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In this paper, we generalize the algorithm described by Rump and Graillat,
as well as our previous work on certifying breadth-one singular solutions
of polynomial systems, to compute verified and narrow error bounds such
that a slightly perturbed system is guaranteed to possess an isolated sin-
gular solution within the computed bounds. Our new verification method
is based on deflation techniques using smoothing parameters. We demon-
strate the performance of the algorithm for systems with singular solutions
of multiplicity up to hundreds.

1 Introduction

It is a challenge problem to solve polynomial systems with singular solutions.
In [28], Rall studied some convergence properties of Newton’s method for
singular solutions, and many modifications of Newton’s method to restore
the quadratic convergence for singular solutions have been proposed in [1,
5, 6, 7, 11, 12, 13, 25, 27, 29, 30, 34, 38]. Recently, some symbolic-numeric
methods have also been proposed for refining approximate isolated singular
solutions to high accuracy [2, 3, 4, 9, 10, 17, 18, 19, 23, 36, 37]. In [21, 22],
we described an algorithm based on the regularized Newton iterations and
the computation of differential conditions satisfied at given approximate
singular solutions to compute isolated singular solutions accurately to the
full machine precision when its Jacobian matrix has corank one (the breadth-
one case).

Since arbitrary small perturbations of coefficients may transform an iso-
lated singular solution into a cluster of simple roots or even make it disap-
pear, it is more difficult to certify that a polynomial system or a nonlinear
system has a multiple root, if not the entire computation is performed with-
out any rounding error.

In [33], by introducing a smoothing parameter, Rump and Graillat de-
scribed a verification method for computing guaranteed (real or complex)
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error bounds such that a slightly perturbed system is proved to have a double
root within the computed bounds. In [20], by adding a perturbed univariate
polynomial in one selected variable with some smoothing parameters to one
selected equation of the original system, we generalized the algorithm in [33]
to compute guaranteed error bounds, such that a slightly perturbed system
is proved to possess an isolated singular solution whose Jacobian matrix has
corank one within the computed bounds.

In [23], Mantzaflaris and Mourrain proposed a one-step deflation method,
and by applying a well-chosen symbolic perturbation, they verified a multiple
root of a nearby system with a given multiplicity structure, which depends
on the accuracy of the given approximate singular solution. The size of the
deflated system is equal to the multiplicity times the size of the original
system, which might be large (e.g. DZ1 and KSS in Table 1).

In [39], based on deflated square systems proposed by Yamamoto in [38],
Kanzawa and Oishi presented a numerical method for proving the existence
of “imperfect singular solutions” of nonlinear equations with guaranteed ac-
curacy. In [38], if the second-order deflation is applied, then smoothing
parameters are added not only to the original system but also to differential
systems independently (see (20)). Therefore, one can only prove the exis-
tence of an isolated solution of a slightly perturbed system which satisfies
the first-order differential condition approximately.

In [8, 14, 15], Kearfott et al. presented completely different and ex-
tremely interesting methods based on verifying a nonzero topological degree
to certify the existence of singular zeros of nonlinear systems.

Main contribution Suppose a polynomial system F and an approximate
singular solution are given. Stimulated by our previous work on certifying
breadth-one singular solutions [20], we show firstly that the number of de-
flations used by Yamamoto to obtain a regular system is bounded by the
depth of the singular solution. Then we show how to move the independent
perturbations in the first-order differential system (20) appeared in [38] back
to the original system. We prove that the modified deflations will terminate
after a finite number of steps which is bounded by the depth as well, and
return a regular and square augmented system, which can be used to prove
the existence of an isolated singular solution of a slightly perturbed sys-
tem exactly, see Theorem 3.7 and 3.8. Finally, we present an algorithm for
computing verified (real or complex) error bounds, such that a slightly per-
turbed system is guaranteed to possess an isolated singular solution within
the computed bounds. The algorithm has been implemented in Maple and
Matlab, and narrow error bounds of the order of the relative rounding error
are computed efficiently for examples given in literature.
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Structure of the paper Section 2 is devoted to recall some notations and
well-known facts. In Section 3, we present a new deflation method by adding
smoothing parameters properly to the original system, which will return
a regular and square augmented system within a finite number of steps
bounded by the depth. In Section 4, we propose an algorithm for computing
verified (real or complex) error bounds, such that a slightly perturbed system
is guaranteed to possess an isolated singular solution within the computed
bounds. Some numerical results are given to demonstrate the performance
of our algorithm in Section 5.

2 Preliminaries

Let F = {f1, . . . , fn} be a polynomial system in C[x] = C[x1, . . . , xn] and
I ∈ C[x] be the ideal generated by polynomials in F .

Definition 2.1 An isolated solution of F (x) = 0 is a point x̂ ∈ C
n which

satisfies:

for a small enough ε > 0 : {y ∈ C
n : ‖y − x̂‖ < ε} ∩ F−1(0) = {x̂}.

Definition 2.2 We call x̂ a singular solution of F (x) = 0 if and only if

rank(Fx(x̂)) < n, (1)

where Fx(x) is the Jacobian matrix of F (x) with respect to x.

Definition 2.3 Let Qx̂ be the isolated primary component of the ideal I =
(f1, . . . , fn) whose associate prime is mx̂ = (x1 − x̂1, . . . , xn − x̂n), then the
multiplicity µ of x̂ is defined as µ = dim(C[x]/Qx̂), and the index ρ of x̂ is
defined as the minimal nonnegative integer ρ such that mρ

x̂
⊆ Qx̂ [35].

