
ar
X

iv
:1

21
1.

45
11

v1
  [

m
at

h.
O

C
] 

 1
9 

N
ov

 2
01

2

Morse families in optimal control problems
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Abstract

We geometrically describe optimal control problems in terms of Morse families in the
Hamiltonian framework. These geometric structures allow us to recover the classical first order
necessary conditions for optimality and the starting point to run an integrability algorithm.
Moreover the integrability algorithm is adapted to optimal control problems in such a way that
the trajectories originated by discontinuous controls are also obtained. From the Hamiltonian
viewpoint we obtain the equations of motion for optimal control problems in the Lagrangian
formalism by means of a proper Lagrangian submanifold. Singular optimal control problems
and overdetermined ones are also studied along the paper.

1 Introduction

In the late fifties the interest in optimal control problems grew amazingly due to the applications
in military missions and later on due to the applications in space missions. Pontryagin and his col-
laborators provided us with a useful result to characterize candidates to be optimal solutions [19].
Since then great efforts have been made to understand optimal control problems from a differ-
ential geometric viewpoint (see [2, 8, 16, 21] and references therein). It turned out that both
symplectic [20] and presymplectic [5] formalisms were useful in that sense.
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In this paper we present a novel formulation of optimal control problems by using different
geometric tools (see [9] and [13] for a different but related approach in the scope of calculus of
variations). Those tools are Morse families [17] and Lagrangian submanifolds [26], which are con-
nected by the fact that any Lagrangian submanifold is locally described by a Morse family. We will
show how these geometric elements, once properly adapted to optimal control theory, summarize
a weaker version of the first order necessary conditions given by Pontryagin’s Maximum Principle.
At this stage a suitable adaptation of the integrability algorithm in [18] can be considered to find
the set of candidates to be optimal solutions. Both Morse families in Section 4 and Lagrangian
submanifolds in Section 6 describe a new setting to distinguish and discuss different kinds of opti-
mal control problems. All these results are applied to different singular and real examples, among
them overdetermined control systems. These last systems are very useful for some applications in
order to gain mobility in the control system under study.

Moreover, it is important to stress that in our formulation the controls will play the role of
parameters, and the spaces where the associated optimal control equations are given are exactly
the same ones as for classical Hamiltonian and Lagrangian mechanics. In this sense our point of
view of a control problem is similar to [16].

The outline of the paper is as follows. Section 2 summarizes all the geometric tools and results
necessary for the paper. Section 3 briefly recalls the notion of optimal control problems and
Pontryagin’s Maximum Principle. Some of the main contributions of this paper are in Sections 4
and 6 where Morse families and Lagrangian submanifolds, respectively, are used to describe optimal
control problems and their regularity. Several examples are provided to make the theory clearer.
Another important constribution appears in Section 5 where the integrability algorithm in [18] is
adapted to optimal control problems with the purpose of recovering even the solutions originated
by bang- bang controls.

2 Geometric preliminaries

In this section we briefly introduce all the definitions and results from differential geometry that
are necessary in the sequel. See [1, 14, 17, 23, 24, 26] for more details.

2.1 Lagrangian submanifolds and Morse families

We define the two main geometric tools that are used in this paper: Lagrangian submanifolds and
Morse families. More details can be found in [1, 10, 14, 17, 26] and references therein.

Let us recall that a symplectic vector space is a pair (E,Ω) where E is a vector space and
Ω: E × E → R is a skew-symmetric bilinear map of maximal rank. We distinguish the following
type of vector subspaces of a symplectic vector space:

Definition 2.1. Let (E,Ω) be a symplectic vector space and F ⊂ E be a subspace. The Ω-
orthogonal complement of F is the subspace defined by

F⊥ = {e ∈ E | Ω(e, e′) = 0 for all e′ ∈ F}.

A subspace F of a symplectic vector space is called

(i) isotropic if F ⊂ F⊥, that is, Ω(e, e′) = 0 for all e, e′ ∈ F .
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(ii) Lagrangian if F is isotropic and has an isotropic complement, that is, E = F ⊕ F ′, where F ′

is isotropic.

A well-known characterization of Lagrangian subspaces of a finite dimensional symplectic vector
space is the following one:

Proposition 2.2. Let (E,Ω) be a symplectic vector space and F ⊂ E a subspace. Then the
following assertions are equivalent:

(i) F is Lagrangian,

(ii) F = F⊥,

(iii) F is isotropic and dimF = 1
2
dimE.

As a consequence, Lagrangian subspace F of E can be characterized by checking if it has half
the dimension of E and Ω|F = 0.

Remember that a symplectic manifold (M,ω) is defined by a differentiable manifold M and a
non-degenerate closed 2-form ω on M . Therefore, for each x ∈ M , (TxM,ωx) is a symplectic vector
space and a symplectic manifold has even dimension. Denote by ♭ω : TM → T ∗M the isomorphism
♭ω(v) = ivω, with v ∈ TM , and by ♯M = (♭ω)

−1.

The notion of Lagrangian subspace can be transferred to submanifolds by requesting that the
tangent space of the submanifold is a Lagrangian subspace for every point in the submanifold of a
symplectic manifold.

Definition 2.3. Let (M,ω) be a symplectic manifold and f : N → M an immersion. It is said
that N is a Lagrangian immersed submanifold of (M,ω) if (Txf)(TxN) ⊂ Tf(x)M is a Lagrangian
subspace for each x ∈ N . We say that f is a Lagrangian immersion.

Note that f : N → M is isotropic if and only if f∗ω = 0, that is, ω(Txf(ux),Txf(vx)) = 0 for
every ux, vx ∈ TxN and for every x ∈ N .

The canonical model of symplectic manifold is the cotangent bundle T ∗Q of an arbitrary man-
ifold Q. Denote by πQ : T ∗Q → Q the canonical projection and define a canonical 1-form θQ on
T ∗Q by

(θQ)αq
(Xαq

) = 〈αq,Tαq
πQ(Xαq

)〉,

where Xαq
∈ Tαq

T ∗Q, αq ∈ T ∗Q and q ∈ Q. If we consider bundle coordinates (qi, pi) on T ∗Q such
that πQ(q

i, pi) = qi, then
θQ = pidq

i .

The 2-form ωQ = −dθQ is a symplectic form on T ∗Q with local expression

ωQ = dqi ∧ dpi.

The Darboux theorem states that this is the local model for an arbitrary symplectic manifold
(M,ω): there exist local coordinates (qi, pi) in a neighbourhood of each point in M such that
ω = dqi ∧ dpi.

There are different ways to define Lagrangian submanifolds as we will show in the sequel. A
relevant example of Lagrangian submanifold of the cotangent bundle is the following one. For
complete proofs of the following statements we refer the reader to [17].
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Proposition 2.4. Let α be a one-form on Q. The submanifold Imα is a Lagrangian submanifold
if and only if α is closed.

