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A FAST SUMMATION TREE CODE FOR MATÉRN KERNEL∗

JIE CHEN† , LEI WANG‡ , AND MIHAI ANITESCU†

Abstract. The Matérn family of functions is a widely used covariance kernel in spatial statistics
for Gaussian process modeling, which in many instances requires calculations with a covariance
matrix. In this paper, we design a fast summation algorithm for the Matérn kernel in order to
efficiently perform matrix-vector multiplications. This algorithm is based on the Barnes–Hut tree
code framework and addresses several practical issues: the anisotropy of the kernel, the nonuniform
distribution of the point set, and a tight error estimate of the approximation. Even though the
algorithmic details differ from the standard tree code in several aspects, empirically the computational
cost of our algorithm scales as O(n logn) for n points. Comprehensive numerical experiments are
shown to demonstrate the practicality of the design.
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1. Introduction. The Matérn kernel [31, 33, 28] consists of a family of Matérn
functions that are defined based on the modified Bessel functions of the second kind
of different orders. The Matérn kernel is positive definite, and it is often used as a
covariance function in modeling Gaussian processes for its flexibility in capturing local
smoothness of the data. It entails a wide array of applications in spatial statistics,
especially geostatistics [15, 33].

The Matérn kernel gives rise to a positive definite covariance matrix Φ, which is
fully dense and whose size scales with the square of the number n of observations of
the underlying process. The matrix-vector multiplication with respect to Φ is crucial
in many statistical problems, such as sampling, maximum likelihood estimation, and
interpolation (also known as kriging) [31, 33]. Some of these problems require the
solution of a linear system with respect to Φ, whereby an iterative method with an
efficient calculation of the product Φq for any vector q is one of the most successful
solution techniques [3, 32]. In some other problems, there is no linear system to
solve, but the matrix-vector multiplication is an essential tool for a matrix-free style
of technique to work for large n [11].

Motivated by the needs of efficiently computing the product Φq for the Matérn
kernel, we design a fast summation algorithm that runs asymptotically faster than
O(n2), the cost of a straightforward calculation. The goal of the design is an algorithm
that handles various practical situations, including arbitrary Matérn orders, multiple
vectors for the same matrix, different point set distributions, and the anisotropy when
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defining distances for high-dimensional points. To this end, we present an algorithm
based on the tree code framework pioneered by Barnes and Hut [5]. The tree code
was initially designed to efficiently perform force calculations for gravitational n-body
problems with an O(n logn) computational complexity. It was later developed for
various kernels and different applications (see, e.g., [25, 23, 22]). For the Matérn
kernel, preliminary work [3] was conducted for the special order 1.5. The proposed
algorithm here applies to an arbitrary order.

1.1. Design features. The initial step of a tree code is a hierarchical partition-
ing of the space. In order to cope with the arbitrary shape and distribution of the
point set and the anisotropy in the Matérn kernel, we use a point set partitioning
scheme that is different from the traditional quadtree (octree) or k-d tree partition-
ing. Our scheme is based on the principal component analysis that maximizes the
separation of the points, so that the resulting clusters are as compact as possible.
This scheme encourages a tighter error estimate and handles kernel anisotropy well.

In our tree code, the Taylor approximation is written in the form of a double
expansion (that is, the kernel is expanded at both arguments). Double expansions
are typical in the FMM-type of algorithms (see, e.g., [29, 18, 19, 14]), but they rarely
appear in tree codes (see [8] for an example). The rationale for using double expansions
is to reduce the number of source-target pairs that require the computation and
storage of the expansion coefficients.

Note that even though abundant results of the expansions of the Bessel functions
are known (see, e.g., [16, 1]), it is not straightforward to derive an expansion that is
inexpensive to evaluate for the Matérn kernel. The Taylor coefficients here are derived
through the use of the properties of the Bessel functions and are computed based on
a recurrence relation.

Because of the limited results known for the Taylor approximation of the Matérn
kernel, an innovation of this work is that we use a data analysis approach to estimate
the truncation error, so as to determine when and how the approximation is performed.
The idea of the analysis is to regress the error on several factors, such as centroid
distance and cluster radius, based on a set of samples. The form of the regression
is motivated by the analytic error bounds seen for other extensively studied kernels,
and the data fitting approach conceptually yields more realistic error estimates than
does a standard analytic analysis.

We note that although a general tree code framework yields O(n logn) com-
putational complexity for a set of n points, there is in fact no strict guarantee on
achieving such a performance for arbitrary kernels, even if the points are uniformly
distributed. The rationale for the O(n logn) cost is based on the assumption that
the Taylor approximation is used whenever the ratio between the cluster radius and
the centroid distance falls within a fixed threshold (known as the multipole acceptance
criterion [5, 4, 30] or admissibility condition [9]). This ensures that there is a constant
rate of reduction in the summation cost across the tree levels. On the other hand,
our algorithm dynamically determines the use of the approximation, and we do not
predefine a threshold for this ratio. This distinction makes it hard to analytically
conclude a precise complexity of our algorithm. Nevertheless, experimental results
for uniformly distributed points agree with the O(n log n) scaling.

1.2. Fast summation methods. Fast summation methods are an extensively
studied subject, whereby a series expansion of the kernel is a central analytic tool.
The two major variants, tree code and FMM, differ in whether the series expansion is
reorganized throughout the hierarchical structure of the points. A contribution of this
paper is an easily computable routine for the Taylor expansion of the Matérn kernel.
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In recent years, fast methods that are less dependent on kernel expansions have
been actively studied. A clear advantage of the kernel-independent methods is that
they are designed to be applicable to a wide variety of kernels. In the descrip-
tion of these methods, either the FMM terminologies are maintained (e.g., kernel-
independent FMM [35] and black-box FMM [17]), or the matrix terminologies are
used to emphasize the algebraic angle (e.g., H, H2 matrices [20, 21, 9] and hierarchi-
cally semiseparable matrices [10]; in what follows we use the unified term “hierarchical
matrices”). Kernel-independent methods are based on the observation (which in many
cases can be rigorously proved) that the recursive off-diagonal blocks of the matrix
are low-rank. With this interpretation, the FMM expansions (multipole and local)
share many similarities with the row and column subspace representations of the hi-
erarchical matrices, and the FMM translation operators (M2M, M2L, and L2L) are
not very different from the change of basis across levels for hierarchical matrices. One
of the natural benefits of using matrix representations is that they in addition admit
factorizations and hence preconditioners and direct solvers [9, 34, 10].