Let dα
x̂ : C[x] → C denote the differential functional defined by

dα
x̂(g) =

1

α1! · · ·αn!
· ∂|α|g

∂xα1
1 · · · ∂xαn

n
(x̂), ∀g(x) ∈ C[x], (2)

for a point x̂ ∈ C
n and an array α ∈ N

n. The normalized differentials have
a useful property: when x̂ = 0, we have dα

0(x
β) = 1 if α = β or 0 otherwise.

Definition 2.4 The local dual space of I at x̂ is the subspace of elements
of Dx̂ = SpanC{dα

x̂, α ∈ N
n} that vanish on all the elements of I

Dx̂ := {Λ ∈ Dx̂ | Λ(f) = 0, ∀f ∈ I}. (3)
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It is clear that dim(Dx̂) = µ and the maximal degree of an element Λ ∈ Dx̂

is equal to the index ρ− 1, which is also known as the depth of Dx̂.
A singular solution x̂ of a square system F (x) = 0 satisfies equations

{
F (x) = 0,

det(Fx(x)) = 0.
(4)

The above augmented system forms the basic idea for the deflation method
[25, 26, 27]. But the determinant is usually of high degree, so it is numerically
unstable to evaluate the determinant of the Jacobian matrix.

In [18], Leykin et al. modified (4) by adding new variables and equations.
Let r = rank(Fx(x̂)), then there exists a unique vector λ̂ = (λ̂1, λ̂2 . . . , λ̂r+1)

T

such that (x̂, λ̂) is an isolated solution of





F (x) = 0,
Fx(x)Bλ = 0,

hT
λ = 1,

(5)

where B ∈ C
n×(r+1) is a random matrix, h ∈ C

r+1 is a random vector and
λ is a vector consisting of r + 1 extra variables λ1, λ2 . . . , λr+1. If (x̂, λ̂)
is still a singular solution of (5), the deflation is repeated. Furthermore,
they proved that the number of deflations needed to derive a regular root
of an augmented system is strictly less than the multiplicity of x̂. Dayton
and Zeng showed that the depth of Dx̂ is a tighter bound for the number of
deflations [4].

Let IR be the set of real intervals, and IR
n and IR

n×n be the set of
real interval vectors and real interval matrices, respectively. Standard veri-
fication methods for nonlinear systems are based on the following theorem
[16, 24, 31].

Theorem 2.5 Let F (x) : Rn → R
n be a polynomial system, and x̃ ∈ R

n.
Given X ∈ IR

n with 0 ∈ X and M ∈ IR
n×n satisfies ∇fi(x̃+X) ⊆ Mi,:, for

i = 1, . . . , n. Denote by I the n× n identity matrix and assume

− F−1
x (x̃)F (x̃) + (I − F−1

x (x̃)M)X ⊆ int(X). (6)

Then there is a unique x̂ ∈ X with F (x̂) = 0. Moreover, every matrix M̃ ∈
M is nonsingular. In particular, the Jacobian matrix Fx(x̂) is nonsingular.

Naturally the non-singularity of the Jacobian matrix Fx(x̂) restricts the
application of Theorem 2.5 to regular solutions of square systems. Notice
that Theorem 2.5 is valid mutatis mutandis over complex numbers as well.
Next we will use this theorem to derive a verification method to prove the
existence of an isolated singular solution of a slightly perturbed system.
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3 A Square and Regular Augmented System

Let a polynomial system F = {f1, . . . , fn} ∈ C[x] be given and x̂ = (x̂1, . . . , x̂n)
is an isolated singular solution satisfying F (x̂) = 0.

The augmented systems (4) and (5) have been used to restore the quadratic
convergence of Newton’s method. But notice that these extended sys-
tems are always over-determined, which are not applicable by Theorem 2.5.
Hence, a natural thought of modifications is, whether we could add several
smoothing parameters to derive a square system with a nonsingular Jacobian
matrix.

In [38], by introducing smoothing parameters, Yamamoto derived square
deflated systems. These systems were used successfully by Kanzawa and
Oishi in [39] to certify the existence of “imperfect singular solutions” of
polynomial systems. However, for isolated singular solutions with high sin-
gularities, the smoothing parameters are added not only to the original
system but also to differential systems independently (see (20)). Therefore,
according to (21), one can only prove the existence of an isolated solution
of a slightly perturbed system which satisfies the first-order differential con-
dition approximately.

In the following, we rewrite the deflation techniques in [38] in our setting,
and prove that the number of deflations needed to obtain a regular system is
bounded by the depth of Dx̂, see Theorem 3.2. Then we show how to lift the
independent perturbations in the first-order differential system appeared in
(20) back to the original system. We prove that the modified deflations will
terminate after a finite number of steps bounded by the depth of Dx̂ as well,
and return a regular and square augmented system, which can be used to
verify the existence of an isolated singular solution of a slightly perturbed
system exactly, see Theorem 3.7 and 3.8.

