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Abstract. We provide a new approach to studying the Dirichlet-Neumann map for

Laplace’s equation on a convex polygon using Fokas’ unified method for boundary value

problems. By exploiting the complex analytic structure inherent in the unified method,

we provide new proofs of classical results using mainly complex analytic techniques.

The analysis takes place in a Banach space of complex valued, analytic functions and

the methodology is based on classical results from complex analysis. Our approach

gives way to new numerical treatments of the underlying boundary value problem and

the associated Dirichlet-Neumann map. Using these new results we provide a family

of well-posed weak problems associated with the Dirichlet-Neumann map, and prove

relevant coercivity estimates so that standard techniques can be applied.
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1. Introduction

In the last twelve years there has been a rapid development of the so-called Fokas

method for boundary value problems [13]. This method was initially developed for the

study of boundary value problems associated with integrable nonlinear PDEs [9, 11, 12].

Remarkably, the method has proved an extremely powerful tool in the study of linear

boundary value problems [8, 10] and has offered new avenues of pursuit in the numerical

study of such problems [14, 15, 25, 26].

The Fokas method can be informally considered as the Fourier analogue of the

classical boundary integral methods [17, 19]. In the latter case, the analysis is done in

the “physical” space – i.e. the space associated with the domain on which the boundary

value problem is posed. In the Fokas approach the analysis is done in “spectral” space

and the classical boundary integral equations are replaced with the global relation. Like

the usual boundary integral equations from potential theory, the global relation gives a

relationship between the known boundary data and the unknown boundary values for

a given PDE. However, the form of the integral equation is very different: the global

relation has meromorphic dependence on a spectral parameter which plays the analogue

of the wave number in Fourier analysis. The Dirichlet and Neumann terms that arise

in boundary integral equations have spectral analogues that arise in the global relation.

The fact that the spectral boundary data has meromorphic dependence on the spectral

parameter allows for use of powerful tools from complex analysis and this salient feature

is one of the core reasons behind the success of the Fokas method.

Another major ingredient in the Fokas approach is the use of novel integral

representations. By formulating and solving Riemann-Hilbert problems related to the

underlying boundary value problem, Fokas has developed a means of representing the

solution to many important problems. These integral representations are intimately

related to the classical fundamental principle of Ehrenpreis and Palamodov [6, 20].

A direct consequence of this highly abstract result is that any solution to a constant

coefficient PDE on a convex domain can be written as a superposition of exponential

solutions. More concretely, if P = P (−i∂/∂x1, . . . ,−i∂/∂xN ) is a constant coefficient

differential operator and Pu = 0 in a convex domain in RN , then the fundamental

principle states that u can be represented in the form

u(x) =

∫

ZP

c(x, λ)eiλ·xdµ(λ)

where ZP =
{

λ ∈ CN : P (λ) = 0
}

and c(x, ·) is a polynomial in x such that c(x, λ)eiλ·x

for λ ∈ ZP solves Pu = 0. This theorem is highly abstract and non-constructive.

The result states that there exists a measure dµ supported on ZP and a collection

of exponential solutions c(λ, x)eiλ·x such that the representation holds. Fokas’ novel

integral representations are realisations of this abstract result – providing an explicit

expression that is precisely a superposition of exponential solutions. These integral

representations must, of course, contain terms relating to the known boundary data.

The novelty lies in the fact that these terms arise in the same form as they do in the
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global relation. This means there should be no need to go back and fourth between

physical space and spectral space – it is sufficient to understand the global relation in

spectral space and give the solution in terms of integrals of spectral functions by means

of the novel integral representation.

The implementation of the Fokas method has been largely formal in nature. One

usually works on the assumption that a solution to the underlying problem exists and

aims to construct it by analysing the global relation. This assumption can then be

checked a posteriori. Recently more rigorous results have been obtained [2, 3, 4]. In

this paper we continue to address rigorous aspects of the Fokas approach.

We concern ourselves with the particular case of Laplace’s equation in a convex

polygon. For Dirichlet data with square integrable tangential derivatives along the

edges of Ω, we prove the following results (more precise versions of which can be found

in Theorems 2, 3 and their corollaries)

(I) The global relation defines a continuous linear map from the spectral Dirichlet

Data to the spectral Neumann data.

(II) The resulting physical Neumann data is square integrable along each edge.

(III) The global relation gives rise to an infinite family of well-posed weak problems

that are easily approximated using standard Galerkin techniques.

As a corollary to statements (I)–(III) we get a new proof of existence for the classical

Dirichlet problem in a convex polygon for boundary data in H1(∂Ω) [27]. The statement

in (II) is in accordance with the well known regularity of the Steklov-Poincare operator

on Lipschitz domains [19]. In proving (III) we provide a basis from which the previous

numerical studies [14, 15, 25, 26] can be made rigorous. The methods presented here

can easily be adapted to deal with the Neumann boundary value problem. In this case

similar statements (I)–(III) hold, but with the Dirichlet data being determined modulo

constants.

The approach we use is far removed from the classical methods boundary integral

and more modern pseudodifferential methods. The analysis takes place Banach space of

complex analytic functions and the main ingredients in our proofs are complex analytic

in nature, utilising the classical theorems of Liouville, Montel, Phragmén and Lindelöf.

2. The Global Relation for Convex Polygons

We work on a polygon Ω ⊂ R2 ≃ C with vertices {zi}ni=1 and sides Γi = (zi, zi+1) with

zn+1 = z1. We write αi = arg(zi+1−zi) for the angle the side Γi makes with the positive

real axis and ∆ij = αi − αj. Also set 2σi = |Γi| for the length of the side Γi.