Given a symplectic manifold (M,ω), dimM = 2n, it is well-known that the tangent bundle
TM is equipped with a symplectic structure denoted by dTω, where dTω denotes the tangent
lift of ω to TM . If we take Darboux coordinates (qi, pi) on M , that is, ω = dqi ∧ dpi, then
dTω = dq̇i ∧ dpi + dqi ∧ dṗi, where (qi, pi; q̇

i, ṗi) are the induced coordinates on TM . Denoting the
bundle coordinates on T ∗M by (qi, pi; ai, b

i), then ωM = dqi ∧ dai + dpi ∧ dbi. If ♭ω : TM → T ∗M
is the isomorphism defined by ω, that is, ♭ω(v) = iv ω, then ♭ω(q

i, pi; q̇
i, ṗi) = (qi, pi;−ṗi, q̇

i).

Given a function H : M → R, and its associated Hamiltonian vector field XH , that is, iXH
ω =

dH , the image of XH , Im XH , is a Lagrangian submanifold of (TM, dTω). Moreover, given a vector
field X on M , it is locally Hamiltonian if and only if its image X(M) is a Lagrangian submanifold
of (TM, dTω). It is interesting to note that dTω = −♭∗ω ωM and ♭ω(XH(M)) = dH(M).

Another geometric element that can be used to define Lagrangian submanifolds is a Morse
family. The notion of a Morse family or phase function was introduced by L. Hörmander [15]. Here
we just give the key definitions and essential results for this paper using a similar notation to the
one in [17].

Definition 2.5. Let π : B → Q be a submersion of a differentiable manifold B onto a differentiable
manifold Q. Let S : B → R be a differentiable function. The function S is called a Morse family if
the image of the differential of S, dS(B) ⊂ T ∗B, and the conormal bundle

Qπ = (ker Tπ)0 =
{
α ∈ T ∗

µB | 〈α, v〉 = 0, for all v ∈ ker TπB(µ)π
}
⊂ T ∗B

are transverse in T ∗B, that is,

∀α ∈ Qπ ∩ dS(B) ⊆ T ∗B, Tα(dS(B)) + TαQπ = Tα(T
∗B). (1)

Observe that under these transversality conditions Qπ ∩ dS(B) is an isotropic submanifold of
(T ∗B, ωB), since it is contained in the Lagrangian submanifold dS(B). Moreover

dim(Qπ ∩ dS(B)) = dimQ .

If the submersion π : B → Q is expressed locally by π(qi, ya) = (qi), then S : B → R is a Morse
family in a local sense if the

rank of

(
∂2S

∂qi∂yb
,

∂2S

∂ya∂yb

)
is maximal

for all (qi, ya) satisfying
∂S

∂ya
= 0.

Define the morphism j : Qπ → T ∗Q by

〈η, v〉 = 〈j(η),Tπ(v)〉

for all η ∈ Qπ and for all v ∈ Tπ(η)B. The following result will be useful in the sequel. For a proof
see, for instance, [17, Appendix 7, Proposition 1.12].

Proposition 2.6. Let S : B → R be a Morse family. The restriction of the morphism j : Qπ → T ∗Q
to the isotropic submanifold Qπ ∩ dS(B) is a Lagrangian immersion of Qπ ∩ dS(B) in (T ∗Q, ωQ).
This Lagrangian immersion is said to be generated by the Morse family S.
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The assumptions in Proposition 2.6 can be weakened by requiring that Qπ and dS(B) are only
weakly transverse, instead of the transversality required in the Definition 2.5 of a Morse family.
Remember that two submanifolds are weakly transverse if Qπ ∩ dS(B) is a submanifold of T ∗B
and if, for all x ∈ Qπ ∩ dS(B),

Tx(Qπ ∩ dS(B)) = Tx(Qπ) ∩ Tx(dS(B)). (2)

Thus, transversality implies weak tranversality. Some authors use the name clean intersection in-
stead of weak transversality. These notions of transversality are defined for any pair of submanifolds,
without being of a symplectic manifold.

Assuming only clean intersection of Qπ and dS(B), then j(Qπ ∩ dS(B)) is not, in general,
an immersed submanifold of T ∗Q because it can admit multiple points. These multiple points
x∗ ∈ j(Qπ ∩ dS(B)) are points at which there exist several distinct vector subspaces of the space
tangent to T ∗Q in such a way that each one is tangent to a n-dimensional submanifold contained
in j(Qπ ∩ dS(B)). The following result is proved in [17, Chapter III, Proposition 14.19].

Proposition 2.7. Let S : B → R be a Morse family. Assume that Qπ and dS(B) are weakly
transverse. Then, the restriction of j to Qπ ∩ dS(B) is of constant rank, and every point of Qπ ∩
dS(B) has an open neighborhood V in Qπ ∩ dS(B) whose image j(V ) is a Lagrangian submanifold
of (T ∗Q, ωQ). We say that j(Qπ ∩ dS(B)) is, in a generalized sense, an immersed Lagrangian
submanifold of (T ∗Q, ωQ) which may include multiple points.

The following proposition determines the relationship between Lagrangian submanifolds and
Morse families as shown in Remark 2.9.

Proposition 2.8 ([14],[17],[26]). Let Σ be a Lagrangian submanifold of (T ∗Q,−dθQ). We consider
the following three properties:

(i) The closed 1-form induced on Σ by the Liouville 1-form θQ is exact.

(ii) There exists a Lagrangian subbundle E of the symplectic bundle (TΣ(T
∗Q), ωQ |Σ) (that is,

the restriction to Σ of the cotangent bundle (T ∗Q, ωQ)) which is a complement of both TΣ
and the restriction of the vertical tangent bundle of T ∗Q to Σ, denoted by VΣ(T

∗Q).

(iii) There exists a surjective submersion π : B → Q and a Morse family S : U → R, the latter
defined on an open subset U of B, such that the Lagrangian immersion generated by S is an
embedding with image Σ.

If properties (i) and (ii) are both satisfied, so is property (iii). Conversely, if property (iii) is
satisfied, then property (i) also holds.

Remark 2.9. As a direct consequence we deduce that any Lagrangian submanifold is locally, i.e.,
in a neighborhood of each of its points, the image of a Lagrangian immersion generated by a Morse
family. See [17, Appendix 7, Proposition 9] for more details.