3.1 The first-order deflation

Let x̂ ∈ C
n be an isolated singular solution of F (x) = 0, and

rank(Fx(x̂)) = n− d, (1 < d ≤ n). (7)

Let c = {c1, c2, . . . , cd} (1 ≤ c1 ≤ c2 ≤ . . . ≤ cd ≤ n) and F c
x(x̂) be obtained

from Fx(x̂) by deleting its c1, c2, . . . , cd-th columns which satisfies

rank(F c
x (x̂)) = n− d. (8)

There exists a positive-integer set k = {k1, k2, . . . , kd} such that

rank(F c
x (x̂), Ik) = n, (9)

where
Ik = (ek1 , ek2 , . . . , ekd), (10)
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and eki is the ki-th unit vector of dimension n.
Similar to the augmented system (2.34) in [38], we introduce d smoothing

parameters b0 = (b1, b2, . . . , bd)
T and consider the following square system

G(x,λ1,b0) =

{
F (x)−∑d

i=1 bieki = 0,
Fx(x)v1 = 0,

(11)

where v1 is a vector consisting of n−d extra variables λ1 = (λ1, λ2, . . . , λn−d)
T

and its entries at the positions c1, c2, . . . , cd are fixed to be 1 rather than
random nonzero numbers used in [38]. According to (8), the rank of F c

x (x̂)
is n − d, the linear system Fx(x̂)v1 = 0 has a unique solution, denoted by
λ̂1. Therefore, (x̂, λ̂1,0) is an isolated solution of (11). If (x̂, λ̂1,0) is still a
singular solution, as proposed in [38], the deflation process mentioned above
is repeated to the first-order deflated system G and the solution (x̂, λ̂1,0).

Note that Yamamoto did not prove explicitly the termination of the
above-mentioned deflation process. Motivated by the results in [18, 4], we
show below that the number of deflations needed to derive a regular and
square augmented system is also bounded by the depth of Dx̂.

Let h = (0, . . . , 0︸ ︷︷ ︸
n−d

, 1)T , λ = (λ1, . . . , λn−d, λn−d+1)
T and

B = (ê1, . . . , ên−d+1
c1

, . . . , ên−d+1
cd

, . . . , ên−d)
T ∈ C

n×(n−d+1),

where êi is the i-th unit vector of dimension n−d+1. Then the augmented
system (5) used in [18] is equivalent to

G̃(x,λ1) =

{
F (x) = 0,

Fx(x)v1 = 0,
(12)

which has an isolated solution at (x̂, λ̂1), and the Jacobian matrix of G̃(x,λ1)
at (x̂, λ̂1) is

G̃x,λ1(x̂, λ̂1) =

(
Fx(x̂) On,n−d

Fxx(x̂)v̂1 F c
x(x̂)

)
, (13)

where Oi,j denotes the i × j zero matrix and Fxx(x) is the Hessian matrix
of F (x). On the other hand, the Jacobian matrix of G(x,λ1,b0) computes
to

Gx,λ1,b0(x̂, λ̂1,0) =

(
Fx(x̂) On,n−d −Ik

Fxx(x̂)v̂1 F c
x (x̂) On,d

)
. (14)

Lemma 3.1 The null spaces of the Jacobian matrices (13) and (14) satisfy

Null
(
Gx,λ1,b0(x̂, λ̂1,0)

)
=

{(
y

0

)
∈ C

2n | y ∈ Null
(
G̃x,λ1(x̂, λ̂1)

)}
.
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Proof. If y ∈ Null
(
G̃x,λ1(x̂, λ̂1)

)
then

(
y

0

)
∈ Null

(
Gx,λ1,b0(x̂, λ̂1,0)

)
.

Suppose

(
y

z

)
is a null vector of Gx,λ1,b0(x̂, λ̂1,0). We divide y into

(
y1

y2

)
corresponding to the blocks Fx(x̂) and On,n−d. Therefore, we have

Fx(x̂)y1 − Ikz = 0.

By (9), we have
rank(F c

x (x̂),−Ik) = n.

It is clear that z must be a zero vector. �

If (x̂, λ̂1) is still an isolated singular solution of the deflated system (12),
as proposed in [18], the deflation process is repeated for G̃(x,λ1) and (x̂, λ̂1).
Then as shown in [4], if the s-th deflated system is singular, there exists at
least one differential functional of the order s+1 in Dx̂. However, the order
of differential functionals in Dx̂ is bounded by its depth which is equal to
ρ − 1. Therefore, after at most ρ − 1 steps of deflations, one will obtain
a regular deflated system, i.e., the corank of the Jacobian matrix of the
deflated system will be zero.

As a consequence, based on Lemma 3.1, we claim the finite termination
of Yamamoto’s deflation method.

Theorem 3.2 The number of Yamamoto’s deflations needed to derive a
regular solution of a square augmented system is bounded by the depth of
Dx̂.

Proof. By Lemma 3.1, we have

corank
(
G̃x,λ1(x̂, λ̂1)

)
= corank

(
Gx,λ1,b0(x̂, λ̂1,0)

)
. (15)

Therefore, the smoothing parameters we added in the deflated system (11)
do not change rank-deficient information of the Jacobian matrix of the de-

flated system (12). If corank
(
G̃x,λ1(x̂, λ̂1)

)
= corank

(
Gx,λ1,b0(x̂, λ̂1,0)

)
>

0, then we repeat the deflation steps to (11) and (12) accordingly. Induc-
tively, we know that coranks of Jacobian matrices of two different kinds of
deflated systems remain equal at every step. Moreover, we have shown that,
after as most ρ− 1 steps, the corank of the Jacobian matrix of the deflated
system corresponding to (12) will become zero. Therefore, the deflated sys-
tem corresponding to (11) will also become regular after at most ρ−1 steps.
�
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3.2 The second-order deflation