We are given real valued boundary data fi ∈ H1(Γi) for i = 1, . . . , n, meaning

that fi and its first tangential derivative are square integrable along the edge Γi. We are

interested in the Dirichlet-Neumann map associated with the classical Dirichlet problem

∆q = 0 in Ω, (1a)

q = fi on Γi for i = 1, . . . , n. (1b)
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That is to say, we want to reconstruct the unknown Neumann boundary values from

the known Dirichlet boundary data.

In practical applications the more physically relevant quantity in (1) is the gradient

field, ∇q = (∂q/∂x, ∂q/∂y), or equivalently the complex derivative ∂q/∂z with z = x+iy.

In [8] it was shown that any solution to (1a) has an integral representation

∂q

∂z
=

1

2π

n
∑

i=1

∫

ℓi

eiλzρi(λ) dλ (2)

where the spectral functions {ρi(λ)}ni=1 are defined by

ρi(λ) =

∫

Γi

e−iλz′ ∂q

∂z′
dz′ (3)

and the {ℓi}ni=1 are rays in the complex plane orientated out towards infinity with

arg(λ|ℓi) = −αi. The spectral functions satisfy the global relation
n
∑

i=1

ρi(λ) = 0. (4)

Note that the spectral functions (3) contain information about the known boundary

data {fi}ni=1 and the unknown boundary values since ∂q/∂z′ involves derivatives in the

tangential and normal directions along Γi. We can interpret (2) as a formal solution

to (1) if we assume the spectral functions satisfy the global relation (4). Our aim is

to solve (4) for the unknown parts of the spectral functions which contain information

about the unknown normal derivatives.

It was shown in [15] (c.f. [3, 4]) that on the assumption that the global relation

(4) is satisfied, the integral representation (2) provides a solution to the boundary value

problem (1). This is important from both the theoretical and practical point of view – it

means that solving the global relation for the unknown parts of the spectral functions is

equivalent to solving the boundary value problem (1). By describing the global relation

(4) as a map between function spaces for the spectral functions, we are able to provide

existence, uniqueness and stability results for the solution to the global relation. Perhaps

more importantly, this gives a means for the practical numerical solution to the global

relation for the unknown parts of the spectral functions.

It will be convenient to have a local description of the edges Γi. Let us introduce

the local parametrisations ψi : [−σi, σi] → Γi with

ψi(τ) =
1

2σi

[

(σi + τ)zi+1 + (σi − τ)zi

]

≡ mi + τeiαi

where mi =
1
2
(zi + zi+1) is the mid-point of the side Γi. For a function f : Γi → C

we write its pullback by ψi by ψ∗
i (f)(τ) = f(ψ(τ)). Using this notation the spectral

functions are written

ρi(λ) = e−iλmi

∫ σi

−σi

eiαiψ∗
i

[

∂q

∂z

]

(τ)e−iλeiαiτ dτ.

We note that
∂q

∂z

∣

∣

∣

Γi

=
1

2
e−iαi

(

∂q

∂t
+ i

∂q

∂n

)

∣

∣

∣

Γi
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where ∂/∂t and ∂/∂n denote the tangential and outward normal derivatives along Γi.

Setting ϕt

i = ψ∗
i (∂q/∂t) and ϕ

n

i = ψ∗
i (∂q/∂n) we can write the spectral functions as

ρi(λ) =
e−iλmi

2

[

ϕ̂t

i (e
iαiλ) + iϕ̂n

i (e
iαiλ)

]

where we have defined the Fourier transform

F : ϕi 7→ ϕ̂i(λ) =

∫ σi

−σi

e−iλτϕi(τ) dτ.

The global relation then takes the form
n
∑

i=1

e−iλmi

[

ϕ̂n

i (e
iαiλ)− iϕ̂t

i (e
iαiλ)

]

= 0 (5)

which holds for all λ ∈ C. It will be convenient to have a more symmetric form of the

global relation. To this end, fix some i ∈ {1, . . . , n}. Multiply (5) by eiλmi and replace

λ with λe−iαi. We find
[

ϕ̂n

i (λ)− iϕ̂t

i(λ)
]

+
∑

j 6=i

eie
−iαiλ(mi−mj)

[

ϕn

j (e
−i∆ijλ)− iϕ̂t

j(e
−i∆ijλ)

]

= 0,

for each 1 ≤ i ≤ n. Set Φn = (ϕ̂n

1 , . . . , ϕ̂
n

n)
t, Φt = (ϕ̂t

1, . . . , ϕ̂
t

n)
t and introduce the

operator T = I+ K, where I is the identity and K is the linear operator defined by

Φi(λ) 7→ (KΦ)i(λ) =
∑

j 6=i

eie
−iαi(mi−mj)λΦj(e

−i∆ijλ), 1 ≤ i ≤ n. (6)

Then the global relation can be written succinctly as

T(Φn − iΦt) = 0, λ ∈ C. (7)

Each of these n equations are equivalent to the original global relation (5). The vectors

Φt(λ) and Φn(λ) contain the spectral boundary data, which in this case is just the

Fourier transform of the original functions. In what follows we characterise spectral

Dirichlet-Neumann map Φt 7→ Φn defined by (7).

3. The Real and Complex Paley-Wiener Spaces

Here we discuss the relevant function spaces that will be used in the sequel and cement

some of our notation.

