} the set Ω is

not Clarke regular at 0. Define ν− = (
√

2/2,
√

2/2) ∈ NΩ(x−), ν+ = (0, 1) ∈
NΩ(x+) and note

〈ν−, 0 − x−〉 = 0 and 〈ν+, 0 − x+〉 = 0 (2.43)

to show that Ω is (0,∞)−subregular at 0. By the use of these two inequalities
one now has

〈ν−, x+ − x−〉 = 〈ν−, x+〉 ≤
√

2/2 ‖x+‖ (2.44)

〈ν+, x− − x+〉 = 〈ν+, x−〉 ≤
√

2/2 ‖x−‖ (2.45)

and hence Ω is (
√
2
2 ,∞)-regular.

Remark 22 (Example 5 iv) revisited). The set

A := R× {0} ∪ {0} × R (2.46)

is a particularly easy pathological set that illustrates the distinction between
our new notion of subregularity and previous notions found in the literature.
Note that for x1 ∈ R × {0}, NA(x1) = NP

A (x1) = {0} × R and for for x2 ∈
{0} × R, NA(x2) = NP

A (x2) = R × {0} and that NA(0) = A and NP
A (0) = 0

which implies that at the origin A is not Clarke regular and therefore neither
super-regular nor prox-regular there. In fact, it is not even (ǫ, δ)-regular at the
origin for any ǫ < 1 and any δ > 0. The set A is, however, (0,∞)-subregular at
{0}. Indeed, for any x1 ∈ R×{0} one has ν1 ∈ NA(x1) = {0}×R and therefore
〈ν1, x1 − 0〉 = 0. Analogously for x2 ∈ {0} ×R, ν2 ∈ NA(x2) = R×{0} and it
follows that 〈ν2, x2 − 0〉 = 0, which shows that A is (0,∞)-subregular at 0. �

2.2 Projectors and Reflectors

We show in this section how (S, ε)(firm)-nonexpansiveness of projectors and
reflectors is a consequence of (sub)regularity of the underlying sets.

12



Theorem 23 (projectors and reflectors onto (ε, δ)-subregular sets). Let Ω ⊂
E be nonempty closed and (ε, δ)-subregular at x̂ with respect to S ⊆ Ω∩Bδ(x̂)
and define

U := {x ∈ E | PΩx ⊂ Bδ(x̂)} . (2.47)

(i) The projector PΩ is (S, ε̃1)-nonexpansive on U , that is,
(∀x ∈ U) (∀x+ ∈ PΩx) (∀x ∈ S)

‖x+ − x‖ ≤
√

1 + ε̃1 ‖x− x‖ (2.48)

where ε̃1 := 2ε + ε2.

(ii) The projector PΩ is (S, ε̃2)-firmly nonexpansive on Bδ(x̂), that is, (∀x ∈
U) (∀x+ ∈ PΩx) (∀x ∈ S)

‖x+ − x‖2 + ‖x− x+‖2 ≤ (1 + ε̃2) ‖x− x‖2 , (2.49)

where ε̃2 := 2ε + 2ε2.

(iii) The reflector RΩ is (S, ε̃3)-nonexpansive on Bδ(x̂), that is,
(∀x ∈ U) (∀x+ ∈ RΩx) (∀x ∈ S)

‖x+ − x‖ ≤
√

1 + ε̃3 ‖x− x‖ , (2.50)

where ε̃3 := 4ε + 4ε2.

Proof. (i) The projector is nonempty since Ω is closed. Then by the Cauchy-
Schwarz inequality

‖x+ − x‖2 =〈x− x, x+ − x〉 + 〈x+ − x, x+ − x〉 (2.51)

≤‖x− x‖ ‖x+ − x‖ + 〈x+ − x, x+ − x〉. (2.52)

Now for x ∈ U we have also that x+ ∈ Bδ(x̂) and thus, by the definition
of (ε, δ)-subregularity with respect to S, (∀x ∈ U) (∀x+ ∈ PΩx) (∀x ∈ S)

〈x+ − x, x+ − x〉 ≤ε ‖x− x+‖ ‖x+ − x‖ (2.53)

≤ε ‖x− x‖ ‖x+ − x‖ . (2.54)

Combining this with (2.52) yields (∀x ∈ U) (∀x+ ∈ PΩx) (∀x ∈ S)

‖x+ − x‖ ≤(1 + ε) ‖x− x‖ (2.55)

=
√

1 + (2ε + ε2) ‖x− x‖ (2.56)

(2.57)

as claimed.
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(ii) Expanding and rearranging the norm yields (∀x ∈ U) (∀x+ ∈ PΩx) (∀x ∈
S)