Suppose the Jacobian matrix Gx,λ1,b0(x̂, λ̂1,0) is singular, i.e.,

rank(Gx,λ1,b0(x̂, λ̂1,0)) = 2n− d′, (d′ ≥ 1). (16)

Let c′ = {c′1, c′2, . . . , c′d′} and k′ = {k′1, k′2, . . . , k′d′} be two positive-integer
sets such that

rank(Gc′

x,λ1,b0
(x̂, λ̂1,0)) = 2n− d′, (17)

rank
(
Gc′

x,λ1,b0
(x̂, λ̂1,0), Ik′+n

)
= 2n, (18)

whereGc′

x,λ1,b0
(x̂, λ̂1,0) is a matrix obtained fromGx,λ1,b0(x̂, λ̂1,0) by delet-

ing its c′1, c
′
2, . . . , c

′
d′-th columns, and

Ik′+n =

(
On,d′

Ik′

)
, Ik′ = (ek′1 , ek′2 , . . . , ek′d′

). (19)

Theorem 3.3 Comparing to Fx(x̂), the corank of Gx,λ1,b0(x̂, λ̂1,0) does
not increase, i.e., d′ ≤ d. Moreover, we can choose c′ and k′ such that
c′ ⊆ c, k′ ⊆ k and satisfy (17) and (18) respectively.

Proof. Let

Gc
x,λ1,b0

(x̂, λ̂1,0) =

(
F c
x (x̂) On,n−d −Ik
⋆ F c

x(x̂) On,d

)
,

be the matrix obtained fromGx,λ1,b0(x̂, λ̂1,0) by deleting its c1, c2, . . . , cd-th
columns. By (8) and (9) we claim that

rank(Gc
x,λ1,b0

(x̂, λ̂1,0)) = 2n− d.

Hence d′ ≤ d. Besides there exists a positive-integer set c′ ⊆ c such that
the condition (17) is satisfied.

According to (9), it is clear that

rank(Gc
x,λ1,b0

(x̂, λ̂1,0), Ik+n) = 2n,

where Ik+n =

(
On,d

Ik

)
. Hence we can choose k′ ⊆ k such that the condi-

tion (18) is satisfied. �

If d′ ≥ 1, then Yamamoto repeated the first-order deflation toG(x,λ1,b0)
defined by (11). By Theorem 3.3, we notice that Yamamoto’s second-order
deflation is equivalent to adding d′ new smoothing parameters denoted by
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b1 to the first-order differential system Fx(x)v1 = 0, to derive a square
system

H(x,λ,b) =





F (x)− Ikb0 = 0,
Fx(x)v1 − Ik′b1 = 0,

Gx,λ1,b0(x,λ1,b0)v2 = 0,
(20)

where v2 is a vector consisting of 2n−d′ extra variables λ2 and its entries at
the positions c′1, c

′
2, . . . , c

′
d′ are all 1, and b = (bT

0 ,b
T
1 )

T , λ = (λT
1 ,λ

T
2 )

T . Let

λ̂2 denote the unique solution of the linear system Gx,λ1,b0(x̂, λ̂1,0)v2 = 0,

then (x̂, λ̂,0) is an isolated solution of (20).
Suppose Theorem 2.5 is applicable to the deflated system H(x,λ,b),

and yields inclusions for x̂, λ̂, b̂0 and b̂1. Then we have

F̃ (x̂) = F (x̂)− Ikb̂0 = 0 and F̃x(x̂)v̂1 = Fx(x̂)v̂1 = Ik′ b̂1, (21)

where smoothing parameters b̂1 might be very small, but are not guaranteed
to be zeros. Therefore, one can only prove the existence of an isolated solu-
tion x̂ of a perturbed system F̃ (x), which satisfies the first-order differential
condition approximately.

In order to verify the existence of an isolated singular solution of a slightly
perturbed system, we should add the smoothing parameters b1 back to the
original system. Let us consider the modified system:

H̃(x,λ,b) =





F (x)− Ikb0 −X1b1 = 0,
Fx(x)v1 − Ik′b1 = 0,

G̃x,λ1,b0(x,λ1,b0,b1)v2 = 0,

(22)

where X1 = (xc′1ek′1 , . . . , xc′d′
ek′

d′
) and

G̃(x,λ1,b0,b1) =

{
F (x)− Ikb0 −X1b1 = 0,

Fx(x)v1 − Ik′b1 = 0.
(23)

Theorem 3.4 Let

F̃ (x,b) = F (x)− Ikb0 −X1b1, (24)

then we have

Fx(x)v1 − Ik′b1 = 0 ⇐⇒ F̃x(x,b)v1 = 0. (25)

Proof. Let

b1 = (b1,1, b1,2, . . . , b1,d′)
T and v1 = (λ1, · · · , 1

c1
, · · · , 1

cd
, · · · , λn−d)

T ,

9



then

F̃x(x,b)v1 = Fx(x)v1 − (0, · · · , b1,1ek′1
c′1

, · · · , b1,d′ek′
d′

c′
d′

, · · · ,0)v1

= Fx(x)v1 − (ek′1 , . . . , ek′d′
)b1 (since c′ ⊆ c)

= Fx(x)v1 − Ik′b1

�

According to Theorem 3.4, we can rewrite the system (22) as

H̃(x,λ,b) =





F̃ (x,b) = 0,

F̃x(x,b)v1 = 0,

G̃x,λ1,b0(x,λ1,b0,b1)v2 = 0.