A key element of these matrix methods is to find the low-rank representations
and their transformations across the tree levels. This corresponds to the design of the
expansions and translation operators in the FMM terminology. The natural methods
based on truncated SVDs typically incur an expensive quadratic cost, except forHma-
trices which can be constructed in linear time, but the saving is paid by later matrix-
vector multiplications [21]. In some special scenarios, such as when a separable basis of
the kernel is known [21], or when the kernel matrix approximates a boundary integral
operator [26], the low-rank approximation can be constructed without the use of an
SVD. For these special cases, the FMM analogues are black-box FMM [17] and kernel-
independent FMM [35]. The former method approximates the kernel by using inter-
polating polynomials; the basis is clearly separable and the computation is economic.
The latter method defines the various FMM translations via the solutions of small
Fredholm integral equations on equivalent surfaces; it is applicable to Green kernels.
On the other hand, randomized SVD methods [27, 24] can serve as a general-purpose
technique, but they rely on the existence of a matrix-vector multiplication subroutine,
which in many scenarios might be lacking and thus forms a causality dilemma.

Overall, a kernel-independent method is appealing just as its name suggests. Rid-
ding the reliance on kernel-specific expansions widens the potential applicability of
the method to new kernels and kernel variants. On the other hand, the performance
of kernel-independent methods may no longer be as optimal as that of methods tailed
for specific kernels. For example, preliminary experiments with the method [17] indi-
cated that strong anisotropy significantly degrades the final accuracy, and the error
behavior of the method [35] for the Matérn kernel is irregular. On the other hand,
the method presented in this paper, which is based on an analytic expansion and
a run-time error analysis, works well in controlling errors and handling anisotropy.
Furthermore, the computation of the expansion is interesting in its own right and is
probably useful for numerical analysis.

2. Matérn kernel. The Matérn function of a one-dimensional variable r ≥ 0 of
order ν > 0 is defined as [28]

(2.1) φ(r) =
(
√
2νr)νKν(

√
2νr)

2ν−1Γ(ν)
,

where Kν is the modified Bessel function of the second kind of order ν and Γ is
the Gamma function. The denominator 2ν−1Γ(ν) is used for normalization so that
φ(0) = 1 for any ν. Figure 2.1 plots the function with several values of ν.
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Fig. 2.1. Matérn function with different values of ν.

When the function is used as a radial basis kernel, the variable r is the elliptical
distance between two d-dimensional points x and y. Let � = [�1, . . . , �d] be a vector
of scaling factors, one for each coordinate. We formally define r as

(2.2) r =

√√√√ d∑
i=1

r2i
�2i

with ri = xi − yi.

For convenience of presentation, we write the Matérn kernel by abuse of notation in
different forms: φ(r), φ(x − y), or φ(x,y). In different contexts these forms will not
cause confusion.

The parameter ν is often called the smoothness because the function φ(|x|), x ∈ R,
has a higher differentiability at the origin when ν is larger. It also reflects the shape of
the samples of the underlying Gaussian process, because when ν is small, the sample
deemed as a function is rough and has strong oscillations. The parameter � is called
the scale because it controls the scaling of the distance between two points.

3. Fast summation with Matérn kernel. Given a set of n points {xj ∈ R
d}

and a set of associated weights {qj}, we are interested in computing the summations

(3.1) si =

n∑
j=1

qjφ(xi − xj) for i = 1, . . . , n.

In the matrix representation this is equivalent to computing the matrix-vector product
s = Φq, where Φij = φ(xi − xj).

It is sometimes confusing when one distinguishes xi and xj only by using the
index. Therefore, we slightly change the notation from xj to yj and rewrite (3.1) as

(3.2) si =
n∑

j=1

qjφ(xi,yj) for i = 1, . . . , n.

The points yj are the sources, and xi’s are the targets. At the heart of the fast
summation is the Taylor approximation of φ at the centroid of a cluster of nearby
sources and the centroid of nearby targets, so that one can replace the summation of
the n terms in (3.2) by the evaluation of a Taylor polynomial. For this, we use Cs to
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denote a set of sources with a centroid yc, and use Ct to denote a set of targets with
a centroid xc. Further, we define the partial sum

si(Cs) :=
∑

yj∈Cs

qjφ(xi,yj).

When the whole set of points is partitioned into disjoint subsets Cs, we have

si =
∑
Cs

si(Cs).

To express the Taylor expansion, we need the following notation for multivariate
calculus. For x,y ∈ R

d and j,k ∈ Z
d
+, the partial derivative ∂j

x := ∂j1
x1
∂j2
x2

· · ·∂jd
xd
,

the integer power xj := xj1
1 xj2

2 · · ·xjd
d , the factorial j! := j1!j2! · · · jp!, the binomial

coefficient
(
k
j

)
:=

(
k1

j1

)(
k2

j2

) · · · (kd

jd

)
, and the norm ‖j‖ := j1 + j2 + · · ·+ jd. Note that

the last notation means the 1-norm of the nonnegative integer vector j; it is not to
be confused with the 2-norm of a general vector.

Let the double expansion of φ at xc and yc be

(3.3) φ(xc +Δx,yc +Δy) =

∞∑
‖j‖=0

∞∑
‖k‖=0

∂j
x∂

k
yφ(xc,yc)

j!k!
(Δx)j(Δy)k.

This can be obtained by first expanding φ around yc, treating xc+Δx constant, then
expanding φ around xc, treating yc constant. The expansion is converging since the
Matérn kernel is analytic outside the origin. It is used when ‖Δx‖+‖Δy‖ < ‖xc−yc‖
to avoid conflict with the origin. Because ∂j

xφ = (−1)‖j‖∂j
yφ, we can write

(3.4) φ(xc +Δx,yc +Δy) =
∞∑

‖j‖=0

∞∑
‖k‖=0

(
j + k

j

)
∂j+k
y φ(xc,yc)

(j + k)!
(−Δx)j(Δy)k.

With (3.4), one can approximate the partial sum si(Cs) by using an order-(p1, p2)
Taylor approximation:

(3.5) si(Cs) ≈
∑

yj∈Cs

qj

p1∑
‖j‖=0

p2∑
‖k‖=0

(
j + k

j

)
∂j+k
y φ(xc,yc)

(j + k)!
(xc − xi)

j(yj − yc)
k.