2.2 Tulczyjew triple

The theory of Lagrangian submanifolds gives an intrinsic geometric description of Lagrangian and
Hamiltonian dynamics [23], [24]. Moreover, it allows us to relate Lagrangian and Hamiltonian
formalisms using as a main tool the so-called Tulczyjew’s triple

T ∗TQ TT ∗Q
βQ

//
αQ

oo T ∗T ∗Q .
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The Tulczyjew map αQ is an isomorphism between TT ∗Q and T ∗TQ. Beside, it is also a symplec-
tomorphism between these vector bundles considered as symplectic manifolds, i.e. (TT ∗Q , dT ωQ),
where dT ωQ is the tangent lift of ωQ, and (T ∗TQ, ωTQ). For completeness, we recall the construc-
tion of the symplectomorphism αQ. To do this, it is necessary to introduce the canonical involution
κQ on TTQ

TTQ

τTQ

��

κQ

// TTQ

TτQ
��

TQ
Id

// TQ,

defined by

κQ

(
d

ds

∣∣∣
s=0

d

dt

∣∣∣
t=0

χ (s, t)

)
=

d

ds

∣∣∣
s=0

d

dt

∣∣∣
t=0

χ̃ (s, t) ,

where χ : R2 → Q and χ̃ : R2 → Q are related by χ̃ (s, t) = χ (t, s). If (qi) are the local coordinates
for Q, (qi, vi) for TQ and (qi, vi, q̇i, v̇i) for TTQ, then the canonical involution is locally given by
κQ (qi, vi, q̇i, v̇i) = (qi, q̇i, vi, v̇i).

In order to describe αQ is also necessary to define a tangent pairing. Given two manifolds M
and N , and a pairing 〈·, ·〉 : M×N → R between them, the tangent pairing 〈·, ·〉T : TM×TN → R

is determined by 〈
d

dt

∣∣∣
t=0

γ (t) ,
d

dt

∣∣∣
t=0

δ (t)

〉T

=
d

dt

∣∣∣
t=0

〈γ (t) , δ (t)〉

where γ : R→ M and δ : R→ N .

Finally, we can define αQ as 〈αQ (z) , w〉 = 〈z, κQ (w)〉T , where z ∈ TT ∗Q and w ∈ TTQ. In
local coordinates (qi, pi) for T

∗Q and (qi, pi, q̇
i, ṗi) for TT

∗Q, we have

αQ

(
qi, pi, q̇

i, ṗi
)
=

(
qi, q̇i, ṗi, pi

)
.

The isomorphism βQ : TT ∗Q → T ∗T ∗Q is just given by βQ = ♭ωQ
, where ♭ωQ

is the isomorphism
defined by ωQ, that is, ♭ωQ

(v) = ivωQ.

The Lagrangian dynamics is described by the Lagrangian submanifold dL(TM) of T ∗TM where
L: TM → R is the Lagrangian function, while the Hamiltonian formalism is described by the La-
grangian submanifold dH(T ∗M) of T ∗TM where H : T ∗M → R is the corresponding Hamiltonian
energy. In this paper we will extend the description of Lagrangian and Hamiltonian dynamics in
terms of Lagrangian submanifolds and Morse families when controls are involved. Similar studies
have already been developed by means of Lagrangian submanifolds in the literature for calculus of
variations [9].

2.3 Integrability algorithm

Let D be an implicit differential equation on a manifold P , that is, a submanifold D of TP . In
such a case, it is possible to construct an algorithm to extract the integrable part of D in P (see
[18]).

A curve γ : I ⊆ R→ P is called a solution of a differential equation D if γ̇(I) ⊂ D. An implicit
differential equation D is said to be integrable at v ∈ D if there is a solution γ : I ⊆ R → P such
that γ̇(0) = v. An implicit differential equation D is said to be integrable if it is integrable at each
point v ∈ D.
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Proposition 2.10. [18, Proposition 5] Let τP : TP → P be the canonical tangent bundle projection.
If C = τP (D) is a submanifold of P and if the mapping

τP : D → C

v 7→ τP (v)

is a surjective submersion, then the condition D ⊂ TC is sufficient for integrability of the implicit
differential equation D.

In order to obtain the integrable part of an implicit differential equation we construct the
following sequence of objects

(D0, C0, τ 0), (D1, C1, τ 1), . . . , (Dk, Ck, τk), . . .

where

D0 = D, C0 = C = τP (D), τ 0 = τP , (3)

Dk = Dk−1 ∩ TCk−1, Ck = τP (D
k), τk = τP |Dk . (4)

For each k, it is assumed that the sets Ck are submanifolds and that the mappings τk are surjective
submersions. As the dimension of P is finite, the sequence of implicit differential equations D0,
D1, . . . , Dk, . . . stabilizes at some index k = s, that is, Ds = Ds+1. The integrable implicit
differential equation Ds ⊂ TP is the integrable part of D and it could be empty.

This integrability algorithm, properly adapted, will be useful in Section 5 to obtain the ab-
solutely continuous solutions to optimal control problems which are the most common ones and
correspond with piecewise constant controls.

3 Introduction to optimal control problems

Generally speaking, an optimal control problem from the differential geometric viewpoint is given
by a vector field depending on parameters called controls, some boundary conditions and a cost
function whose integral must be minimized or maximized.

Definition 3.1. An optimal control problem (C, Q,Γ,L) is given by a control bundle τC,Q : C → Q,
a vector field Γ defined along the control bundle projection τC,Q, a cost function L: C → R whose
functional must be minimized and some endpoint conditions or boundary conditions that must be
satisfied at initial and/or final time.

Remember that such a vector field Γ along τC,Q verifies τQ ◦ Γ = τC,Q.

TQ

τQ
��

C
τC,Q

//

Γ
88
q
q
q
q
q
q
q
q
q
q
q
q
q

Q

Locally, q̇ = Γ(q, u) and (τQ ◦ Γ) (q, u) = τC,Q(q, u) = q.

From the optimal control data (C, Q,Γ,L) we construct the Pontryagin’s hamiltonian H :
T ∗Q×Q C −→ R given by

H(αq, uq) = 〈αq,Γ(uq)〉 − L(uq) (5)

where uq ∈ Cq and αq ∈ T ∗
q Q. In coordinates, H(qi, pi, u

a) = pjΓ
j(qi, ua) − L(qi, ua). This

Hamiltonian is only valid for the so-called normal optimal solutions. The usual technique to solve
an optimal control problem is Pontryagin’s Maximum Principle [19].
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Theorem 3.2. (Pontryagin’s Maximum Principle, PMP) Let U ⊆ Rk and (γ∗, u∗) : I →
C = Q × U be a normal solution of the optimal control problem (C, Q,Γ, L). Then there exists
(σ∗, u∗) : I → T ∗Q×Q C such that:

(i) it is an integral curve of the Hamiltonian vector field ΓH with given initial conditions in the
states;

(ii) γ∗ = πQ ◦ σ∗, with fiber α∗(t) ∈ T ∗
γ∗(t)Q where πQ : T ∗Q → Q is the canonical projection to

the cotangent bundle;

(iii) H(σ∗(t), u∗(t)) = maxu∈U H(σ∗(t), u) almost everywhere, where U is the closure of U ;

(iv) maxu∈U H(σ∗(t), u) is constant everywhere.

