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Abstract. Given two rooted phylogenetic trees on the same set of taxa X, the Maximum Agreement Forest
problem (MAF) asks to find a forest that is, in a certain sense, common to both trees and has a minimum number
of components. The Maximum Acyclic Agreement Forest problem (MAAF) has the additional restriction that the
components of the forest cannot have conflicting ancestral relations in the input trees. There has been considerable
interest in the special cases of these problems in which the input trees are required to be binary. However, in
practice, phylogenetic trees are rarely binary, due to uncertainty about the precise order of speciation events. Here,
we show that the general, nonbinary version of MAF has a polynomial-time 4-approximation and a fixed-parameter
tractable (exact) algorithm that runs in O(4kpoly(n)) time, where n = |X| and k is the number of components
of the agreement forest minus one. Moreover, we show that a c-approximation algorithm for nonbinary MAF and
a d-approximation algorithm for the classical problem Directed Feedback Vertex Set (DFVS) can be combined to
yield a d(c + 3)-approximation for nonbinary MAAF. The algorithms for MAF have been implemented and made
publicly available.

1. Introduction. Background. A rooted phylogenetic tree is a rooted tree with its leaves
labelled by species, or strains of species, more abstractly known as taxa. Arcs, also called edges, are
directed away from the root towards the leaves and internal vertices of the tree have indegree 1.
It is a model used to exhibit ancestral relations between the species. For an introduction to
phylogenetic trees see [15, 16, 29].

Occasionally it happens that on the same set of species topologically distinct phylogenetic trees are
derived from different data sources (e.g. different genes). Such partly incompatible trees may arise
due to biological reticulation events such as hybridization, recombination or lateral gene transfer
[18, 23, 24]. These events cannot be explained in a tree-like ancestral relation model. There are
additionally many non-reticulate biological phenomena, such as incomplete lineage sorting, that
can likewise lead to conflicting tree signals [23, 24]. Whatever the cause of the conflict, it is natural
to wish to quantify the dissimilarity of two phylogenetic trees.

rSPR distance and Maximum Agreement Forests. One such measure of dissimilarity is the rooted
Subtree Prune and Regraft (rSPR) distance, which asks for the minimum number of subtrees that
need to be successively detached and re-attached in one of the trees to transform it into the other.
The search for an alternative characterisation of rSPR distance was a major motivation behind
the study of the agreement forest problem that we now describe; a formal definition follows in the
next section. We are given two rooted trees with the leaves labeled by the elements of a set X
and no vertices with indegree and outdegree both equal to 1. An agreement forest is a partition of
X such that (a) in both trees the partition induces edge-disjoint subtrees and (b) for each block
(“component”) of the partition, the two subtrees induced are phylogenetically compatible i.e. have
a common refinement ; see Figure 1.1. The maximum agreement forest problem (MAF) is to find
an agreement forest with a minimum number of components.
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The binary MAF problem, in which the two input phylogenetic trees are binary, was introduced
by Hein et al. [17]. Bordewich and Semple [6] showed that modulo a minor rooting technicality it
is equivalent to computing the rSPR distance. The first correct polynomial-time approximation
algorithm for this problem was the 5-approximation algorithm by Bonet et al. [3]. The first
3-approximation was given in [5], a quadratic-time 3-approximation in [27] and a linear-time 3-
approximation in [30]. A fixed parameter tractable (FPT) algorithm for binary MAF was first
given by Bordewich and Semple [6], the running time of which was subsequently improved in [5]
to O(4kk4 + n3) and in [30] to O(2.42kn). (See [14, 25] for an introduction to fixed parameter
tractability). For more than two binary trees, there exists an 8-approximation [9].

However, in applied phylogenetics it rarely happens that trees are binary. Often there is insufficient
information available to be able to determine the exact order in which several branching events
occurred, and it is standard practice to model this uncertainty using vertices with outdegree
higher than two: a soft polytomy [23]. Hence it is extremely important to develop algorithms
for the nonbinary case i.e. when the trees are not necessarily binary and high-degree vertices
capture a set of equally likely branching scenarios. The close relationship between rSPR distance
and MAF also holds in the nonbinary case [11]. However, compared to the binary case neither
problem has been well-studied. Nonbinary agreement forests were introduced in [27], where a
(d + 1)-approximation algorithm for nonbinary MAF was given, with d the maximum outdegree
of the input trees. A kernelization was presented in [11], showing that nonbinary MAF is fixed-
parameter tractable. Combining this kernelization of size 64k with the trivial O(nkpoly(n)) time
exact algorithm gives a O((64k)kpoly(n)) time FPT algorithm, with n the number of species and k
the size of the maximum agreement forest minus one. In addition, the kernel automatically implies
the existence of a polynomial-time 64-approximation algorithm (since any instance trivially has a
solution of size n).

In this article we give a polynomial-time 4-approximation algorithm and an O(4kpoly(n)) time
FPT algorithm for nonbinary MAF. Both algorithms have been implemented and made publicly
available. Although these results are of interest in their own right, we also show how to utilize
them to obtain improved algorithms for computation of hybridization number.

Hybridization number and Maximum Acyclic Agreement Forests. The other problem we study is
a variation of MAF in which the roots of the subtrees in the agreement forest are not allowed to
have conflicting ancestral relations in the two input phylogenetic trees. For an example, consider
the agreement forest in Figure 1.1. In the first phylogenetic tree, the subtree with leaves c and d
is “above” the subtree with leaves a and b, whereas it is the other way around in the second phy-
logenetic tree. By saying that a subtree is “above” another subtree, we mean that there exists a
directed path from the root of the first to the root of the second subtree that contains at least one
edge of the first subtree. Hence, the agreement forest in Figure 1.1 is, in this sense, cyclic. Such
cyclic phenomena are prohibited in the Maximum Acyclic Agreement Forest problem MAAF, in-
troduced in [1]. The main reason for studying MAAF, is its close connection with the hybridization
number problem (HN). A hybridization network (often also called a rooted phylogenetic network)
is a rooted phylogenetic tree that additionally may contain reticulations, vertices with indegree
two or higher. Given two rooted rooted trees on the same set of taxa, the HN problem asks
for a hybridization network with a minimum number of reticulations that displays (i.e. contains
embeddings of) both the input trees. The HN problem can thus be viewed as constructing a
“most parsimonious” explicit evolutionary hypothesis to explain the dissimilarity between the two
input trees; the problem first gained attention following the publication of several seminal articles
in 2004-5 e.g. [1, 2]. The number of reticulations in an optimal solution to the HN problem is
exactly one less than the number of components in an optimal solution to the MAAF problem [1],
making the problems essentially equivalent.