If the approximation error is δ for any xi ∈ Ct and yj ∈ Cs and for all Ct and Cs,
then in the matrix representation the 2-norm error of s is upper bounded by nδ‖q‖2.

Note that the double expansion (3.3) requires two truncation orders. Although
not used in this paper, an expansion that leads to a single truncation order may be
of interest:

(3.6) φ(xc +Δx,yc +Δy) =
∞∑

‖j+k‖=0

∂j
x∂

k
yφ(xc,yc)

(j + k)!
(Δx)j(Δy)k.

This expansion simply treats the concatenation of xc and yc as a (2d)-dimensional
argument and expands φ at this argument. Then, the truncation can occur at, say,
‖j + k‖ = p1 + p2. Comparing the truncation of (3.3) with that of (3.6), one sees
that the former distinguishes the near and far fields, whereas the latter does not. It
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is usually not worth adding a large order for the near field, and a small order for the
far field if Δx is small and Δy is relatively large; thus, we do not consider (3.6) here.

From a computational perspective, we rearrange the terms in (3.5) so that they
are computed at different stages:

si(Cs) ≈
p2∑

‖k‖=0

p1∑
‖j‖=0

(
j + k

j

)
︸ ︷︷ ︸
binom. coef.

∂j+k
y φ(xc,yc)

(j + k)!︸ ︷︷ ︸
Taylor coef.

(xc − xi)
j︸ ︷︷ ︸

target momt.

⎡
⎣ ∑
yj∈Cs

qj(yj − yc)
k

⎤
⎦

︸ ︷︷ ︸
weighted source momt.

.

(3.7)

The general idea is to precompute the binomial coefficients and the Taylor coefficients,
because they can be shared by different targets. Then, given the weights, the weighted
source moments are computed. Thereafter, for each target xi, the target moments are
computed and the partial sum si(Cs) is accumulated to si. The details are presented
in section 6. First, however, it is necessary to consider how to obtain the Taylor
coefficients.

4. Taylor coefficients. We use recursion to compute the Taylor coefficients.
Key to the recurrence is the following property of Ku(R) for any u > 0 (see, e.g., [16,
p. 294, Table V-1]):

d

dR
RuKu(R) = −RuKu−1(R).(4.1)

It relates the derivatives of the Matérn function by successively reducing the order u
when is it positive. When u becomes negative, the relation Ku = K−u is useful.

4.1. Recurrence formula. Define gu(R) = RuKu(R). We want to obtain a
recurrence relation for

(4.2a) Gk
u(c) :=

∂k
ygu(cr)

2u−1Γ(u) · k! , u > 0,

with respect to k and u. Then, when c =
√
2ν, u = ν, and r is the elliptical

distance between xc and yc as usual, we immediately have the Taylor coefficients
∂k
yφ(xc,yc)/k! = Gk

ν (
√
2ν). Because the derivation of the recurrence is based on (4.1),

that is, u is successively reduced, we need to complete the definition ofGk
u(c) for u ≤ 0.

To this end, we define

(4.2b) Gk
u(c) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂k
ygu(cr)

z(cr) · k! , u = 0,

(cr)−2u · ∂k
ygu(cr)

2−u−1Γ(−u) · k! , u < 0,

for c, r > 0. For now we note that z is some function used for encouraging a stable
numerical behavior of the recurrence (because clearly Γ(0) is undefined); z will be
defined later in (4.11). The case u < 0 is so defined because for the initial condition
k = 0, we want that the values for a pair of positive and negative u’s are the same,
that is, G0

u(c) = G0
−u(c).

To proceed, we use a simplified notation and write ∂i to mean the partial deriva-
tive with respect to yi. With (4.1), we have

(4.3) ∂igu(cr) =
dgu(cr)

dr
· ∂r

∂ri
· dri
dyi

=
c2

�2i
· ri · gu−1(cr).
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Then, by applying the Leibniz rule for higher derivatives, we have for ki > 1,

∂ki

i gu(cr)=
c2

�2i
· ∂ki−1

i (ri · gu−1(cr))=
c2

�2i
·
[
ri∂

ki−1
i gu−1(cr) − (ki − 1)∂ki−2

i gu−1(cr)
]
.

(4.4)

If we further differentiate the above formulas with respect to other components of y
and then divide the results by k!, (4.3) and (4.4) become

∂k
ygu(cr)

k!
=

c2

ki

ri
�2i

· ∂
k−ei
y gu−1(cr)

(k − ei)!
(ki = 1),(4.5)

∂k
ygu(cr)

k!
=

c2

ki

ri
�2i

· ∂
k−ei
y gu−1(cr)

(k − ei)!
− c2

ki

1

�2i
· ∂

k−2ei
y gu−1(cr)

(k − 2ei)!
(ki > 1),(4.6)

respectively, where ei means the integer vector whose ith entry is 1 and other entries
are zero. By adopting the convention that ∂k

ygu = 0 if any of the components of k is
negative, we can consolidate (4.5) to (4.6). Then, we rewrite (4.6) as

(4.7) Gk
u(c) = h(u)

[
c2

ki

ri
�2i
Gk−ei

u−1 (c)− c2

ki

1

�2i
Gk−2ei

u−1 (c)

]
for some prefactor h(u). This prefactor can be easily determined from the different
cases of the definition of Gk

u(c) in (4.2):

(4.8) h(u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2(u− 1)
, u > 1,

z(cr), u = 1,

(cr)2u−2Γ(1− u)

22u−1Γ(u)
, 0 < u < 1,

1

(cr)2z(cr)
, u = 0,

− 2u

(cr)2
, u < 0.

Note that the recurrence relation (4.7) is valid for any component i. For numerical
stability, we perform a weighted averaging. Specifically, we multiply ki on both sides
of (4.7), sum over all i, and divide the result by ‖k‖. Thus,

(4.9) Gk
u(c) =

c2h(u)

‖k‖

[
d∑

i=1

ri
�2i
Gk−ei

u−1 (c)−
d∑

i=1

1

�2i
Gk−2ei

u−1 (c)

]
.

Since we adopt the convention that Gk
u = 0 if any of the components of k is negative,

(4.9) is valid for all nonnegative integer vectors k except 0.

