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SECOND-ORDER VARIATIONAL ANALYSIS IN CONIC
PROGRAMMING WITH APPLICATIONS

TO OPTIMALITY AND STABILITY∗

BORIS S. MORDUKHOVICH†, JIŘÍ V. OUTRATA‡, AND HÉCTOR RAMÍREZ C.§

Abstract. This paper is devoted to the study of a broad class of problems in conic programming
modeled via parameter-dependent generalized equations. In this framework we develop a second-
order generalized differential approach of variational analysis to calculate appropriate derivatives and
coderivatives of the corresponding solution maps. These developments allow us to resolve some im-
portant issues related to conic programming. They include verifiable conditions for isolated calmness
of the considered solution maps, sharp necessary optimality conditions for a class of mathematical
programs with equilibrium constraints, and characterizations of tilt-stable local minimizers for cone-
constrained problems. The main results obtained in the general conic programming setting are
specified for and illustrated by the second-order cone programming.
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1. Introduction. The major motivation for this paper comes from considering
the following parametric problem of conic programming in finite-dimensional spaces:

(1.1)
minimize ϕ(q, y)− 〈p, y〉
subject to g(y) ∈ Θ,

where y ∈ R
m is the decision variable, x = (q, p) ∈ R

s × R
m is the two-component

perturbation parameter (with q signifying the basic perturbations and p the tilt ones),
Θ ⊂ R

l is a closed convex cone, and ϕ : Rs × R
m → R and g : Rm → R

l are twice
continuously differentiable, i.e., of class C2. These are our standing assumptions in
this paper unless otherwise stated.

The characteristic feature of the optimization problem (1.1) is the cone constraint
given by g(y) ∈ Θ, which unifies remarkable subclasses of conic programs when the
cone Θ is given in a particular form. Among subclasses in conic programming well-
recognized theoretically and most important for applications, we mention problems of
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SECOND-ORDER ANALYSIS IN CONIC PROGRAMMING 77

second-order cone programming, semidefinite programming, and copositive program-
ming; see, e.g., [1, 2, 4, 5, 6, 7, 8, 35, 43, 44] and the references therein. Note that
the cone-constrained form (1.1) accommodates also the class of semi-infinite programs
provided that Θ is a closed convex subcone of the corresponding infinite-dimensional
space; see the recent paper [26] containing the study of nonsmooth conic programs in
both finite and infinite dimensions.

It is well known from elementary variational analysis (see, e.g., [23, Proposi-
tion 5.1] and [40, Theorem 6.12]) that first-order necessary optimality conditions for
problem (1.1) are described by the parameterized generalized equation (GE)

(1.2) 0 ∈ f(x, y) + N̂Γ(y) with Γ := g−1(Θ)

in the sense of Robinson [38], where N̂Γ(y) stands for the regular normal cone to
Γ at y ∈ Γ (see section 2 below for the precise definition), and where f(x, y) :=
∇yϕ(q, y)− p with the symbol ∇ used for the (partial) gradient of scalar functions as
well as for the Jacobian matrix in the case of vector functions. Besides being associated
with conic programs (1.1), model (1.2) is of independent interest and deserves study
for its own sake. When the set Γ is convex, (1.2) encompasses classical variational
inequalities, which have been widely studied in the literature together with similar
models generated by other normal cone mappings replacing N̂Γ(y); see, e.g., [9, 21,
23, 34, 38, 39] and the references therein. In this paper we mainly concentrate on
model (1.2) generated by the regular normal cone to Γ. Note that most of the results
obtained below are new even when the set Γ is convex.

In what follows we consider the variational system (1.2), adding to our standing
assumptions on g and Θ that f : Rn × R

m → R
m is an arbitrary continuously differ-

entiable mapping. This surely covers the original model (1.1) while having a much
broader range of applications; some of them are given in section 6. Observe here an-
other important case concerning perturbed conic programming that can be described
by the GE (1.2). Let x = (u, v) ∈ R

s × R
l, y = (z, λ) ∈ R

s × R
l,

f(x, y) :=

[∇yϕ(z)− u+∇g(z)∗λ
−g(z) + v

]
,

and Γ = R
s×Ξ∗, where the notation A∗ for a matrix A signifies the matrix transposi-

tion/adjoint operator while that of Ξ∗ for the cone Ξ denotes the dual/polar cone of Ξ
given by Ξ∗ := {a ∈ R

l| 〈a, b〉 ≤ 0 for all b ∈ Ξ}. Then the corresponding GE (1.2)
amounts (under some constraint qualification) to the Karush–Kuhn–Tucker (KKT)
system associated with the following canonically perturbed conic program:

minimize ϕ(y)− 〈u, y〉
subject to g(y)− v ∈ Ξ.

Consider the (generally set-valued) solution map S : Rn ⇒ R
m to the parametric

variational system (1.2) defined by

(1.3) S(x) :=
{
y ∈ R

m
∣∣ 0 ∈ f(x, y) + N̂Γ(y)

}
for all x ∈ R

n

with the graph gphS := {(x, y) ∈ R
n × R

m| y ∈ S(x)}, and let (x̄, ȳ) ∈ gphS be our
reference point. Throughout the whole paper we impose the following assumptions on
the set Θ and the mapping g in (1.2) standard in conic programming (see, e.g., [4]):
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78 B. S. MORDUKHOVICH, J. V. OUTRATA, AND H. RAMÍREZ C.

(A1) The set Θ is C2-reducible to a closed convex set Ξ at z̄ := g(ȳ), and the
reduction is pointed. This means that there exist a neighborhood V of z̄ and
a C2 mapping h : V → R

k such that (i) for all z ∈ V we have z ∈ Θ if and
only if h(z) ∈ Ξ, where the cone TΞ(h(z̄)) is pointed; (ii) h(z̄) = 0 and the
derivative mapping ∇h(z̄) : Rl → R

k is surjective/onto.
(A2) The point ȳ ∈ R

m is nondegenerate for g with respect to Θ, i.e.,

(1.4) ∇g(ȳ)Rm + lin
(
TΘ(z̄)

)
= R

l.

In (A1), (A2), TΩ(a) stands for the classical tangent cone to Ω at a ∈ Ω, and lin(L)
denotes the largest linear subspace of Rl contained in L ⊂ R

l.
Note that all the assumptions in (A1) are automatically fulfilled at any point

g(ȳ) ∈ Θ in the following two important settings of cone programming: when Θ
is either the SDP cone, i.e., the positive cone in semidefinite programming (cf. [3,
Corollary 4.6]), or it is the Lorentz cone, known also as the second-order cone and as
the ice cream cone; cf. [5, Lemma 15].

To proceed further, associate with (1.2) the Lagrangian function

(1.5) L(x, y, λ) := f(x, y) +∇g(y)∗λ with λ ∈ R
l.

As has been well recognized in models with conic constraints, under the assump-
tions imposed in (A2) there is a unique Lagrange multiplier λ satisfying the KKT
conditions

0 = L(x, y, λ),
0 ∈ −g(y) +NΘ∗(λ).

(1.6)

The intention of this paper is to study two important stability properties of para-
metric equilibrium problems involving the solution map (1.3) and also to derive nec-
essary optimality conditions for mathematical programs with equilibrium constraints
(MPECs) generated by GE (1.2). It has been well understood in basic variational
analysis that these three issues for general set-valued mappings are closely related
to certain generalized derivatives/coderivatives of the solution maps in question. Ob-
serve to this end that the set-valued part of the variational system (1.2) is given by
normal cone maps, i.e., by the corresponding first-order subdifferential of the indi-
cator function of the underlying set Γ = g−1(Θ). Therefore, applying yet another
generalized differentiation, we enter second-order variational analysis of the initial
cone-constrained systems. Our main tool will be second-order generalized derivatives;
see section 2 for the precise definitions of these and related constructions in varia-
tional analysis and the subsequent sections for their calculations and applications in
our setting. Note that the major results obtained in the paper in the general conic
programming setting are specified for the case when Θ amounts to the Lorentz cone
and illustrated by examples.

The rest of the paper is organized as follows. In section 2 we present basic
definitions and discussions of the first-order and second-order generalized differential
constructions used in the formulations and proofs of the main results below.

Section 3 is devoted to calculating the second-order generalized differential con-
struction defined by graphical derivative of the normal cone mapping from (1.2) under
the convexity assumption imposed on Γ. The principal result obtained here repre-
sents this generalized derivative in terms of the problem data involving the directional
derivative of the metric projection onto the cone Θ.
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SECOND-ORDER ANALYSIS IN CONIC PROGRAMMING 79

Section 4 concerns calculating the regular coderivative of the regular normal cone
mapping N̂Γ(y), which can be treated as the regular second-order subdifferential of
the indicator function of Γ. The main result of this section gives in fact a new second-
order subdifferential chain rule for the regular constructions under consideration in
the case of nondegeneracy imposed in (A2).

In section 5 we present in a unified way formulas for the graphical derivatives and
both regular and limiting coderivatives of the solution map (1.3) in terms of the initial
data. They are based on the results from the preceding sections and on [35, Theorem
7]. The derivative/coderivative formulas derived in this way and combined with basic
characterizations in general frameworks of variational analysis allow us to establish
in section 6 new criteria for isolated calmness of the solution map (1.3) and sharp
necessary optimality conditions for MPECs defined via (1.3) and to characterize tilt
stability of local minimizers in conic programming.

Throughout the paper we use standard notation of variational analysis and opti-
mization; see, e.g., the books [4, 23, 40]. Recall that the (Painlevé–Kuratowski) outer
limit of the set-valued mapping/multifunction F : Rd ⇒ R

s as z → z̄ is defined by

(1.7) Lim sup
z→z̄

F (z) :=
{
v ∈ R

s
∣∣ ∃ zk → z̄, vk → v with vk ∈ F (zk) as k ∈ N

}
and that, given a set Ω ⊂ R

d, the symbol z
Ω→ z̄ signifies that z → z̄ with z ∈ Ω.

