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Abstract. We study spatially partitioned embedded Runge–Kutta (SPERK) schemes for partial
differential equations (PDEs), in which each of the component schemes is applied over a different part
of the spatial domain. Such methods may be convenient for problems in which the smoothness of the
solution or the magnitudes of the PDE coefficients vary strongly in space. We focus on embedded
partitioned methods as they offer greater efficiency and avoid the order reduction that may occur
in non-embedded schemes. We demonstrate that the lack of conservation in partitioned schemes
can lead to non-physical effects and propose conservative additive schemes based on partitioning the
fluxes rather than the ordinary differential equations. A variety of SPERK schemes are presented,
including an embedded pair suitable for the time evolution of fifth-order weighted non-oscillatory
(WENO) spatial discretizations. Numerical experiments are provided to support the theory.
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1. Introduction. The method-of-lines is a popular discretization technique for
the numerical solution of time-dependent partial differential equations. In it, a spatial
discretization is applied to the PDE, yielding an initial value problem consisting of
a large system of ordinary differential equations (ODEs). These are evolved by some
time-stepping method, for example, a Runge–Kutta method.

The choice of a suitable time-stepping scheme may depend on a variety of con-
siderations. Typically, schemes are chosen to give good linear stability and accuracy,
although in some applications it is also useful or necessary to preserve the mono-
tonicity or other properties of the true PDE solution. Often, the key properties for
determining a suitable time-stepping scheme vary locally in space. Examples of such
properties include the grid spacing, the coefficients of the PDE, the smoothness of
the solution and the geometry of the domain. As a consequence, it is possible that
a scheme that is effective in one portion of the domain is unsuitable or inefficient in
another. It is therefore natural to consider the development and analysis of spatially
partitioned time-stepping methods, in which different step sizes or different methods
are used over subdomains.

A class of methods that often benefit from spatially partitioned time-stepping
are PDE discretizations with grid adaptivity. In regions where the solution is nons-
mooth or exhibits rapid variation, fine grids are needed; other regions may be more
efficiently discretized with coarser meshes. If all components of an ODE system are
evolved using some explicit time-stepping scheme and a single time step-size ∆t, the
evolution of all components will be restricted by the stiffest components of the system.
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Improved efficiency is often possible by considering time-stepping methods that vary
their time step-size according to the local mesh spacing. Time-stepping schemes of
this type are called multirate schemes. The first multirate schemes for one-dimensional
conservation laws were developed by Osher and Sanders in [23]. Their approach car-
ries out forward Euler time-stepping with step-sizes that vary locally. More recently
higher-order methods have been considered; for example, Tang and Warnecke [32]
develop second-order multirate schemes based on Runge–Kutta or Lax-Wendroff type
schemes. Other recent work includes that by Constantinescu and Sandu [4] where
a simple construction algorithm is given to form a second-order accurate multirate
scheme based on an arbitrary strong-stability-preserving (SSP) scheme of order two or
higher. Notably, their approach preserves a variety of monotonicity properties, such
as positivity and the maximum principle. As explained by Hundsdorfer, Mozartova
and Savcenco [15] multirate schemes for conservation laws are either locally inconsis-
tent (e.g., [23]) or lack mass conservation (e.g., [32]). Fortunately, order reduction
due to such local inconsistency may be less severe than expected, due to cancellation
and damping effects; see [15] for details.

Whereas multirate methods use different step sizes, in the present work we focus
on using different methods on different spatial subdomains. Specifically, we inves-
tigate spatially partitioned embedded Runge–Kutta (SPERK) schemes applied to
one-dimensional PDEs such as conservation laws

ut + f(u)x = 0. (1.1)

Here the term embedded refers to methods having the same coefficient matrix A (but
different weights b), which avoids the unnecessary duplication of computations that
can occur when combining two unrelated time-stepping schemes. Two classes of
SPERK schemes are considered: equation-based partitioning and flux-based partition-
ing. We shall find that equation-based partitioning maintains the overall accuracy of
the schemes composing the embedded pair. This approach is, however, not conser-
vative and can lead to wrong shock propagation speeds when applied to hyperbolic
PDEs. Flux-based partitioning is conservative, but experiences a theoretical order
reduction in the local consistency. In practice, however, we shall find that the overall
accuracy of the combined scheme is unaffected.

The idea of adapting the time discretization locally in space is not new. Effi-
cient combinations of implicit and explicit time discretizations have been developed
for problems where very large wave speeds appear in a localized regions, such as oil
reservoir modeling or fluid-structure interaction [2, 5, 33]. Combinations of higher-
and lower-order implicit schemes have been used in order to preserve monotonicity
under large step sizes [9, 7, 6, 24]. Combinations of explicit methods have received
less attention; some techniques for simultaneous local adaptation of both temporal
and spatial discretizations were proposed in [13], in the context of shock-capturing
methods for conservation laws. Here we provide a general framework for local adapta-
tion of just the time discretization, for explicit integration of general time-dependent
PDEs.