‖x+ − x‖2 + ‖x− x+‖2

= ‖x+ − x‖2 + ‖x− x + x− x+‖2

= ‖x+ − x‖2 + ‖x− x‖2 + 2〈x− x, x− x+〉 + ‖x+ − x‖2

= 2 ‖x+ − x‖2 + ‖x− x‖2 + 2 〈x+ − x, x− x+〉︸ ︷︷ ︸
=−‖x+−x‖2

+2 〈x− x+, x− x+〉︸ ︷︷ ︸
≤ε‖x−x+‖‖x+−x‖

≤ ‖x− x‖2 + 2ε ‖x+ − x‖ ‖x− x+‖ (2.58)

where the last inequality follows from the definition of (ε, δ)-subregularity
with respect to S. By definition, ‖x− x+‖ = d (x,Ω) ≤ ‖x− x‖. Com-
bining (2.58) and equation (2.48) yields (∀x ∈ U) (∀x+ ∈ PΩx) (∀x ∈ S)

‖x+ − x‖2 + ‖x− x+‖2 ≤ (1 + 2ε (1 + ε)) ‖x− x‖2 . (2.59)

(iii) By (ii) the projector is (S, 2ε + 2ε2)-firmly nonexpansive on U , and so
by Lemma 13 (ii) RΩ = 2PΩ − Id is (S, 4ε + 4ε2)-nonexpansive on U .

This completes the proof.

Note that ε̃1 < ε̃2 (ε > 0) in the above theorem, in other words, the degree
to which classical firm nonexpansiveness is violated is greater than the degree
to which classical nonexpansiveness is violated. This is as one would expect
since firm nonexpansiveness is a stronger property than nonexpansiveness.

We can now characterize the degree to which the Douglas-Rachford op-
erator violates firm-nonexpansiveness on neighborhoods of (ε, δ)-subregular
sets.

Theorem 24 ((S, ε̃)-firm nonexpansiveness of TDR). Let A,B ⊂ E be closed
and nonempty. Let A and B be (εA, δ)- and (εB , δ)-subregular respectively at
x̂ with respect to S ⊂ Bδ(x̂) ∩ (A ∩B). Let TDR : E ⇒ E be the Douglas-
Rachford operator defined by (1.6) and define

U := {z ∈ E | PBz ⊂ Bδ(x̂) and PARBz ⊂ Bδ(x̂)} . (2.60)

Then TDR is (S, ε̃)-firmly nonexpansive on U where

ε̃ = 2εA(1 + εA) + 2εB(1 + εB) + 8εA(1 + εA)εB(1 + εB). (2.61)

That is, (∀x ∈ U) (∀x+ ∈ TDRx) (∀x ∈ S)

‖x+ − x‖2 + ‖x− x+‖2 ≤ (1 + ε̃) ‖x− x‖2 . (2.62)
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Proof. Define UA := {z | PAz ⊂ Bδ(x̂)}. By Theorem 23(iii) (∀y ∈ UA) (∀x̃ ∈
RAy) (∀x ∈ S)

‖x̃− x‖ ≤
√

1 + 4εA(1 + εA) ‖y − x‖ . (2.63)

Similarly, define UB := {z | PBz ⊂ Bδ(x̂)} and again apply Theorem 23(iii)
to get (∀x ∈ UB) (∀y ∈ RBx) (∀x ∈ S)

‖y − x‖ ≤
√

1 + 4εB(1 + εB) ‖x− x‖ . (2.64)

Now, we choose any x ∈ UB such that RBx ∈ UA, that is x ∈ U , so that we
can combine (2.63)-2.64 to get (∀x ∈ U) (∀x̃ ∈ RARBx) (∀x ∈ S)

‖x̃− x‖ ≤
√

1 + 4εA(1 + εA)
√

1 + 4εB(1 + εB) ‖x− x‖ =
√

1 + 2ε̃ ‖x− x‖ .
(2.65)

Note that RARBx = RBx = x since x ∈ A ∩ B, so (2.65) says that the
operator T̃ := RARB is (S, ε̃)-nonexpansive on U . Hence by Lemma 13 TDR =
1
2

(
T̃ + I

)
is (S, 2ε̃)-firmly nonexpansive on U , as claimed.

If one of the sets above is convex, say B for instance, the constant ε̃
simplifies to ε̃ = 2εA(1 + εA) since B is (0,∞)-subregular at x.

3 Linear Convergence of Iterated (S, ε)-firmly

nonexpansive Operators

Our goal in this section is to establish the weakest conditions we can (at the
moment) under which the MAP and Douglas-Rachford algorithms converge
locally linearly. The notions of regularity developed in the previous section
are necessary, but not sufficient. In addition to regularity of the operators,
we need regularity of the fixed point sets of the operators. This is developed
next.

Despite its simplicity, the following Lemma is one of our fundamental tools.