As usual, the notation aT indicates the vector transposition, I stands for the identity
matrix, and B denotes the closed unit ball of the space in question.

2. Tools of variational analysis. Generalized differentiation of nonsmooth and
set-valued mappings, as well as generalized normals and tangents to sets, play a crucial
role in modern variational analysis and optimization; see, e.g., the books [23, 40] and
the references therein. In this section we briefly review some first-order and second-
order generalized differential constructions employed in the paper, confining ourselves
only to the settings that appear below. The reader can find more details and extended
frameworks in the aforementioned books and in the papers we refer to.

Let us start with geometric objects. Given a set Ω ⊂ R
d and a point z̄ ∈ Ω, define

the (Bouligand–Severi) tangent/contingent cone to Ω at z̄ via (1.7) by

(2.1) TΩ(z̄) := Lim sup
t↓0

Ω− z̄

t
=

{
u ∈ R

d
∣∣∣ ∃ tk ↓ 0, uk → u with z̄ + tkuk ∈ Ω

}
.

The (Fréchet) regular normal cone to Ω at z̄ ∈ Ω can be equivalently defined by

(2.2) N̂Ω(z̄) :=
{
v ∈ R

d
∣∣∣ lim sup

z
Ω→z̄

〈v, z − z̄〉
‖z − z̄‖ ≤ 0

}
= T ∗

Ω(z̄).

The (Mordukhovich) limiting normal cone also can be defined in two equivalent ways:
via the outer limit (1.7) of the regular normal cone (2.2) and via the (Euclidean)
metric projection operator PΩ(z) := {y ∈ Ω with ‖z − y‖ = dist(z; Ω)} onto Ω by

(2.3) NΩ(z̄) := Lim sup
z

Ω→z̄

N̂Ω(z) = Lim sup
z→z̄

{
cone

[
z − PΩ(z)

]}
,

where Ω is assumed to be locally closed around z̄ in the second representation, and
where the symbol “cone” signifies the (nonconvex) conic hull of a set. Note that
both regular and limiting normal cones reduce to the classical normal cone of convex
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80 B. S. MORDUKHOVICH, J. V. OUTRATA, AND H. RAMÍREZ C.

analysis when the set Ω is convex and when the common notation NΩ(z̄) is used. For
general sets Ω we have the inclusion

N̂Ω(z̄) ⊂ NΩ(z̄) as z̄ ∈ Ω,

where the regular normal cone values are always convex, while it is not often the case
for the limiting normal cone; see, e.g., Ω = gph |z| ⊂ R

2 at z̄ = (0, 0). At the same
time, in contrast to (2.2), we haveNΩ(z̄) �= {0} for boundary points. Furthermore, the
limiting normal cone (2.3) and the corresponding generalized differential constructions
for functions and multifunctions (in particular, those discussed below) possess full
calculi based on variational/extremal principles of variational analysis; see [23, 40].
Although it is not generally the case for the regular normal cone, in this paper we
derive new results in this direction for the second-order objects induced by (2.2).

Considering next set-valued (in particular, single-valued) mappings F : Rd →→ R
s,

we define for them the corresponding derivative and coderivative constructions gen-
erated by the tangent cone (2.1) and the normal cones (2.2) and (2.3), respectively.
Given (z̄, w̄) ∈ gphF , the graphical derivative DF (z̄, w̄) : Rd →→ R

s of F at (z̄, w̄) is

(2.4) DF (z̄, w̄)(u) :=
{
q ∈ R

s
∣∣ (u, q) ∈ TgphF (z̄, w̄)

}
, u ∈ R

d.

From the dual prospectives we define the regular coderivative D̂∗F (z̄, w̄) : Rs →→ R
d of

F at (z̄, w̄) ∈ gphF generated by the regular normal cone (2.2) as

(2.5) D̂∗F (z̄, w̄)(v) :=
{
p ∈ R

d
∣∣ (p,−v) ∈ N̂gphF (z̄, w̄)

}
, v ∈ R

s,

and the corresponding limiting coderivative D∗F (z̄, w̄) generated by (2.3) as

(2.6) D∗F (z̄, w̄)(v) :=
{
p ∈ R

d
∣∣ (p,−v) ∈ NgphF (z̄, w̄)

}
, v ∈ R

s.

If F is single-valued at z̄, we drop w̄ in the notation of (2.4)–(2.6). Note that while the
regular coderivative (2.5) is indeed dual to the graphical derivative (2.4) due to the
duality correspondence in (2.2), the limiting coderivative (2.6) is dual to none, since
the nonconvex normal cone (2.3) cannot be tangentially generated. In the case of
smooth single-valued mappings, for all u ∈ R

d and v ∈ R
s we have the representation

DF (z̄)(u) =
{∇F (z̄)u} and D̂∗F (z̄)(v) = D∗F (z̄)(v) =

{∇F (z̄)∗v}.
As mentioned in section 1, the main emphasis of this paper is on the second-order

generalized differential constructions appropriate for the aforementioned applications.
Among several approaches to second-order generalized differentiation in variational an-
alysis (cf. [4, 23, 40]), we choose the set-valued version of the “derivative-of-derivative”
approach initiated in [22], which is applied to arbitrary extended-real-valued functions
and treats second-order differentiation of them as a certain generalized derivative of
a (set-valued) first-order subdifferential mapping that reduces to the corresponding
normal cone mapping in the case of the indicator functions of sets. In this way the
(limiting) second-order subdifferential/generalized Hessian

(2.7) ∂2ϕ(z̄, w̄)(v) := (D∗∂ϕ)(z̄, w̄)(v), v ∈ R
d,

of ϕ : Rd → R := (−∞,∞] at w̄ ∈ ∂ϕ(z̄) has been introduced in [22] and then widely
applied to various stability and optimality issues in mathematical programming ; see,
e.g., [8, 10, 13, 14, 19, 20, 22, 23, 26, 27, 29, 30, 31, 32, 33, 35, 36, 37, 45] and the
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references therein. In (2.7), ∂ϕ stands for the (first-order) limiting subdifferential
mapping ∂ϕ : Rd →→ R

d defined, via epiϕ :=
{
(z, α) ∈ R

d+1
∣∣ α ≥ ϕ(z)

}
, by

(2.8) ∂ϕ(z) :=
{
w ∈ R

d
∣∣ (w,−1) ∈ Nepiϕ

(
z, ϕ(z)

)}
if ϕ(z) <∞ and ∂ϕ(z) := ∅ otherwise. In this paper we use it only in the case of the
set indicator function ϕ(z) = δΩ(z), equal to 0 when z ∈ Ω and to ∞ otherwise, when

∂ϕ(z) = NΩ(z) and ∂2ϕ(z̄, w̄)(v) = D∗NΩ(z̄, w̄)(v) for z̄ ∈ Ω and w̄ ∈ NΩ(z̄).

Similarly to (2.7) we can define the regular second-order subdifferential/generalized

Hessian ∂̂2ϕ(z̄, w̄) := (D̂∗∂̂ϕ)(z̄, w̄), where ∂̂ϕ comes from (2.8) with the replacement

of (2.3) by (2.2), and its indicator function specification D̂∗N̂Ω(z̄, w̄), which has al-
ready been studied and applied in [13, 14] in the settings different from this paper.

Yet another second-order construction for ϕ of our interest here has been con-
sidered in [40] under the name of the “subgradient graphical derivative” defined in
scheme (2.7) as (D∂ϕ)(z̄, w̄)(v) for w̄ ∈ ∂ϕ(z̄), v ∈ R

d. Note that for ϕ ∈ C2 we have

(D∂ϕ)(z̄)(v) = ∂̂2ϕ(z̄)(v) = ∂2ϕ(z̄)(v) =
{∇2ϕ(z̄)v

}
for all v ∈ R

d

due to the symmetry of the classical Hessian. As for ∂2ϕ and ∂̂2ϕ, we draw our
attention to calculating D∂ϕ for ϕ = δΓ, i.e., of the graphical derivative of the normal
cone mapping DN̂Γ with Γ = g−1(Θ) arising in conic programming.

3. Graphical derivatives of normal cone mappings. Throughout this sec-
tion the set Γ ⊂ R

m from (1.2) is convex, i.e., N̂Γ(y) reduces to the normal cone NΓ(y)
of convex analysis. The main result of the section provides a complete calculation of
the graphical derivative of the normal cone mapping NΓ. Apart from deriving the
main result we provided a workable formula for the directional derivative of the metric
projection onto Γ which seems to be of its independent interest.

The convexity of Γ = g−1(Θ) is obviously ensured by the Θ-convexity of the
mapping g : Rm → R

l, in the sense that the set{
(y, z) ∈ R

m × R
l
∣∣ g(y)− z ∈ Θ

}
is convex. This definition corresponds to the “−Θ-convexity” of g in the terminology
of [4, Definition 2.103], while it is more convenient for us to use the term “Θ-convexity”
in the sense defined above. Since g ∈ C2, its Θ-convexity is equivalent to the condition

(3.1) 〈∇2g(y)(h, h), ν〉 ≥ 0 for all ν ∈ Θ∗ and y, h ∈ R
m,

which is assumed in the rest of this section.
Consider first the auxiliary linear GE

(3.2) 0 ∈ y − u+NΓ(y)

associated with the (unique) metric projection PΓ(u) of u ∈ R
m onto Γ. We clearly

have that y = PΓ(u) if and only if

(3.3)

[
y

u− y

]
∈ gphNΓ.
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Consider next the associated perturbed KKT system

0 =y − u+∇g(y)∗ν,
− s ∈ −g(y) +NΘ∗(ν),

(3.4)

with the Lagrange multiplier ν ∈ R
l, and denote by T the mapping (u, s) �→ (y, ν)

defined by (3.4). Take a vector ū ∈ R
m with PΓ(ū) = ȳ and put s̄ = 0. It follows

from (A2) that T is single-valued on a neighborhood of (ū, 0) and T (ū, 0) = {(ȳ, ν̄)},
where ν̄ ∈ R

l is a unique Lagrange multiplier associated with the projection of ū
onto Γ. Recall that a set-valued mapping Φ: Rk →→ R

p has the Aubin/Lipschitz-like
property around (z̄, w̄) ∈ gphΦ if there are neighborhoods U of z̄ and V of w̄ as well
as a number κ ≥ 0 such that

(3.5) Φ(z1) ∩ V ⊂ Φ(z2) + κ‖z2 − z1‖B for all z1, z2 ∈ U .
If Φ happens to be single-valued on U , then the Aubin property around (z̄, w̄) reduces
to the classical local Lipschitz continuity near z̄.