The problem MAAF is NP-hard and APX-hard [8], although there do exist efficient FPT algo-
rithms for the binary variant of the problem e.g. [4, 7, 10, 12, 28, 30]. The nonbinary variant
of the problem has received comparatively little attention, although that too is FPT [22, 26] and
some algorithms have been implemented (see [26] for a discussion). In both cases, the practical
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Fig. 1.1. Two nonbinary rooted phylogenetic trees T1 and T2 and a maximum agreement forest F of T1 and T2.

applicability of the FPT algorithms is limited to instances of small or moderate size [19], for larger
instances approximation algorithms are required. In that regard, it was recently shown in [21] that,
from an approximation perspective, binary MAAF is a very close relative of the classical problem
directed feedback vertex set (DFVS), whose definition is presented in Section 2. Unfortunately, it is
still a major open problem in approximation complexity whether DFVS permits a constant-factor
polynomial-time approximation algorithm. The nonbinary variant of MAAF is of course at least
as hard to approximate as the binary variant and is thus at least as hard to approximate as DFVS.
Hence, for large instances of MAAF, neither FPT algorithms nor polynomial-time approximation
algorithms are, at the present time, appropriate. In [19] we showed how, for the binary variant of
MAAF, large instances can however be very well approximated using a specific marriage of MAF
and DFVS solvers. This approach is exponential-time in the worst case but in practice is very fast
and yields highly competitive approximation factors. The question remained whether a similar
approach would work for nonbinary MAAF.

In this paper, we show that a c-approximation algorithm for nonbinary MAF and a d-approximation
algorithm for DFVS can be combined to yield a d(c + 3)-approximation for nonbinary MAAF.
Combining this with our aforementioned polynomial-time 4-approximation for MAF, we obtain a
7d-approximation for MAAF. As we discuss in the conclusion, it is likely that in practice d = 1 can
be obtained using ILP to solve the generated DFVS instances. Hence, using the 4-approximation
for nonbinary MAF we get an exponential-time 7-approximation for nonbinary MAAF and us-
ing the FPT algorithm for nonbinary MAF we get an exponential-time 4-approximation for
nonbinary MAAF. If we wish a purely polynomial-time approximation, we can use the best-
known polynomial-time approximation algorithm for DFVS, yielding overall a polynomial-time
O(log(k) log(log(k)))-approximation for nonbinary MAAF, with k the size of a maximum acyclic
agreement forest minus one. We mention here that our algorithms for MAF are partly based on
the ideas in [30] and the algorithm for MAAF on the ideas in [19] but the analysis is different in
both cases because nonbinary agreement forests are substantially different from binary agreement
forests. In fact, high-outdegree vertices pose a formidable challenge because of the freedom to
refine these vertices in one of exponentially many ways.

An implementation of both our MAF algorithms in Java has been made publicly available [20].

2. Preliminaries and statement of results. Let X be a finite set (e.g. of species). A
rooted phylogenetic X -tree is a rooted tree with no vertices with indegree-1 and outdegree-1, a
root with indegree-0 and outdegree at least 2, and leaves bijectively labelled by the elements of X.
We identify each leaf with its label. We henceforth call a rooted phylogenetic X-tree a tree for
short. Note that we do not restrict phylogenetic trees to be binary. A tree T is a refinement of
a tree T ′ if T ′ can be obtained from T by contracting edges. For a tree T and a set X ′ ⊂ X,
we define T (X ′) as the minimal subtree of T that contains all elements of X ′, and T |X ′ as the
result of suppressing all vertices with in- and outdegree 1 of T (X ′). The set of leaves of a tree T is
denoted L(T ). We say that tree T ′ is displayed by tree T if T ′ can be obtained from a subtree of T
by contracting edges. If T ′ is displayed by T , then T (L(T ′)) is the embedding of T ′ in T .

Throughout the paper, we usually refer to directed edges (arcs) simply as edges and to directed
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paths simply as paths. If e = (u, v) is an edge of some tree, then we say that v is a child of u,
that u is the parent of v, that u is the tail of e, that v is the head of e and we write tail(e) = u
and head(e) = v.

A forest is defined as a set of trees. To avoid confusion, we call each element of a forest a component,
rather than a tree. Let T be a tree and F a forest. We say that F is a forest for T if:

• each component F ∈ F is a refinement of T |L(F );

• the subtrees {T (L(F )) | F ∈ F} are edge-disjoint; and

• the union of L(F ) over all F ∈ F is equal to L(T ).

By this definition, if F is a forest for some tree T , then {L(F ) | F ∈ F} is a partition of the leaf
set of T . It will indeed sometimes be useful to see an agreement forest as a partition of the leaves,
and sometimes to see it as a collection of trees.

If T1 and T2 are two trees, then a forest F is an agreement forest of T1 and T2 if it is a forest
for T1 and a forest for T2. The size of a forest F , denoted by |F|, is defined as the number of its
components. We consider the following computational problem.

Problem: Nonbinary Maximum Agreement Forest (Nonbinary MAF)
Instance: Two rooted phylogenetic trees T1 and T2.
Solution: An agreement forest F of T1 and T2.
Objective: Minimize |F| − 1.

We define the inheritance graph IG(T1, T2,F) of an agreement forest, as the directed graph whose
vertices are the components of F and which has an edge (F, F ′) precisely if either

• there exists a path in T1 from the root of T1(L(F )) to the root of T1(L(F ′)) containing
an edge of T1(L(F )) or;

• there exists a path in T2 from the root of T2(L(F )) to the root of T2(L(F ′)) containing
an edge of T2(L(F )).