Lemma 25. Let D ⊂ E, S ⊂ FixT , T : D ⇒ E and U ⊂ D. If

(a) T is (S, ε)-firmly nonexpansive on U and

(b) for some λ > 0, T satisfies the coercivity condition

‖x− x+‖ ≥ λd (x, S) ∀ x+ ∈ Tx, ∀x ∈ U. (3.1)

Then

d (x+, S) ≤
√

(1 + ε− λ2) d (x, S) ∀ x+ ∈ Tx, ∀x ∈ U. (3.2)
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Proof. For x ∈ U choose any x+ ∈ Tx, and define x := PSx. Combining
equations (3.1) and (2.17) yields

‖x+ − x‖2 + (λ ‖x− x‖)2
b)

≤ (3.3)

‖x+ − x‖2 + ‖x− x+‖2
a)

≤(1 + ε) ‖x− x‖2 , (3.4)

which immediately yields

‖x+ − x‖2 ≤(1 + ε− λ2) ‖x− x‖2 . (3.5)

Since x ∈ S by definition one has d (x+, S) ≤ ‖x+ − x‖. Inserting this in (3.5)
and using the fact ‖x− x‖ = d (x, S) then proves (3.2).

3.1 Regularity of Intersections of Collections of Sets

To this point, we have shown how the regularity of sets translates to the
degree of violation of (firm) nonexpansiveness of projection-based fixed point
mappings. What remains is to develop sufficient conditions for guaranteeing
(3.1). For this we define a new notion of regularity of collections of sets which
generalizes through localization two well-known concepts. The first concept,
which we call strong regularity of the collection, has many different names in
the literature, among them linear regularity [27]. We will use the term linear
regularity of the collection to denote the second key concept upon which we
build. Our generalization is called local linear regularity. Both terms “strong”
and “linear” are overused in the literature but we have attempted, at the risk
of some confusion, to conform to the usage that best indicates the heritage of
the ideas.

Definition 26 (strong regularity, Kruger [25]). A collection of m closed,
nonempty sets Ω1,Ω2, . . . ,Ωm is strongly regular at x if there exists an α > 0
and a δ > 0 such that

(∩m
i=1(Ωi − ωi − ai)) ∩ Bρ 6= ∅ (3.6)

for all ρ ∈ (0, δ], ωi ∈ Ωi ∩ Bδ(x), ai ∈ Bαρ, i = 1, 2, . . . ,m.

Theorem 27 (Theorem 1 [26]). A collection of closed, nonempty sets Ω1,
Ω2, . . . ,Ωm is strongly regular at x if and only if there exists a κ > 0 and a
δ > 0 such that

d
(
x,∩m

j=1(Ωj − xj)
)
≤ κ max

i=1,...,m
d (x + xi,Ωi) , ∀x ∈ Bδ(x), (3.7)

for all x ∈ Bδ(x), xi ∈ Bδ, i = 1, . . . ,m.
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Theorem 28 (Theorem 1 [25]). A collection of closed sets Ω1, Ω2,. . . , Ωm ⊂
E is strongly regular (3.6) at a point x ∈ ∩iΩi, if the only solution to the
system

m∑

i=1

vi = 0, with vi ∈ NΩi
(x) for i = 1, 2, . . . ,m (3.8)

is vi = 0 for i = 1, 2, . . . ,m. For two sets Ω1,Ω2 ⊂ E this can be written as

NΩ1
(x) ∩ −NΩ2

(x) = {0}, (3.9)

and is equivalent to the previous Definition (3.6).

Definition 29 (linear regularity). A collection of closed, nonempty sets Ω1,
Ω2, . . . , Ωm is locally linearly regular at x̂ ∈ ∩m

j=1Ωj on Bδ(x̂) (δ > 0) if there
exists a κ > 0 such that, for all x ∈ Bδ(x̂),

d
(
x,∩m

j=1Ωj

)
≤ κ max

i=1,...,m
d (x,Ωi) . (3.10)

The infimum over all κ such that (3.10) holds is called regularity modulus.
If there is a κ > 0 such that (3.10) holds for all δ > 0 (that is, for all x ∈ E)
the collection of sets is called linearly regular at x̂.

Remark 30. Since (3.10) is (3.7) with xj = 0 for all j = 1, 2, . . . ,m, it is clear
that strong regularity implies local linear regularity (for some δ > 0) and is
indeed a much more restrictive notion than local linear regularity. What we
are calling local linear regularity at x̂ has appeared in various forms elsewhere.
See for instance [22, Proposition 4], [31, Section 3], and [26, Equation (15)].
Compare this to (bounded) linear regularity defined in [5, Definition 5.6]. Also
compare this to the basic constraint qualification for sets in [30, Definition 3.2]
and strong regularity of the collection in [26, Proposition 2], also called linear
regularity in [27]. �

Remark 31. Based on strong regularity (more specifically, characterization
(3.9)) Lewis, Luke and Malick proved local linear convergence of MAP in the
nonconvex setting, where both sets A,B are closed and one of the sets is super-
regular [27]. This was refined later in [8]. The proof of convergence that will be
given in this work is different from the one used in [8,27] and more related to
the one in [5]. Convergence is achieved using (local) linear regularity (3.10),
which is described in [16, Theorem 4.5] as the precise property equivalent
to uniform linear convergence of the CPA (Cyclic projections algorithms).
However the rate of convergence achieved by the use of linear regularity is not
optimal, while the one in [8,27] is in some instances. An adequate description
of the relation between the direct/primal techniques used here and the dual
approach used in [8, 27] is a topic of future research. �

Theorem 32 (linear regularity of collections of convex cones). Let Ω1, Ω2,
. . . , Ωm be a collection of closed, nonempty, convex cones. The following
statements are equivalent
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(i) There is a δ > 0 such that the collection is locally linearly regular at
x̂ ∈ ∩m

j=1Ωj on Bδ(x̂).

(ii) The collection is linearly regular at x̂ ∈ ∩m
j=1Ωj

Proof. [5, Proposition 5.9]

Example 33 (Example 5 revisited.). The collection of sets in example 5 (i)
is strongly regular at 0 (c =

√
2/2) and linearly regular (κ =

√
2/4). The

same collection of sets embedded in a higher-dimensional space is still linearly
regular, but looses its strong regularity. This can be seen by shifting one
of the sets in example 5 (ii) in x3-direction, as this renders the intersection
empty. This shows that linear regularity does not imply strong regularity. The
collection of sets in example (iii) is neither strongly regular nor linearly regular.
The collection of sets in Example 5 (iv) is strongly regular at the intersection.
One has NB(0) = {(λ,−λ)| λ ∈ R} and by Remark 22 NA(0) = A and this
directly shows NA(0) ∩ −NB(0) = {0}. In example 5 (v) one of the sets is
nonconvex, but the collection of sets is still well-behaved in the sense that it
is both strongly and linearly regular. It is worth emphasizing, however, that
the set A in Example 5 (iv) is not Clarke regular at the origin. This illustrates
the fact that collections of classically “irregular” sets can still be quite regular
at points of intersection.

3.2 Linear Convergence of MAP

In the case of the MAP operator, the connection between local linear regularity
of the collection of sets and the coercivity of the operator with respect to the
intersection is natural, as the next result shows.

Proposition 34 (coercivity of the projector). Let A,B be nonempty and
closed subsets of E, x̂ ∈ S := A ∩ B and let the collection {A,B} be locally
linearly regular at x̂ on Bδ(x̂) with constant κ for some δ > 0. One has

‖x− x+‖ ≥γ d (x, S) ∀x+ ∈ PBx, ∀x ∈ A ∩ Bδ(x̂) (3.11)

where γ = 1/κ.

Proof. By the definition of the distance and the projector one has, for x ∈ A
and any x+ ∈ PBx,

‖x− x+‖ =d (x,B) (3.12)

= max



d (x,B) , d (x,A)︸ ︷︷ ︸

=0



 (3.13)

≥γ d (x, S) . (3.14)

The inequality follows by Definition 29 (local linear regularity at x̂ on Bδ(x̂)
with constant κ), since x ∈ Bδ(x̂).
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Theorem 35 (Projections onto a (ε, δ)-subregular set). Let A,B be nonempty
and closed subsets of E and let x̂ ∈ S := A ∩B. If

(a) B is (ε, δ)-subregular at x̂ with respect to S and

(b) the collection {A,B} is locally linearly regular at x̂ on Bδ(x̂)

then

d (x+, S) ≤
√

1 + ε̃− γ2 d (x, S) , ∀x+ ∈ PBx, ∀x ∈ U (3.15)

where γ = 1/κ with κ the regularity modulus on Bδ(x̂), ε̃ = 2ε + 2ε2 and

U ⊂ {x ∈ A ∩ Bδ(x̂) | PBx ⊂ Bδ(x̂)} . (3.16)

Proof. Since B is (ε, δ)-subregular at x̂ with respect to S one can apply The-
orem 23 to show that the projector PB is (S, 2ε+2ε2)-firmly nonexpansive on
U . Moreover, condition (b) and Proposition 34 yield

‖x+ − x‖ ≥ γd (x, S) ∀x+ ∈ PBx, ∀x ∈ U. (3.17)

Combining (a) and (b) and applying Lemma 25 then gives

d (x+, S) ≤
√

1 + 2ε̃− γ2d (x, S) , ∀x+ ∈ PBx, ∀x ∈ U. (3.18)

Corollary 36 (Projections onto a convex set [21] ). Let A and B be nonempty,
closed subsets of E. If

(a) the collection {A,B} is locally linearly regular at x̂ ∈ A ∩ B on Bδ(x̂)
with regularity modulus κ > 0 and

(b) B is convex

then

d (x+, S) ≤
√

1 − γ2 d (x, S) , ∀x+ ∈ PBx, ∀x ∈ A ∩ Bδ(x̂) (3.19)

where γ = 1/κ.