This theorem can be stated without the restriction of having a normal optimal solution. The
abnormal solutions are associated with the Hamiltonian H(αq, uq) = 〈αq,Γ(uq)〉 that does not
depend on the cost function. See [2, 6, 7, 19] for more details on Pontryagin’s Maximum Principle
and optimal control theory.

This Principle provides us with a set of necessary conditions for optimality. In some optimal
control problems the time interval is another unknown. If so, then the Hamiltonian function is zero
along the optimal curve almost everywhere.

The condition of the maximization over the controls along the optimal solution is usually re-
placed by a more operative condition on the interior of U , that is,

∂H

∂ua
= 0. (6)

4 Morse families and optimal control problems

In this section Morse families defined in Section 2.1 are considered to describe geometrically the
optimal control problems from the Hamiltonian viewpoint.

We first need to identify which is the candidate to be a Morse family in optimal control problems.
Without doubt the most natural candidate is the Pontryagin’s Hamiltonian function H : T ∗Q ×Q

C → R defined in (5). According to Definition 2.5, the submersion π corresponds with π : T ∗Q×Q

C → T ∗Q. In adapted local coordinates, we have the following expressions that will be useful in
the sequel:

ker Tπ =

〈
∂

∂ua

〉
,

(T ∗Q)π = (ker Tπ)0 = 〈dqi, dpi〉,

dH =
∂H

∂qi
dqi +

∂H

∂pi
dpi +

∂H

∂ua
dua,

(T ∗Q)π ∩ dH(T ∗Q×Q C) =

{
(qi, pi, u

a, Ai, B
i, Ca) ∈ T ∗(T ∗Q×Q C) |Ai =

∂H

∂qi
,

Bi =
∂H

∂pi
, Ca =

∂H

∂ua
= 0

}
. (7)
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From Definition 2.5 we know that the Pontryagin’s Hamiltonian H : T ∗Q×QC → R defines a Morse
family if and only if the submanifolds (T ∗Q)π and dH(T ∗Q×Q C) of T ∗(T ∗Q×Q C) are transverse.

From Section 2.1 we obtain the following result.

Proposition 4.1. Pontryagin’s Hamiltonian H : T ∗Q×QC → R defines a Morse family if and only
if the matrix

D(q,p,u)

(
∂H

∂u

)
=

(
∂2H

∂qi∂ua

∂2H

∂pi∂ua

∂2H

∂ua∂ub

)

(q,p,u)

(8)

has maximum rank for all (q, p, u) ∈ T ∗Q×Q C.

Proof. Let us check when the conormal bundle (T ∗Q)π and dH(T ∗Q ×Q C) are transverse in
T ∗(T ∗Q×Q C), that is, when condition (1),

Tα(dH(T ∗Q×Q C)) + Tα(T
∗Q)π = Tα(T

∗(T ∗Q×Q C)),

is satisfied for all α ∈ (T ∗Q)π ∩ dH(T ∗Q ×Q C). The local generators of the subspaces on the
left-hand side of the above equation, given in local coordinates (q, p, u, A,B, C), are the following
ones:

Tα(T
∗Q)π = spanR

{
∂

∂qi
,

∂

∂pi
,

∂

∂ua
,

∂

∂Ai

,
∂

∂Bi

}

α

, (9)

TαdH(T ∗Q×Q C) = spanR

{
∂

∂qi
+

∂2H

∂qi∂qj
∂

∂Aj

+
∂2H

∂qi∂pj

∂

∂Bj

+
∂2H

∂qi∂ua

∂

∂Ca

,

∂

∂pi
+

∂2H

∂pi∂qj
∂

∂Aj

+
∂2H

∂pi∂ua

∂

∂Ca

, (10)

∂

∂ua
+

∂2H

∂ua∂qj
∂

∂Aj

+
∂2H

∂ua∂pj

∂

∂Bj

+
∂2H

∂ua∂ub

∂

∂Cb

}

α

.

Note that these two tangent spaces satisfy the condition (1) if the matrix

(
∂2H

∂qi∂ua

∂2H

∂pi∂ua

∂2H

∂ua∂ub

)

has maximum rank. Only if this condition is satisfied the Hamiltonian function is a Morse family.
Otherwise, there is only a strict inclusion Tα(dH(T ∗Q×Q C)) + Tα(T

∗Q)π ( Tα(T
∗(T ∗Q×Q C)).

Remark 4.2. In this paper we restrict ourselves to examples where the optimal control problem
is defined by a Morse family given by the Pontryagin’s Hamiltonian H : T ∗Q×Q C → R. However
there are many interesting situations where this condition is not fulfilled. For instance, the optimal
control problem given by the control equation q̇ = u2 and cost function L ≡ 1 does not satisfy the
Morse family condition (8) for all points (q, p, u) in T ∗Q×Q C since H(q, p, u) = pu2 − 1 and

D(q,p,u)

(
∂H

∂u

)
=

(
0 2u 2p

)
.

Note that H does not define a Morse family at the points (q, 0, 0) because at these points the matrix
D(q,p,u)

(
∂H
∂u

)
does not have maximum rank. In fact, it is also possible to check in this example that

the intersection of dH(T ∗Q×Q C) and (T ∗Q)π is not clean at all the points in T ∗Q×Q C.

9



If H : T ∗Q ×Q C → R defines a Morse family, then ΣH = dH(T ∗Q ×Q C) ∩ (T ∗Q)π is a
submanifold of T ∗(T ∗Q×Q C). The Pontryagin’s Hamiltonian is called the generating function for
the Lagrangian submanifold LH = pr(ΣH) of (T

∗T ∗Q, ωT ∗Q), where pr : T ∗(T ∗Q ×Q C) → T ∗T ∗Q
is the natural projection onto the first factor, see Proposition 2.6. Locally,

LH = {(q, p, Pq, Pp) ∈ T ∗(T ∗Q) | ∃ u such that (q, u) ∈ C, Pq =
∂H

∂q
(q, p, u), Pp =

∂H

∂p
(q, p, u)

and
∂H

∂u
(q, p, u) = 0

}
(11)

Depending on which submatrix of D(q,p,u)

(
∂H

∂u

)
gives the maximum rank in condition (8),

there are different kinds of optimal control problems associated with different relative positions of
LH with respect to the canonical projection πT ∗Q : T ∗T ∗Q → T ∗Q.

Definition 4.3. We say that the optimal control problem is regular if the restriction (πT ∗Q)|LH
:

LH → T ∗Q is a local diffeomorphism.