We will see that the methods we study can be viewed in the general framework
of partitioned or additive Runge–Kutta methods. However, such methods are usu-
ally applied in a way that applies different numerical treatment to different physical
processes, whereas the emphasis here is on different numerical treatments for differ-
ent spatial domains. These approaches are based on different motivations, and some
approaches that work well for the former fail for the latter (see Example 2.2).
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To illustrate the use of spatially adaptive time-stepping schemes, consider a
convection-diffusion problem in which the Reynolds number varies spatially, such
that the system is dominated by convection on one subdomain and dominated by
diffusion elsewhere. The third-order, three-stage SSP Runge–Kutta scheme of Shu
and Osher (SSPRK(3,3)) [29] might be desired for the convection-dominated regions,
while a second-order Runge–Kutta–Chebyshev method, e.g., [35], might be preferred
in diffusion-dominated regions. Unfortunately, neither scheme is particularly attrac-
tive on its own since SSPRK(3,3) requires small time steps when applied to diffu-
sive problems, while the Runge–Kutta–Chebyshev method is unstable when applied
to convective problems. On the other hand, a combination that applies each time-
stepping scheme where it is best suited may provide better linear stability than either
scheme on its own. An example of this kind is explored in Section 4.

There are other situations where spatially partitioned time-stepping schemes show
a strong potential. For example, consider the evolution of a conservation law involving
both shocks and smooth regions. The preservation of monotonicity properties may be
the most crucial property near the shock, whereas high-order accuracy may be of pri-
mary interest in smooth regions. Use of a spatially partitioned time-stepping scheme
opens the possibility of simultaneously obtaining good accuracy and monotonicity
in such problems. An example of this kind is explored in Section 5, where SPERK
schemes are applied to fifth-order weighted essentially non-oscillatory (WENO) spa-
tial discretizations [28]. The motivation here is that fifth-order SSPRK methods are
complicated by their use of the downwind-biased operator [29, 27, 31, 25] while mono-
tonicity and the corresponding SSP property is likely only useful in the vicinity of
non-smooth features. In these regions WENO discretizations are formally third-order
accurate [28]. Thus, in our approach, a fifth-order linearly stable Runge–Kutta scheme
is used in smooth regions while an embedded third-order SSP Runge–Kutta scheme
is used near shocks or other discontinuities.

The paper unfolds as follows. Section 2 introduces equation-based partitioning
and examines its conservation properties. This is followed by the introduction and
analysis of flux-based partitioning. Errors and positivity properties for both classes of
schemes are considered in this section. A variety of generalizations are given in Sec-
tion 3. Section 4 gives some examples of SPERK schemes, and considers applications
of the methods to a spatially discretized advection-diffusion equation. Section 5 con-
siders SPERK schemes in the context of WENO spatial discretizations and a nonlinear
partitioning step. In our approach, the WENO weights are used to select between
an SSP Runge–Kutta scheme, and a high-order scheme chosen for its linear stability
properties. Finally, Section 6 concludes with a discussion of some other application
areas and some of our current research directions.

2. Spatially partitioned embedded Runge–Kutta methods. We begin by
introducing equation- and flux-based SPERK schemes. An analysis of the accuracy,
conservation and positivity properties of such schemes is also provided in this section.

2.1. Equation-based partitioning. Consider a system of N ordinary differen-
tial equations

U ′(t) = G(U), (2.1)

typically arising as the spatial discretization of a PDE where each component in the
solution approximates, for example, point values of the PDE solution ui(t) ≈ u(xi, t)
at discrete points xi, 1 ≤ i ≤ N . To apply an s-stage Runge–Kutta method, we first
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compute the stage values

Y (j) = Un + ∆t

s∑
k=1

ajkG(Y (k)), j = 1, . . . , s. (2.2a)

A standard Runge–Kutta method would then advance by one step using the formula
Un+1 = Un + ∆t

∑s
j=1 bjG(Y (j)). Instead, let a different set of weights be applied at

each point xi, 1 ≤ i ≤ N , choosing between coefficients b or b̂. This results in

un+1
i = uni + ∆t

χni s∑
j=1

bjgi(Y
(j)) + (1− χni )

s∑
j=1

b̂jgi(Y
(j))

 (2.2b)

where gi is the ith component of G and

χni =

{
1, if weights b are used to compute un+1

i ,

0, if weights b̂ are used to compute un+1
i .

(2.2c)

We write the coefficients of this method A, b, b̂ using the same tableau notation that
is employed for embedded Runge–Kutta methods [11]:

c A

bT

b̂T
. (2.3)

We refer to the embedded method (2.2) as a spatially partitioned time-stepping
method because the “mask” χ selects which scheme to propagate at each point in
space, at each time step. In some cases, χ depends on the solution values, although
we do not explicitly represent this for notational clarity.

2.1.1. Connection to partitioned Runge–Kutta methods. Methods of the
form (2.2) form a special subclass of partitioned Runge–Kutta methods [11]. Gener-
ally, methods in a partitioned RK pair may have different coefficient matrices A as
well as different weights b. In our embedded approach, methods have fewer degrees
of freedom available for their design, but they possess the advantage of automatically
satisfying the “extra” order conditions for partitioned RK methods. That is, if each of
the component methods (A, b) and (A, b̂) is accurate to order p, the SPERK method
is also accurate to order p in time (see also Proposition 3.1 below).