The following lemma of its own interest gives a workable representation of the
classical directional derivative of the (single-valued) metric projection operator onto
the convex set Γ in terms of the initial data of (1.2) and plays a crucial role in deriving
the main result of this section in what follows. It contains an assumption on the direc-
tional differentiability of the projection operator onto cone Θ, which is not restrictive
and holds for the majority of conic programs important for optimization theory and
applications (in particular, for semidefinite and second-order cone programming). On
the other hand, the required directional differentiability of the projection operator is
not always available for an arbitrary convex cone Θ in finite dimensions; see a rather
involved counterexample [16] of a solid cone in R

3 and also a much simpler, ingenious
example in R

2 constructed more recently in [41].
Lemma 3.1 (directional derivative of the projection operator). In addition to the

standing assumptions, suppose that the projection operator PΘ onto Θ is directionally
differentiable on R

l. Then for any ū ∈ R
m such that PΓ(ū) = ȳ there is a neighborhood

U of ū such that the projection operator PΓ onto Γ is directionally differentiable at
each u ∈ U in every direction h ∈ R

m. Furthermore, this directional derivative is
calculated by P ′

Γ(u;h) = v1, where v1 is the first component of the unique solution
v = (v1, v2) ∈ R

m × R
l to the system of equations

(3.6)
h =

(
I +

l∑
i=1

νi∇2gi(y)

)
v1 +∇g(y)∗v2,

0 = ∇g(y)v1 − P ′
Θ

(
g(y) + ν;∇g(y)v1 + v2

)
with y = PΓ(u) and ν = (ν1, . . . , νl) ∈ R

l being the unique Lagrange multiplier corres-
ponding to the pair (u, y) in the KKT system (3.4) with s = 0.

Proof. It is easy to see that the mapping T can be represented as

T (u, s) =
{
(y, ν) ∈ R

m × R
l
∣∣ Ψ(u, s, y, ν) ∈ Λ

}
,

where

Ψ(u, s, y, ν) :=

⎡⎣ y − u+ (∇g(y))∗ν
g(y)− s
ν

⎤⎦ and Λ := {0}Rm × gphNΘ.

We invoke now [23, Corollary 4.61] according to which the Aubin property of T around
(ū, s̄, ȳ, ν̄) is implied by the condition
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(∇yΨ(ū, s̄, ȳ, ν̄))∗a = 0

(∇νΨ(ū, s̄, ȳ, ν̄))∗a = 0

a ∈ NΛ

(
Ψ(ū, s̄, ȳ, ν̄)

)
⎫⎪⎬⎪⎭ =⇒ a = 0,

which reduces in the case of Ψ under consideration to

(3.7)

(
I +

l∑
i=1

ν̄i∇2gi(ȳ)

)
a1 + (∇g(ȳ))∗a2 = 0

a2 ∈ D∗NΘ

(
g(ȳ), v̄

)(∇g(ȳ)a1)
⎫⎪⎪⎬⎪⎪⎭ =⇒ a1 = 0, a2 = 0

with a1 ∈ R
m and a2 ∈ R

l. Multiplying scalarly the first equation of (3.7) from the
left-hand side by a1 and taking into account the inclusion for a2 give us〈

a1,

(
I +

l∑
i=1

ν̄i∇2gi(ȳ)

)
a1

〉
+ V = 0

with some V ∈
〈
∇g(ȳ)a1, D∗NΘ

(
g(ȳ), ν̄

)(∇g(ȳ)a1)〉.
From the assumed Θ-convexity of g and the monotonicity result in [37, Theorem 2.1]
(implying V ≥ 0), we immediately conclude that a1 = 0. It remains to show that(∇g(ȳ))∗a2 = 0

a2 ∈ D∗NΘ

(
g(ȳ), ν̄

)
(0)

}
=⇒ a2 = 0.

To proceed, we employ the reducibility of Θ at g(ȳ) and the nondegeneracy of ȳ for
g with respect to Θ. The reducibility gives us a neighborhood V of z̄ := g(ȳ), a C2

mapping h : V → R
k, and a closed convex set Ξ ⊂ R

k such that Θ ∩ V = h−1(Ξ) ∩ V
and ∇h(z̄) is surjective. Thus we find a unique vector μ̄ ∈ NΞ(h(z̄)) satisfying

ν̄ =

k∑
i=1

μ̄i∇hi(z̄).

Furthermore, it follows from [29, Theorem 3.4] that

(3.8) a2 =
(∇h(z̄))∗b

with some vector b ∈ D∗NΞ(h(z̄), μ̄)(0). Since ∇h(z̄)∇g(ȳ) is surjective due to the
assumed nondegeneracy (see, e.g., [4, p. 315]), we get the implication(∇g(ȳ))∗(∇h(z̄))∗b = 0 =⇒ b = 0,

and so a2 also vanishes by (3.8). Since T is locally single-valued, we conclude that it
is Lipschitz continuous around (ū, 0).

Define now the mapping Φ : Rm × R
l × R

m × R
l → R

m × R
l × R

m × R
l by

(3.9) Φ(w, z, y, ν) :=

⎡⎢⎢⎣
w
z

y − w +
(∇g(y))∗ν

g(y)− z − PΘ

(
g(y)− z + ν

)
⎤⎥⎥⎦

and deduce from the convexity of Θ the equivalence

(3.10) (y, ν) = T (u, s) ⇐⇒ Φ(w, z, y, ν) =

⎡⎢⎢⎣
u
s
0
0

⎤⎥⎥⎦.D
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We claim that Φ is a Lipschitzian homeomorphism near (ū, 0, ȳ, ν̄). Indeed, Φ is
a Lipschitz function by virtue of our assumptions and there are a neighborhood O of
(ū, 0, ȳ, ν̄) and a single-valued Lipschitz mapping 	 such that 	(ū, 0, 0, 0) = (ū, 0, ȳ, ν̄)
and

	(·) = Φ−1(·) ∩O

on a neighborhood of (ū, 0, 0, 0). This follows from the properties of T proved above
and the equivalence (3.10). Since Φ is directionally differentiable by the posed as-
sumptions, we can invoke the inverse mapping theorem by Kummer (see [17]) to
conclude that 	 is also directionally differentiable on a neighborhood of (ū, 0, 0, 0). Its
directional derivative on this neighborhood is related to the directional derivative of
Φ by

ρ′
(
Φ(w, z, y, ν); (h, 0, 0, 0)

)
=

⎡⎢⎢⎣
h
0
v1
v2

⎤⎥⎥⎦, where

⎡⎢⎢⎣
h
0
0
0

⎤⎥⎥⎦ = Φ′((w, z, y, ν); (h, 0, v1, v2)).
This yields our conclusion on the directional differentiability of PΓ with P ′

Γ(u;h) = v1
along the solution to (3.6) by using standard calculus rules in formula (3.9).

Remark 3.2 (discussions on projection directional differentiability).

(i) With some small changes of the argumentation in the above proof it can be
shown that the assertion of Lemma 3.1 holds true if, instead of the Θ-convexity of g,
we impose the second-order condition〈

a1,
(
I +Σν̄i∇2gi(ȳ)

)
a1

〉
+ 〈∇g(ȳ)a1, a2〉 > 0

for all a1 ∈ R
m \ {0}, a2 ∈ D∗NΘ

(
g(ȳ), ν̄

)(∇g(ȳ)a1),
which may well be fulfilled without assuming the Θ-convexity of g. However, the proof
of Theorem 3.3, the main result of this section, requires the convexity of Γ anyway in
order to employ the relationship between N̂Γ and PΓ.

(ii) The directional derivative of PΓ has been calculated in [42] (based on the
early results by Shapiro) in the case when g is an affine mapping and Θ is second-
order regular in the sense of [4]. The obtained formula requires the calculation of the
support function of the second-order tangent cone to Θ.

Lemma 3.1 established above is a crucial ingredient in deriving the main result
of this section given in the following theorem.

Theorem 3.3 (calculating the graphical derivative of the normal cone mapping).
Let the assumptions of Lemma 3.1 hold, (ū, ȳ) ∈ gphPΓ, w̄ := ū − ȳ, and let ν̄ =
(ν̄1, . . . , ν̄l) be a unique Lagrange multiplier associated with (ū, ȳ) via (3.4). Then the
tangent cone (2.1) to the graph of NΓ at (ȳ, w̄) admits the representation

(3.11)

TgphNΓ(ȳ, w̄) =

{
(v, p)

∣∣∣ ∃d ∈ R
l with p =

(
l∑

i=1

ν̄i∇2gi(ȳ)

)
v +∇g(ȳ)∗d,

∇g(ȳ)v = P ′
Θ

(
g(ȳ) + ν̄;∇g(ȳ)v + d

)}
.
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Consequently, for any direction v ∈ R
m the graphical derivative of NΓ at (ȳ, w̄) is

(3.12)

DNΓ(ȳ, w̄)(v) =

{
p ∈ R

l
∣∣∣∃d ∈ R

l with p =

(
l∑

i=1

ν̄i∇2gi(ȳ)

)
v +∇g(ȳ)∗d,

∇g(ȳ)v = P ′
Θ

(
g(ȳ) + ν̄;∇g(ȳ)v + d

)}
.