If the optimal control problem is regular, the submanifold LH is transverse to the fibers of

πT ∗Q : T ∗T ∗Q → T ∗Q. Locally, the regularity condition is satisfied when the matrix D(q,p,u)

(
∂H

∂u

)

has maximum rank because
∂2H

∂ua∂ub
has maximum rank. If so, for each (q, p) ∈ T ∗Q there exists a

function u∗ = u∗(q, p) by the Implicit Function Theorem defined in a neighbourhood of (q, p) such
that (

q, p,
∂H

∂qi
(q, p, u∗(q, p)),

∂H

∂pi
(q, p, u∗(q, p)), 0

)
∈ LH .

In other words, dHu∗(T ∗Q) = LH where Hu∗(q, p) = H(q, p, u∗(q, p)).

If the condition in Definition 4.3 is not fulfilled, then the optimal control problem is singular.
This singularity may appear because of many different reasons such as πT ∗Q(LH)  T ∗Q or/and
there are points µ ∈ LH where

TµπQ : TµLH −→ TαT
∗Q, α = πT ∗Q(µ)

is not surjective, that is, µ is a caustic point [3, 4].

Let us consider now simple examples to show different situations.

Example 4.4. Consider the optimal control problem given by the control equation q̇ = u and

L = 1
6
u3 with u ∈ R. Pontryagin’s Hamiltonian H(q, p, u) = pu −

u3

6
is obviously a Morse family

because the matrix

D(q,p,u)

(
∂H

∂u

)
=

(
0 1 −u

)

has maximum rank. But the optimal control problem is not regular if u = 0. The submanifold LH

in (11) is given by

LH =

{
(q, p, Pq, Pp) ∈ T ∗(T ∗R) ≡ R4 | Pq = 0, Pp = u, p =

1

2
u2

}

=

{
(x,

1

2
λ2, 0, λ) |λ ∈ R

}

10



Observe that the points (x, 0, 0, 0) are caustic and moreover the πT ∗Q(LH) = R×[0,∞)  R2. From
the local expression of LH it is also clear that (πT ∗Q)|LH

: LH → T ∗Q is a local diffeomorphism as
long as u 6= 0.

Example 4.5 (Singular optimal control problem for LQ systems). Let us consider a general ex-
ample of singular optimal control problems, see [11, 12, 25] for more details. These problems are
characterized by the impossibility to determine the controls with first-order necessary conditions
for optimality.

Consider the control system

q̇(t) = Aq(t) +Bu(t) = Γ(q, u)

with cost function

L(q, u) =
1

2
uTPu+ qTQu+

1

2
qTRq,

where all matrices A, B, P , Q and R are constant and of suitable size.

Pontryagin’s Hamiltonian is given by H(q, p, u) = pT (Aq +Bu)− L(q, u). As described above,
the candidate to be a Morse family is the Pontryagin’s Hamiltonian. Let π : T ∗Q×Q C → T ∗Q, the
local expressions for the elements in equation (7) are:

ker Tπ = {(q, p, u, Vq, Vp, Vu) ∈ T (T ∗Q×Q C) | Vq = 0, Vp = 0} ,

(T ∗Q)π = (ker Tπ)0 = {(q, p, u, A,B, C) ∈ T ∗(T ∗Q×Q C) |C = 0} ,

dH =
(
pTA−Qu− Rq

)
i
dqi + (Aq +Bu)i dpi +

(
pTB − Pu− qTQ

)
a
dua,

(T ∗Q)π ∩ dH(T ∗Q×Q C) =
{
(q, p, u, A,B, C) ∈ T ∗(T ∗Q×Q C) |Ai =

(
pTA−Qu− Rq

)
i
,

Bi = (Aq +Bu)i , Ca =
(
pTB − Pu− qTQ

)
a
= 0

}
.

Let us study the rank of the matrix in condition (8),

D(q,p,u)

(
∂H

∂ua

)
=

(
∂2H

∂qi∂ua

∂2H

∂pi∂ua

∂2H

∂ua∂ub

)
=

(
−Q B −P

)
, (12)

to decide if the Pontryagin’s Hamiltonian is a Morse family and if it defines a regular or singular
optimal control problem. If the above matrix has maximum rank, Pontryagin’s Hamiltonian will
be a Morse family associated with either a regular or singular optimal control problem depending
on what submatrices of (12) have maximum rank. This optimal control problem is regular if P has
maximum rank. Otherwise, the optimal control problem is singular.

5 The integrability algorithm for optimal control problems

Given an optimal control problem we have defined in the previous section the subset LH in (11)
which is an immersed Lagrangian submanifold, as long as the Pontryagin’s Hamiltonian defines a
Morse family. Independently of the manifold structure of LH , we always have an optimal control
problem associated with the subset

pr ((T ∗Q)π ∩ dH(T ∗Q×Q C)) = LH ⊂ T ∗T ∗Q.

Thus, using the musical isomorphism

♯T ∗Q : T ∗T ∗Q −→ TT ∗Q

11



defined by the canonical symplectic 2-form ωQ on T ∗Q, we obtain a subset

DH = ♯T ∗Q(LH) (13)

of TT ∗Q. In this space it is possible to apply the integrability algorithm described in Section 2.3.
Here we will not apply the algorithm, but adapt it to take into account all the peculiarities of an
optimal control problem. For instance, in an optimal control problem the controls are always mea-
surable and bounded, and in general piecewise constant. As a result the curves on T ∗Q satisfying
the necessary conditions for optimality in Theorem 3.2 are absolutely continuous. Hence, they are
differentiable almost everywhere and satisfy most of the necessary conditions almost everywhere.

Unless otherwise stated, in this section the optimal control problems are assumed to be regular.
Hence, for each point in T ∗Q, we can describe the control function u in terms of the states and

momenta from the equation
∂H

∂u
(q, p, u) = 0.

A curve σ on T ∗Q×Q C satisfies the necessary conditions for optimality in Theorem 3.2 if the
curve γ ≡ pr1 ◦ σ : I ⊂ R → T ∗Q, where pr1 : T

∗Q ×Q C → T ∗Q, satisfies that γ̇(I) ⊂ ♯T ∗Q(LH)
almost everywhere.

Note that DH is a subset of TT ∗Q with the following local expression

DH = {(q, p, Vq, Vp) ∈ T (T ∗Q) | ∃ u such that (q, u) ∈ C, Vq =
∂H

∂p
(q, p, u), Vp = −

∂H

∂q
(q, p, u)

and
∂H

∂u
(q, p, u) = 0

}
.

In order to include the possibility that the solutions are piecewise C1 curves we need to modify
the integrability algorithm described in Section 2.3.

Let τT ∗Q : TT ∗Q → T ∗Q be the canonical tangent bundle projection and consider the subset
DH ×τT∗Q(DH) DH of the Whitney sum T (T ∗Q)⊕ T (T ∗Q).