4.2. Initial condition. When k = 0, the definition (4.2) leads to

(4.10) G0
u(c) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(cr)uKu(cr)

2u−1Γ(u)
, u > 0,

K0(cr)

z(cr)
, u = 0,

(cr)−uK−u(cr)

2−u−1Γ(−u)
, u < 0.
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We examine it case by case. The cases u > 0 and u < 0 lead to the same value of
G0

u(c) for a pair of positive u and negative u that have the same absolute value. When
c =

√
2ν, G0

u(c) is equal to an evaluation of the kernel function φ(r). When r is close
to zero, G0

u(c) is close to 1.
Now consider u = 0. When r → 0, K0(cr) tends to infinity. The function z(cr) is

thus used to scale K0(cr) so that G0
u(c) behaves better when it is close to the origin.

Consider an approximation of K0 around the origin [1, (9.6.12) and (9.6.13)]:

K0(R) ≈ −γ − log

(
R

2

)
when R ≈ 0,

where

γ =

∫ ∞

1

(
1

	x
 − 1

x

)
dx ≈ 0.577216

is the Euler–Mascheroni constant. Then, we define

(4.11) z(R) :=

{
−γ − log

(
R
2

)
, 0 < R < R0,

1, R ≥ R0.

Here, the cutoff R0 = 2e−γ−1 ≈ 0.413 is used to make z continuous. With this
definition, G0

u(c) is not far from 1 when cr < R0, and it is equal to K0(cr) when
cr ≥ R0.

4.3. Summary. Summarizing the above discussions, we compute the Taylor
coefficients

∂k
yφ(xc,yc)/k! = Gk

ν (
√
2ν)

using the recurrence formula (4.9) with the initial condition (4.10). The recurrence
is based on both k and u. We use two d-dimensional arrays A and B to store all the
intermediate values of Gk

u(
√
2ν). Specifically, given an expansion order p, we define

(in C/C++ style)

A[k1] · · · [kd] = Gk
u(
√
2ν) and B[k1] · · · [kd] = Gk

u−1(
√
2ν)

for u = ν−p, . . . , ν and 0 ≤ ‖k‖ ≤ p. All the values in A are computed by using B, and
after A is filled, the values of A are copied to B. This process is repeated p+1 times to
increase u until finally u reaches ν. The following subroutine TaylorCoefficients

summarizes this procedure:

1: subroutine TaylorCoefficients(p, xc − yc)
// In the following, skip the term(s) whenever array index < 0

2: Initialize B with zeros
3: for j = 0, . . . , p do
4: A[0] · · · [0] = G0

ν−p+j(
√
2ν) � ν − p+ j = u

5: for ‖k‖ = 1, . . . , j do � cf. (4.9)
6: A[k1] · · · [kd] = 2νh(ν − p+ j)/‖k‖×

[(r1 · B[k1 − 1] · · · [kd]−B[k1 − 2] · · · [kd])/�21 + · · ·
· · ·+ (rd · B[k1] · · · [kd − 1]−B[k1] · · · [kd − 2])/�2d]

7: end for
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8: Copy the entries of A to B
9: end for

10: return A
11: end subroutine

The computational cost of TaylorCoefficients isO(pd) in storage andO(pd+1)
in time. To reduce memory usage, note that the array A[k1] · · · [kd] (and similarly B)
uses only the entries with 0 ≤ k1 + · · ·+ kd ≤ p. The total number of such entries is(
p+d
d

)
. Therefore, instead of using a full d-dimensional array of size (p+1)d, one may

consider using a one-dimensional array A′ of size
(
p+d
d

)
, where the indexing of A′ is

in accordance with the increasing order of ‖k‖, that is,
A′[0] = A[0] · · · [0][0],

A′[1] = A[0] · · · [0][1], . . . , A′[d] = A[1] · · · [0][0],
A′[d+ 1] = A[0] · · · [0][2], A′[d+ 2] = A[0] · · · [1][1], . . . , A′[

(
2+d
d

) − 1] = A[2] · · · [0][0],
...

A′[
(
p−1+d

d

)
] = A[0] · · · [0][p], . . . , A′[

(
p+d
d

) − 1] = A[p] · · · [0][0].
This design comes from a practical consideration, although it does not change the
asymptotic storage cost. For some medium-sized p and small d (say, p = 10 and
d = 3), the storage of A′ is only about 1/d! of that of A. When many sets of the
Taylor coefficients (for different xc − yc) are stored, this will be a significant saving.

4.4. Discussion of numerical behavior. The initial condition of the recur-
rence relation is well behaved. When r is close to zero, the value of G0

u is close to 1
for any u; when r is not abnormally large, G0

u will not be exceedingly small. In fact,
the term “abnormally large” is vague, and we delay its clarification until section 5
when error control is the concern.

The recurrence depends on the function h(u) defined in (4.8). It has discontinu-
ities at u = 0 and u = 1, and when approaching these discontinuities the function
value grows without bound. Thus, the recurrence may be numerically unstable when
the smoothness parameter ν is close to, but not exactly, an integer. In many ap-
plications, it is not necessary to take a smoothness that is too close to an integer
(otherwise replacing it by the closest integer may be a practical workaround). More-
over, we demonstrate in section 7.4 that the recurrence still works in practice for a ν
differing from 1 by only 10−5.

5. Error estimate. It is important to characterize the error, denoted by δ,
between the actual value of the kernel and that of its Taylor approximation. Given
a pair of expansion orders (p1, p2), the factors that affect δ are the elliptical distance
τ between a pair of centroids and the elliptical radii ρ of the clusters (also called the
expansion radius). To distinguish sources and targets, we use ρt for a target cluster
and ρs for a source cluster (see Figure 5.1). It is desirable to bound δ based on ρt,
ρs, and τ .

Many kernels enjoy such a bound that is analytically derived. When only a single
expansion around the source centroid is used, there is only one expansion order p.
The following lists a few bounds for several kernels (see (2.6), (4.9), and (5.17) of [6]):

A1ρ

(
1

2.12...

)p

,
A2

p+ 1

τ

τ − ρ

(ρ

τ

)p+1

,
A3

τ − ρ

(ρ

τ

)p+1

,
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τ

xc

ρt

yc

ρs

targets
sources

Fig. 5.1. Expansion radii ρt, ρs and distance τ (all elliptical).

where A1, A2, and A3 are all positive constants. These bounds correspond to a
one-dimensional multiquadric expanded with Laurent series when τ ≥ 3ρ, a com-
plex logarithm expanded with Laurent series when ρ < τ , and a three-dimensional
reciprocal function expanded with spherical harmonics when ρ < τ , respectively.