Proof. By [14, Proposition 3.1] we have the relationship

TgphPΓ(ū, ȳ) = gphP ′
Γ(ū; ·).

Using this and Lemma 3.1 gives us the tangent cone representation

TgphPΓ(ū, ȳ) =

{
(h, v1) ∈ R

m × R
m
∣∣∣ ∃v2 ∈ R

l such that

h =

(
I +

l∑
i=1

ν̄i∇2gi(ȳ)

)
v1 +∇g(ȳ)∗v2, ∇g(ȳ)v1 = P ′

Θ

(
g(ȳ) + ν̄;∇g(ȳ)v1 + v2

)}
.

Since (y, w) ∈ gphNΓ if and only if (y + w, y) ∈ gphPΓ, it follows by the elementary
calculus rule from [40, Exercise 6.7] that

TgphNΓ(ȳ, w̄) =

{
(v, p) ∈ R

m × R
m

∣∣∣∣( v + p
v

)
∈ TgphPΓ(ū, ȳ)

}
,

which justifies the tangent cone formula (3.11). The graphical derivative result (3.12)
follows immediately from (3.11) and definition (2.4).

We can see that formulas (3.11) and (3.12) for calculating the tangent cone to
gphNΓ and the graphical derivative of NΓ are valid for general conic programs while
involving the directional derivative of the projection operator onto Θ. In particu-
lar, this directional derivative was calculated entirely in terms of the initial data for
the following two remarkable subclasses of conic programming: second-order cone
programs (SOCPs) defined by the Lorentz cone

(3.13) Θ = Kl :=
{
(θ1, . . . , θl) ∈ R

l
∣∣ θ1 ≥ ‖(θ2, . . . , θl)‖

}
with the Euclidean norm ‖ · ‖ (see [36, Lemma 2]) and semidefinite programs (SDPs)
with Θ being the cone of symmetric positive semidefinite matrices

(3.14) Θ := Sl
+ =

{
A ∈ R

l×l
∣∣ zTAz ≥ 0 for all z ∈ R

l
}
;

see [43, Theorem 4.7]. Let us present the calculation results for the case of Θ = Kl,
which are used in what follows. Note that similar calculations can be done in the case
when Θ is the Cartesian product of finitely many Lorentz cones.

Prior to presenting the corresponding results from [36] for Θ = Kl, let us recall
the relevant notation and facts from the theory of symmetric cones needed below; see,
e.g., [12]. Given any vector u = (u1, ũ) ∈ R×R

l−1, we have its spectral decomposition

(3.15) u = λ1(u)c1(u) + λ2(u)c2(u),

where λ1(u), λ2(u) and c1(u), c2(u) are the spectral values and vectors of u given by

(3.16) λi(u) = u1 + (−1)i‖ũ‖ and
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(3.17) ci(u) =

⎧⎪⎨⎪⎩
1

2

(
1, (−1)i

ũ

‖ũ‖
)

if ũ �= 0,

1

2

(
1, (−1)iv

)
if ũ = 0

for i = 1, 2, with v being any unit vector in R
l−1. The following proposition taken

from [36, Lemma 2] describes the directional derivative of the metric projection onto
the Lorentz cone Θ = Kl. Note that in this case we have Θ∗ = −Kl.

Proposition 3.4 (directional derivative of the projection onto the
Lorentz cone). Let Θ = Kl. Then the projection operator PΘ is directionally dif-
ferentiable at u and for any direction h ∈ R

l we have the following relationships:
(i) If u ∈ intΘ ∪ intΘ∗, then P ′

Θ(u;h) = ∇PΘ(u)h with

∇PΘ(u) = 2

2∑
i=1

[
β[1]

(
λ(u)

)]
ii
ci(u)ci(u)

T +
[
β[1]

(
λ(u)

)]
12
A(u),

where we have A(u) := (0 0
0 I)−

(
c2(u)− c1(u)

)(
c2(u)− c1(u)

)T
,

λ(u) :=
(
λ1(u), λ2(u)

)
, and

[
β[1](λ)

]
ij
:=

⎧⎪⎪⎨⎪⎪⎩
β(λi)− β(λj)

λi − λj
if λi �= λj ,

β′(λi) if λi = λj ,

i, j = 1, 2,

for the first divided difference matrix of the real-valued function β(x) =
(x)+ := max{0, x} at λ, with λ := (λ1, λ2) ∈ R

2 and λ1λ2 �= 0.
(ii) If u ∈ bdΘ∗ \ {0}, then P ′

Θ(u;h) = 2
(〈c2(u), h〉)+c2(u).

(iii) If u ∈ bd (Θ)\{0}, then P ′
Θ(u;h) = h−2

(〈c1(u), h〉)−c1(u) with the notation

(x)− := min{0, x}.
(iv) If u = 0, then P ′

Θ(u;h) = PΘ(h).

4. Regular coderivatives of normal cone mappings. This section is devoted
to deriving a formula for calculating the regular coderivative (2.5) of the regular
normal cone mapping (2.2) to the set Γ = g−1(Θ) from (1.2) via the initial data g
and Θ under the standing assumptions formulated in section 1. Note that due to the
duality relationship between the regular normal and tangent cones in (2.2) we have,
for an arbitrary set-valued mapping F : Rd →→ R

s, that

(4.1) D̂∗F (ȳ, v̄)(w) =
{
p ∈ R

d
∣∣ 〈p, u〉 ≤ 〈w, q〉 for all (u, q) ∈ gphDF (ȳ, v̄)

}
whenever (ȳ, v̄) ∈ gphF and w ∈ R

s. This implies that formula (3.12) of Theorem 3.3
induces, under the assumptions of section 3, the corresponding representation of the
regular coderivative of NΓ by the duality relation (4.1).

However, in this section we explore another route to deal with the regular normal
and coderivative constructions, which treats them directly, with no appeal to the
tangential counterparts and duality correspondences. In this way we arrive at a new
second-order chain rule to calculate the regular coderivative of the regular normal
cone mapping N̂Γ in the setting under consideration without imposing the convexity
assumption on the set Γ as well as assuming the directional differentiability of the
projection operator PΘ. In the case of the limiting second-order subdifferential (2.7)
such a calculus approach has been developed in a series of previous publications (see,
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e.g., [23, 29, 30, 32, 35]), with the result for D∗NΓ closest to our setting appearing in
[35, Theorem 7] under the nondegeneracy assumption. We are not familiar with any

previous developments in this direction for the case of D̂∗N̂Γ.
To proceed, consider an [l× k]-matrix A(·) whose entries are continuously differ-

entiable functions of x ∈ R
n, and let the components of b(·) ∈ R

p be continuously
differentiable functions of x. Then we have by the classical product rule that

(4.2) ∇(
A(·)b(·))|x=x̄ = ∇(

A(·)b(x̄))|x=x̄ +∇(
A(x̄)b(·))|x=x̄.

Theorem 4.1 (second-order chain rule for the regular coderivative of the regular

normal cone mapping). Let v̄ ∈ N̂Γ(ȳ) under the standing assumptions from section 1.
Then for all w ∈ R

m we have the representation

(4.3) D̂∗N̂Γ(ȳ, v̄)(w) =

l∑
i=1

λ̄i∇2gi(ȳ)w +∇g(ȳ)∗D̂∗NΘ

(
g(ȳ), λ̄

)(∇g(ȳ)w),
where λ̄ = (λ̄1, . . . , λ̄l) ∈ R

l is a unique solution to the system

(4.4) ∇g(ȳ)∗λ = v̄, λ ∈ NΘ

(
g(ȳ)

)
.

Proof. First we justify the chain rule (4.3) in the case when the derivative operator
∇g(ȳ) : Rm → R

l is surjective, i.e., the associated Jacobian matrix ∇g(ȳ) with the
same notation is of full rank. Consider the set

Q :=
{
(y, λ, v) ∈ R

m × R
l × R

m
∣∣ v = ∇g(y)∗λ, λ ∈ NΘ

(
g(y)

)}
and observe that Q = Φ−1

({0} × gphNΘ

)
with

Φ(y, λ, v) :=

⎡⎣v −∇g(y)∗λ
g(y)
λ

⎤⎦.
It easily follows from the surjectivity of ∇g(ȳ) that the operator ∇Φ(ȳ, λ̄, v̄) is also
surjective, and then invoking [23, Corollary 1.15] gives us

N̂Q(ȳ, λ̄, v̄) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎣

l∑
i=1

λ̄i∇2gi(ȳ)p+∇g(ȳ)∗q
∇g(ȳ)p+ r

−p

⎤⎥⎥⎥⎦
∣∣∣∣∣∣∣∣∣
p ∈ R

m, (q, r) ∈ N̂gphNΘ

(
g(ȳ), λ̄

)
⎫⎪⎪⎪⎬⎪⎪⎪⎭.

Since gph N̂Γ is the canonical projection of the set Q onto the space generated by the
first and the third components, we get from [40, Theorem 6.43] that

(4.5) N̂gph ̂NΓ
(ȳ, v̄) ⊂

⎧⎪⎨⎪⎩(z, u) ∈ R
l × R

m

∣∣∣∣∣∣∣
z =

l∑
i=1

λ̄i∇2gi(ȳ)(−u) +∇g(ȳ)∗q,(
q,∇g(ȳ)u) ∈ N̂gphNΘ

(
g(ȳ), λ̄

)
⎫⎪⎬⎪⎭.