A piecewise C1 curve γ : I ⊆ R → T ∗Q is called a solution of the optimal control problem
DH ×τT∗Q(DH ) DH if (γ̇−(t), γ̇+(t)) ∈ DH ×τT∗Q(DH) DH for all t ∈ I. The implicit differential
equation determined by DH ×τT∗Q(DH ) DH is said to be integrable at (v1, v2) ∈ DH ×τT∗Q(DH ) DH if
there is a solution γ : I ⊆ R → T ∗Q such that (γ̇−(0), γ̇+(0)) = (v1, v2). Note that this notion of
integrability includes the points of both continuity and discontinuity of the derivative.

Now we can adapt the integrability algorithm in Section 2.3 by defining the following sequence
of objects

D0 = DH ×τT∗Q(DH ) DH , C0 = τT ∗Q(DH ×τT∗Q(DH ) DH), τ 0 = τT ∗Q|DH×τT∗Q(DH )DH
,

and

Dk =
{
(v1, v2) ∈ Dk−1 | ∃ γ : I → Ck−1, γ̇−(0) = v1, γ̇+(0) = v2

}
,

Ck = τT ∗Q(D
k) ,

τk = τT ∗Q|Dk : Dk → T ∗Q.

At some step s the algorithm stabilizes, that is, Ds = Ds+1. The integrable implicit differential
equation Ds ⊂ T (T ∗Q)⊕ T (T ∗Q) is the integrable part, maybe empty, of DH ×τT∗Q(DH) DH .
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Example 5.1. Consider the following optimal control problem

min J =

∫ tf

t0

(u(t)2 − 1)2dt,

subject to q̇ = u, U ⊆ R,

t0 = 0, q0 = 1,

tf = 1, qf = 1.

Pontryagin’s Hamiltonian associated with this problem is H(q, p, u) = pu − (u2 − 1)2. Obviously,
this Hamiltonian defines a Morse family because the matrix

D(q,p,u)

(
∂H

∂u

)
=

(
0 1 − 12u2 + 4

)

has maximum rank for all (q, p, u) in T ∗R×R C, see Proposition 4.1.

The set DH of TT ∗Q in this example has the following local expression:

DH =

{
(q, p, Vq, Vp) ∈ T (T ∗Q) | ∃ u such that (q, u) ∈ C, Vq =

∂H

∂p
(q, p, u), Vp = −

∂H

∂q
(q, p, u),

∂H

∂u
(q, p, u) = 0

}

=
{
(q, p, Vq, Vp) ∈ T (T ∗Q) | ∃ u such that (q, u) ∈ C, Vq = u, Vp = 0, p− 4u(u2 − 1) = 0

}

=
{
(x, 4u(u2 − 1), u, 0) ∈ T (T ∗Q) | ∃ u such that u is constant

}
.

The last equality comes from the fact that ṗ = 0. Hence p is a constant momenta equal to 4u(u2−1).
Thus the control u must also be constant.

The starting point of the integrability algorithm is given by

D0 = DH ×τT∗Q(DH ) DH

=
{
(x, 4u1(u

2
1 − 1), u1, 0) ∈ T (T ∗Q) | u1 ∈ U

}
×τT∗Q(DH ){

(x, 4u2(u
2
2 − 1), u2, 0) ∈ T (T ∗Q) | u2 ∈ U

}
,

C0 = τT ∗Q(DH ×τT∗Q(DH ) DH) =
{
(x, 4u1(u

2
1 − 1)) | u1 ∈ U

}
,

τ 0 = τT ∗Q|DH×τT∗Q(DH )DH
.

As a consequence of being a fibered product over T ∗Q, 4u1(u
2
1 − 1) = 4u2(u

2
2 − 1) so that C0

is well defined. That condition is fulfilled when u1 = u2 or if there is a switching time in the
trajectory where the control changes its value, that is, u1 6= u2. However, if u1 6= u2, the equality
4u1(u

2
1 − 1) = 4u2(u

2
2 − 1) is satisfied if and only if u1, u2 ∈ {−1, 0, 1}. Since the trajectories are

straight lines, the controls can only change from 1 to −1 or vice versa in order to verify the endpoint
conditions if only one switching time is allowed. For the case u1 = u2, the endpoint conditions are
only satisfied if u1 = u2 = 0. Under the assumption of not having more than one change in the
control, the next step in the integrability algorithm is the following one:

D1 =
{
((x, 0, u1, 0), (x, 0, u2, 0)) ∈ T (T ∗Q)×τT∗Q(DH) T (T

∗Q) | {u1 = ±1, u2 = ∓1}

or {u1 = u2 = 0}} ,

C1 = {(x, 0)} ,

τ 1 = τT ∗Q|D1 : D1 → T ∗Q.

Here the algorithm stabilizes and the solutions are

13



• γ1(t) =

{
u1t+ 1 0 ≤ t ≤ t1,

u2(t− tf ) + 1 t1 ≤ t ≤ tf ,
where u1 = ±1, u2 = ∓1 such that γ−

1 (t1) = γ+
1 (t1),

that is, u1t1 + 1 = u2(t1 − tf ) + 1. Equivalently, t1 = tf/2.

• γ2(t) = 1 for u1 = u2 = 0.

If we compute the value of the functional to be minimized along these two families of trajectories,
we obtain that

J(γ1) = 0,

J(γ2) = 1.

Thus the optimal solution comes from curves like γ1.

6 Towards a Lagrangian formulation of an optimal control

problem

After introducing in Section 4 the Hamiltonian approach to optimal control problems by Morse
families, we are going to consider a Lagrangian approach to deal with optimal control problems by
means of Lagrangian submanifolds of T ∗(TQ) instead of T ∗(T ∗Q). In order to do this we make use
of the Tulczyjew diffeomorphism which defines a diffeomorphism between T ∗TQ and T ∗T ∗Q, see
Section 2.2.

Given (C, Q,Γ,L) an optimal control problem, construct the following subset of T ∗TQ:

LC,L = {µ ∈ T ∗TQ | Γ∗µ = dL}. (14)

In optimal control theory there are two different kinds of solutions: the normal ones, that will be
obtained from LC,L, and the abnormal ones. The abnormality is characterized by the no dependence
on the cost function at a first stage. These abnormal curves can be included in our description by
considering the following subset in T ∗TQ:

LC,abn = {µ ∈ T ∗TQ | Γ∗µ = 0}.

From now on, we just consider the characterization of normal solutions, but analogous constructions
can be considered for abnormal solutions.

In local coordinates (qi, q̇i, ua) for TQ×Q C, the elements in (14) are written as follows:

µ = aidq
i + bidq̇

i,

Γ∗µ = aidq
i + bi

∂Γi

∂qj
dqj + bi

∂Γi

∂ua
dua,

dL =
∂L

∂qi
dqi +

∂L

∂ua
dua.