(26)

Therefore, if we can certify that (x̂, λ̂, b̂) is a regular solution of the aug-
mented system H̃(x,λ,b) based on Theorem 2.5, then by (26), x̂ is guaran-
teed to be an isolated singular solution of F̃ (x, b̂).

Theorem 3.5 Jacobian matrices of (20) and (22) share the same null space.

Proof. The Jacobian matrix Hx,λ,b(x̂, λ̂,0) of (20) computes to




Fx(x̂) On,n−d

Fxx(x̂)v̂1 F c
x(x̂)

−Ik
On,d

O2n,2n−d′
On,d′

−Ik′

⋆
On,d

On,d

F c′

x (x̂) On,n−d −Ik
⋆ F c

x(x̂) On,d

On,d

On,d


 ,

(27)
while the Jacobian matrix H̃x,λ,b(x̂, λ̂,0) of (22) computes to




Fx(x̂) On,n−d

Fxx(x̂)v̂1 F c
x(x̂)

−Ik
On,d

O2n,2n−d′
−X̂
−Ik′

⋆
On,d

On,d

F c′

x (x̂) On,n−d −Ik
⋆ F c

x(x̂) On,d

−Ik′

On,d′


 ,

(28)
where the matrix X̂ consists of vectors x̂c′(i)ek′(i), i = 1, . . . , d′. Since k′ ⊆ k,
we can reduce the last column of the block matrix (28) by its third and sixth
columns to get the block matrix (27). Therefore, two Jacobian matrices (27)
and (28) are of the same corank and share the same null space. �

Suppose the Jacobian matrix Hx,λ,b(x̂, λ̂,0) is still singular, i.e.,

rank(Hx,λ,b(x̂, λ̂,0)) = 4n − d′′, (d′′ ≥ 1). (29)
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Let c′′ = {c′′1 , c′′2 , . . . , c′′d′′} and k′′ = {k′′1 , k′′2 , . . . , k′′d′′} be two positive-integer
sets such that

rank(Hc′′

x,λ,b(x̂, λ̂,0)) = 4n− d′′ (30)

rank
(
Hc′′

x,λ,b(x̂, λ̂,0), Ik′′+3n

)
= 4n, (31)

where Hc′′

x,λ,b(x̂, λ̂,0) is a matrix obtained from Hx,λ,b(x̂, λ̂,0) by deleting
its c′′1, c

′′
2 , . . . , c

′′
d′′ -th columns, and

Ik′′+3n =

(
O3n,d′′

Ik′′

)
, Ik′′ = (ek′′1 , ek′′2 , . . . , ek′d′′

). (32)

Theorem 3.6 Comparing to Gx,λ1,b0(x̂, λ̂1,0), the corank of Hx,λ,b(x̂, λ̂,0)
does not increase, i.e., d′′ ≤ d′. Moreover, we can choose c′′ and k′′ such
that c′′ ⊆ c′, k′′ ⊆ k′ and satisfy (30) and (31) respectively.

Proof. Similar to the proof of Theorem 3.3, let Hc′

x,λ,b(x̂, λ̂,0) be the

matrix obtained fromHx,λ,b(x̂, λ̂,0) by deleting its c′1, c
′
2, . . . , c

′
d-th columns.

By (17) and (18), we claim that

rank(Hc′

x,λ,b(x̂, λ̂,0)) = 4n− d′.

Therefore, d′′ ≤ d′, and there exists a positive-integer set c′′ ⊆ c′ such that
the condition (30) is satisfied.

Meanwhile, we know that rank(Gc′

x,λ1,b0
(x̂, λ̂1,0), Ik′+n) = 2n, then

rank(Hc′

x,λ,b(x̂, λ̂,0), Ik′+3n) = 4n,

where Ik′+3n =

(
O3n,d′

Ik′

)
. Therefore, we can choose k′′ ⊆ k′ such that the

condition (31) is satisfied. �

EXAMPLE 3.1 [4, DZ1] Consider a polynomial system

F = {x41 − x2x3x4, x
4
2 − x1x3x4, x

4
3 − x1x2x4, x

4
4 − x1x2x3}.

The system F has (0, 0, 0, 0) as a 131-fold isolated zero.

Since Fx(x̂) = O4,4, we derive d = 4, c = k = {1, 2, 3, 4} and v1 =
(1, 1, 1, 1)T

G(x,b0) =





F (x)− Ikb0 = 0,
4x31 − x3x4 − x2x4 − x2x3 = 0,
4x32 − x3x4 − x1x4 − x1x3 = 0,
4x33 − x2x4 − x1x4 − x1x2 = 0,
4x34 − x2x3 − x1x3 − x1x2 = 0.
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The Jacobian matrix of G(x,b0) at (0,0) is

Gx,b0(0,0) =

(
O4,4 −Ik
O4,4 O4,4

)
,

Hence, d′ = 4, c′ = k′ = {1, 2, 3, 4} and

H(x,λ,b) =





F (x)− Ikb0 −X1b1 = 0,
Fx(x)v1 − Ik′b1 = 0,

G̃x,b0(x,b0,b1)v2 = 0,

(33)

where v2 = (1, 1, 1, 1, λ1 , λ2, λ3, λ4)
T , and G̃x,b0(0,0,0)v2 = 0 has a unique

solution (λ̂1, λ̂2, λ̂3, λ̂4) = (0, 0, 0, 0). The Jacobian matrix of H(x,λ,b) at
(0,0,0) is

Hx,λ,b(0,0,0) =




O4,4 −Ik O4,4 O4,4

O4,4 O4,4 O4,4 −Ik′

O4,4 O4,4 −Ik′ −Ik′

A O4,4 O4,4 O4,4


 , A =




0 −2 −2 −2
−2 0 −2 −2
−2 −2 0 −2
−2 −2 −2 0


 .