By (2.5) this implies in turn with putting w := −u that

(4.6) D̂∗N̂Γ(ȳ, v̄)(w) ⊂
l∑

i=1

λ̄i∇2gi(ȳ)w +∇g(ȳ)∗D̂∗NΘ

(
g(ȳ), λ̄

)(∇g(ȳ)w).D
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To justify the opposite inclusion in (4.3), we express according to [23] the set N̂Γ

locally around ȳ as follows:

N̂Γ(y) = ψ
(
y,NΘ(g(y))

)
=

⋃{
ψ(y, u)

∣∣ u ∈ NΘ

(
g(y)

)}
with the function ψ : Rm × R

l → R
m defined by

ψ(y, u) := ∇g(y)∗u for all y ∈ R
m and u ∈ R

l.

We pick now an arbitrary pair (z, w) satisfying(
z,−∇g(ȳ)w) ∈ N̂gphNΘ

(
g(ȳ), λ̄

)
and observe that

gph (NΘ◦g) =
{
(a, b) ∈ R

m × R
l
∣∣ (g(a), b) ∈ gphNΘ

}
.

It ensures by [23, Corollary 1.15] and the surjectivity of ∇g(ȳ) that

N̂gph(NΘ◦g)(ȳ, λ̄) =

[∇g(ȳ)∗ 0
0 I

]
N̂gphNΘ

(
g(ȳ), λ̄

)
,

and so the inclusion (∇g(ȳ)∗z,−∇g(ȳ)w) ∈ N̂gph(NΘ◦g)(ȳ, λ̄)

holds true. Invoking now the arguments used in the proof of [23, Lemma 1.126] gives
us (

l∑
i=1

λ̄i∇2gi(ȳ)w +∇g(ȳ)∗z,−w
)

∈ N̂gph ̂NΓ
(ȳ, v̄),

which justifies together with (4.6) the validity of (4.3) in the case of surjectivity.
It remains to replace the surjectivity of ∇g(ȳ) by the weaker nondegeneracy as-

sumption from (A2). To proceed, we employ the local representation of Θ provided
by its reducibility at g(ȳ); see the assumptions in (A1) with the notation used therein.

Denote f := h ◦ g and observe that its derivative ∇f(ȳ) is surjective due to the
nondegeneracy assumption. Applying (4.3) to the mapping f allows us to find a unique
multiplier μ̄ = (μ̄1, . . . , μ̄k) ∈ NΞ(f(x̄)) satisfying the relationships ∇f(x̄)∗μ̄ = v̄ and

(4.7) D̂∗N̂Γ(ȳ, v̄)(w) =

(
k∑

i=1

μ̄i∇2fi(ȳ)

)
w +∇f(ȳ)∗D̂∗NΞ

(
f(ȳ), μ̄

)(∇f(ȳ)w).
By the classical chain rule we have the equalities

∇f(ȳ) = ∇(h ◦ g)(ȳ) = ∇h(g(ȳ))∇g(ȳ),
(4.8) ∇f(ȳ)∗ = ∇g(ȳ)∗∇h(g(ȳ))∗.
Furthermore, it follows from the surjectivity of ∇h(g(ȳ)) and the application of (4.3)
to h that

D̂∗NΘ

(
g(ȳ), λ̄

)
(ν) =

(
k∑

i=1

ϑ̄i∇2hi
(
g(ȳ)

))
ν+∇h(g(ȳ))∗D̂∗NΞ

(
h(g(ȳ)), ϑ̄

)(∇h(g(ȳ)ν)D
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for all ν ∈ R
k, where ϑ̄ = (ϑ̄1, . . . , ϑ̄k) is a unique vector from R

k such that

ϑ̄ ∈ NΞ

(
h(g(ȳ))

)
and ∇h(g(ȳ))∗ϑ̄ = λ̄.

Since h(g(ȳ)) = f(ȳ), it follows from the uniqueness of multiplier μ̄ in (4.7) that
ϑ̄ = μ̄. Indeed, both multipliers ϑ̄ and μ̄ belong to NΞ(f(ȳ)), and by (4.8) we have

∇f(ȳ)∗ϑ̄ = ∇g(ȳ)∗∇h(g(ȳ))∗ϑ̄ = ∇g(ȳ)∗λ̄ = v̄.

Taking this into account, observe the equalities

∇f(ȳ)∗D̂∗NΞ

(
f(ȳ), μ̄

)(∇f(ȳ)w)
= ∇g(ȳ)∗∇h(g(ȳ))∗D̂∗NΞ

(
h(g(ȳ)), ϑ̄

)(∇h(g(ȳ)∇g(ȳ)w)
= ∇g(ȳ)∗

[
D̂∗NΘ

(
g(ȳ), λ̄

)(∇g(ȳ)w)−(
k∑

i=1

μ̄i∇2hi
(
g(ȳ)

))∇g(ȳ)w] .
To complete the proof of the theorem, let us show that(
k∑

i=1

μ̄i∇2fi(ȳ)

)
w =

(
l∑

i=1

λ̄i∇2gi(ȳ)

)
w +∇g(x̄)∗

(
k∑

i=1

μ̄i∇2hi
(
g(ȳ)

))∇g(ȳ)w.

To proceed, we invoke the product rule (4.2) and get the equality

∇(∇fi(ȳ)) = ∇(∇g(·)∗∇hi(g(·))∣∣y=ȳ

= ∇(∇g(·)∗∇hi(g(ȳ)))|y=ȳ +∇g(ȳ)∗∇(∇hi(g(·)))|y=ȳ.

This allows us to conclude that

(4.9)

(
k∑

i=1

μ̄i∇2fi(ȳ)

)
w =

[
∇
(
∇g(·)∗

(
k∑

i=1

μ̄i∇hi
(
g(ȳ)

)))∣∣∣
y=ȳ

]
w

+∇g(ȳ)∗
(

k∑
i=1

μ̄i∇2hi
(
g(ȳ)

))∇g(ȳ)w.

Since
∑k

i=1μ̄i∇hi(g(ȳ)) = λ̄, the first term on the right-hand side of (4.9) amounts to

(∇(
[∇g1(·), . . . , gl(·)]λ̄

)|y=ȳ

)
w =

(
l∑

i=1

λ̄i∇2gi(ȳ)

)
w,

which justifies (4.3) and thus completes the proof of the theorem.
To facilitate the usage of formula (4.3), e.g., in the case of Θ = Kl, we restate it

now in terms of the regular coderivative of the metric projection mapping PΘ.
Corollary 4.2 (regular coderivative of the regular normal cone and projection

mappings). In the setting of Theorem 4.1 we have

D̂∗N̂Γ(ȳ, v̄)(w) =

{
l∑

i=1

λ̄i∇2gi(ȳ)w + (∇g(ȳ))∗p
∣∣∣

−∇g(ȳ)w ∈ D̂∗PΘ

(
g(ȳ) + λ̄

)(−∇g(ȳ)w − p
)}
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Proof. It follows from the well-known relationship

PΘ = (I +NΘ)
−1

between the projection and normal cone operators for convex sets (see, e.g., [40,
Proposition 6.17]) that (y, w) ∈ gphNΘ if and only if (y + w, y) ∈ gphPΘ. Hence we
get from [40, Exercise 6.7] that

N̂gphNΘ

(
g(ȳ), λ̄

)
=

{
(p, r)

∣∣ p = u+ w, r = u, (u,w) ∈ N̂gphPΘ

(
g(ȳ) + λ̄, g(ȳ)

)}
,

and it suffices to apply the definition of the regular coderivative.
Note that a similar relationship to that in Corollary 4.2 holds for the limiting

coderivatives of NΓ and PΘ. In the Lorentz cone case Θ = Kl the corresponding
formulas for the regular and limiting coderivatives of the projection operator PΘ can
be found [36, Theorem 1] and [36, Theorems 2 and 3], respectively.

To conclude this section, let us discuss further specifications and extensions of
the second-order chain rule obtained in Theorem 4.1.

Remark 4.3 (calculating coderivatives of the normal cone mapping defined by the
SDP cone). Besides the Lorentz cone case discussed above, the second-order calculus
rule in Theorem 4.1 as well as its limiting counterpart from [35, Theorem 7] allow us

to fully calculate the corresponding coderivatives D̂∗N̂Γ(ȳ, v̄) and D
∗NΓ(ȳ, v̄) entirely

via the problem data for the SDP cone Θ = Sl
+ from (3.14). This is based on the

calculations of the corresponding coderivative constructions for PSl
+
given recently in

[8, Proposition 3.2 and Theorem 3.1]. It is worth mentioning that the calculation of
the limiting coderivativeD∗NΓ(ȳ, v̄) has been effectively applied in [28] to characterize
tilt and full stability in SDP problems.

Remark 4.4 (infinite-dimensional extensions). Observe that Theorem 4.1 holds
as formulated in arbitrary Banach spaces, where the notion of nondegeneracy is taken
from [4, Definition 4.70] without assuming the finite-dimensionality of the spaces in
question. Indeed, the only change in the proof given above is to replace the appli-
cation of the finite-dimensional result from [40, Theorem 6.43] by its Banach space
counterpart from [25, Theorem 4.2] ensuring the equality in (4.5) and hence in (4.1)
under the surjectivity assumption imposed on ∇g(ȳ). In this way we can also derive
the Banach space version of second-order chain rule from [35, Theorem 7] for the lim-
iting constructions. Furthermore, the developed approach based on [23, Lemma 1.126]
and its proof in the case of surjectivity and on the nondegeneracy reduction to the
surjectivity case employed in [35, Theorem 7] and in Theorem 4.1 above allows us to
establish—in the general case of nondegeneracy—the exact/equality type second-order
chain rules for various combinations of coderivatives and first-order subdifferentials
defined via the dual “derivative-of-derivative” scheme of (2.7) (see, e.g., [23, 27, 29])
in arbitrary Banach spaces.