Proof. By convexity of B the projector PB is nonexpansive and it follows that
PBx ∈ Bδ(x̂) for all x ∈ Bδ(x̂). Saying that B is convex equivalent to saying
that B is (0,+∞)-regular and hence ε̃ = 0 in Theorem 35.

Corollary 37 (linear convergence of MAP). Let A,B be closed nonempty
subsets of E and let the collection {A,B} be locally linearly regular at x̂ ∈
S := A ∩B on Bδ(x̂) with regularity modulus κ > 0. Define γ := 1/κ and let
x0 ∈ A. Generate the sequence {xn}n∈N by

x2n+1 ∈ PBx2n and x2n+2 ∈ PAx2n+1 ∀n = 0, 1, 2, . . . . (3.20)

19



(a) If A and B are (ε, δ)−subregular at x̂ with respect to S and ε̃ := 2ε +
2ε2 ≤ γ2, then

d (x2n+2, S) ≤ (1 − γ2 + ε̃)d (x2n, S) ∀n = 0, 1, 2, . . . (3.21)

for all x0 ∈ Bδ/2(x̂) ∩A.

(b) If A is (ε, δ)−subregular with respect to S, B is convex and ε̃ := 2ε +
2ε2 ≤ (2γ − γ2)/(1 − γ2), then

d (x2n+2, S) ≤
√

1 − γ2 + ε̃
√

1 − γ2d (x2n, S) ∀n = 0, 1, 2, . . . ,
(3.22)

for all x0 ∈ Bδ/2(x̂) ∩A.

(c) If A and B are convex, then

d (x2n+2, S) ≤ (1 − γ2)d (x2n, S) ∀n = 0, 1, 2, . . . (3.23)

for all x0 ∈ Bδ(x̂) ∩A.

Proof. a) First one has to show that all iterates remain close to x̂ for x0 close
to x̂, that is, we have to show that all iterates remain in the set U defined by
(3.16). Note that for any x0 ∈ Bδ/2(x̂), and x1 ∈ PBx0 one has

‖x0 − x1‖ = d (x0, B) ≤ ‖x0 − x̂‖ .
since x̂ ∈ B. Thus

‖x1 − x̂‖ ≤ ‖x0 − x1‖ + ‖x0 − x̂‖ ≤ ‖x0 − x̂‖ + ‖x0 − x̂‖ ≤ δ, (3.24)

which shows that PBx0 ⊂ Bδ(x̂), ∀x0 ∈ Bδ/2(x̂). One can now apply Theorem
35 to conclude that

d (x1, S) ≤
√

1 − γ2 + ε̃ d (x0, S) . (3.25)

The last equation then implies that x1 ∈ Bδ/2(x̂) as long as γ2 ≥ ε̃ and
therefore the same argument can be applied to x1 to conclude that

d (x2, S) ≤
√

1 − γ2 + ε̃ d (x1, S) . (3.26)

Combining the last two equations (a) then follow by induction.
b) Applying Corollary 36 yields

d (x1, S) ≤
√

1 − γ2 d (x0, S) (3.27)

and analogous to a) note that (3.26) is still valid for ε̃ ≤ (2γ − γ2)/(1 − γ2).
By ε̃ ≤ (2γ − γ2)/(1 − γ2) it follows that

√
1 − γ2 + ε̃

√
1 − γ2 ≤

√
1 − γ2 + (2γ − γ2)/(1 − γ2)

√
1 − γ2 (3.28)

≤
√

1 − 2γ + γ2 + (2γ − γ2) (3.29)

≤1 (3.30)

and therefore by induction b).
c) is an immediate consequence of Corollary 36.
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3.3 Linear Convergence of Douglas-Rachford

We now turn to the Douglas-Rachford algorithm. This algorithm is noto-
riously difficult to analyze and our results reflect this in considerably more
circumscribed conditions than are required for the MAP algorithm. Nev-
ertheless, to our knowledge the following convergence results are the most
general to date. The first result gives sufficient conditions for the coercivity
condition (3.1) to hold.