The Jacobian matrix Hx,λ,b(0,0,0) is nonsingular. Therefore we obtain a
regular and square system H(x,λ,b) and a perturbed system

F̃ (x,b) =





x41 − x2x3x4 − b1 − b5x1 = 0,
x42 − x1x3x4 − b2 − b6x2 = 0,
x43 − x1x2x4 − b3 − b7x3 = 0,
x44 − x1x2x3 − b4 − b8x4 = 0.

Applying the verification method based on Theorem 2.5 to H(x,λ,b),
we show in Section 4 that a slightly perturbed polynomial system F̃ (x, b̂)
for

|b̂i| ≤ 1.0e − 321, i = 1, 2, . . . , 8

has an isolated singular solution x̂ within

|x̂i| ≤ 1.0e− 321, i = 1, 2, 3, 4.

3.3 Higher-order deflations

For higher-order deflations, in the following, we show inductively how to
add new smoothing parameters properly to the original system in order to
derive a square and regular deflated system for certifying the existence of
an isolated singular solution of a slightly perturbed system.

Let H(0)(x) = F (x), then for the (s+1)-th deflation, we add smoothing
parameters b(s) = (bT

0 , . . . ,b
T
s )

T and consider the following square system

H(s+1)(x,λ(s+1),b(s)) =





F̃ (x,b(s)) = 0,

F̃x(x,b
(s))v1 = 0,

...

G
(s)

x,λ(s),b(s−1)
(x,λ(s),b(s))vs+1 = 0,

(34)
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where λ
(s+1) = (λT

1 , . . . ,λ
T
s+1)

T are extra variables corresponding to the

vectors {v1, . . . ,vs+1}, G(s)(x,λ(s),b(s)) consists of the first 2sn polynomials
in H(s+1)(x,λ(s+1),b(s)), and

F̃ (x,b(s)) = F (x) −X0b0 −X1b1 − · · · −Xsbs, (35)

the matrix Xj (0 ≤ j ≤ s) consists of vectors 1
j! · x

j

c(j)(i)
· ek(j)(i), i =

1, . . . , dj , where c(j) and k(j)are two positive-integer sets selected at the j-
th order deflation satisfying conditions obtained by replacing the polynomial
system F (x) in (8) and (9) by the j-th deflated system H(j)(x,λ(j),b(j−1))

and replacing Ik by the matrix Ik(j)+(2j−1)n =

( O(2j−1)n,dj

Ik(j)

)
, Ik(j) =

(e
k
(j)
1
, e

k
(j)
2
, . . . , e

k
(j)
dj

), where dj is the corank of H
(j)

x,λ(j),b(j−1)
(x̂, λ̂

(j)
,0).

Theorem 3.7 The corank ds+1 of H
(s+1)

x,λ(s+1),b(s)
(x̂, λ̂

(s+1)
,0) does not in-

crease and the number of deflations needed to derive a regular solution of an
augmented system (34) is less than the depth of Dx̂, i.e., we have

d0 ≥ d1 ≥ · · · ≥ ds+1 ≥ · · · ≥ dρ−1 = 0. (36)

Moreover, we can choose c(j) and k(j) satisfying

c(s) ⊆ · · · ⊆ c(0) and k(s) ⊆ · · · ⊆ k(0). (37)

Proof. Applying Theorem 3.3, 3.5 and 3.6 inductively, we can show that
the above deflation process (34) produces a decreasing nonnegative-integer
sequence d0 ≥ d1 ≥ · · · ≥ ds+1 ≥ · · · , which is as same as the sequence
consisting of coranks of the Jacobian matrices of the deflated systems by
Yamamoto’s method. According to Theorem 3.2, the number of Yamamoto’s
deflations to derive a regular solution of an augmented system is bounded
by the depth of Dx̂. Hence the number of the modified deflations (34) is
also bounded by the depth of Dx̂. The proof of (37) is similar to the proofs
of Theorem 3.3 and 3.6. �

Theorem 3.8 Suppose Theorem 2.5 is applicable to the augmented system
(34), and yields inclusions for x̂, λ̂ and b̂. Then the perturbed system
F̃ (x, b̂) has an isolated singular solution at x̂.

Proof. Since (x̂, λ̂, b̂) is the unique solution of the augmented system
(34), we have

F̃ (x̂, b̂) = 0 and F̃x(x̂, b̂)v̂1 = 0, v̂1 6= 0.
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Hence, x̂ is an isolated singular solution of the slightly perturbed system

F̃ (x, b̂) = F (x)−X0b̂0 −X1b̂1 − · · · −Xsb̂s.

�

EXAMPLE 3.2 [4, DZ2] Consider a polynomial system

F = {x4, x2y + y4, z + z2 − 7x3 − 8x2}.

The system F has (0, 0,−1) as a 16-fold isolated zero.

The Jacobian matrix of F at x̂ = (0, 0,−1) is

Fx(x̂) =




0 0 0
0 0 0
0 0 −1


 , so that d0 = 2 and we choose c(0) = k(0) = {1, 2}.