Remark 4.5 (relations to tangential constructions). Having in hand the calcula-
tions of Theorem 4.1, it is appealing to employ them in deriving workable formulas for
the corresponding representations of the graphical derivative of N̂Γ by reversing the
duality scheme (4.1) between DF and D̂∗F . However, the realization of this scheme
requires the graphical regularity of F (cf. [40, Corollary 6.29]), which in fact reduces
to a certain smoothness of F in the case of graphically Lipschitzian (in the sense of [40,
Definition 9.66] and [23, Definition 1.45]) mappings; see [23, Theorem 1.46] with the
references and discussions therein. These observations show that the reversed duality
scheme cannot be applied to the normal cone mappings under consideration.
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5. Generalized derivatives of solution maps. The results obtained in sec-
tions 3 and 4 together with [35, Theorem 7] and standard calculus rules of generalized
differentiation allow us to establish workable formulas for calculating and estimating
graphical derivatives and both regular and limiting coderivatives of the solution map
S from (1.3). They are crucial for the subsequent applications in section 6. We unify
these results in the next theorem.

Theorem 5.1 (derivatives and coderivatives of solution maps). Considering the
solution map S in (1.3), fix (x̄, ȳ) ∈ gphS. Let λ̄ ∈ R

l be a unique Lagrange multiplier
satisfying the KKT system

L(x̄, ȳ, λ) = 0, λ ∈ NΘ

(
g(ȳ)

)
.(5.1)

Then the following assertions hold:
(i) Under the assumptions of Theorem 3.3 we have the inclusion

DS(x̄, ȳ)(v)

⊂ {
u ∈ R

m
∣∣ ∃d ∈ R

l such that 0 = ∇xf(x̄, ȳ)v +∇yL(x̄, ȳ, λ̄)u+∇g(ȳ)∗d,(5.2)

∇g(ȳ)u = P ′
Θ

(
g(ȳ) + λ̄;∇g(ȳ)u + d

)}
, v ∈ R

n,

which becomes an equality if in addition ∇xf(x̄, ȳ) is surjective.
(ii) In addition to the standing assumptions of section 1, suppose that ∇xf(x̄, ȳ)

is surjective. Then for any v ∈ R
m we have the regular coderivative representation

(5.3)
D̂∗S(x̄, ȳ)(v) =

{
∇xf(x̄, ȳ)

∗w
∣∣∣ 0 ∈ v +∇yL(x̄, ȳ, λ̄)∗w

+ ∇g(ȳ)∗D̂∗NΘ

(
g(ȳ), λ̄

)(∇g(ȳ)w)}.
(iii) In the setting of (ii) we have the limiting coderivative representation

D∗S(x̄, ȳ)(v) =
{∇xf(x̄, ȳ)

∗w
∣∣ 0 ∈ v +∇yL(x̄, ȳ, λ̄)∗w

+ ∇g(ȳ)∗D∗NΘ

(
g(ȳ), λ̄

)(∇g(ȳ)w)}.(5.4)

Proof. To verify (5.2), observe that

(5.5) gphS =

{
(x, y) ∈ R

n × R
m

∣∣∣∣ h(x, y) := [
y

−f(x, y)
]
∈ gph N̂Γ

}
.

Thus we can deduce from [40, Theorem 6.31] that

TgphS(x̄, ȳ)⊂
{
(v, u) ∈ R

n × R
m

∣∣∣∣[ u−∇xf(x̄, ȳ)v −∇yf(x̄, ȳ)u

]

∈ Tgph ̂NΓ

(
ȳ,−f(x̄, ȳ))},

which holds as equality provided that ∇xf(x̄, ȳ) is surjective; see [40, Exercise 6.7].
Employing now formula (3.11) for calculating the tangent cone Tgph ̂NΓ

under the

assumptions made in section 3 and then recalling the definitions of Lagrangian (1.5)
and graphical derivative (2.4), we ensure the validity of inclusion (5.2) and then the
equality therein under the additional surjectivity assumption on ∇xf(x̄, ȳ).
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Let us next verify (ii). Taking into account the surjectivity of ∇h(x̄, ȳ) from (5.5)
due to the surjectivity of ∇xf(x̄, ȳ) and using the formula for the normal cone of the
inverse image of sets under smooth mappings (see, e.g., [23, Corollary 1.15] and [40,
Exercise 6.7]) as well as definition (2.5), we arrive at

D̂∗S(x̄, ȳ)(v) =
{
u ∈ R

n
∣∣∣ ∃ w ∈ R

m with u = ∇xf(x̄, ȳ)
∗w,

0 ∈ v +∇yf(x̄, ȳ)
∗w + D̂∗N̂Γ

(
ȳ,−f(x̄, ȳ))(w)}.

Then formula (5.3) is directly implied by Theorem 4.1.
To justify finally assertion (iii), we proceed similarly to the proof of (ii) under

the same assumptions, replacing the second-order chain rule from Theorem 4.1 by the
one obtained in [35, Theorem 7].

Employing the complete calculations from Proposition 3.4 of the directional deriva-
tive of the projection operator PΘ for the case of the Lorentz cone Θ = Kl allows us to
express the results of Theorem 5.1(i) entirely via the initial data of the corresponding
SOCP. This is illustrated by the following example.

Example 5.2 (calculating graphical derivative of solutions maps for SOCPs).
Consider the following GE of type (1.2):

x ∈ y + N̂g−1(Θ)(y),

where g(y) := (1− 1
2y

2
1 , y2, y3 +1), Θ = K3, and (x̄, ȳ) = (0, 0). Then g(ȳ) = (1, 0, 1),

λ̄ = (0, 0, 0), Im∇g(ȳ) = {0}×R×R, and linTK3

(
g(ȳ)

)
= {(α, β, α) : α, β ∈ R}. This

ensures that ȳ is a nondegenerate point of g with respect to K3. It is also easy to check
(3.1), which ensures that g is Θ-convex. Moreover, on the basis of Proposition 3.4(iii),
we have for u := g(ȳ) + λ̄ = (1, 0, 1) and for any direction h that

P ′
Θ(u;h) = h− 2

(〈c1(u), h〉)−c1(u) = h− 1
2 (h1 − h3)−

⎛⎝ 1
0
−1

⎞⎠
with c1(u) =

1
2 (1, 0,−1) and the notation (x)− := min{0, x}. Thus, the surjectivity

of ∇xf(x̄, ȳ) = −I and the equality in (5.2) lead us to the precise formula

DS(x̄, ȳ)(v) =

⎧⎨⎩u
∣∣∣∣∣∣ u1 = v1, u2 = v2, u3 =

〈v3 if v3 ≤ 0

0 if v3 > 0

⎫⎬⎭
for calculating the graphical derivative of the solution map in question.

On the basis of Corollary 4.2, formula (5.3) can be reformulated in terms of the
regular coderivative of the projection operator as follows:

D̂∗S(x̄, ȳ)(v) =
{∇xf(x̄, ȳ)

∗w
∣∣ there is p ∈ R

l such that

0 = v +∇yL(x̄, ȳ, λ̄)∗w +
(∇g(ȳ))∗p

−∇g(ȳ)w ∈ D̂∗PΘ

(
g(ȳ) + λ̄

)(− p−∇g(ȳ)w)}.(5.6)

This variant will be used in Example 5.3 for Θ = K3 given below.
Note that the corresponding limiting counterpart of (5.6) attains the form

D∗S(x̄, ȳ)(v) =
{∇xf(x̄, ȳ)

∗w
∣∣ there is p ∈ R

l such that

0 = v +∇yL(x̄, ȳ, λ̄)∗w + (∇g(ȳ))∗p
−∇g(ȳ)w ∈ D∗PΘ

(
g(ȳ) + λ̄

)(− p−∇g(ȳ)w)}.(5.7)
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Let us next illustrate the statements of Theorem 5.1(ii) and Theorem 5.1(iii) by
the following example from second-order cone programming.

Example 5.3 (calculating coderivatives of solution maps in SOCPs). Consider
the GE as in Example 5.2 with the same Θ = K3, (x̄, ȳ) = (0, 0) but with the different
g(y) := (1+y3, y

2
2, 1+y2). Then g(ȳ) = (1, 0, 1), λ̄ = (0, 0, 0), Im∇g(ȳ) = R×{0}×R,

and linTK3

(
g(ȳ)

)
= {(α, β, α)| α, β ∈ R}. This ensures that ȳ is a nondegenerate

point of g with respect to K3. Employing further [36, Theorem 1(ii)], we calculate

the regular coderivative D̂∗PΘ(g(ȳ) + λ̄) by

(5.8) D̂∗PΘ

(
g(ȳ) + λ̄)(u) =

{
z ∈ R

3
∣∣ u− z ∈ R+c1, 〈z, c1〉 ≥ 0

}
,

where the spectral vector c1 := c1(g(ȳ) + λ̄) in this case is

c1 =
1

2
(1, 0,−1).

Using (5.6) gives us the regular coderivative expression in the two equivalent forms:

D̂∗S(x̄, ȳ)(v) =

〈 ⎧⎪⎨⎪⎩v + α

⎛⎜⎝ 0

−1

1

⎞⎟⎠ ∣∣∣α ∈
[
1

2
(v2 − v3), 0

]⎫⎪⎬⎪⎭ if v3 ≥ v2,

∅ otherwise;

D̂∗S(x̄, ȳ)(v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
−w

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

w1 = −v1,

[
w2

w3

]
∈
〈 co

⎧⎪⎨⎪⎩−
[
v2

v3

]
,−

⎡⎢⎣
v2 + v3

2
v2 + v3

2

⎤⎥⎦
⎫⎪⎬⎪⎭ if v3 ≥ v2

∅ otherwise

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

Likewise, on the basis of [36, Theorem 3(i)] we obtain that

D∗PΘ(z)(u) =

〈 co {u,A(z)u} if 〈u, c1〉 ≥ 0,{
u,A(z)u

}
otherwise,

where z := g(ȳ) + λ̄, and where

A(z) := P(c1)⊥(z) = I +
1

2

⎡⎣ −1 z̃T

‖z̃‖2

(z̃)
‖z̃‖2

− z̃(z̃)T

‖z̃‖2
2

⎤⎦ =

⎡⎣1/2 0 1/2
0 1 0

1/2 0 1/2

⎤⎦
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via the spectral decomposition of the vector z = g(ȳ)+ λ̄; cf. (3.15) and (3.16) above.
It follows now from (5.7) that

D∗S(x̄, ȳ)(v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
−w

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

w1 = −v1,

[
w2

w3

]
∈
〈 co

⎧⎪⎨⎪⎩−
[
v2

v3

]
,−

⎡⎢⎣
v2 + v3

2
v2 + v3

2

⎤⎥⎦
⎫⎪⎬⎪⎭ if v3 ≥ v2

⎧⎪⎨⎪⎩−
[
v2

v3

]
,−

⎡⎢⎣
v2 + v3

2
v2 + v3

2

⎤⎥⎦
⎫⎪⎬⎪⎭ otherwise

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

6. Applications. This section contains some applications of the results obtained
above on computing the generalized derivative/coderivative constructions for solution
maps to the following three important issues in variational analysis: isolated calmness,
optimality conditions forMPECs, and tilt stability in conic programming. Accordingly,
we split this section into three subsections.