An error bound for the Matérn kernel is unknown. We therefore seek a different
approach. Motivated by the above examples, we hypothesize that for a single expan-
sion with order-p truncation, the maximum of the errors, denoted by δmax

p , for all
points within an expansion radius ρ can be expressed as

(H1) log10 δ
max
p (ρ, τ) = α1 + α2 log10 τ + α3 log10(ρ/τ),

where α1, α2, and α3 are coefficients to be determined. The quantity δmax
p is a function

of ρ and τ , given p. The term ρ/τ is the expansion ratio, and it is always less than 1.
Then, for a double expansion with truncation orders (p1, p2), we further hypothesize
that the maximum of errors for all pairs xi ∈ Ct and yj ∈ Cs is computed as

(H2) δmax
p1,p2

(ρt, ρs, τ) = max{δmax
p1

(ρt, τ + ρs), δmax
p2

(ρs, τ + ρt)},
where δmax

p1,p2
is a function of ρt, ρs, and τ , given (p1, p2). We do not hypothesize the

error as a function of the expansion orders, the reason for which will be clear soon.

5.1. Rationale. The rationale of the hypotheses (H1) and (H2) is supported by
a series of observations. We begin with the case of one dimension. Figure 5.2(a) plots
the variation of δmax

p with respect to τ in the log-log scale by fixing ρ/τ . One sees
that when τ ≤ 1, the plot is almost a straight line. Plot (b) also shows a straight-
line pattern when we consider the variation of δmax

p with respect to ρ/τ by fixing τ .
Varying τ and ρ/τ simultaneously results in a plane pattern as shown in plot (c).
This indicates that (H1) is highly plausible.

When one considers a double expansion, the hypothesis (H2) states that δmax
p1,p2

is an overall effect of two single expansions: δmax
p1

(ρt, τ + ρs), which results from an
expansion around the target centroid xc by assuming that the source yc is as far as
possible (having a distance τ +ρs from xc), and δmax

p2
(ρs, τ +ρt), which results from a

similar expansion around the source centroid. We show in plot (d) the change of δmax
p1,p2

by fixing τ but varying ρs and ρt. One sees a surface that looks like the superposition
of two planes, which is the reason we hypothesize a maximum of two terms in (H2).

The kernel may behave differently when moving to higher dimensions. To show
that (H1) and (H2) are reasonable, we also show the two-dimensional case in plots
(e) and (f). They look similar to (c) and (d), respectively. In particular, we see a
plane pattern in (e) and a two-plane pattern in (f). The plots for three dimensions
are similar and we do not repeat them here.
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Fig. 5.2. Taylor approximation error with respect to τ and ρ/τ .

Note that the hypotheses (H1) and (H2) preclude the situation τ > 1. In plot (a),
one sees that δmax

p behaves completely differently in this situation. We do not know
how to characterize this behavior. On the other hand, the kernel used in practice
often entails large scaling parameters, making the case τ ≤ 1 predominant. Hence,
we do not consider the case τ > 1 further in this paper.

One may also be interested in the variation of δmax
p with respect to p and ν.

Figure 5.3 plots the variations. Plot (a) shows a visually straight-line pattern, which
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Fig. 5.3. Taylor approximation error with respect to p and ν.

in fact is not close to straight according to fitting. It is unknown what expression can
be used to fit plot (b).

5.2. Subroutine. For clarity, we provide the subroutine ErrorControlInfo

for fitting the coefficients in (H1) and testing the hypotheses (H1) and (H2). First,
it chooses a few τ and ρ/τ , equally spaced in the log-scale from 10−2.5 to 10−0.5. For
each pair of τ and ρ/τ , it estimates δmax

p2
(ρ, τ), which is clearly defined as

max
‖xc−yc‖�≤τ
‖Δy‖�≤ρ

∣∣∣∣∣∣φ(xc,yc +Δy)−
p2∑

‖k‖=0

∂k
yφ(xc,yc)

k!
(Δy)k

∣∣∣∣∣∣ ,
where ‖ · ‖� denotes the scaled 2-norm with scaling � (cf. (2.2)). Of course, we
cannot exhaust all such vectors xc − yc and Δy to determine δmax

p2
(ρ, τ); thus, a

sampling is used. Note that even though we use the notation xc − yc and Δy, the
sampling is independent of the point set; in fact, we only need to sample the d-sphere
with elliptical radius τ to obtain several xc − yc’s and similarly several Δy’s. With
δmax
p2

(ρ, τ) estimated for several pairs of ρ and τ , the coefficients α1, α2, and α3 in
(H1) are fitted by using the straightforward linear regression. Note that because of
machine precision, some computed δmax

p2
’s are not useful for regression if they are less

than, say, 1e-14, to be safe. We say that (H1) is valid if the absolute difference
between both sides is not larger than 1, which means that the estimated error departs
from the true error by at most one digit.

Similarly, δmax
p1

is estimated, and another set of coefficients α1, α2, and α3 is
produced. With these coefficients, the three terms in (H2), δmax

p1,p2
, δmax

p1
, and δmax

p2
,

are estimated by performing another sampling. This time, xc − yc, Δx, and Δy
are sampled given scaled 2-norms τ , ρt, and ρs, respectively. Then, (H2) is tested.
Similar to the case of (H1), the validity of (H2) is determined by whether the absolute
difference between both sides is no larger than 1.

If either (H1) or (H2) is invalid, the error control scheme developed here is not
successful and the straightforward summation has to be used (which never happened
in our experience). Otherwise, the two sets of coefficients are returned. Later, (H1)
and (H2) with the estimated α’s are used to determine whether Taylor expansion can
be used in the summation process.
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1: subroutine ErrorControlInfo

2: Define S1 and S2, each one containing 10 numbers equally spaced in [−2.5,−0.5].
// Test of (H1)

3: for all τ and ρ where log10 τ ∈ S1 and log10(ρ/τ) ∈ S2 do
4: Estimate δmax

p2
(ρ, τ) using a sampling approach.

5: end for
6: Use ρ, τ , and δmax

p2
to regress (H1). Obtain α1, α2, and α3.