Note that if there exists a path in Ti (for i ∈ {1, 2}) from the root of Ti(L(F )) to the root of
Ti(L(F ′)) containing an edge of Ti(L(F )), then this directly implies that this path also contains
such an edge that has the root of Ti(L(F )) as tail.

An agreement forest F of T1 and T2 is called an acyclic agreement forest if the graph IG(T1, T2,F)
is acyclic.

We call a forest an F-splitting if it is an acyclic agreement forest that can be obtained from a
refinement of F by removing edges and suppressing vertices with in- and outdegree 1.

A maximum acyclic agreement forest (MAAF) of T1 and T2 is an acyclic agreement forest of T1
and T2 with a minimum number of components.

Problem: Nonbinary Maximum Acyclic Agreement Forest (Nonbinary MAAF)
Instance: Two rooted phylogenetic trees T1 and T2.
Solution: An acyclic agreement forest F of T1 and T2.
Objective: Minimize |F| − 1.

We use the notation MAF(T1, T2) and MAAF(T1, T2) for the optimal objective value of, respec-
tively, a maximum agreement forest and a maximum acyclic agreement forest for input trees T1
and T2. Hence, if A is a maximum agreement forest and M is a maximum acyclic agreement
forest, then MAF(T1, T2) = |A| − 1 and MAAF(T1, T2) = |M| − 1.
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We note that in the MAF and MAAF literature it is commonplace to assume that there is a leaf
labelled ρ attached to the root of each input tree: see [21] and earlier articles. In this article we
omit ρ. The extra leaf ρ was originally introduced into the binary MAF literature to ensure that
optimum solutions to MAF correctly correspond to optimum solutions to the rSPR problem [6].
If one defines MAF, as we do, without ρ, then we can easily simulate the involvement of ρ by
introducing a new taxon x′ 6∈ X which is a child of the root in both the input trees. The MAAF
literature grew out of the MAF literature and thus inherited the use of ρ. However, for MAAF ρ
is not necessary at all, and this is tightly linked to the acyclic character of the inheritance graph.
Although we omit the proof, it is easy to show that if we have a solution to MAAF in which ρ
appears on its own in an isolated component, we can obtain a better solution by grafting ρ onto
any of the components C that have indegree 0 in the inheritance graph. This can create new
outgoing edges from C in the inheritance graph, but it cannot create new incoming edges, and
hence preserves the acyclicity of the graph. For both these reasons (the ease with which ρ can
be simulated in the case of MAF, and its redundancy in the case of MAAF) we choose to omit ρ
from this paper.

The MAAF problem is closely related to an important problem in phylogenetics. A rooted phylo-
genetic network is a directed acyclic graph with no vertices with indegree 1 and outdegree 1 and
leaves bijectively labelled by the elements of X. Rooted phylogenetic networks, will henceforth be
called networks for short in this paper. A tree T is displayed by a network N if T can be obtained
from a subtree of N by contracting edges. Using δ−(v) to denote the indegree of a vertex v,
a reticulation is a vertex v with δ−(v) ≥ 2. The reticulation number of a network N is given
by

r(N) =
∑

v:δ−(v)≥2

(δ−(v)− 1).

In [1] it was shown that, in the binary case, the optimum to MAAF is equal to the optimum of the
following problem. Later, in [22], this characterisation was extended to nonbinary trees.

Problem: Nonbinary Minimum Hybridization (Nonbinary MH)
Instance: Two rooted phylogenetic trees T1 and T2.
Solution: A phylogenetic network N that displays T1 and T2.
Objective: Minimize r(N).

Moreover, it was shown that, for two trees T1, T2, any acyclic agreement forest for T1 and T2
with k + 1 components can be turned into a phylogenetic network that displays T1 and T2 and
has reticulation number k, and vice versa. Thus, any approximation for Nonbinary MAAF gives
an approximation for nonbinary MH.

There is also a less obvious relation between MAAF and the directed feedback vertex set problem, a
problem which is well-known in the communities of theoretical computer science and combinatorial
optimisation. A feedback vertex set of a directed graph is a subset of the vertices that contains at
least one vertex of each directed cycle. Equivalently, a subset of the vertices of a directed graph
is a feedback vertex set if removing these vertices from the graph makes it acyclic.

Problem: Directed Feedback Vertex Set (DFVS)
Instance: A directed graph D.
Solution: A feedback vertex set S of D.
Objective: Minimize |S|.
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In the next two sections we will prove the following theorems. In Section 3, we relate approxima-
bility of Nonbinary MAAF to that of Nonbinary MAF and DFVS.

Theorem 2.1. If there exists a c-approximation for Nonbinary MAF and a d-approximation for
DFVS, then there exists a d(c+3)-approximation for Nonbinary MAAF and hence for Nonbinary
MH.

In Section 4, we design a polynomial-time approximation algorithm for (Nonbinary) MAF and
prove constant factor approximability.

Theorem 2.2. There is a polynomial-time 4-approximation for (nonbinary) MAF.

Moreover, the proof of Theorem 2.2 almost directly leads to fixed-parameter tractability.

Theorem 2.3. Nonbinary MAF can be solved exactly in O(4kpoly(n)) time, with n the number
of leaves and k the number of components of a maximum agreement forest minus one.

Combining Theorems 2.1 and 2.2 above, we obtain the following corollary.

Corollary 2.4. If there exists a d-approximation for DFVS then there exists a 7d-approximation
for Nonbinary MAAF and hence for Nonbinary MH.

Moreover, using the O(log(τ) log(log(τ)))-approximation for weighted DFVS from [13], with τ the
weight of a minimum feedback vertex set, we also obtain the following.

Corollary 2.5. There exists a polynomial-time O(log(k) log(log(k)))-approximation for nonbi-
nary MAAF, with k the number of components of a maximum acyclic agreement forest minus
one.