The global relation for Laplace’s equation has been given in (7). The components

{ϕ̂t

i}ni=1 of the known vector Φt are are related to the derivatives of the Dirichlet data

fi ∈ H1(Γi), and we have ϕt

i ∈ L2[−σi, σi] for i = 1, . . . , n. The global relation contains

the Fourier transform of this data. It is natural then to work with the classical Paley-

Wiener spaces

PW σi = FL2[−σi, σi],
which contain the Fourier transforms of square integrable functions whose support is

contained in the interval [−σi, σi]. The classical Paley-Wiener theorem states

PW σi =
{

f : C → C entire,

∫ ∞

−∞

|f(x)|2 dx <∞, |f(λ)| .ǫ e
σi(|λ|+ǫ) ∀ǫ > 0

}

,
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i.e. the space PW σi consists of entire functions of exponential type σi whose restrictions

to the real axis are square integrable. Paley-Wiener functions satisfy the important

pointwise inequality

|f(z0)| . ‖f‖2eσ|z0|, f ∈ PW σ.

We will refer to this as the Paley-Wiener inequality. For a standard treatment of the

Paley-Wiener spaces we refer the reader to [5, 18, 21, 24].

It will be convenient to work with slightly modified versions of the Paley-Wiener

space. In the general setting of the Paley-Wiener theorem the space L2[−σi, σi] refers
to complex valued, square integrable functions. However, our data will be manifestly

real. Hence forth we shall use L2
R
[−σi, σi] to denote the space of real valued, square

integrable functions. We will then work on

PW σi

sym = FL2
R
[−σi, σi],

where the subscript “sym” refers to symmetric. The reason for this is highlighted in the

following simple lemma.

Lemma 1. The space PW σi
sym is a closed subspace of PW σi whose members obey the

symmetry condition

f(λ) = f ⋆(λ) ≡ f(−λ)
for all λ ∈ C.

Proof. That PW σi
sym is closed in PW σi is clear. In addition, if f ∈ FL2

R
[−σi, σi] then

the symmetry condition is satisfied. Conversely, if f ∈ PW σi and obeys the symmetry

condition then

0 = f(λ)− f(−λ) =
∫ σi

−σi

e−iλτ
(

g(τ)− g(τ)
)

dτ

for some g ∈ L2[−σi, σi]. But then the Fourier inversion theorem implies that

g ∈ L2
R
[−σi, σi], so f ∈ FL2

R
[−σi, σi].

Remark 1. It is clear that the classical Paley-Wiener space can be decomposed as

PW σi = PW σi
sym ⊕ PW σi

asym

where the latter space consists of Fourier transforms of imaginary valued, square

integrable functions. The characterisation of this space is given by an anti -symmetry

condition, where an extra minus sign appears.

It is well-known [24, Ch. 6] that PW σi is a closed subspace of L2(R). It follows

that PW σi is a Hilbert space when equipped with inner product

(f1, f2) =

∫ ∞

−∞

f1(x)f2(x) dx.

The same is true of PW σi
sym with this inner-product. This means that one can treat

PW σi
sym as a closed subspace of L2(R) whose elements have an analytic extension to the
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entire complex plane which is of exponential type σi and obeys the necessary symmetry

condition.

We introduce the function space X = PW σ1 × · · · × PW σn with norm

‖Φ‖X =

(

n
∑

i=1

∫ ∞

−∞

|Φi(λ)|2 dλ
)1/2

≡
(

n
∑

i=1

‖Φi‖22

)1/2

.

where here and throughout ‖ · ‖2 denotes the usual L2 norm on the real line. Using the

decomposition PW σi = PW σi
sym ⊕ PW σi

asym we may write X as

X = Xsym ⊕Xasym.

It will be convenient to regardXsym as the “real part” ofX , whileXasym is the “imaginary

part”. Both are Banach spaces in their own right when equipped with the norm ‖ · ‖X .
Also set Y = L2(R−)×n with norm

‖Φ‖Y =

(

n
∑

i=1

∫ 0

−∞

|Φi(λ)|2 dλ
)1/2

≡
(

n
∑

i=1

‖Φi‖22,−

)1/2

,

where here and throughout ‖ · ‖2,− denotes the usual L2 norm on the negative real axis.

It is straightforward to show that ‖ · ‖X and ‖ · ‖Y are equivalent norms on Xsym and

Xasym owning to the symmetry and anti-symmetry properties of the elements of the

respective spaces. We note the isomorphism X ≃ L2(∂Ω). Each of Xsym, Xasym and Y

are Hilbert spaces when equipped with the appropriate inner product, but we shall only

need their Banach space structure.

We will often refer to the Fourier transform of an L2(R) function, and this is to

be understood in the limit-in-the-mean sense [22]. If T : U → V is a continuous linear

map between normed spaces we write T ∈ L(U, V ). A norm-bounded subset S of a

normed space U is one in which there is some constant C such that ‖u‖ ≤ C for each

u ∈ S ⊂ U .

4. Some Functional-Analytic Results

Here we prove some functional-analytic results for the Paley-Wiener spaces which will

prove useful for the purposes of studying the spectral Dirichlet-Neumann map.

Throughout this section X will denote an arbitrary measure space with positive

measure µ. We use Lp(X , µ) with p ∈ [1,∞) to denote the Banach space of (equivalence

classes of) complex valued measurable functions on X with norm

f 7→
(
∫

X

|f |p dµ
)1/p

.

The following theorem will be of particular importance when studying the continuity of

the Dirichlet-Neumann map, but seems of interest in its own right.