7: If difference between both sides of (H1) is larger than 1, return error
8: Repeat lines 3 to 7 by changing p2 to p1 and obtain another set of α1, α2, α3.

// Test of (H2)
9: for all τ , ρt, ρs where log10 τ ∈ S1, log10(ρt/τ) ∈ S2 and log10(ρs/τ) ∈ S2 do

10: Estimate δmax
p1,p2

(ρt, ρs, τ), δ
max
p1

(ρt, τ + ρs), and δmax
p2

(ρs, τ + ρt).
11: end for
12: Use δmax

p1,p2
, δmax

p1
, and δmax

p2
to verify (H2) for all ρt, ρs, and τ .

13: If difference between both sides of (H2) is larger than 1, return error
14: return two sets of α1, α2, α3

15: end subroutine

6. Tree code. A general tree code algorithm is as follows. First, the whole set
of points is recursively partitioned to form a tree structure, where each tree node
represents a cluster of points. Each leaf node then contains a set of targets. We
consider a target xi that belongs to some Ct, and we initialize si = 0. A top-down
treewalk in the preorder style is performed, starting from the root. Any tree node
being visited contains a set Cs of sources. Given a tolerance ε, if the truncated Taylor
expansion at the centroids of Cs and Ct yields an approximation error that is less
than ε, then the partial sum si(Cs) is computed by using (3.7) and is accumulated
to si. Otherwise, the children of the current node are visited. This procedure is
performed recursively until a leaf node is reached. At the leaf node, direct summation
is performed between xi and all points in Cs. The result is also accumulated to
si. The computation of si is complete when all recursive branches of the treewalk
terminate.

6.1. Partitioning of the point set. Usual partitioning methods result in a
quadtree (or an octree in R

3) or a k-d tree structure. The former assumes a square
computational domain and recursively partitions subdomains with dense points into
equal areas (see Figure 6.1(a)). The latter method (in fact, a common variant) cycli-
cally partitions the point set with respect to each coordinate axis by identifying the
midpoint; thus, a k-d tree is a binary tree where the two sibling nodes in the same
level contain point clusters of the same size.

However, the configuration of the point set is often more complicated than what
a quadtree or a k-d tree can efficiently handle. Consider, for example, Figure 6.1(b),
where the points are uniform but one side of the rectangular domain is four times
as long as the other side. It is more natural to first partition with respect to the
longer side into four equal parts, because in this manner the diameter of the resulting
clusters is much smaller.

This partitioning is also advantageous even when the domain is square but the
distance is defined anisotropically (see Figure 6.1(c)). For example, if the scale pa-
rameter for the Matérn kernel is 1 along one dimension and 1/4 along the other, then
first partitioning with respect to the latter dimension into four equal parts can yield
clusters of smaller elliptical diameters.
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(a) Square (b) Rectangle (c) Anisotropy (d) Nonuniform density

Fig. 6.1. Different point set configurations and partitioning schemes.

We thus seek a principled method to incorporate the uneven density of the points
and the anisotropy. The idea is to use principal component analysis to partition the
space so that the elliptical diameters of the resulting clusters are as small as possible;
see Figure 6.1(d). The principal direction, along which the variance of the points is
maximal, is simply the dominant eigenvector of the covariance matrix of the point
set. We thus use a hyperplane with this direction as the normal to separate the point
set into two equal-sized parts. Similar ideas have been suggested for the construction
of hierarchical matrices (see, e.g., [7]), and our implementation follows that of [12],
wherein a cluster is always partitioned into two equal parts. We note that in order to
incorporate the anisotropy in the kernel, it is crucial to first prescale each coordinate
by the corresponding scale parameter �i and to perform all the principal component
calculations on the scaled points.

Principal component partitioning has several advantages. First, the clusters are
more compactly grouped by considering the shape and the density of the point set
and the scaling parameters. Second, the resulting hierarchy tree is a binary tree,
independent of the spatial dimension d. Furthermore, the tree is a full binary tree,
and each leaf node contains almost the same number of points (differing by at most
1). This provides a natural and convenient way to distribute the points in parallel
processing. Third, if n0 is the maximum size of a leaf, the computational cost of
the overall subdivision is O(n log2(n/n0)), which is asymptotically the same as that
of the usual quadtree or k-d tree partitioning, even though the computation with
eigenvectors may seem slightly complicated.

Of course, the nonregular subdomains (in fact, convex polytopes) resulting from
principal component partitioning sacrifice some advantages the usual partitioning
methods provide. For example, the directions xc − yc are unlikely to be the same
for two different pairs of clusters, as opposed to the case of a quadtree, where the
number of distinct directions is smaller (thus certain accelerations in computations
can be achieved). Nevertheless, principal component partitioning is a general scheme.
It enables a tighter error estimate because of the more compactly grouped clusters
and it implicitly handles anisotropy.

6.2. Complete algorithm and complexity analysis. With partitioning and
error estimates, the complete procedure is given in Algorithm 1. This algorithm
comprises a planning phase and an evaluation phase, whereby all the calculations
independent of the weights {qj} are computed only once in the first phase.

Let us consider the computational complexity of the algorithm with respect to
n and n0. The partitioning step scales as O(n log2(n/n0)) because each tree level
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Algorithm 1. Tree code method for computing (3.1).

Require: Parameters: expansion order (p1, p2), tolerance ε, maximum leaf size n0

// Planning phase
1: Call ErrorControlInfo to fit error formula (H1). If fitting is unsuccessful,

exist this algorithm and use straightforward summation to compute (3.1).
2: Recursively partition the point set to form a full binary tree hierarchy.
3: Compute a binomial table to store

(
k
j

)
for all k ≤ p1 + p2 and j ≤ p1.

4: for every leaf of the tree do
5: Perform a treewalk starting from the root. If a certain source-target node pair

admits Taylor expansion, compute and store the Taylor coefficients.
6: end for

// Evaluation phase
7: Initialize si = 0 for all i
8: for every leaf of the tree do
9: Perform a treewalk. If a certain source-target node pair admits Taylor expan-

sion, compute target moment and weighted source moment to obtain si(Cs) via
Taylor approximation, and accumulate it to si. Otherwise, if the target node is a
leaf, compute si(Cs) via direct summation and accumulate it to si.