3. Approximating nonbinary MAAF. In this section we prove Theorem 2.1. We will
show that, for two nonbinary trees, MAAF can be approximated by combining algorithms for
MAF and DFVS.

An agreement forest A is said to be maximal if there is no agreement forest that can be obtained
from A by merging components. It is clear that, given any agreement forest, a maximal agreement
forest with at most as many components can be obtained in polynomial time.

Let T1 and T2 be two nonbinary trees. Consider a maximal agreement forest A and a maximum
acyclic agreement forestM for these two trees. We will first prove that there exists an A-splitting
of size at most |A| + 3|M|. After that, we will show how the problem of finding an optimal
A-splitting can be reduced to DFVS.

The idea of the first part of the proof is to split components of A according to M. We show that
to make A acyclic we will increase the number of components of A by at most three times the size
of M.

We start with some definitions. In the first part of the proof, we see an agreement forest A for T1
and T2 as a partition of the leaf set X for which holds that:

1. T1|A and T2|A have a common refinement, for all A ∈ A; and

2. the subtrees {Ti(A) | A ∈ A} are edge-disjoint, for i ∈ {1, 2}.

Using this definition of agreement forests, an A-splitting is an acyclic agreement forest that can
be obtained by splitting components of A. The following observation is easily verifiable.

Observation 1. If M is an acyclic agreement forest and M′ is an agreement forest that can be
obtained from M by splitting components, then M′ is an acyclic agreement forest.

For a component A of an agreement forest for two trees T1 and T2, we write ri(A) to denote the
root of Ti(A), for i ∈ {1, 2}. For two components M and M ′ of M, we say that M is lower
than M ′ if in the inheritance graph of M there is a directed path (and hence an edge) from M ′

to M . Since the inheritance graph of M is acyclic, M contains some lowest element. Moreover,
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for any subset of components ofM, there exists a component that is lowest over that subset. For
a component A of A and a component M ofM, we say that M properly intersects A (and that A
is properly intersected by M) if M ∩A 6= ∅ and A \M 6= ∅.

We are now ready to describe the procedure for splitting A. Initially, all components of A andM
are unmarked. We iteratively choose a component M∗ of M that is lowest over all unmarked
components ofM. For each component A of A that is properly intersected by M∗, we split A into
two components A∩M∗ and A\M∗ and we mark A∩M∗. Then we mark M∗ and any unmarked
components A′ of A with A′ ⊆M∗ and proceed to the next iteration. We continue this procedure
until all components of M are marked.

It is clear that, if A∗ is the agreement forest obtained at the end of some iteration, then no marked
component ofM properly intersects any component of A∗. Moreover, no marked component of A∗
is properly intersected by any component of M.

Lemma 3.1. Let A be an agreement forest for T1 and T2, let M∗ be a component ofM that is lowest
over all unmarked components of M and let A be a component of A that is properly intersected
by M∗. Then, Ti(A ∩M∗) and Ti(A \M∗) are edge-disjoint subtrees of Ti, for i ∈ {1, 2}.

Proof. Suppose to the contrary that in at least one tree, say T1, there exists an edge e such that
e ∈ T1(A ∩M∗) and e ∈ T1(A \M∗). Consider the set of leaves S that can be reached from e.
Clearly, some leaf of A \M∗ has to be in S. Let x ∈ S ∩ (A \M∗). Clearly, x must be in some
component of M other than M∗. Call that component M ′. Since components of M are edge
disjoint, r1(M ′) has to be below e. Because e ∈ T1(A∩M∗), it follows that e ∈ T1(M∗) and hence
that M ′ is lower than M∗. Since M∗ is lowest over all unmarked components of M, it follows
that M ′ is marked and hence that M ′ does not properly intersect any component of A. This is a
contradiction because M ′ properly intersects A.

Lemma 3.1 shows that when we split a component, the resulting two subtrees are edge-disjoint.
This property holds for all components properly intersected by M∗. Observe that when we split a
component, the two newly-created subtrees cannot possibly share edges with other components,
because of the assumption that at the start of the iteration all the subtrees were edge-disjoint.
Hence, at the end of the iteration, all of the subtrees are mutually edge-disjoint. To show that we
still have an agreement forest, it is necessary to show that the components still obey the refinement
criterion. This follows from the following (unsurprising) observation.

Observation 2. Let T ∗1 and T ∗2 be two trees on taxon set X∗ such that T ∗1 and T ∗2 have a common
refinement. Then, for any X† ⊆ X∗, T ∗1 |X† and T ∗2 |X† have a common refinement.

We have now shown that the result of each iteration is an agreement forest for T1 and T2 such that
no marked component of M properly intersects any component of this agreement forest. Let A′
be the agreement forest obtained at the end of the last iteration. Since at the end of the procedure
all components of M are marked, no component of M properly intersects any component of A′.
It follows that A′ can be obtained fromM by splitting components. SinceM is acyclic, it follows
by Observation 1 that A′ is acyclic. Hence, A′ is an A-splitting. It remains to bound the size of
this A-splitting. To do so, we will need the following observation and lemma.

Observation 3. Let A1 and A2 be components of some agreement forest for T1 and T2. If A1

and A2 have the same root in both T1 and T2, then the result of merging A1 and A2 into a single
component A1 ∪A2 is still an agreement forest of T1 and T2.

Lemma 3.2. If A is the agreement forest at the beginning of some iteration, then there are no
four unmarked components of A that have a common vertex in both trees.

Proof. First let A be the agreement forest at the beginning of the first iteration. Suppose that
A1, A2, A3, A4 are unmarked components of A and that vi is common to Ti(A1), . . . , Ti(A4) for i ∈
{1, 2}. For each i ∈ {1, 2}, there is at most one j ∈ {1, 2, 3, 4} for which Ti(Aj) contains the edge
entering vi. Hence, there are at least two components, say A1 and A2, that do not use this edge
in either tree. It follows that ri(A1) = ri(A2) = vi for i ∈ {1, 2}. However, then A1 and A2
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can be merged into a single component by Observation 3, which is a contradiction because A is
maximal.