Lemma 38. Let the collection of closed subsets A,B of E be locally linearly
regular at x̂ ∈ S := A ∩ B on Bδ(x̂) with constant κ > 0 for some δ > 0.
Suppose further that B is a subspace and that for some constant c ∈ (0, 1) the
following condition holds:

x ∈ Bδ(x̂), y = PBx,
z ∈ PA(2y − x)

and
u ∈ NA(z) ∩ B

v ∈ NB(y) ∩ B

}
⇒ 〈u, v〉 ≥ −c. (3.31)

Then TDR satisfies

‖x− x+‖ ≥
√

1 − c

κ
d (x, S) ∀x+ ∈ TDRx, ∀ x ∈ U, (3.32)

where

U ⊂ {x ∈ Bδ(x̂)| PARBx ⊂ Bδ(x̂)} . (3.33)

Proof. In what follows we will use the notation RBx for 2y−x with y = PBx
which is unambiguous, if a slight abuse of notation, since B is convex. We
will use (3.31) to show that for all x ∈ U with y = PBx and z ∈ PARBx:

‖x− x+‖2 = ‖z − y‖2

≥ (1 − c)
[
‖z −RBx‖2 + ‖RBx− y‖2

] (3.34)

We will then show that, for all x ∈ U with y = PBx and z ∈ PARBx

‖z −RBx‖2 + ‖RBx− y‖2 ≥ 1

κ2
d (RBx, S)2 . (3.35)

Combining inequalities (3.34) and (3.35) yields

‖x− x+‖2 ≥
1 − c

κ2
d (RBx, S)2 ∀ x ∈ U. (3.36)

Let x̃ ∈ PS(RBx) and note that d (RBx, S) = ‖RBx − x̃‖. Since B is a
subspace, by (1.22) one has d (RBx, S) = ‖RBx − x̃‖ = ‖x − x̃‖. Moreover,
‖x− x̃‖ ≥ miny∈S ‖x− y‖ = d (x, S), hence

‖x− x+‖ ≥
√

1 − c

κ
d (x, S) ∀ x ∈ U (3.37)
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as claimed.
What remains is to prove (3.34) and (3.35) for all x ∈ U with y = PBx

and z ∈ PARBx.
Proof of (3.34). Using Lemma 10 equation (2.2) one has for x ∈ Bδ(x̂) with
y = PBx and z ∈ PARBx

‖x− x+‖2 = ‖z − y‖2

= ‖z −RBx + RBx− y‖2

= ‖z −RBx‖2 + ‖RBx− y‖2 + 2〈z −RBx︸ ︷︷ ︸
∈−NA(z)

, RBx− y︸ ︷︷ ︸
=y−x∈−NB(y)

〉

(3.31)

≥ ‖z −RBx‖2 + ‖RBx− y‖2 − 2c ‖z −RBx‖ ‖RBx− y‖
=(1 − c)

[
‖z −RBx‖2 + ‖RBx− y‖2

]

+ c
[
‖z −RBx‖2 − 2 ‖z −RBx‖ ‖RBx− y‖ + ‖RBx− y‖2

]

=(1 − c)
[
‖z −RBx‖2 + ‖RBx− y‖2

]

+ c [‖z −RBx‖ − ‖RBx− y‖]2 (3.38)

≥(1 − c)
[
‖z −RBx‖2 + ‖RBx− y‖2

]
.

△

Proof of (3.35). First note that if x ∈ Bδ(x̂), since B is a subspace, by equation
(1.22) RBx ⊂ Bδ(x̂) and by convexity of Bδ(x̂) it follows that y = PBx ⊂ Bδ(x̂)
and hence (3.31) is localized to Bδ(x̂) (to which the dividends of linear regu-
larity of the intersection extend) as long as PARBx ⊂ Bδ(x̂), that is, as long
as x ∈ U . By definition of the projector ‖RBx− y‖ ≥ ‖RBx− PB(RBx)‖.
Local linear regularity at x̂ with radius δ and constant κ yields for x ∈ U with
y = PBx and z ∈ PARBx

‖z −RBx‖2 + ‖RBx− y‖2 ≥‖z −RBx‖2 + ‖RBx− PBRBx‖2

=d (RBx,A)2 + d (RBx,B)2

(3.10)

≥ 1

κ2
d (RBx, S)2 (3.39)

This completes the proof of (3.35) and the Theorem.

Remark 39. The coercivity constant in equation (3.32) is not tight, even
if κ were chosen to the the regularity modulus of the intersection. Re-
member, by linearity, that y = PBx = PBRBx. In line (3.38) we use
the inequality [‖z −RBx‖ − ‖RBx− y‖]2 ≥ 0 while we use ‖z −RBx‖2 +
‖RBx− y‖2 ≥ max{‖z −RBx‖2 , ‖RBx− y‖2} in line (3.39). If the first in-
equality is tight then this is the worst possible result in the second inequality,
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since ‖z −RBx‖ = ‖RBx− y‖, that is, this second inequality is satisfied not
only strictly, but the inequality is as large as it can possibly be. On the
other hand if the second inequality is tight this means ‖z −RBx‖2 = 0 or
‖RBx− y‖2 = 0 and this means that the first inequality is strict. In any
event, it is impossible to achieve equality in the argumentation of the proof.
This is a technical limitation of the logic of the proof and does not preclude
improvements. �

Lemma 38 with the added assumption of (ǫ, δ)-regularity of the nonconvex
set yields local linear convergence of the Douglas-Rachford algorithm in this
special case.