10: end for
11: return {si}

requires an O(n) cost and there are O(log2(n/n0)) levels. The construction of the
binomial table and the fitting of the error formulas are independent of n and n0, and
so is the determination of whether to use Taylor expansions in later treewalks. Let
mexpand and mdirect denote the number of node pairs where Taylor expansion occurs
and where direct summation occurs, respectively. The cost of the treewalk in the
planning phase is O(mexpand +mdirect). In the treewalk of the evaluation phase, the
total work to compute the partial sums is O(n0 ·mexpand), whereas the work to perform
the direct summations is O(n2

0 ·mdirect). Therefore, the computational complexities
of the two phases are

planning: O(n log2(n/n0) +mexpand +mdirect),

evaluation: O(n0 ·mexpand + n2
0 ·mdirect).

A difficulty in further simplifying the above big-O expressions is that mexpand and
mdirect vary with not only n but also the configuration of the point set. In a simplified
setting, for each point xi, if one Taylor approximation occurs in each intermediate
tree level and one direct summation happens at the leaf that contains xi, then

(6.1) mexpand = (n/n0)(�log2(n/n0)� − 1) and mdirect = n/n0.

In general, estimating mexpand and mdirect is difficult, but empirical results usually
approximately agree with (6.1) (see Figure 7.1(b)). This leads to the overallO(n log n)
scaling if n0 is ignored.

7. Numerical results. In this section we present several experimental results
to demonstrate the numerical behavior and the performance of Algorithm 1. For
the purpose of practicality and code reuse, we implemented a parallel version of the
program in C++; the parallelization is discussed in a separate paper [13]. In this
paper, all the experiments were serial, conducted on a Pentium Xeon core of clock rate
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2.6 GHz with 36 GB of memory. This setting is particularly helpful for demonstrating
the computational complexity of the serial algorithm. The evaluation of Ku used the
AMOS package available from http://www.netlib.org/amos/; see also [2]. The first
few subsections here concern the computational cost and the tree code parameters;
thus the kernel was fixed at ν = 1.5 and � = [4, 14, 3], and the set of points was
uniformly distributed in the unit cube. The final subsection, on the other hand,
shows experiments on a variety of kernel parameters and point set distributions. In
all experiments, the weights were uniformly random numbers in the interval [0, 1].

7.1. Computational complexity. We first show the O(n log n) scaling of the
algorithm, which is one of the crucial factors when considering the usefulness of a tree
code. We fix the expansion orders p1 = 3, p2 = 5, the tolerance ε = 10−6, and the
leaf size n0 = 64, and we vary n from approximately 1,000 to 8 million.

Figure 7.1(a) plots the running time of the tree code algorithm (separated in the
planning phase and the evaluation phase) and that of the straightforward summation.
The gray lines indicate O(n) and O(n2) scalings. Clearly, when n is sufficiently
large, the growths of the planning time and the evaluation time are close to linear,
whereas the growth of the straightforward summation time is strictly quadratic.

In this particular setting, the tree code outperforms straightforward summation
starting at approximately 8,000 points. Before this, the points are too sparse and
no Taylor approximation occurs, probably because the choice of the leaf size yields
spatially large clusters even for the leaves. Plot (b) confirms this observation. When
n is less than 8,000, the number mexpand is zero, and thus all the calculations are
direct summations at the leaf level. Reading again plot (a), one finds that the red
dotted markers (evaluation time) for n < 213 overlap with the blue squared markers
(straightforward summation time). When n is larger than 216, both mexpand and
mdirect grow linearly.

Note also that when n < 217 (approximately 130,000), a nontrivial planning time
is spent on the tree code. This cost is attributed to the testing of hypotheses (H1) and
(H2) and the fitting of the formulas therein. This setup cost is not small, especially
for high-dimensional points, because a sufficient sampling is needed to estimate the
approximation error well.
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(a) Optimal expansion orders p1, p2 (in terms of evaluation time) given ε.
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(c) Actual error versus ε.

Fig. 7.2. Choice of expansion orders by varying tolerance ε (n = 16, 384).

7.2. Choice of expansion orders. One characteristic of the proposed algo-
rithm is the need to specify a pair (p1, p2) of Taylor orders in order to approximate
the summation to a desired accuracy. For n = 16, 384 and n0 = 64, the table in
Figure 7.2(a) shows an optimal choice of (p1, p2) for ε ranging from 10−1 to 10−10.
The criterion of the optimality is the fastest evaluation time, by using an exhaustive
search. Since the surface of evaluation time with respect to p1 and p2 has a convex
shape, optimality can be located. One sees that as ε becomes smaller, larger orders
are preferred, and usually p2 is no smaller than p1. The corresponding evaluation
times, plotted in (b), show an increasing trend, although it is unclear how this trend
can be described as a simple formula of ε.

The actual approximation error, defined as the relative 2-norm error of the matrix-
vector product, versus the tolerance ε is shown in plot (c). Following the discussions
in section 3 we see that this error is bounded by nε, but the bound is too pessimistic.
Plot (c) shows that the error is less than ε (the red circular markers are all under the
blue dashed reference line). This plot also shows that the error is often one to two
orders of magnitude smaller than ε, which indicates that ε is a useful reference when
one is interested in computing the summation to a particular accuracy.

One may notice that when ε = 10−10, not only do the values of p1 and p2 deviate
from the general trend, but also the relative error is far away from ε. Under this par-
ticular choice, no Taylor approximations are used. In fact, examining the experiment
logs of all the p pairs, we find that approximations are never used whenever p1 or p2
is less than 6. The choice p1 = 2 and p2 = 0 yields the fastest running time among
these cases merely because of noise in the computing environment. When both p1
and p2 are larger than or equal to 6, some approximations are used, but the gain in
approximations does not compete with direct summations. This is probably because
the number of Taylor coefficients explodes but mexpand is not large enough.

We also perform experiments on a larger n (131, 072) and report the results in
Figure 7.3. In this case, one sees a nice trend of the optimal expansion orders for all
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(a) Optimal expansion orders p1, p2 (in terms of evaluation time) given ε.
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Fig. 7.3. Choice of expansion orders by varying tolerance ε (n = 131, 072).

ε. Moreover, the orders are generally smaller than those in Figure 7.2. The reason is
that the points are more densely populated and hence the spatial size of the leaves is
smaller. Thus, in order to achieve the same accuracy, the expansion order for source
nodes on the same level of the hierarchy tree need not be as large as that in the
smaller n case. One sees from plot (c), however, that the actual error is far from ε,
meaning that perhaps using even smaller orders is sufficient to achieve the tolerance,
although the computational time increases.