6.1. Isolated calmness of solution maps. Given F : Rn →→ R
m, recall that it

has the isolated calmness property at (x̄, ȳ) ∈ gphF if there are neighborhoods U of
x̄ and V of ȳ and a constant κ ≥ 0 such that

(6.1) F (x) ∩ V ⊂ {ȳ}+ κ‖x− x̄‖B for all x ∈ U.

This well-posedness/stability property and its equivalent description as strong metric
subregularity of the inverse F−1 play a significant role in variational analysis and
optimization; see, e.g., [9] and the references therein.

It is known from [18] (cf. also [9, Theorem 4C.1]) that isolated calmness of an
arbitrary closed-graph multifunction F between finite-dimensional spaces at any point
(x̄, ȳ) ∈ gphF can be fully characterized via the graphical derivative (2.4) as follows:

(6.2) DF (x̄, ȳ)(0) = {0}.
Following this line and utilizing the graphical derivative calculations for the so-

lution map (1.3) in Theorem 5.1(i) allow us to derive, on the basis of (6.2), verifiable
characterizations of the isolated calmness property of S for the general convex cone
Θ in (1.3) and provide its implementation for Θ = Kl.

Theorem 6.1 (isolated calmness of solution maps in perturbed conic program-
ming). Let (x̄, ȳ) ∈ gphS for the solution map (1.3) under the assumptions of The-
orem 3.3, and let λ̄ ∈ R

l be a unique Lagrange multiplier satisfying (5.1). Then S
enjoys the isolated calmness property at (x̄, ȳ) provided that u = 0 for any solution
(u, d) ∈ R

m × R
l of the system

0 = ∇yL(x̄, ȳ, λ̄)u+∇g(ȳ)∗d,
∇g(ȳ)u = P ′

Θ

(
g(ȳ) + λ̄;∇g(ȳ)u+ d

)
.

(6.3)

If in addition the partial Jacobian ∇xf(x̄, ȳ) is surjective, then the above condition is
also necessary for the isolated calmness of S at (x̄, ȳ).

Proof. The proof follows directly by substituting the graphical derivative calcu-
lations from Theorem 5.1(i) into the isolated calmness criterion (6.2).
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In the case of the Lorentz cone Θ = Kl the complete calculation of the directional
derivative P ′

Θ provided in Proposition 3.4 leads us to the isolated calmness character-
ization of Theorem 6.1 entirely via the initial data of SOCPs. We illustrate this with
the following example.

Example 6.2 (verifying isolated calmness for SOCPs with no Aubin property).
Consider the solution map S : R →→ R

2 of the GE (1.2) with the following initial data:

f(x, y) = (y2,−x+y1), Γ = {y ∈ R
2|(y1− 1

2y
2
2 , y2) ∈ K2}, x̄ = 0 and ȳ = (0, 0) ∈ R

2.

In this case ∇g(ȳ) is surjective and so all assumptions of Theorem 3.3, used in The-
orems 5.1(i) and 6.1, are satisfied. It is easy to see that the only solution to the
corresponding KKT system (5.1) is λ̄ = 0 ∈ R

2. Observe that Γ is convex (because g
is Θ-convex), (x̄, ȳ) ∈ gphS, and S does not possess the Aubin property around (x̄, ȳ)
because S(x) = ∅ for all x < 0.

Moreover, the criterion from Theorem 6.1 attains the form

(6.4)

(
u1
u2

)
= P ′

Θ

(
0;

(
u1 − u2
u2 − u1

))
= PK2

((
u1 − u2
u2 − u1

))
⇒ u = 0.

The classical characterization of projections onto convex cones implies that for any u
satisfying the condition on the left-hand side of (6.4) one has

0 =

〈(
u1 − u2
u2 − u1

)
−

(
u1
u2

)
,

(
u1
u2

)〉
= −2u1u2.

So, there are only two possible cases: either u1 = 0 or u2 = 0. In both cases
implication (6.4) holds true and so the isolated calmness property of S at (x̄, ȳ) has
been established.

6.2. MPECs. The main concern of this subsection is the following general op-
timization problem, which belongs to the class of MPECs:

(6.5)
minimize ϕ(x, y)

subject to 0 ∈ f(x, y) + N̂Γ(y)

with the cost function ϕ : Rn×R
m → R and the constraints described by the GE (1.2)

under the standing assumptions formulated in section 1. Optimization problems of
this type have drawn much attention in the literature, mainly in the case of convex sets
Γ when the GE in (6.5) reduces to the classical parameterized variational inequality;
see the books [21, 23, 34] and the references therein. When deriving optimality condi-
tions, one typically works with the limiting coderivative of S. A systematic study of
MPEC models with the regular coderivative of S was started recently in [14] and [13].
These papers are devoted to the study of the parameterized solution maps (1.3) and
applications to necessary optimality conditions in MPECs (6.5) in the case of Γ being
a set of feasible solutions to problems of nonlinear programming with C2 inequality
constraints. The next theorem seems to be the first result in this direction for MPECs
described via the regular coderivative of the normal cone mapping to feasible sets in
conic programming.

Theorem 6.3 (necessary optimality conditions for MPECs governed by regular
normal cone mappings in conic programming). Let (x̄, ȳ) ∈ gphS be a local optimal
solution to MPEC (6.5), and let λ̄ ∈ R

l be a unique Lagrange multiplier satisfying
(5.1). In addition to the standing assumptions on f and Γ formulated in section 1,
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suppose that ϕ is (Fréchet) differentiable at (x̄, ȳ) and that the operator ∇xf(x̄, ȳ) is
surjective. Then there exists an MPEC multiplier μ̄ ∈ R

m such that

0 = ∇xϕ(x̄, ȳ) +∇xf(x̄, ȳ)
∗μ̄,

0 ∈ ∇yϕ(x̄, ȳ) +∇yL(x̄, ȳ, λ̄)∗μ̄+∇g(ȳ)∗D̂∗N̂Θ

(
g(ȳ), λ̄

)(∇g(ȳ)μ̄).(6.6)

Proof. MPEC (6.5) obviously can be rewritten in the unconstrained form

(6.7) minimize φ(x, y) := ϕ(x, y) + δgphS(x, y) over all (x, y) ∈ R
n × R

m

via the indicator function δgphS of the graph of the solution map (1.3). Applying to

the optimal solution (x̄, ȳ) of (6.7) the generalized Fermat rule 0 ∈ ∂̂φ(x̄, ȳ) via the
regular subdifferential and then the regular subdifferential sum rule for ϕ+δgphS with
the differentiable function ϕ (see, e.g., [23, Propositions 1.107 and 1.114]), we get

0 ∈ ∇ϕ(x̄, ȳ) + N̂gphS(x̄, ȳ),

which amounts by virtue of (2.5) to the regular coderivative condition

(6.8) 0 ∈ ∇xϕ(x̄, ȳ) + D̂∗S(x̄, ȳ)
(∇yϕ(x̄, ȳ)

)
.

To complete the proof of the theorem, it remains to employ Theorem 5.1(ii) on the
calculation of the regular coderivative of the solution map in (6.8).

Conditions (6.6) correspond to the notion of S-stationarity developed in con-
nection with mathematical programs with complementarity constraints. They are
substantially sharper (more selective) than their M-stationarity counterpart, where

the regular coderivative of N̂Θ is replaced by the limiting one.
Remark 6.4 (necessary optimality conditions for nonsmooth MPECs associated

with conic programming). Following the proof of Theorem 6.3 and using more in-
volved results from nonsmooth optimization together with Theorem 5.1(ii), we can
consider MPEC (6.5) even for nonsmooth cost functions and derive for it both up-

per subdifferential necessary optimality conditions via the upper version ∂̂+ϕ(z̄) :=

−∂̂(−ϕ)(z̄) of the regular subdifferential and lower subdifferential necessary optimal-
ity conditions via the limiting subdifferential (2.8); cf. [23, Propositions 5.2 and 5.3]
in the general constrained framework.

For some applications it is again more convenient to present necessary optimality
conditions of Theorem 6.3 via the regular coderivative of the metric projection operator
PΘ onto the underlying cone Θ.

Corollary 6.5 (necessary optimality conditions for MPECs via the regular
coderivative of the projection operator). In the setting of Theorem 6.3 there are
multipliers μ̄ ∈ R

m and ν̄ ∈ R
l such that we have the inclusion

(6.9) −∇g(ȳ)μ̄ ∈ D̂∗PΘ

(
g(ȳ) + λ̄

)(−∇g(ȳ)μ̄− ν̄
)

along with the equality system

0 = ∇xϕ(x̄, ȳ) +∇xf(x̄, ȳ)
∗μ̄,

0 = ∇yϕ(x̄, ȳ) +∇yL(x̄, ȳ, λ̄)∗μ̄+∇g(ȳ)∗ν̄.(6.10)

Proof. The proof follows immediately from the relationships between the projection
and normal cone operators for convex sets used in the proof of Corollary 4.2.
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As discussed in Remark 4.3, the results obtained in [36] and [8] allow us to cal-
culate the regular coderivative of the projection mapping in (6.9) entirely via the
initial data for the cases of the Lorentz and SDP cones Θ, respectively, and hence
effectively implement the MPEC necessary optimality conditions of Corollary 6.5 in
these settings. Let us illustrate it by the following example of an MPEC generated
by the Lorentz cone Θ = K3 in (6.5).