Theorem 40. Let the collection of closed subsets A,B of E be locally linearly
regular at x̂ ∈ S := A ∩ B on Bδ(x̂) with constant κ > 0 for some δ > 0.
Suppose further that B is a subspace and that A is (ε, δ)-regular at x̂ with
respect to S. Assume that for some constant c ∈ (0, 1) the following condition
holds:

z ∈ A ∩ Bδ(x̂), u ∈ NA(z) ∩ B

y ∈ B ∩ Bδ(x̂), v ∈ NB(y) ∩ B

}
⇒ 〈u, v〉 ≥ −c. (3.40)

If x ∈ Bδ/2(x̂) then

d (x+, S) ≤
√

1 + ε̃− η d (x, S) ∀ x+ ∈ TDRx (3.41)

with η := (1−c)
κ2 and ε̃ = 2ε + 2ε2.

Proof. First one has to show requirement (3.33). Since x̂ ∈ A∩B note that for
any x ∈ Bδ/2(x̂) for all z ∈ PARBx by Definition ‖z −RBx‖ = d (RBx,A) ≤
‖RBx− x̂‖ and by (1.22) ‖RBx− x̂‖ = ‖x− x̂‖ holds. This now implies

‖z − x̂‖ ≤ ‖z −RBx‖ + ‖RBx− x̂‖ ≤ 2‖x− x̂‖ ≤ δ, (3.42)

and therefore z ∈ Bδ(x̂).
Now for B a subspace (3.40) and (3.31) are equivalent, and so by Lemma

38 the coercivity condition (3.1)

‖x− x+‖ ≥
√

1 − c

κ
d (x, S) (3.43)

is satisfied on Bδ/2(x̂). Moreover, since A is (ε, δ)-regular and B is (0,∞)-
regular, by Theorem 24 TDR is (S, ε̃)-firmly nonexpansive with ε̃ = 2ε(1 + ε),
that is (∀x ∈ Bδ/2(x̂)) (∀x+ ∈ TDRx) (∀x ∈ S)

‖x+ − x‖2 + ‖x− x+‖2 ≤ (1 + ε̃) ‖x− x‖2 . (3.44)

Lemma 25 then applies to yield (∀x ∈ Bδ/2(x̂)) (∀x+ ∈ TDRx)

d (x+, S) ≤
√

1 + ε̃− η d (x, S) (3.45)

where η := 1−c
κ2 .
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The next lemma establishes sufficient conditions under which (3.40) holds.

Lemma 41 ( [27] Theorem 5.16). Assume B ⊂ E is a subspace and that
A ⊂ E is closed and super-regular at x̂ ∈ A ∩ B. If the collection {A,B} is
strongly regular at x̂, then there is a δ > 0 and a constant c ∈ (0, 1) such that
(3.40) holds on Bδ(x̂).

Proof. Condition (3.31) can be shown using (3.9). For more details see [27].

We summarize this discussion with the following convergence result for
the Douglas-Rachford algorithm in the case of an affine subspace and a super-
regular set.

Theorem 42. Assume B ⊂ E is a subspace and that A ⊂ E is closed and
super-regular at x̂ ∈ S := A ∩ B. If the collection {A,B} is strongly linearly
regular at S, then there is a δ > 0 such that,

(1 − c)

κ2
> 2ε + 2ε2 (3.46)

and hence

d (x+, S) ≤ c̃ d (x, S) ∀ x+ ∈ TDRx, (3.47)

with c̃ =
√

1 + 2ε + 2ε2 − (1−c)
κ2 < 1 for all x ∈ Bδ/2(x̂).

Proof. Strong regularity of the collection implies linear regularity with con-
stant κ on Bδ1(x̂) (see Remark 30). Lemma 41 guaranties the existence of
constants δ2 > 0 and c ∈ (0, 1) such that (3.40) holds on Bδ2(x̂). Now,
by super-regularity at x̂, for any ε there exists a δ3 such that A is (ε, δ3)-
subregular at x̂. In other words, for c and κ determined by the regularity of
the collection {A,B} at x̂, we can always choose ε (generating a corresponding
δ3 radius) so that (3.46) is satisfied on Bδ3(x̂). Then for δ := min {δ1, δ2, δ3},
the requirements of Theorem 40 are satisfied on Bδ(x̂), which completes the
proof of linear convergence on Bδ/2(x̂).

Remark 43. The example Example 5 (v) has been studied by Borwein and
coauthors [1, 10] where they achieve global characterizations of convergence
with rates. Our work does not directly overlap with [1,10] since our results are
local, and the order of the reflectors is reversed: we must reflect first across
the subspace, then reflect across the nonconvex set; Borwein and coauthors
reflect first across the circle. �
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3.4 Douglas-Rachford on Subspaces

We finish this section with the fact that strong regularity of the intersection
is necessary, not just sufficient for convergence of the iterates of the Douglas-
Rachford algorithm to the intersection in the affine case.