7.3. Choice of leaf size. A subtle issue in a general tree code is the choice of
the leaf size. A size n0 > 1 is often used in order to ensure that the number of tree
levels is not too large and that the source clusters are not too small. Because we use
double expansion, an additional reason for setting n0 > 1 is to control the size of the
target clusters. We investigate the optimal leaf size (again, in terms of evaluation
time) as n varies. The expansion orders are fixed at p1 = 3 and p2 = 5 and the
tolerance is ε = 10−6.

Figure 7.4 plots the evaluation times for several choices of the leaf size n0. The
solid blue squares indicate the fastest time, one for each n. These markers are high-
lighted within a yellow band. In general, the curves show a decreasing-increasing-
stabilized trend, from small n0 to large n0. The decreasing-increasing trend provides
the opportunity to use an n0 that is larger than 1 to reduce the computational time.
The stabilized part is caused by the fact that when n0 is sufficiently large, no ap-
proximation will be accurate enough so that eventually direct summations are used
everywhere. Figure 7.4 seems to suggest that as n becomes larger, n0 should also
increase accordingly, although its increase is much slower than that of n.

7.4. Tests of different kernel parameters and point distributions. To
demonstrate that the algorithm is able to handle different kernel parameters and
point distributions of practical interests, we show the results of some test cases in
Table 7.1. These tests are all performed on n = 131, 072 points with p1 = 3, p2 = 5,
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Fig. 7.4. Evaluation time versus leaf size n0 for different n.

Table 7.1

Tests by varying kernel parameters and point distributions. Plan. means planning time, eval.
means evaluation time, and straight. means straightforward summation time. All times are in sec-
onds.

ν � Distri. Plan. Eval. Straight. Err. δ
1: 1.5 40, 14, 30 cube 25.31 205.79 6602.0 5.40e-09

2: 1.75 40, 14, 30 cube 32.25 305.40 18733.0 1.19e-09

3: 2 20, 30, 130 cube 26.74 200.76 9642.2 9.59e-11

4: 2.25 4, 14, 30 cube 32.02 351.72 24435.5 9.13e-09

5: 1.25 40, 14, 30 sphere 41.44 289.14 18019.7 3.41e-09

6: 1 20, 30, 130 sphere 30.48 301.79 10035.3 1.88e-08

7: 0.75 20, 30, 130 sphere 41.96 583.95 18001.9 1.69e-08

8: 1.25 40, 14, 30 sph. seg. 37.69 176.05 17617.6 4.77e-09

9: 1 20, 30, 130 sph. seg. 28.51 191.05 10420.9 2.85e-09

10: 0.75 20, 30, 130 sph. seg. 34.53 287.47 18815.5 2.41e-09

11: 1.1 40, 14, 30 cube 32.33 320.32 17435.0 3.86e-09

12: 1.01 40, 14, 30 cube 32.53 338.07 17508.7 5.13e-09

13: 1.001 40, 14, 30 cube 32.59 337.23 16897.4 5.36e-09

14: 1.0001 40, 14, 30 cube 32.49 337.25 16839.6 5.36e-09

15: 1.00001 40, 14, 30 cube 34.40 339.52 17899.0 5.39e-09

ε = 1e-6, and n0 = 64. In rows 1 to 4 of the table, we arbitrarily vary ν and �. In
rows 5 to 7, the points are sampled on a sphere of unit radius with uniformly random
azimuthal angle and polar angle. In rows 8 to 10, the points are sampled from 30◦N to
60◦N of this sphere. Such a portion of the sphere is called a “spherical segment,” and
it simulates a band of latitudes of the globe. In rows 11 to 15, we make ν progressively
closer to 1, in order to test the numerical viability of the algorithm in handling ν that
is close to an integer.

One sees that in all cases the tree code is able to finish in a reasonable time,
whereas the straightforward summation is far more costly. Note also that although
n is the same across different cases, the straightforward summation spends different
amounts of time because the evaluation of the Matérn function has a different cost
for different ν.
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8. Concluding remarks. We have developed a fast summation algorithm for
the Matérn kernel based on the tree code framework. The algorithm handles ar-
bitrary kernel orders, multiple sets of weights, different point set distributions, and
the anisotropy in the definition of distances. With serial experiments of n up to 223

(8 million), we have demonstrated that the running time of the algorithm scales as
O(n log n).

A restriction of the algorithm is that the proposed error estimation is not ap-
plicable when points are far away (specifically, when the centroid distance τ of two
clusters is larger than 1). Although for many strongly correlated data the scale � is
sufficiently large so that the algorithm can be used, it will be more favorable to rid
the constraint on τ in order to widen the applicability of the algorithm.

The algorithm aims at performing computations with an arbitrary order ν. Some-
times, an integer order or a half integer order is of particular interest. More efficient
methods may exist for handling these special cases. When ν is an integer, a series
expansion (with mostly integer powers) of the Matérn kernel is easy to obtain based
on that of Kν (see, e.g., [1, 16]). When ν is a half integer, the Matérn function re-
duces to an exponential times a polynomial [28]. One may design different methods
for these cases in order to bypass the relatively expensive computation of the Taylor
coefficients for a general ν.
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[14] H. Cheng, L. Greengard, and V. Rokhlin, A fast adaptive multipole algorithm in three
dimensions, J. Comput. Phys., 155 (1999), pp. 468–498.

[15] J.-P. Chilès and P. Delfiner, Geostatistics: Modeling Spatial Uncertainty, Wiley-
Interscience, New York, 1999.

[16] O. J. Farrell and B. Ross, Solved Problems: Gamma and Beta Functions, Legendre Poly-
nomials, Bessel Functions, Macmillan, New York, 1963.

[17] W. Fong and E. Darve, The black-box fast multipole method, J. Comput. Phys., 228 (2009),
pp. 8712–8725.

[18] L. Greengard and V. Rokhlin, A fast algorithm for particle simulations, J. Comput. Phys.,
73 (1987), pp. 325–348.

[19] L. F. Greengard, The Rapid Evaluation of Potential Fields in Particle Systems, MIT Press,
Cambridge, MA, 1988.

[20] W. Hackbusch, A sparse matrix arithmetic based on H-matrices. Part I: Introduction to H-
matrices, Computing, 62 (1999), pp. 89–108.
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