Hence the elements in LC,L satisfy the following equations:

ai + bj
∂Γj

∂qi
=

∂L

∂qi
, (15)

bi
∂Γi

∂ua
=

∂L

∂ua
, (16)

restricted to q̇i = Γi(q, u). Condition (16) may introduce additional restrictions in the control space
C as shown in the following lemma.
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Lemma 6.1. Define the subset C̃ ⊆ C as

C̃ = {c ∈ C | dL(Vc) = 0, ∀ Vc ∈ ker TcΓ},

then πTQ(LC,L) ⊆ Γ(C̃).

Proof. Let vq ∈ πTQ(LC,L), there exists µvq in LC,L such that

Γ∗(µ) = dL at vq, that is, 〈µvq ,TcΓ(Vc)〉 = dL(Vc),

for all Vc ∈ TcC such that Γ(c) = vq. In particular, for all Vc ∈ ker TcΓ we have that dL(Vc) = 0.

Hence, c ∈ C̃ and vq ∈ Γ(C̃).

Observe that if Γ is an immersion, then C̃ = C.

Assume in the sequel that C̃ is transverse to the fibers of Γ, that is

TC̃ + ker TΓ = TC.

Then it is easy to prove the following result.

Proposition 6.2. Let C̃ = {c ∈ C | dL(Vc) = 0, ∀ Vc ∈ ker TcΓ}, we have

LC,L = LC̃,L
|C̃
.

Observe that the restriction of τC,Q : C → Q to C̃ is not necessarily the entire space Q. However,
Proposition 6.2 guarantees we can work indistinctly with LC,L and LC̃,L

|C̃
.

Example 6.3. As a toy example consider the optimal control system given by ẋ = u1 + u2 and
cost function L = x(u1 − u2). In this case,

LC,L = {(x, v, a, b) ∈ R4 | ∃ (u1, u2) ∈ R
2 such that v = u1 + u2, a = u1 − u2, b = x, b = −x}

= {(0, r1, r2, 0) | (r1, r2) ∈ R
2}

On the other hand, C̃ = {(x, u1, u2) ∈ C|x = 0, u1 = u2}. Note that πTQ(LC,L) ⊆ Γ(C̃) as proved in
Lemma 6.1.

Let us consider the Pontryagin’s Hamiltonian functionH : T ∗Q×QC −→ R with local expression

H(q, p, u) = piΓ
i(q, u)− L(q, u).

Then the equations in (15) and (16) can be rewritten as follows:

ai = −
∂H

∂qi
(q, b, u),

0 =
∂H

∂ua
(q, b, u).

(17)

restricted to q̇i =
∂H

∂pi
(q, b, u) = Γi(q, u). Locally,

LC,L =

{
(qi, q̇i, ai, bi) ∈ T ∗TQ | ∃ u such that (q, u) ∈ C, q̇i =

∂H

∂pi
, ai = −

∂H

∂qi
,
∂H

∂ua
= 0

}
.
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These are the first order necessary conditions for optimality in Pontryagin’s Maximum Principle,
providing that the controls take value in an open set so that the maximization condition of the
Hamiltonian function over the controls is replaced by the weaker condition (6).

By means of the Tulczyjew diffeomorphism

αQ : TT ∗Q −→ T ∗TQ
(qi, pi, q̇

i, ṗi) 7−→ (qi, q̇i, ṗi, pi),

and (13) it is easy to show that the subsets LH defined in (11) and LC,L satisfy that

LC,L = αQ(DH) = (αQ ◦ ♯T ∗Q)(LH) .

From Proposition 6.2 we have that LC̃,L
|C̃

= LC,L = αQ(DH). The above equalities imply the

following result.

Proposition 6.4. Let (C, Q,Γ,L) be an optimal control problem such that the associated Pon-
tryagin’s Hamiltonian is a Morse family, then LC,L is an immersed Lagrangian submanifold of the
symplectic manifold (T ∗TQ, ωTQ).

Let us introduce now the following notion.

Definition 6.5. The Legendre transformation for an optimal control problem is the mapping

LegC,L ≡ τT ∗Q ◦ (α−1
Q )|LC,L

: LC,L −→ T ∗Q. (18)

It is easy to prove that the optimal control problem is regular if and only if LegC,L is a local
diffeomorphism, see Definition 4.3. We will say that the optimal control problem is hyperregular if
LegC,L is a global diffeomorphism.

In the sequel we assume that Γ|C̃ : C̃ → TQ has connected fibers along the points of its image.
Under this condition we have the following result.

Lemma 6.6. For any vq in Γ(C̃)
L(c) = L(c̃)

for all c and c̃ in Γ−1(vq) ∩ C̃.

Proof. For vq ∈ Γ(C̃) there exists c̃ in C̃ such that Γ(c̃) = vq. Since we assume that Γ|C̃ : C̃ −→ TQ

has connected fibers, for any initial point c in Γ−1(vq) ∩ C̃ there exists a curve γ : [0, 1] −→ C̃ such
that γ(0) = c, γ(1) = c̃ and Γ|C̃(γ(t)) = vq. Hence

γ̇(t) ∈ ker Tγ(t)Γ

From the definition of C̃ we deduce that

〈dL(γ(t)), γ̇(t)〉 = 0 for all t ∈ [0, 1].

Therefore the Lagrangian L is constant along the curve γ, that is, L(γ(t)) = constant. Thus,

L(c) = L(c̃) for all c and c̃ in Γ−1(vq) ∩ C̃.
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Now, it will be obtained the “lagrangian version” of the equations of motion on LC,L for an
optimal control problem. Any element v ∈ TqQ determines a vertical vector at any point w in the
fiber over q. That vector lying in TwTQ is called the vertical lift of v at w and it is denoted by vVw .
The vertical lift of v at w is the tangent vector at t = 0 to the curve w + t v.

vVw =
d

dt

∣∣∣∣
t=0

(w + t v) .

Having in mind this definition, it is possible to define now the energy function EC,L : LC,L → R by

EC,L(µvq) = 〈µvq , (vq)
V
vq
〉 − L(cq), µvq ∈ (LC,L)vq , cq ∈ C̃, Γ(cq) = vq. (19)

Lemma 6.6 guarantees that the energy is well-defined.

The following proposition can be easily proved locally.

Proposition 6.7. Let H : T ∗Q×Q C → R be the Pontryagin’s Hamiltonian and cq ∈ C̃,

EC,L(µvq) = H(LegC,L(µvq), cq).

If the mapping Γ : C → TQ is an embedding, then we can select coordinates in such a way that
the control equations are rewritten as follows:

q̇a = ua,

q̇α = F α(qi, ua).

Then the subset LC,L is locally given by

ai + bα
∂F α

∂qi
=

∂L

∂qi
,

ba + bα
∂F α

∂ua
=

∂L

∂ua
.