We have shown that the lemma is true at the beginning of the first iteration. Now assume that
it is true at the beginning of some iteration. Each component that is split during the iteration
is split into one marked and one unmarked component. Hence, for each vertex, the number of
unmarked components using that vertex does not increase. It follows that the lemma is still true
at the end of the iteration. This completes the proof.

Lemma 3.3. Let A be the agreement forest at the beginning of some iteration. If M∗ is a
component of M that is lowest over all unmarked components of M, then M∗ properly intersects
at most three components of A.

Proof. Let A be a component of A that is properly intersected by M∗. We claim that there is a
directed path from ri(A) to ri(M

∗) for i ∈ {1, 2} (possibly, ri(A) = ri(M
∗)). To see this, first note

that, since A∩M∗ 6= ∅, there must be either a directed path from ri(A) to ri(M
∗), or from ri(M

∗)
to ri(A), for i ∈ {1, 2}. Suppose that this path goes from ri(M

∗) to ri(A) and contains at least one
edge. Since A ∩M∗ 6= ∅, this path has to contain at least one edge of Ti(M

∗). Now observe that,
since M∗ properly intersects A, there exists some a ∈ A \M∗, which is in some component ofM,
say in M ′. Note that M ′ is unmarked since it properly intersects A. However, then we obtain
a contradiction because M ′ is lower than M∗, while M∗ is lowest over all unmarked components
of M. Hence, there is a directed path from ri(A) to ri(M

∗) for i ∈ {1, 2}. This path is contained
in Ti(A) because A ∩M∗ 6= ∅.

Now assume that the lemma is not true, i.e. that there exist four components A1, A2, A3, A4 of A
that are properly intersected by M∗. We have seen that there is a directed path from ri(Aj)
to ri(M

∗), which is contained in Ti(Aj), for i ∈ {1, 2} and j ∈ {1, 2, 3, 4}. Hence, ri(M
∗) is

common to all four components A1, A2, A3, A4. Moreover, A1, A2, A3, A4 are all unmarked since
they are properly intersected by M∗. This is a contradiction to Lemma 3.2.

Lemma 3.3 shows that each iteration splits at most three components. Each split adds one
component. Thus, for every component M of M, the number of components of the A-splitting is
increased by at most three, which concludes the proof of the following theorem.

Theorem 3.4. Let T1 and T2 be two (nonbinary) trees. If A is a maximal agreement forest
and M a maximum acyclic agreement forest of T1 and T2, then there exists an A-splitting of size
at most |A|+ 3|M|.

Now, suppose we have a c-approximation A for MAF; i.e.,

|A| − 1 ≤ c ·MAF (T1, T2) ≤ c ·MAAF (T1, T2).

Let OptSplit(A) denote the size of an A-splitting with smallest number of components. The last
inequality together with Theorem 3.4 imply that

OptSplit(A)− 1 ≤ |A| − 1 + 3 ·MAAF (T1, T2) ≤ (c+ 3) ·MAAF (T1, T2).

The remaining part of the proof will be accomplished by reducing the problem of finding an
optimal A-splitting to DFVS in such a way that a d-approximation algorithm for DFVS gives a
d-approximation for an optimal A-splitting. Combining this with the above inequality, the proof
of Theorem 2.1 will follow.

From now on, we see an agreement forest as a collection of trees, as specified in the preliminaries
section. We will assume that the components of A are never more refined than necessary (i.e. there
is no agreement forest of T1 and T2 that can be obtained from A by contracting edges).

To prepare for the construction of an input graph to DFVS, we label the vertices and edges of T1
and T2 by the vertices and edges of A that they correspond to. Note that each vertex of A is used
exactly once as a label but, due to refinements, some vertices of the trees can have multiple labels.
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Fig. 3.1. Two trees T1 and T2, an agreement forest A for T1 and T2 and its inheritance graph IG(A). Leaf
labels have been omitted.
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Fig. 3.2. The trees T1 and T2 from Figure 3.1 labelled with the internal vertices and all edges of A.

Moreover, some edges of A can be used as a label multiple times (when the edge corresponds to a
path in a tree) but each edge is used as a label at least once in at least one tree (by the assumption
that A is not more refined than necessary). For example, for the trees and agreement forest in
Figure 3.1, the labelling is illustrated in Figure 3.2.

We construct an input graph D for DFVS as follows. For every internal vertex of A, we create a
vertex for D. Denote the set of these vertices by VV (D). In addition, for every edge of A we create
a vertex for D. This set of vertices is denoted by VE(D). We write V (D) = VV (D) ∪ VE(D). We
create edges of D as follows. For every v ∈ VV (D) and every e ∈ VE(D) create an edge (v, e) if
tail(e) = v in A and we create an edge (e, v) if v̂ can be reached from head(ê) in at least one tree,
for some edge ê labelled by e and the vertex v̂ labelled by v. See Figure 3.3 for an example.

We will show that any feedback vertex set of D corresponds to an A-splitting and vice-versa.
Moreover, after appropriately weighting the vertices of D, the number of “splits” of the A-splitting
(i.e. the size of the A-splitting minus the size of A) will be equal to the weight of the corresponding
weighted feedback vertex set.

Let F ⊂ V (D). In what follows, we use F both for sets of vertices in D and for the set of
vertices and edges they represent in A. Let A \ F be the forest obtained from A by removing the
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u1

a

eh
v1

w1
D

Fig. 3.3. Part of the input graph D for DFVS for the trees T1, T2 and agreement forest A of Figures 3.1
and 3.2. Vertices that do not appear in any directed cycle of D have been omitted. Minimum feedback vertex sets
of D are {u1} and {a}.

vertices and edges of F and repeatedly removing indegree-0 outdegree-1 vertices and suppressing
indegree-1 outdegree-1 vertices.

Lemma 3.5. A subset F of V (D) is a feedback vertex set of D if and only if A \ F is an A-
splitting.