Example 6.6 (illustrating the MPEC optimality conditions for the Lorentz cone).
Consider MPEC (6.5) with x ∈ R

3, y ∈ R
3, and

ϕ(x, y) := y1 − y2 +
1

2
y23 ,

in which the equilibrium is governed by the GE from Example 5.3. It is easy to see
that the pair (x̄, ȳ) = (0, 0) is a local minimizer of this MPEC. Since all assumptions
of Theorem 6.3 are fulfilled, we can invoke Corollary 6.5 and conclude from (6.10)
that μ̄ = 0, ν̄1 = −1, and ν̄2 = 1. Thus it remains to find ν̄3 ∈ R such that the vector
ν̄ = (−1, 1, ν̄3) satisfies relation (6.9), which reads in this case as

0 ∈ D̂∗PΘ

(
g(ȳ) + λ̄

)
(−ν̄).

It holds by (5.8) for ν̄3 = 0, which confirms therefore that the solution (x̄, ȳ) indeed
fulfills the optimality conditions of Corollary 6.5.

6.3. Tilt stability in conic programming. The limiting coderivative of S
from (5.4) can be used in testing the Aubin property via the so-called Mordukhovich
criterion [40, Theorem 9.40].1 Formula (5.4) can be, however, employed also in the
characterization of another important stability property related to local minimizers.

Definition 6.7 (tilt stability of local minimizers for extended-real-valued func-
tions). Let φ : Rm → R be an extended-real-valued function finite at ȳ. We say that
ȳ is a tilt-stable local minimizer of φ if there is γ > 0 such that the mapping

M : p �→ argmin
{
φ(y)− φ(ȳ)− 〈p, y − ȳ〉∣∣ ‖y − ȳ‖ ≤ γ

}
is single-valued and Lipschitzian on some neighborhood of p = 0 with M(0) = {ȳ}.

This notion has been introduced by Poliquin and Rockafellar in [37] and charac-
terized therein in terms of the second-order subdifferential of φ. A combination of the
results from [37] and Theorem 5.1(iii) enables us to characterize the tilt stability of
the conic program

(6.11) minimize ϕ(y) subject to y ∈ Γ = g−1(Θ)

with a twice continuously differentiable objective ϕ : Rm → R under the standing
assumptions on the initial data imposed in section 1.

Recent years have witnessed strong interest in tilt stability and its applications
from several viewpoints of new developments in variational analysis and generalized
differentiation; see, e.g., [10, 11, 20, 27, 31, 32, 33]. The closest to our develop-
ments in this paper are those presented in [27, 31, 32, 33], where a number of neces-
sary conditions, sufficient conditions, and complete characterizations of tilt stability
were obtained on the basis of second-order generalized differential calculus for various
classes of constrained optimization problems including classical nonlinear programs

1For a different approach to the Aubin property in conic programs see [15].
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with equality and inequality constraints, mathematical programs with polyhedral con-
straints, and the so-called extended nonlinear programs with C2 data. We are not
familiar with any results in this direction for general or special classes of problems of
conic programming of type (6.11).

Note that the tilt stability of a local optimal solution ȳ ∈ Γ to (6.11) amounts to
the single-valuedness and Lipschitz continuity of the mapping

(6.12) M : p �→ argmin
{
ϕ(y)− ϕ(ȳ)− 〈p, y − ȳ〉∣∣ y ∈ Γ, ‖y − ȳ‖ ≤ γ

}
around the nominal parameter value p = 0 with some γ > 0 andM(0) = {ȳ}. Prior to
deriving the respective characterizations, let us give an example showing that isolated
local minimizers in the standard sense may not be tilt-stable for simple cone programs
described by the Lorentz cone Θ = K3 in (6.11).

Example 6.8 (not tilt-stable isolated local minimizers in second-order cone pro-
gramming). Consider the following SOCP:

minimize ϕ(y) := y31 + y1 − y3 subject to y = (y1, y2, y3) ∈ K3.

Thus in this case Θ = Γ = K3 and g is the identity map. It is easy to check that
ȳ = (0, 0, 0) is the only optimal solution of the problem, which is an isolated minimizer.
Fix any number γ > 0 and choose the sequence pk =

(
0, 0, 3k

) ∈ R
3 as k ∈ N. Then

for any y ∈ K3 with ‖y − ȳ‖ ≤ γ and for any k ∈ N we have the inequalities

ϕ(y)− 〈pk, y〉 = y31 + y1 −
(
1 +

3

k

)
y3 ≥ y31 −

3

k
y1 ≥ − 2

k
√
k
,

which become equalities for yk =
(

1√
k
, 0, 1√

k

)
. Note furthermore that

‖yk − ȳ‖ =

√
2√
k
>

√
k

3
‖pk − 0‖ for all k ∈ N,

which shows that the argminimum mapping (6.12) is not Lipschitz continuous. Thus
the minimizer ȳ is not tilt-stable for this cone-constrained program.

The next theorem provides a characterization of tilt-stable minimizers for general
conic programs defined in (6.11).

Theorem 6.9 (characterization of tilt-stable local minimizers for general conic
programs). Let ȳ ∈ g−1(Θ) under our standing assumptions, and let λ̄ ∈ Θ∗ ⊂ R

l be
a unique Lagrange multiplier satisfying the KKT system

(6.13) ∇yL(ȳ, λ) = 0, 〈λ, g(ȳ)〉 = 0

with the Lagrangian L(y, λ) := ϕ(y)+ 〈λ, g(y)〉. Then ȳ is a tilt-stable local minimizer
of (6.11) if and only if for all w ∈ R

m \ {0} we have the inequality

(6.14) 〈w,∇2
yyL(ȳ, λ̄)w〉+ 〈∇g(ȳ)w,D∗NΘ

(
g(ȳ), λ̄

)(∇g(ȳ)w)〉 > 0,

where the inner product in the second term is understood pointwisely as for any ele-
ment from the coderivative set therein.

Proof. Observe first that thanks to the posed assumptions Γ is prox-regular at
ȳ and, consequently, [37, Theorem 4.2] can be applied. The condition from that
statement characterizing that ȳ gives a tilt-stable local minimum in (6.11) attains the
form

(6.15) 〈w,∇2ϕ(ȳ)w〉 > −〈u,w〉 whenever u ∈ D∗NΓ

(
ȳ,−∇ϕ(ȳ))(w) and w �= 0.
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This condition amounts to the inequality

(6.16) 〈w, z〉 > 0 whenever z ∈ D∗S−1(ȳ, x̄)(w), w �= 0,

where S is the solution map associated with the GE

(6.17) x ∈ ∇ϕ(y) +NΓ(y)

and x̄ = 0. Using the relationship

z ∈ D∗S−1(ȳ, x̄)(w) if and only if − w ∈ D∗S(x̄, ȳ)(−z),

the result follows directly from (5.4).

If the constraint mapping g in the conic program (6.11) is Θ-convex as defined at
the beginning of section 3, we get the following sufficient condition for tilt stability.

Corollary 6.10 (sufficient condition for tilt-stable minimizers of conic programs
with Θ-convex constraints). In addition to the assumptions of Theorem 6.9, suppose
that the mapping g is Θ-convex. Then the condition

(6.18) 〈w,∇2ϕ(ȳ)w〉 > 0 whenever ∇g(ȳ)w ∈ domD∗NΘ

(
g(ȳ), λ̄

)
and w �= 0

is sufficient for ȳ to be a tilt-stable local minimizer of the conic program (6.11).

Proof. It follows from the monotonicity result of [37, Theorem 2.1] and the max-
imal monotonicity of the normal cone mapping in convex analysis that

〈∇g(ȳ)w,D∗NΘ

(
g(ȳ), λ̄

)(∇g(ȳ)w) ≥ 0 for all w ∈ R
m.

Furthermore, it follows from the inclusion λ̄ = (λ̄1, . . . , λ̄l) ∈ Θ∗ and the Θ-convexity
description (3.1) for C2 mappings that

〈w,∇2
yyL(ȳ, λ̄)w〉 = 〈w,∇2ϕ(ȳ)w〉+

l∑
i=1

λ̄i〈w,∇2gi(ȳ)w〉 ≥ 〈w,∇2ϕ(ȳ)w〉.

Thus condition (6.18) implies (6.14), and we complete the proof of the corollary.

7. Conclusion. This paper presents calculations of the major derivative and
coderivative constructions of variational analysis for solution maps to parameterized
GEs/KKT systems associated with conic constraints. The results established in this
direction are based on new second-order calculus rules of generalized differentiation
derived in the paper, which are of their own interest. The obtained derivative and
coderivative formulas are applied to deriving sharp necessary optimality conditions
for a class of MPECs with conic constraints and to characterizing two important
stability properties, namely, isolated calmness of solution maps and tilt stability of
local optimal solutions. These general results are specified for an important class of
equilibria with second-order cone constraints and illustrated by examples. Moreover,
they open a possibility to deal efficiently also with parameterized SDPs.

Acknowledgments. The authors are grateful to the referees, the handling editor
Defeng Sun, and Alex Shapiro for their helpful suggestions and remarks, which allowed
us to significantly improve the original presentation.
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[5] J. F. Bonnans and H. Raḿırez C., Perturbation analysis of second-order cone programming
problems, Math. Program., 104 (2005), pp. 205–227.
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