Theorem 1. Let T : PW σ → Lp(X , µ) be a continuous linear operator. Suppose also

that T is also continuous with respect to the topology of point-wise convergence, i.e. if
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{fn}n≥1 is a sequence in PW σ and fn → f pointwise, then Tfn → Tf pointwise in

Lp(X , µ). Then T has closed range.

The proof of requires the following “pseudo-compactness” lemma which which will

be of use throughout the paper.

Lemma 2. Any norm-bounded sequence in PW σ contains a subsequence that converges

pointwise and locally uniformly to an element of PW σ that obeys the same norm bound.

Proof. Let {fn}n≥1 be norm bounded in PW σ. Then using the inequality Paley-Wiener

inequality |f(z0)| ≤ eσ|z0|‖f‖2 we deduce that the sequence {fn}n≥1 is locally uniformly

bounded, i.e. for each compact K ⊂ C we have supK |fn(z)| ≤ CK for some constant

CK . By Montel’s theorem, we can extract a convergent subsequence that converges

pointwise, locally uniformly to some analytic function. Let {fnk
}k≥1 be this subsequence

so that for each compact K

lim
k→∞

sup
K

|fnk
(z)− f(z)| = 0

for some analytic function f . We claim that f ∈ X with the same norm bound. First,

note that f is certainly of exponential type σ. Indeed, if we fix R > 0 and choose k

sufficiently large so that |f(z)− fnk
(z)| ≤ 1/R for |z| ≤ R we have

sup
|z|≤R

|f(z)| ≤ sup
|z|≤R

|f(z)− fnk
(z)|+ sup

|z|≤R

|fnk
(z)|

≤ 1

R
+ ‖fnk

‖2eσ|z|

. eσ|z|

where the final constant is independent of R. The norm bound is an immediate

consequence of Fatou’s lemma.

Remark 2. One might examine the statement of this lemma and speciously reason that

the Paley-Wiener spaces are Montel spaces, i.e a uniformly bounded subset of PW σ

contains a convergent subsequence. This would be false because PW σ is a Banach

space, and since the unit ball is not compact in an infinite dimensional Banach space

it cannot possibly be a Montel space. What we have shown is the following: given

a bounded sequence {fm}m≥1 in PW σ, one can extract a subsequence {fmk
}k≥1 that

converges pointwise, locally uniformly to some f ∈ PW σ. However, we have not shown

that fmk
→ f in PW σ, i.e. ‖f − fmk

‖2 → 0, and in general this will not be the case.

Indeed, if we consider the standard basis functions for PW σ

fm(λ) =

√

σ

π

sin(σλ− πm)

(σλ− πm)
≡
√

σ

π

(−1)m sin(σλ)

(σλ− πm)

then it is clear that ‖fm‖2 = 1 but fm → 0 pointwise and locally uniformly.

Proof of Theorem 1. It is enough to prove that T maps norm-bounded, closed sets in

PW σ to closed sets in Lp(X , µ) [1, p. 79]. Let Xδ be a closed, norm-bounded subset

of PW σ with ‖f‖2 ≤ δ for each f ∈ Xδ. Set gn = Tfn for some sequence {fn}n≥1
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in Xδ and suppose gn → g in Lp(X , µ). Then it is well-known that one can extract a

subsequence {gnk
}k≥1 that converges pointwise almost µ-everywhere to g [23, Th. 3.12].

Hence

g(x) = lim
k→∞

(Tfnk
) (x) almost µ-everywhere in X .

The sequence {fnk
}k≥1 is a norm-bounded sequence with each ‖fnk

‖2 ≤ δ. By Lemma 1,

we can extract a subsequence {fnkl
}l≥1 that converges pointwise (and locally uniformly)

to some f ∈ Xδ. Using the pointwise continuity of T we deduce

g(x) = lim
l→∞

(

Tfnkl

)

(x)

= T
(

lim
l→∞

fnkl

)

(x) = (Tf)(x) almost µ-everywhere in X .

So g = Tf in Lp(X , µ) for some f ∈ Xδ. Hence the image each norm bounded closed

set in PW σ is closed in Lp(X , µ), and we deduce that T must have closed range.

5. The Spectral Dirichlet-Neumann Map

Recall the global relation (7) is

T(Φn − iΦt) = 0, λ ∈ C

where T = I+ K, with K defined in (6). We will need some properties of this operator.

Lemma 3. We have T ∈ L(X, Y ) and T is also continuous with respect to the topology

of pointwise convergence.

Proof. That T respects pointwise convergence is obvious. To prove the relevant estimate

for the first claim we use F−1F = I on L2(R) to write

eie
−iαi(mi−mj)λΦj(e

−i∆ijλ) =
1

2π

∫ σj

−σj

eie
−iαi(mi−mj−τeiαj )λΦ̂j(−τ) dτ. (8)

Using the convexity of the domain Ω one sees that for j 6= i, i± 1

ǫ < arg
(

e−iαi(τeiαj +mj −mi)
)

≤ π − ǫ

for some ǫ > 0. After an application of Cauchy-Schwarz and Parseval’s theorem we get

estimates of the form
∣

∣

∣
eie

−iαi(mi−mj)λΦj(e
−i∆ijλ)

∣

∣

∣
. eλ sin ǫ‖Φj‖2.