Proof. It is clear that A\F is an agreement forest of T1 and T2. Hence, it is enough to show that
D \ F has a directed cycle if and only if IG(A \ F ) has a directed cycle.

First, let C1, C2, . . . , Ck = C1 be a cycle in IG(A \ F ). We will show that this implies that
there exists a cycle in D \ F . Let u1, u2, . . . , uk be the roots of the components C1, C2, . . . , Ck,
respectively. Notice that u1, u2, . . . , uk are internal vertices of A and hence represented in D.
Moreover, since these vertices are in A \ F , they are also in D \ F .

We prove this side of the lemma by showing that the presence of an edge (Ci, Ci+1) of IG(A\F )
implies the existence of a directed path from ui to ui+1 in D \ F , for i = 1, . . . , k − 1. By the
definition of the inheritance graph, an edge (Ci, Ci+1) of IG(A \ F ) implies that there exists a
directed path from ui to ui+1 that uses an edge of Ci in at least one of the trees. It is easy to
see that this directed path uses an edge, a say, of Ci that has ui as its tail. Moreover, since Ci
and Ci+1 are components of A \ F , u1, a and ui+1 are vertices of D \ F and (ui, a) and (a, ui+1)
are edges of D \ F , forming a directed path from ui to ui+1 in D \ F .

Now, assume that D \ F contains a cycle. Let u1, ..., uk = u1 be a longest cycle. We will show
that this implies the existence of a cycle in IG(A\F ). Clearly, u1, . . . , uk cannot all correspond to
vertices and edges from the same component of A \ F . From the assumption that u1, ..., uk = u1
is a longest cycle, it can be argued that there are at least two vertices among u1, . . . , uk that are
roots of components of A\F . Let r1, . . . , rs = r1 denote those vertices of the cycle that correspond
to roots of components. Let C1, . . . , Cs be the corresponding components of A \ F , respectively.
We will show that C1, . . . , Cs form a cycle in IG(A \ F ).

For i = 1, . . . , s− 1, we show that there exists an edge (Ci, Ci+1) in IG(A\F ). First observe that
there exists a directed path from ri to ri+1 in D \ F and that, since D is bipartite, this path is of
the form

(ri = v0, e1, v1, e2, . . . , et, vt = ri+1)

where e1, . . . , et are edges of A \ F and v1, . . . , vt−1 are internal vertices of Ci.

First assume t = 1. In this case, the path is just (ri, e1, ri+1). By the definition of D, tail(e1) = ri
in Ci and there is a directed path from head(ê1) to ri+1, with ê1 some edge labelled by e1, in at
least one of the two trees (such an edge ê1 definitely exists because of the assumption that A is
not more refined that necessary). This tree then contains a path from ri to ri+1 that contains
edge ê1 of Ci. Hence there is an edge (Ci, Ci+1) in IG(A \ F ).
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Now assume t > 1. For j = 1, . . . , t, by the definition of D, tail(ej) = vj−1 in Ci and there is
a directed path from head(êj) to vj , with êj some edge labelled by ej , in at least one of the two
trees. For j < t, ej and vj are both in the same component Ci, implying that there is a directed
path from head(ej) to vj in Ci. Hence, there is a directed path from ri to vt−1 in both trees.
Thus, the tree that contains a directed path from vt−1 to ri+1 also contains a directed path from ri
to ri+1 containing edge êt of Ci. Hence, (Ci, Ci+1) is an edge of IG(A \ F ).

The above lemma showed that we can turn A into an A-splitting by removing vertices and edges
corresponding to a feedback vertex set of D. We will now add weights to the vertices of D in order
to enforce that an optimal feedback vertex set gives an optimal A-splitting and, moreover, that
an approximate feedback vertex set gives an approximate A-splitting.

We define a weight function w on vertices of D as follows, using δ+A(v) to denote the outdegree of
a vertex v in A.

w(v) =

{
δ+A(v)− 1 if v ∈ VV (D)

1 if v ∈ VE(D).

The weight of a feedback vertex set F is defined as w(F ) =
∑
v∈F w(v).

Intuitively, the weight of each vertex v equals the number of components its removal would add
to the A-splitting.

To make this precise, we need the following definition. We call a feedback vertex set F proper if it
is minimal (i.e. no proper subset of F is a feedback vertex set) and if for every vertex v ∈ VV (D)
at most δ+D(v)− 2 children of v in D are contained in F , with δ+D(v) denoting the outdegree of v
in D. (Recall that the children of v in D are elements of VE(D)). For example, proper feedback
vertex sets of the graph D in Figure 3.3 are {u1} and {v1, w1}. The idea behind this definition is
that when all, or all but one, of the children of v are in F , then we could just as well add v instead,
which does not increase the total weight of the feedback vertex set. Hence, given any feedback
vertex set F , a proper feedback vertex set F ′ with w(F ′) ≤ w(F ) can be found in polynomial
time.

Lemma 3.6. If F is a proper feedback vertex set of D, then A \ F is an A-splitting of size
|A|+ w(F ).

Proof. For an edge e of A, we use tail(e) and head(e) to refer to the tail and head of e in A,
respectively.

Consider a vertex of F corresponding to an edge e of A. Then, every cycle in D that contains e
also contains tail(e). Hence, since F is minimal, tail(e) is not contained in F . Moreover, suppose
that tail(e) is not the root of a component of A and let e′ be the edge with head(e′) = tail(e).
Then, for every cycle in D containing e but not e′ (and hence containing tail(e) but not tail(e′)),
replacing e and tail(e) by e′ and tail(e′) gives again a directed cycle in D. Hence, since F is
minimal, it follows that either e′ or tail(e′) is contained in F , but not both.

Now consider a vertex of F corresponding to a vertex v of a component C of A. Then, by the
previous paragraph, no edge e with tail(e) = v is contained in F . Moreover, if v is not the root
of C and e′ is the edge with head(e′) = v, then, as before, either e′ or tail(e′) is contained in F ,
but not both.