The first-order deflated system is

H(1)(x,λ1,b0) =





F (x)−X0b0 = 0,
4x3 = 0,

2xy + x2 + 4y3 = 0,
−21x2 − 16x+ λ1 + 2zλ1 = 0,

where

X0 = (e1, e2) =




1 0
0 1
0 0


 , b0 =

(
b1
b2

)
, v1 = (1, 1, λ1)

T , λ1 = (λ1).

The Jacobian matrix of H(1)(x,λ1,b0) at (0, 0,−1, 0, 0, 0) is




0 0 0 0 −1 0
0 0 0 0 0 −1
0 0 −1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

−16 0 0 −1 0 0




, d1 = 2 and we choose c(1) = k(1) = {1, 2}.

Therefore, we derive the second-order deflated system

H(2)(x,λ(2),b(1)) =





F (x)−X0b0 −X1b1 = 0,
Fx(x)v1 −X ′

1b1 = 0,

G
(1)
x,λ1,b0

(x,λ1,b
(1))v2 = 0,
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where

X1 =




x 0
0 y
0 0


 , b1 =

(
b3
b4

)
, b(1) = (b1, b2, b3, b4)

T , X ′
1 =




1 0
0 1
0 0


 ,

v2 = (1, 1, λ2, λ3, λ4, λ5)
T , λ

(2) = (λ1, λ2, λ3, λ4, λ5)
T .

Moreover, G
(1)
x,λ1,b0

(x̂, λ̂
(1)

,0)v2 = 0 has a unique solution λ̂2 = (0,−16, 0, 0)T .

For the third-order deflation, we have d2 = 1, c(2) = k(2) = {1}, so

H(3)(x,λ(3),b(2)) =





F (x)−X0b0 −X1b1 −X2b2 = 0,
Fx(x)v1 −X ′

1b1 −X ′
2b2 = 0,

Fx(x)v
′
2 −X0v

′′
2 −X ′

1b1 −X ′
2b2 = 0,

Fxx(x)v1v
′
2 + F c(0)

x (x)λ3 −X ′′
2b2 = 0,

G
(2)

x,λ(2),b(1)
(x,λ(2),b(2))v3 = 0,

(38)

where

X2 =




1
2x

2

0
0


 , b2 = (b5), X ′

2 =




x
0
0


 , X ′′

2 =




1
0
0


 ,

v′
2 =




1
1
λ2


 ,v′′

2 =

(
λ4

λ5

)
,

v3 = (1, λ6, λ7, . . . , λ16)
T , λ

(3) = (λ1, . . . , λ16)
T .

Moreover, G
(2)

x,λ(2),b(1)
(x̂, λ̂

(2)
,0)v3 = 0 has a unique solution

λ̂3 = (−2, 0, 0, 0,−16, 0, 0,−16, 0, 0,−42)T .

Finally, the Jacobian matrix of H(3)(x,λ(3),b(2)) is nonsingular, and we
obtain a perturbed polynomial system

F̃ (x,b) = F (x)−X0b0 −X1b1 −X2b2

= {x4 − b1 − b3x− 1

2
b5x

2, x2y + y2 − b2 − b4y, z + z2 − 7x3 − 8x2}. (39)

Note that

Fx(x)v1 −X ′
0b1 −X ′

1b2 = 0 ⇔ F̃x(x,b)v1 = 0,

after applying the verification method to the above regular augmented sys-
tem (38), we are able to verify that a slightly perturbed system F̃ (x, b̂)
defined in (39) for

|b̂i| ≤ 1.0e − 14, i = 1, 2, . . . , 5

has an isolated singular solution x̂ within

|x̂i| ≤ 1.0e − 14, i = 1, 2, and |1 + x̂3| ≤ 1.0e − 14.
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4 An Algorithm for Verifying Multiple Roots

Based on Theorem 3.7 and 3.8, we propose below an algorithm for computing
verified error bounds such that, a slightly perturbed system is guaranteed
to possess an isolated singular solution within the computed bounds.

Algorithm 4.1 VISS
Input: A square polynomial system F ∈ C[x1, . . . , xn], a point x̃ ∈ C

n and
a tolerance ε.

Output: A perturbed system F̃ (x,b), inclusions X and B for x̂ and b̂ such
that F̃ (x̂, b̂) = 0 and F̃x(x̂, b̂) is singular.

1. Set s := 0, m := n, F̃ := F , G := F̃ , y := x, and ỹ := x̃.

2. Compute d := n− rank(Fx(x̃), ε), select integer sets c and k satisfying
(8) and (9) respectively.

3. Set F̃ := F̃ +Xsbs, where the matrix Xs consists of vectors 1
s! · xsc(i) ·

ek(i), i = 1, . . . , d.

(a) If s ≥ 1, then set G := F̃ ; for j from 1 to s do
G := {G,Gyvj}; y := (y,λj ,bj−1).

(b) Compute ỹ := (ỹ,LeastSquares(Gy(ỹ)vs+1 = 0),0);

(c) Set G := {G,Gyvs+1}; y := (y,λs+1,bs); m := 2m.

4. Compute d := m− rank(Gy(ỹ), ε);

(a) If d = 0, apply verifynlss to G and ỹ to compute inclusions X

and B for x̂ and b̂.

(b) Otherwise, select c, k satisfying (8),(9) for the polynomial system
G, set s := s+ 1, y = x and go back to Step 3.