So for λ ≤ 0 we have

|(TΦ)i(λ)| . |Φi(λ)|+
∣

∣

∣

∣

∣

∑

j=i±1

eie
−iαi(mi−mj)λΦj(e

−i∆ijλ)

∣

∣

∣

∣

∣

+ e−|λ| sin ǫ‖Φ‖X .

The ‖ · ‖2,− norm of the first and last terms are clearly dominated by ‖Φ‖X , so we need

only look at the remaining terms. Using the representation (8), these terms are, after an
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appropriate change of variables, the Laplace transform (along a ray) of an L2 function

supported on [0, 2σj] for j = i± 1. They have the generic form

eiσjλ

∫ 2σj

0

e−|λ|wjτhj(τ) dτ, (λ ≤ 0)

for appropriate hj and wj with Rewj > 0. It is well-known [16] that the Laplace

transform defines a bounded linear map from L2(R+) to L2(R+). We deduce that the

‖ · ‖2,− norm of these terms are bounded by constant multiples of ‖Φj‖2 for j = i ± 1.

Using Minkowski’s inequality we find ‖(TΦ)i‖2,− .i ‖Φ‖X . By applying these estimates

to each of the n components of TΦ, we deduce that T ∈ L(X, Y ).

Remark 3. Obviously T ∈ L(Xsym, Y ) and L(Xasym, Y ) also.

Remark 4. In the context of the previous lemma, we should interpret the global relation

(7) as describing a map fromX to Y . In this case we should only really consider λ ∈ R−.

However, all the terms appearing in (7) are entire functions so we can make a unique

analytic extension to the entire complex plane. We play fast and loose in this regard,

making no distinction between TΦ defined onR− and its analytic extension, say (TΦ)ext,

defined on the the entire complex plane with (TΦ)ext = TΦ on R−.

In this current setting it is clear that the spectral Dirichlet-Neumann map Φt 7→ Φn

is determined by the null space of the operator T ∈ L(X, Y ). We write N(T) for the

null space. We arrive at the following problem:

Given Φt ∈ Xsym find Φ ∈ N(T) with ReΦ = Φt.

The Neumann data is then Φn = ImΦ. We note the analogy between the operators

T ↔ ∂̄, the latter being the ∂̄-derivative which annihilates complex analytic functions.

The functions Φt and Φn playing the rôles of the real and imaginary parts of the analytic

function. For each Φ ∈ Xsym we set

DN(Φ) = {Φ′ ∈ Xsym : Φ + iΦ′ ∈ N(T)}.
This set will prove useful.

Lemma 4. For each Φ ∈ Xsym the set DN(Φ) is a singleton.

Proof. First we prove that DN(Φ) contains no more than one element, and this is

equivalent to showing that T is injective on Xsym. Let us assume TΦ = 0 for some

Φ ∈ Xsym. Since Φi ∈ PW σi
sym we know that e−iσiλΦi(λ) is bounded and analytic in the

lower half plane, including along the rays arg λ = 0 and arg λ = π. Indeed, this follows

from the the basic estimate

|e−iσiλΦi(λ)| =
∣

∣

∣

∣

∫ σi

−σi

e−i(σi+τ)λΦ̂i(−τ) dτ
∣

∣

∣

∣

. ‖Φi‖2

for λ in the lower half plane. Using the definition of T, we must have Φ = −KΦ. The

ith component of this equation reads

Φi(λ) = − 1

2π

∑

j 6=i

∫ σj

−σj

eie
−iαi(mi−mj−τeiαj )λΦ̂j(−τ) dτ.
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Using the symmetry relation Φ(λ) = Φ⋆(λ) we deduce

Φi(λ) = − 1

2π

∑

j 6=i

∫ σj

−σj

eie
iαi(m̄i−m̄j−τe−iαj )λΦ̂j(−τ) dτ.

Multiplying this by e−iσiλ and using that zi = mi − σie
iαi we find

∣

∣e−iσiλΦi(λ)
∣

∣ =

∣

∣

∣

∣

∣

1

2π

∑

j 6=i

∫ σj

−σj

eie
iαi(z̄i−m̄j−τe−iαj )λΦ̂j(τ) dτ

∣

∣

∣

∣

∣

(9)

=

∣

∣

∣

∣

∣

1

2π

∑

j 6=i

∫ σj

−σj

e−ie−iαi(zi−mj−τeiαj )λ̄Φ̂j(τ) dτ

∣

∣

∣

∣

∣

.

By convexity we have

0 ≤ arg (e−iαi(mj + τeiαj − zi)) ≤ π − |αi − αi−1|, (10)

so the right hand side (9) is bounded for −π ≤ arg λ̄ ≤ |αi − αi−1| − π, or equivalently

π − |αi − αi−1| ≤ arg λ ≤ π.

But since the left hand side of (9) is also bounded along the ray arg λ = 0, we can

use Phragmén-Lindelöf to deduce that e−iσiλΦi(λ) is bounded in the upper half plane.

Since we have already concluded that e−iσiλΦi(λ) is bounded in the lower half plane, it

must be equal to a constant. This constant must be zero, however, since eiσiλ is not

in PW σi
sym. So there can be at most one element in DN(Φ). The fact that DN(Φ) is

non-empty follows from Theorem 1 in [3] and its extensions.

It is possible to prove that DN(Φ) is non-empty through a direct argument by

considering the equation TΦ = Λ for Λ ∈ Y and Φ ∈ Xsym. In Lemma 6 below we

show that T ∈ L(Xsym, Y ) has closed range, so by Banach’s closed range theorem it is

sufficient to prove that Λ = iTΨ ∈ N(T∗)⊥ for Ψ ∈ Xsym, where T
∗ ∈ L(Y,Xsym) is the

adjoint of T. For economy of presentation we leave out the straightforward argument.