To summarize the previous two paragraphs, if F contains a vertex corresponding to a vertex v
of A that is not the root of its component, then F also contains either the edge entering v or the
parent of v. Similarly, if F contains a vertex corresponding to an edge e of A that is not leaving
the root of its component, then F also contains either the edge entering tail(e) or the parent
of tail(e). Informally speaking, this means that if you remove something from a component, you
also remove everything above it.
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cut
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Fig. 4.1. A tree T and two forests F1 and F2 for T . Forest F2 can be obtained from F1 by refining the parent
of a, b and c and subsequently removing an edge and suppressing an indegree-1 outdegree-1 vertex.

More formally, it follows that A \ F can be obtained from A by, repeatedly, either removing the
root of a component or removing a subset of the edges leaving the root of a component. Moreover,
if we remove a subset of the edges leaving the root of a component, at least two of these edges are
not removed, because F is proper.

Removing edges and vertices from A in this way, it is easy to see that the number of components
is increased by w(F ).

To complete the proof, let A be a c-approximation to MAF, F a minimal feedback vertex set that
is a d-approximation to weighted DFVS on D and F ∗ an optimal solution to weighted DFVS
on D, then we have:

|A \ F | − 1 = |A|+ w(F )− 1

≤ |A|+ d · w(F ∗)− 1

≤ d(|A|+ w(F ∗)− 1)

= d(OptSplit(A)− 1)

≤ d(c+ 3)MAAF (T1, T2).

We have thus shown how to construct an agreement forest that is a d(c + 3)-approximation to
MAAF and with that we conclude the proof of Theorem 2.1.

4. Nonbinary MAF. In the first part of this section we present a 4-approximation algorithm
for MAF, proving Theorem 2.2. The performance analysis leads almost straightforwardly to a
fixed parameter tractability result, which we present in the second part.

4.1. Approximation of nonbinary MAF. Let T1 and T2 be the input trees to MAF.
They do not have to be binary. We will construct a forest by “cutting” T2. A “cut” operation
of T2 consists of removing an edge (and suppressing indegree-1 outdegree-1 vertices) or of first
refining a vertex (with outdegree greater than 2) and then removing an edge (and suppressing
indegree-1 outdegree-1 vertices), see Figure 4.1.

Let F2 be the forest obtained by cutting T2. In each iteration, we further cut F2 until at some
point F2 becomes a forest also of T1. At that point, we have successfully obtained an agreement
forest for T1 and T2 and we terminate the algorithm.

We describe an algorithm to determine which edges to cut by defining an iteration of the algorithm.
Suppose that at the start of the iteration we have an (intermediate) forest F2. There are two main
cases. In each case, the algorithm will make at most 4 cuts, and we will show that at least one of
these cuts is unavoidable, thus showing that in each case a 4-approximation is attained.

Take an arbitrary internal vertex u of T1 with the property that all its children are leaves. Such a
vertex clearly exists in any tree. Let C be the set of children of u in T1 and C̄ the set of all leaves
that are not in C.
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First the algorithm checks the following three simple cases in the given order.

Case 0a. There exist c1, c2 ∈ C that have a common parent in F2.

In this case, we collapse the subtree on c1 and c2 to a single leaf in both T1 and F2. To be precise,
we do the following in both T1 and F2. If c1 and c2 have no siblings, we delete c1 and c2 and label
their former parent by {c1, c2}. If c1 and c2 do have siblings, we delete c1 and replace label c2 by
label {c1, c2}.

Case 0b. Some leaf c ∈ C is an isolated vertex in F2.

In this case, we remove c from both T1 and F2 and suppress any resulting outdegree-1 vertices.
At the end, after recursively having computed an agreement forest, we add an isolated vertex
for c.

Case 0c. The leaves in C are all in different components of F2.

In this case, we remove all c ∈ C from both T1 and F2 and suppress any resulting outdegree-1
vertices. At the end, after recursively having computed an agreement forest, we add isolated
vertices for all c ∈ C.

Correctness of the procedure followed in the first two cases is obvious. To prove correctness in
Case 0c, let F be an agreement forest of T1 and T2 that can be obtained by cutting F2. Since
the leaves in C are all in different components of F2, they are all in different components of F .
Observe that any component of F that contains an element of C and an element of C̄ has to use
the edge entering u in T1. It follows that at most one component of F contains an element of C
and an element of C̄. Since the elements of C are all in different components of F , it follows that
at most one element from C is not a singleton in F . Hence, at most one of the cuts made in this
step is avoidable. At least 2 cuts were made because |C| ≥ 2 and no c ∈ C was already an isolated
vertex in F2 by Case 0b. It follows that at least half of the cuts made were unavoidable.

If none of the above cases applies, the algorithm picks c1, c2 from C in such a way that c1 and c2
are in the same component A2 of F2 and such that their lowest common ancestor in A2 is at
maximum distance from the root of the component. Moreover, if there exists such a pair for which
neither of c1 and c2 is a child of their lowest common ancestor, we pick such a pair first.

Case 1. Neither of c1 and c2 is a child of their lowest common ancestor v in F2.

Let p1 be the parent of c1 and p2 the parent of c2 in F2. (We have p1 6= p2 because we are not
in Case 0a.) Let S1 be the set of all leaves that are descendants of p1 except for c1. Similarly,
let S2 be the set of all leaves that are descendants of p2 except for c2. Finally, let R be the set of
other leaves of component A2, i.e. leaves that are not in S1 ∪S2 ∪{c1, c2}. We cut A2 by creating
separate components for c1, c2, S1, S2 and R, thus making four cuts, see Figure 4.2.

We claim that at least one of these four cuts was unavoidable. Let F be an agreement forest
of T1 and T2 with a minimum number of components. If any of c1, c2 is a singleton in F then
the cut that removed the edge entering that vertex was unavoidable. Hence, we assume that c1
and c2 are both non-singletons in F . Suppose c1 and c2 are in the same component of F . Because
of the choice of c1 and c2 having their lowest common ancestor furthest from the root of the
component, S1, S2 ⊂ C̄; they contain no element of C. Hence cutting off both S1 and S2 is
unavoidable.