Corollary 44. Let A,B be two affine subspaces with A ∩ B 6= ∅. Douglas-
Rachford converges for any starting point x0 ∈ E with linear rate to the in-
tersection A ∩B if and only if A⊥ ∩B⊥ = {0}.

Proof. Without loss of generality for x̂ ∈ A∩B by shifting the subspaces by x̂
we consider the case of linear subspaces. By (3.9), on subspaces the condition
A⊥ ∩B⊥ = {0} is equivalent to strong regularity of the collection {A,B} .

If the intersection is strongly regular and A and B are subspaces, then
the requirements of Theorem 42 are globally satisfied, so Douglas-Rachford
converges with linear rate

c̃ =

√
1 − (1 − c)

κ2
< 1 (3.48)

where c ∈ [0, 1) (compare (3.31)) now becomes

c = max〈u, v〉, u ∈ A⊥, ‖u‖ = 1, v ∈ B⊥, ‖v‖ = 1, (3.49)

and κ is an associated global constant of linear regularity (see Theorem 32).
On the other hand for x̂ ∈ A∩B by [7, Thm 3.5] we get the characterization

Fix TDR =(A ∩B) + NA−B(0) (3.50)

=(A ∩B) + (NA(x̂) ∩ −NB(x̂)) (3.51)

=(A ∩B) + A⊥ ∩B⊥. (3.52)

and so the fix point set of TDR does not coincide with the intersection unless
the collection {A,B} is strongly regular. In other words, if the intersection
is not strongly regular, then convergence to the intersection cannot be linear,
thus proving the reverse implication by the contrapositive.

Remark 45 (Friedrichs angle [18]). We would like to make a final remark about
connection between the notion of the angle of the sets at the intersection and
the regularity of the collection of sets at points in the intersection. The
operative notion of angle is the Friedrichs angle. For two subspaces A and B
the Friedrichs angle is the angle α(A,B) in [0, π/2] whose cosine is defined by

cF (A,B) := sup

{
|〈x, y〉|

∣∣∣∣
x ∈ A ∩ (A ∩B)⊥, ‖x‖ ≤ 1,
y ∈ B ∩ (A ∩B)⊥, ‖y‖ ≤ 1.

}
(3.53)

The Friedrichs angle being less than 1 is not sufficient for convergence of
Douglas-Rachford. This can be seen by example 5 (ii). The Friedrichs angle
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in this example is the same as in 5 (i), but for x0 /∈ R
2 × {0} the Douglas-

Rachford algorithm does not converge to {0} = A ∩ B. Another interesting
observation is that if, on the other hand, A⊥∩B⊥ = {0} then (A⊥∩B⊥)⊥ = E

which implies that cF (A⊥, B⊥) coincides with (3.49) and by [14, Theorem
2.16] cF (A⊥, B⊥) then coincides with cF (A,B). So if the Douglas-Rachford
algorithm on subspaces converges linearly, then the rate of convergence is
dependent on the Friedrichs angle. A detailed analysis regarding the relation
between the Friedrichs angle and linear convergence of MAP can be found
in [16,17]. �

4 Concluding Remarks

In the time that has passed since first submitting our manuscript for pub-
lication we learned about an optimal linear convergence result for Douglas-
Rachford applied to ℓ1 optimization with an affine constraint using different
techniques [13]. The modulus of linear regularity does not recover optimal
convergence results (see Remark 31), but we suspect this is an artifact of our
proof technique. The question remains whether there is a quantitative primal
definition of a angle between two sets that recovers the same results for MAP
as [8]. This could also be useful to achieve optimal linear convergence results
for Douglas-Rachford in general. Also, as we noted in the introduction, it
is well-known that the fixed-point set of the Douglas-Rachford operator is in
general bigger than the intersection of the sets, and Corollary 44 stating that
the iterates converge to the intersection if and only if the collection of sets is
strongly regular is a consequence of this. In the convex case, the shadows of
the iterates still converge. We leave a fuller investigation of the shadows of the
iterates and the angles between the sets at the intersection in the nonconvex
setting to future work.

Another direction of future work will be to extend this analysis more gener-
ally to fixed point mappings built upon functions and more general set-valued
mappings, but also in particular proximal operators and reflectors. The gen-
erality of our approach makes such extensions quite natural. Indeed, local
linear regularity of collections of sets can be shown to be related to strong
metric subregularity of set-valued mappings which guarantees that the condi-
tion (3.1) of Lemma 25 is satisfied. Of course, the difficulty remains to show
that the the mappings are indeed metrically subregular.
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