In light of the result in Lemma 4, we have a well-defined map

DN : Xsym → Xsym : Φ 7→ DN(Φ).

This is the spectral Dirichlet-Neumann map. We have the following important theorem.

Theorem 2. The spectral Dirichlet-Neumann map DN defines a continuous linear map

from Xsym to itself.

We will need the following simple generalisation of Lemma 2.

Lemma 5. Any norm-bounded sequence in Xsym contains a subsequence that converges

pointwise and locally uniformly to an element of Xsym which obeys the same norm bound.

Proof. Given a norm bounded sequence {Φm}m≥1 inXsym, one first applies the the result

of Lemma 2 to the first component of the sequence to get a subsequence {Φmk
}k≥1 whose

first component has the desired property. With this subsequence, one then chooses a

sub-subsequence for which the second component has the desired properties. Continuing

inductively gives the required result.
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Lemma 6. The map T ∈ L(Xsym, Y ) is bounded below, i.e. ‖TΦ‖Y & ‖Φ‖X .

Proof. We know that T ∈ L(Xsym, Y ) and that T is continuous with respect to the

topology of pointwise convergence. By a simple generalisation of Theorem 1 we find

that T has closed range. Paired with the fact that T is injective on Xsym, it follows‡
that ‖TΦ‖Y & ‖Φ‖X for Φ ∈ Xsym.

Proof of Theorem 2. Linearity is straightforward so we focus on continuity. Let us

proceed by contradiction. Suppose that the map is not continuous, i.e. it is unbounded.

Then there exists a sequence {Φm}m≥1 in Xsym such that ‖Φm‖X = 1 for each m but

‖DN(Φm)‖X → ∞. By definition we have

T[DN(Φm)] = iT[Φm]

for each m ≥ 1. Introduce the new sequences

Ψm =
DN(Φm)

‖DN(Φm)‖X
, Λm =

Φm

‖DN(Φm)‖X
so ‖Ψm‖X = 1 for each m and ‖Λm‖X → 0. By Lemma 3 we know that T : Xsym → Y

is continuous so we deduce ‖TΨm‖Y → 0. Lemma 6 gives

1 = ‖Ψm‖X . ‖TΨm‖Y → 0

which provides us with our contradiction. So there is some constant such that

‖DN(Φ)‖X . ‖Φ‖X for all Φ ∈ Xsym.

By multiplying the global relation by the imaginary unit i, essentially reversing the

rôles of the real and imaginary parts of X , we obtain the following.

Corollary 1. The map DN : Xsym → Xsym is a homeomorphism.

6. Towards a New Numerical Approach

Here we give a brief outline of how the previous theoretical results can be used to

produce a new approach to the numerical study of the solutions to boundary value

problems associated with Laplace’s equation on the interior of a convex polygon. In

particular, we demonstrate that this approach provides a whole family of potential

numerical schemes that can be used to solved the global relation to any required degree

of accuracy. A more detailed numerical study will be pursued elsewhere.

The natural starting point is to rephrase the global relation in terms of a weak

variational problem. Given Φt ∈ Xsym, is it enough to find some Φ ∈ Xsym such that

T(Φ− iΦt)(λ) = 0, λ ∈ D

‡ Since R(T) ⊂ Y is closed it is also a Banach space, so T : Xsym → R(T) is a bijection between

Banach spaces. The relevant estimate now follows from Banach’s bounded inverse theorem.
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where D is a subset of C which contains an accumulation point. This follows from a

simple analytic continuation argument. More generally, we could study the equations

T(Φ− iΦt)i(λ) = 0, λ ∈ Di, i = 1, . . . , n (11)

where each Di ⊂ C, 1 ≤ i ≤ n, contains an accumulation point. Motivated by these

observations we seek to minimize the functional

I[Φ] =

n
∑

i=1

∫

γi

|T(Φ− iΦt)i(λ)|2 ds(λ)

where γi, 1 ≤ i ≤ n, are curves in C and ds(λ) is the natural Lebesgue measure of arc-

length on these curves. We impose that the curves γi are locally finite and semi-infinite,

and each eventually coincides with the negative real axis. If we define the bilinear and

linear forms on Xsym by

a(Φ,Ψ) = Re

n
∑

i=1

∫

γi

(TΦ)i(λ)(TΨ)i(λ) ds(λ),

ℓ(Ψ) = −Im

n
∑

i=1

∫

γi

(TΦt)i(λ)(TΨ)i(λ) ds(λ),

a standard calculus of variations argument leads us to the following weak form of (11).

Lemma 7. Φ ∈ Xsym is a minimizer for I[Φ] if and only if

a(Φ,Ψ) = ℓ(Ψ) ∀Ψ ∈ Xsym. (12)

Note that the linearity of ℓ and bilinearity of a follow from the fact that Xsym is a real

vector space. We need the following results to apply the standard machinery.

Lemma 8. The bilinear form a : Xsym ×Xsym is bounded and coercive

(i) |a(Φ,Ψ)| . ‖Φ‖X‖Ψ‖X , (ii) a(Φ,Φ) & ‖Φ‖2X
and ℓ ∈ X∗

sym, i.e. |ℓ(Ψ)| . ‖Ψ‖X .