Example 3.1 (continued) Given an approximate singular solution x̃ =
(.0003445, .0009502, .0003171, .0006948) and a tolerance ε = 0.005, we ob-
tain the augmented system (33) and a point

ỹ = (x̃, 0.8009× 10−6, 0.4236× 10−7, 0.8859× 10−7, 0.5374× 10−7, 0, . . . , 0).

After running verifynlss(H, ỹ) in Matlab [32], it yields

−1.0e − 321 ≤ x̂i ≤ 1.0e− 321, for i = 1, 2, 3, 4,

−1.0e− 321 ≤ b̂i ≤ 1.0e − 321, for i = 1, 2, . . . , 8.

By Theorem 3.8, this proves that the perturbed polynomial system F̃ (x, b̂)
(|b̂i| ≤ 1.0e − 321, i = 1, 2, . . . , 8) has an isolated singular solution x̂ within
|x̃i| ≤ 1.0e− 321, i = 1, 2, 3, 4.
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Special case The breadth-one case where the corank of the Jacobian ma-
trix equals one occurs frequently, and can be treated more efficiently.

In fact, we have shown in [22, Theorem 3.8] that each step of deflation
described by (5) only reduces the multiplicity µ of the singular solution x̂

by 1. According to Theorem 3.7, the number of deflations described by
(34) will be µ− 1. Hence, Algorithm VISS generates an augmented regular
system of the size (2µ−1n)×(2µ−1n). However, in [20], we introduced a more
efficient method based on the parameterized multiplicity structure, to obtain
a deflated regular system G(x,b,λ) which is of the size (µn)× (µn) and can
be used to verify not only the existence of an isolated singular solution, but
also its multiplicity structure.

Let us introduce briefly the method in [20] for the special case of breadth
one. By adding µ−1 smoothing parameter b0, b1, . . . , bµ−2 to a well selected
polynomial, assumed to be f1, we derive a square augmented system

G(x,b,λ) =




F̃ (x,b)

L1(F̃ )
...

Lµ−1(F̃ )


 = 0, where F̃ (x,b) =




f1(x)−
∑µ−2

ν=0
bνx

ν
1

ν!
f2(x)

...
fn(x)


 ,

and L1, . . . , Lµ−1 are parameterized bases of the local dual space in variables
λ. Furthermore, we proved that if Theorem 2.5 is applicable to G and
yields inclusions for x̂ ∈ R

n, b̂ ∈ R
µ−1 and λ̂ ∈ R

(µ−1)×(n−1) such that
G(x̂, b̂, λ̂) = 0, then x̂ is a breadth-one singular solution of F̃ (x, b̂) = 0

with multiplicity µ and {1, L1, . . . , Lµ−1} with λ = λ̂ is a basis of Dx̂.

EXAMPLE 4.1 [33, Example 4.11] Consider a polynomial system

F = {x21x2 − x1x
2
2, x1 − x22}.

The system F has (0, 0) as a 4-fold isolated zero.

We choose x2 as the perturbed variable and add the univariate polynomial
−b1− b2x2 − b3

2 x
2
2 to the first equation in F to obtain an augmented system





x21x2 − x1x
2
2 − b1 − b2x2 − b3

2 x
2
2 = 0,

x1 − x22 = 0,
2λ1x1x2 − λ1x

2
2 + x21 − 2x1x2 − b2 − b3x2 = 0,

λ1 − 2x2 = 0,

λ2
1x2 + 2λ1x1 − 2λ1x2 + 2λ2x1x2 − λ2x

2
2 − x1 − b3

2 = 0,
λ2 − 1 = 0,

λ2
1 + 2λ1λ2x2 − λ1 + 2λ2x1 − 2λ2x2 + 2λ3x1x2 − λ3x

2
2 = 0,

λ3 = 0,

which is of the size 8 × 8 while Algorithm VISS generates a system of the
size 16× 16. Applying verifynlss with an initial approximation

(0.002, 0.003,−0.001, 0.0015,−0.002, 0.002, 1.001,−0.01),
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we obtain inclusions

−1.0e− 14 ≤ x̂i ≤ 1.0e− 14, for i = 1, 2, 3,

−1.0e − 14 ≤ b̂i ≤ 1.0e − 14, for i = 1, 2, 3.

This proves that the perturbed system F̃ (x, b̂) (|b̂i| ≤ 10−14, i = 1, 2, 3) has
a 4-fold breadth-one root x̂ within |x̂i| ≤ 10−14, i = 1, 2, 3.

5 Experiments

We can generate an augmented square and regular system and initial values
for ỹ in Maple or Matlab, then apply INTLAB function verifynlss in Matlab
[32] to obtain the verified error bounds. The following experiments are
done in Maple 15 for Digits := 14 and Matlab R2011a with INTLAB V6
under Windows 7. Let n be the number of polynomials and variables, µ
be the multiplicity. The fourth and fifth column show the decrease of the
corank and the increase of the smallest singular values of the Jacobian matrix
respectively. The last two columns give qualities of the verified error bounds.

The first three examples DZ1, DZ2, DZ3 are cited from [4]. It should be
noticed that the coefficients of polynomials in the example DZ3 have alge-
braic numbers

√
5,
√
7. These irrational coefficients are rounded to fourteen

digits in Maple or Matlab. The other examples are quoted from the PHC-
pack demos by Jan Verschelde. Codes of Algorithm VISS and examples are
available at http://www.mmrc.iss.ac.cn/~lzhi/Research/hybrid/VISS.
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