(20)

Note that the submanifold LC,L can be locally described by the coordinates (qi, ua, bα).

In this case the Pontryagin’s Hamiltonian is H = pau
a + pαF

α−L. Note that the condition for
being a Morse family is trivially satisfied because

(
∂2H

∂pi∂ub

)
=

(
∂2H

∂pa∂ub

∂2H

∂pα∂ub

)
=

(
I

∂Γ

∂ub

)

has maximum rank.

Due to the local expression of the submanifold LC,L, the energy function in (19) is given by

EC,L(q
i, ua, bα) = ua ∂L

∂ua
(qi, ua)− uabα

∂F α

∂ua
(qi, ua) + bαF

α(qi, ua)− L(qi, ua).

The Legendre transformation in the coordinates (qi, ua, bα) for LC,L is written as follows

LegC,L(q
i, ua, bα) =

(
qi,

∂L

∂ua
− bα

∂F α

∂ua
, bα

)

Then the Poincaré-Cartan 2-form ΩC,L on LC,L is defined by

ΩC,L = (LegC,L)
∗ωQ

and the “lagrangian version” of the equations of motion for an optimal control problem is given by
the following result.
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Proposition 6.8. The Pontryagin’s Hamilton equations are equivalent to the following presymplec-
tic system

iXΩC,L = dEC,L.

6.1 Example: The cheapest stop of a train [2, Section 13.3]

Let us consider the following control system

ẋ1 = x2, (21)

ẋ2 = u, (22)

which describes the motion of a train with one control. The aim is to stop the train at a fixed final
time with a minimum energy. This energy is considered proportional to the integral of the square
acceleration, that is, we want to find controlled trajectories that maximize the following functional

∫ T

0

L(x1(t), x2(t), u(t)) dt =
1

2

∫ T

0

u2(t) dt.

Pontryagin’s Hamiltonian [19] is given by

H : T ∗R2 × R −→ R,

(x, p, u) 7−→ p1x
2 + p2u−

1

2
u2.

Hamilton’s equation are given by (21), (22) and

ṗ1 = 0,

ṗ2 = −p1.

A necessary condition for maximizing the Hamiltonian over the controls is

∂H

∂u
= p2 − u = 0. (23)

Let us compute the matrix in (8):

(
∂2H

∂qi∂ub

∂2H

∂pi∂ub

∂2H

∂ua∂ub

)
=

(
0 0 0 1 −1

)
.

Hence, the matrix has maximum rank and the optimal control is regular in the sense of Defini-
tion 4.3. This example satisfies the typical condition in the literature on the maximum rank of
∂2H

∂ua∂ub
. In [2, Section 13.3] this problem is solved from there.

However, the above matrix also satisfies that
∂2H

∂pi∂ub
has maximum rank. Thus, by implicit func-

tion theorem, we can rewrite Hamilton’s equations in terms of the local coordinates (x1, x2, p1, u).
This local approach arises naturally when we consider the Lagrangian formalism for an optimal
control described in the above section. Note that

DH = {(x1, x2, p1, u, x
2, u, 0,−p1)} and LC,L = {(x1, x2, x2, u, 0,−p1, p1, u)}.
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The local coordinates for LC,L are (x1, x2, p1, u) and the set C̃ in Lemma 6.1 is equal to C. The
condition πTQ(LC,L) ⊆ Γ(C) in Lemma 6.1 is satisfied with equality.

The Legendre transformation for this optimal control problem is locally given by

LegC,L(x
1, x2, p1, u) = (x1, x2, p1, u),

and the energy function is given by

EC,L(x
1, x2, p1, u) = H(x1, x2, p1, u, u) = p1x

2 +
1

2
u2.

Thus the Poincaré-Cartan form ΩC,L on LC,L is given by

ΩC,L = (LegC,L)
∗ωQ = −dp1 ∧ dx1 − du ∧ dx2.

If we write now the “lagrangian version” of the Hamilton’s equations for this optimal control
problem given in Proposition 6.8, iXΩC,L = dEC,L, we have

ẋ1 = x2, ṗ1 = 0,
ẋ2 = u, u̇ = −p1.

6.2 An example of overactuated control system

Consider now the following control system

ẋ = u1,

ẏ = u2 + u3.

The cost function whose functional must be minimized is L(x, y, u1, u2, u3) =
1

2
(u2

1 + u2
2 + u2

3).

The corresponding Pontryagin’s Hamiltonian is H(x, y, p1, p2, u1, u2, u3) = p1u1 + p2(u2 + u3)−
1

2
(u2

1 + u2
2 + u2

3). In this example the matrix in (8) is given by



0 0 1 0 −1 0 0
0 0 0 1 0 −1 0
0 0 0 1 0 0 −1




because
∂H

∂u1
= p1 − u1,

∂H

∂u2
= p2 − u2,

∂H

∂u3
= p2 − u3.

Obviously, the matrix has maximum rank and the optimal control problem is regular because of
Definition 4.3. This is an example of overactuated control system, where the controls are not in
principle repetitive. However, if we work out the equations defining LC,L, we will see that b1 = u1,
b2 = u2 = u3. Note that

LC,L = {(x, y, u1, 2u2, 0, 0, u1, u2)}.

The local coordinates for LC,L are (x, y, u1, u2) and the set C̃ = {(x, y, u1, u2, u2)} ⊂ C. Then
Lemma 6.1 is satisfied with equality

πTQ(LC,L) = {((x, y, u1, 2u2)} = Γ(C̃) = {(x, y, u1, 2u2)}.
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The Legendre transformation for this optimal control problem is locally given by

LegC,L(x, y, u1, u2) = (x, y, u1, u2),

and the energy function is given by

EC,L(x, y, u1, u2) = H(x, y, u1, u2, u1, u2, u3) = u2
1 + 2u2

2 −
1

2

(
u2
1 + 2u2

2

)
=

1

2
u2
1 + u2

2.

Thus the Poincaré-Cartan form ΩC,L on LC,L is given by

ΩC,L = (LegC,L)
∗ωQ = dx ∧ du1 + dy ∧ du2.

If we write now the “lagrangian version” of the Hamilton’s equations for this optimal control
problem given in Proposition 6.8, iXΩC,L = dEC,L, we have

ẋ = u1, ẏ = 2u2,
u̇1 = 0, u̇2 = 0.

7 Future work

As future research line, Morse families might enable a geometric description for the optimal control
problems defined on manifolds with corners and/or boundaries. Remember that optimal control
problems are considered a generalization of variational calculus [22] because in the optimal control
problems the controls take values in a closed and bounded set. The Morse families seem to be a
useful geometric tool in order to avoid to replace the maximization condition of the Hamiltonian
over the controls by the weaker condition ∂H/∂u = 0 given in (6).
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