Proof. To show that a is bounded we first apply Cauchy-Schwarz

|a(Φ,Ψ)| ≤
n
∑

i=1

∫

γi

|(TΦ)i(λ)||(TΨ)i(λ)| ds(λ)

≤
n
∑

i=1

(
∫

γi

|(TΦ)i(λ)|2 ds(λ)
)1/2(∫

γi

|(TΨ)i(λ)|2 ds(λ)
)1/2

.

It is now enough to show that for Φ ∈ Xsym
∫

γi

|(TΦ)i(λ)|2 ds(λ) . ‖Φ‖2X , 1 ≤ i ≤ n.
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Choose some R > 0 sufficiently large so that outside the ball BR = {λ ∈ C : |λ| < R}
all of the contours {γi}ni=1 coincide with the negative real axis. We deal with the

contributions from λ ∈ γi ∩BR and λ ∈ (−∞,−R) separately. We have

|(TΦ)i(λ)|2 =

∣

∣

∣

∣

∣

Φi(λ) +
∑

j 6=i

eie
−iαi(mi−mj)λΦj(e

−i∆ijλ)

∣

∣

∣

∣

∣

2

. |Φi(λ)|2 +
∑

j 6=i

∣

∣

∣
eie

−iαi(mi−mj)λΦj(e
−i∆ijλ)

∣

∣

∣

2

.

The supremum of these terms on γi ∩ BR can be estimated using the standard Paley-

Wiener inequality. Using the fact that the length of each γi contained in this region is

finite, we arrive at
∫

γi∩BR

|(TΦ)i(λ)|2ds(λ) .γ ‖Φ‖2X .

The contribution from (−∞,−R) is easily estimated in terms of ‖Φ‖X by using the fact

T ∈ L(Xsym, Y ), so the claim in (i) is proven. For coercivity we note that if ‖Φ‖X = 1

then it must be the case that
n
∑

i=1

∫

γi

|(TΦ)i(λ)|2 ds(λ) &γ 1. (13)

Indeed, if this were not true then there would one could construct a sequence {Φm}m≥1

with ‖Φm‖X = 1 such that
n
∑

i=1

∫

γi

|(TΦm)i(λ)|2 ds(λ) ≤
1

m
.

Passing to a subsequence if necessary, we have Φm → Φ′ locally uniformly for some

Φ′ ∈ Xsym for which a(Φ′,Φ′) = 0, i.e. (TΦ′)i(λ) = 0 for λ ∈ γi. By analytic continuation

it follows that (TΦ′)(λ) = 0 for λ ∈ C, hence Φ′ = 0 by the injectivity of T on Xsym. We

deduce that the sequence {Φm}m≥1 converges to zero locally uniformly. In particular,

for the fixed R > 0 used earlier and for any given ǫ > 0 we can take m sufficiently large

so that
∣

∣

∣

∣

∣

n
∑

i=1

(
∫

γi∩BR

−
∫ 0

−R

)

|(TΦm)i(λ)|2ds(λ)
∣

∣

∣

∣

∣

< ǫ.

So for m sufficiently large we have the estimate

a(Φm,Φm) ≥ ‖TΦm‖2Y − ǫ.

By Lemma 6, there is some c > 0 such that ‖TΦ‖Y ≥
√
2c‖Φ‖X for all Φ ∈ Xsym.

Setting ǫ = c and choosing m sufficiently large we find

a(Φm,Φm) ≥ c.
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This contradicts our assumption that a(Φm,Φm) → 0, so the estimate in (13) must hold.

Coercivity (ii) follows directly from (13)

a(Φ,Φ) = ‖Φ‖2X
n
∑

i=1

∫

γi

|(T(Φ/‖Φ‖X))i(λ)|2 ds(λ) &γ ‖Φ‖2X .

That ℓ defines a bounded linear map on Xsym follows from arguments similar to those

used to prove estimate (i).

An application of the Lax-Milgram lemma gives.

Theorem 3. There is a unique solution in Xsym to the weak problem (12).

Remark 5. The numerical implementation of the Fokas method has not, to date, used

a weak approach. The standard approaches, e.g. [14, 15, 25, 26], have approximated

the unknown boundary boundary data {ϕn}ni=1 using suitable basis functions {ϑm}∞m=1

so that

ϕn

i (τ) ≈
N
∑

m=1

cimϑm(τ) 1 ≤ i ≤ n

for some N ≫ 1. This is used to approximate the unknown spectral function Φn(λ).

Using this approximation one evaluates the global relation (5) at a sequence of points in

the complex plane to get linear problem for the unknown coefficients {cim}. However,

these results have been formal in nature – to this authors knowledge no proofs of

convergence or stability have been given.

To make rigorous these pointwise approaches it seems the semi-norm estimate

‖TΦ‖D,∞ &D ‖Φ‖D,∞, Φ ∈ Xsym, (14)

for each open D ⊂ C is most relevant, where ‖Φ‖D,∞ = maxi supD |Φi(λ)|. To see this

estimate first note the following

‖TΦ‖D,∞ &D ‖Φ‖D,∞, Φ ∈ Xsym and ‖Φ‖X = 1.

Indeed, if it were not true then one could take a sequence {Φm}m≥1 with ‖Φm‖D,∞ =

‖Φm‖X = 1 and ‖TΦm‖D,∞ → 0. Passing to a subsequence if necessary, we find

Φm → Φ locally uniformly with TΦ = 0 on D and on all of C by analytic continuation.