Hence, we assume that c1 and c2 are in different, non-singleton components of F . As argued
before, in justifying Case 0c, at most one of c1 and c2 can be in a component with elements
from C̄. Moreover, as also argued before, S1, S2 ⊂ C̄. Therefore, at most one of c1 and c2 can
be in a component with elements from S1 ∪ S2. W.l.o.g. suppose c1 is not in a component with
elements from S1∪S2. Since c1 is not a singleton component, it is contained in a component which
uses the edge of A2 entering p1 and the edge from p1 to c1, but none of the other edges leaving p1.
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Fig. 4.2. Case 1: none of c1 and c2 is a child of their lowest common ancestor. We cut F2 into F ′2 by creating
separate components for c1, c2, S1, S2 and R.

F2

c1

c2

p2
S1

S2

cut

R

F2
0

c1

c2

S1

S2

R

p1

Fig. 4.3. Case 2: c1 is a child of the lowest common ancestor of c1 and c2. We cut F2 into F ′2 by creating
separate components for c1, c2, S1, S2 and R.

Hence, the cut cutting off S1 is unavoidable. Similarly, if c2 is not in a component with elements
from S1∪S2, then the cut cutting off S2 is unavoidable. Thus, always at least one of the four cuts
was unavoidable.

Case 2. Either c1 or c2 is a child of their lowest common ancestor v in F2.

Let c1, c2 be any such pair. Let again p1 be the parent of c1 and p2 the parent of c2 in F2. Assume
without loss of generality that p1 is the lowest common ancestor of c1 and c2. Let S2 contain all
leaves that are descendants of p2 except for c2. Let S1 contain all leaves that are descendants of p1
except for c1, c2 and the leaves in S2. Let R contain all remaining leaves. We cut F2 by creating
separate components for c1, c2, S1, S2 and R, thus making four cuts, see Figure 4.3.

We claim that also in this case at least one of the four cuts was unavoidable. Let F again be an
agreement forest of T1 and T2 with a minimum number of components. We can argue as before
that we can restrict attention to the situation in which c1 and c2 are non-singletons and belong to
different components. It is also again true that S1 and S2 cannot contain elements from C. To see
this, first note that no element c3 of C\{c1} can be a child of p1 because then c1, c3 ∈ C would have
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a common parent in F2, which is a Case 0a situation. Moreover, no c3 ∈ C \{c1, c2} can be reached
from p1 by a directed path with at least one internal vertex that does not belong to the path from
p1 to c2, because then c2, c3 would conform to Case 1. Finally, as before, no c3 ∈ C \ {c1, c2} can
be reached from an internal vertex of the path from p1 to c2 because then c3 and c2 would have a
lowest common ancestor further away from the root than p1. We conclude that S1 and S2 contain
no elements from C.

As in Case 1, it follows that at most one of c1 and c2 is in a component with elements from S1∪S2.
Also, similar to the arguments in Case 1, if c1 is not in a component with elements from S1 ∪ S2

then that component uses the edge of A2 entering p1 and the edge from p1 to c1, but no other
edges leaving p1. Hence, the cutting off S1 ∪ S2 ∪ {c2} is unavoidable. If c2 is not in a component
with elements from S1 ∪ S2, then cutting off S2 is unavoidable.

Hence, we conclude that in each case at least one of the four cuts is unavoidable, and the algorithm
thus yields a 4-approximation.

4.2. An FPT algorithm for nonbinary MAF. In this section, we show that there exists
an O(4kpoly(n)) time algorithm for nonbinary MAF, i.e. we prove Theorem 2.3.

The algorithm follows the same ideas as the approximation algorithm in the proof of Theorem 2.2.
Cases 0a and 0b are executed in exactly the same way. In Case 0c, instead of removing all c ∈ C,
we pick c1, c2 ∈ C arbitrarily and branch into two subproblems. In one subproblem c1 is removed
and in the other subproblem c2 is removed. After recursively computing an agreement forest, the
removed leaf is added as an isolated vertex. This step is correct since, by the proof of Theorem 2.2,
in any maximum agreement forest at least one of c1 and c2 is an isolated vertex. For, Cases 1
and 2, instead of making four cuts, we branch into four subproblems, one for each possible cut.
By the proof of Theorem 2.2, at least one of the four cuts is unavoidable, and hence at least one
subproblem has the same optimum as the original problem.

It remains to analyse the running time. In each step we branch into at most four subproblems.
For each subproblem we make one cut, and hence we reduce the parameter k by one. Therefore,
at most 4k subproblems are created. For each subproblem, we need only time polynomial in n.
This concludes the proof.

5. Conclusions and open problems. We have given improved FPT and polynomial-time
approximation algorithms for nonbinary MAF, and demonstrated that, as in the binary case,
algorithms for MAF and DFVS can be combined to yield nontrivial approximation guarantees
for nonbinary MAAF. A number of interesting open problems remain. Firstly, the best known
polynomial-time approximation algorithms for binary MAF have a factor of 3, and for nonbinary
this is now 4. Might it be that the binary and nonbinary variants are equally approximable, or is
the nonbinary variant in some sense strictly more difficult to approximate? For nonbinary MAAF
we have shown how to achieve an approximation factor of d(c+3), but for binary the corresponding
expression is d(c+ 1), this gap is also something that needs to be explored.

On the software side, we have implemented both our MAF algorithms and made them publicly
available [20]. We can report the following provisional performance results. The FPT algorithm
solves instances with k ≤ 14 within a few minutes. The approximation algorithm solves instances
with n ≤ 500 within seconds (and possibly larger instances too). The highest approximation-factor
encountered on the inputs we tried was 2.5 (which raises the question whether the 4-approximation
analysis given in this article can actually be sharpened). For nonbinary MAAF we have not yet
implemented the d(c+ 3) algorithm but are planning to do so. As in [19], it should be possible to
obtain d = 1 by using Integer Linear Programming (ILP) to solve DFVS exactly.

Acklowledgements. We are grateful to Simone Linz for many useful discussions on the topic
of this paper.
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