Again using the injectivity of T on Xsym we deduce that Φm → 0 locally uniformly,

contradicting our assumption that ‖Φm‖D,∞ = 1. So for any Φ ∈ Xsym we have

‖TΦ‖D,∞ = ‖Φ‖X‖T(Φ/‖Φ‖X)‖D,∞ &D ‖Φ‖X‖(Φ/‖Φ‖X)‖D,∞ = ‖Φ‖D,∞,

which is the estimate in (14). We note that the open set D could be replaced with any

set containing an accumulation point.

Using the result of Theorem 3 we can now apply standard Galerkin techniques

to solve a sequence of finite dimensional problems whose solution approximates the
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true solution to (12), the error in which is controlled by Céa’s lemma [7]. A practical

implementation of this can be achieved as follows. We write

Φ(λ) =
n
∑

j=1

ejΦj(λ),

where {ej}nj=1 are the usual basis vectors on Rn. Since Φj ∈ PW σj for 1 ≤ j ≤ n, we

may approximate each by projecting onto the finite dimensional subspace consisting of

the sample frequencies ≤ N . So we write

Φj(λ) ≈
∑

|J |≤N

ΦJ
j e

j
J(λ),

where ejJ(λ) is the Jth basis function for PW σj , given explicitly by

ejJ(λ) =
sin(σjλ− πJ)

σjλ− πJ
.

The finite dimensional problems that approximate (12) are then
n
∑

j=1

∑

|J |≤N

ΦJ
j a(ej ⊗ ejJ , ei ⊗ eiI) = ℓ(ei ⊗ eiI), 1 ≤ i ≤ n, |I| ≤ N.

This constitutes a (2N + 1)n by (2N + 1)n linear system for the (2N + 1)n complex

unknowns ΦJ
j , however we are yet to take into account that Φj ∈ PW

σj
sym. We must

enforce that Φj(λ) = Φ⋆
j(λ), so that Φj is restricted to the real part of PW σj . A

straightforward computation reveals that this is equivalent to

Φ−J
j = ΦJ

j .

By writing ΦJ
j = XJ

j + iY J
j for real numbers XJ

j and Y J
j and noting that the previous

symmetry condition implies Y 0
j = 0, we are left with a (2N + 1)n by (2N + 1)n linear

system for the (2N + 1)n real unknowns

X0
j , XJ

j , Y J
j , 1 ≤ j ≤ n, 1 ≤ J ≤ N.

The coefficients ΦJ
j are then built up from the facts

Y −J
j = −Y J

j and X−J
j = XJ

j .

7. Conclusion

We have shown that the global relation for Laplace’s equation in a convex polygon gives

rise to a well-defined spectral Dirichlet-Neumann map. This map is democratic, in the

sense that the spectral boundary data Φt and Φn are treated at the same level (upto

multiplication by i). The spectral Dirichlet-Neumann map describes a homeomorphism

on Xsym.

We treated the case in which the Dirichlet boundary data belonged to H1(∂Ω),

but lower regularity can be assumed. If one deals with the more general Paley-Wiener

spaces, consisting of entire functions of exponential type whose restriction to the real

axis belongs to Lp(R) for some p ≥ 1, then more general results can be obtained. The
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relevant Paley-Wiener inequality in this case becomes |f(z0)| . eσ|z0|‖f‖p. It is most

likely that these results will carry through into the limiting case where the Dirichlet

boundary data belongs to L2(∂Ω). One would expect that the spectral Dirichlet-

Neumann map can be extended to

DN : FHs+1/2[−σ1, σ1]× · · · × FHs+1/2[−σn, σn]
→ FHs−1/2[−σ1, σ1]× · · · × FHs−1/2[−σn, σn], s ∈

[

−1
2
, 1
2

]

so as to match the classical results for the Steklov-Poincare operator on Lipschitz

domains [19]. Indeed, this is hinted at in the proof to Lemma 4 – uniqueness followed

from the fact that eiλσi = F [δ−σi
](λ) does not belong to PW σi = FL2[−σi, σi], i.e.

δ−σi
/∈ L2 = H0. However, δ−σi

∈ H−s for s > 1/2. These issues are discussed in [4].

The weak formulations given in §6 give an infinite family of problems that can be

attacked with standard numerical procedures. Each of these problems depends on a

choice of contours {γi}ni=1. The constants involved in the boundedness and coercivity of

the relevant bilinear form will depend on this choice of contours, so it is natural to ask

which choice of contours is best. This and other aspects of the numerical implementation

of our results are a work in progress.

We also provided a means, via (14), to make the existing numerical implementations

of the Fokas method mathematically rigorous.

The extension of these results to other constant coefficient elliptic boundary value

problems is possible with suitable adjustments, but this will be pursued elsewhere. We

expect that similar results will hold for the Helmholtz and modified Helmholtz equations,

with the proofs following in a similar fashion. We also expect similar results to hold for

the more important exterior problems. For an indication of the necessary modifications,

we refer the reader to [4] where some of these modifications are presented.

Perhaps the most important thing to note is the possible extension of the methods

produced here to higher dimensions. It was shown in [3] that the global relation

characterises the generalised Dirichlet-Neumann map for linear elliptic PDEs in convex

domains in any number of dimensions. However, doing meaningful analysis with the

global relation in higher dimensions has proved difficult, with little progress made

over the last fifteen years. The main arguments presented here can be carried over

to the higher dimensional problems. In particular, they can be used for boundary value

problems in three dimensions. That this is possible is closely related to the fact that

the theorems of Montel, Paley and Wiener (-Schwartz) extend to the complex analysis

of several variables.
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