Method (2.2) partitions (2.1) by equation; we refer to this type of partitioning
as equation-based partitioning. Because the ith equation corresponds to grid node xi,
1 ≤ i ≤ N , our approach also gives a spatial partitioning of a semi-discretized PDE. It
is worth noting, however, that equation-based partitioning is a very general technique
that does not require any correspondence to grid locations.

2.1.2. Conservation. Many important physical phenomena are modeled by
conservation laws, which in one dimension have the form

ut + f(u)x = 0. (2.4)

In the numerical solution of (2.4), one should use a conservative scheme in order to
ensure that shocks propagate at the correct speed. Typically, (2.4) is semi-discretized
using a flux-differencing method:

u′i(t) = − 1

∆x

(
fi+ 1

2
− fi− 1

2

)
(2.5)
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where fi± 1
2

are numerical approximations to the flux at xi± 1
2
, 1 ≤ i ≤ N . Integrating

with a Runge–Kutta method gives

un+1
i = uni −

∆t

∆x

 s∑
j=1

bjfi+ 1
2
(Y (j))−

s∑
j=1

bjfi− 1
2
(Y (j))


where the stage values Y (j), 1 ≤ j ≤ s, are defined in equation (2.2a) above. This
method is conservative since corresponding fluxes cancel out (except at the bound-
aries) if we sum over the spatial index i, 1 ≤ i ≤ N .

Applying method (2.2) gives instead

un+1
i = uni −

∆t

∆x

 s∑
j=1

(χni bj + (1− χni )b̂j)fi+ 1
2
(Y (j))

−
s∑
j=1

(χni bj + (1− χni )b̂j)fi− 1
2
(Y (j))

 .

This method is not conservative, since the flux terms at xi− 1
2

will not cancel if χni−1 6=
χni . This can lead to solutions in which discontinuities move at incorrect speeds. Here
we give an example.

Example 2.1. We consider Burgers’ equation, ut +
(

1
2u

2
)
x

= 0, with the step
function initial condition

u(x, t = 0) =

{
2 x ≤ 0,

0 x > 0.

We discretize in space with a finite difference flux-differencing scheme using fifth-order
WENO interpolation. In time, we discretize using the SPERK scheme in Table 5.1
and equation-based partitioning. We use a time step-size of ∆t = 0.6∆x, correspond-
ing to a CFL number of 1.2. We take

χ(x, t) =

{
0 0.01 < u(x, t) < 1.99,

1 otherwise.

This simple choice of χ ensures that the SSP method is used near the shock while the
non-SSP method is used elsewhere. It also (unfortunately) ensures that the jumps in
χ are near the shock, maximizing the effect of conservation errors. The true shock
velocity is 1, but the numerical shock velocity converges to approximately 0.925. If we
replace χ above by 1− χ, the shock moves instead too rapidly. �

2.2. Flux-based partitioning. In (2.2) we applied one of the RK schemes to
each equation in the ODE system. In order to obtain a conservative method, we
partition by the fluxes fi+ 1

2
, 0 ≤ i ≤ N , rather than by the equations.

Suppose we are given two Runge–Kutta methods with identical coefficient matri-
ces A, but different weights b and b̂. Similar to equation-based partitioning, we first
compute stage values according to (2.2a), which when applied to the flux-differencing
semi-discretization (2.5) is

y
(j)
i = uni −

∆t

∆x

s∑
k=1

ajk

(
fi+ 1

2
(Y (j))− fi− 1

2
(Y (j))

)
, j = 1, . . . , s. (2.6a)
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However, instead of varying the time-stepping method by equation, we vary the
method by flux. An application of this partitioning to (2.5) yields

un+1
i = uni −

∆t

∆x

χni+ 1
2

s∑
j=1

bjfi+ 1
2
(Y (j)) + (1− χni+ 1

2
)

s∑
j=1

b̂jfi+ 1
2
(Y (j))

− χni− 1
2

s∑
j=1

bjfi− 1
2
(Y (j))− (1− χni− 1

2
)

s∑
j=1

b̂jfi− 1
2
(Y (j))

 ,

(2.6b)

where we have partitioned using the characteristic functions corresponding to cell
edges xi+ 1

2
(rather than grid points xi)

χni+ 1
2

=

{
1, if weights b are used for fluxes at xi+ 1

2
,

0, if weights b̂ are used fluxes at xi+ 1
2
.

(2.6c)

Fig. 2.1 compares a pseudo-code implementation of the equation-based (2.2) and flux-
based partitioning (2.6) for a three-stage SPERK scheme.

As we show next, the flux-based method corresponds to an additive Runge–Kutta
method instead of a partitioned Runge–Kutta method.

2.2.1. Connection to additive Runge–Kutta schemes. Consider again the
flux-differencing formula (2.5). Let Φ(U) denote the vector of fluxes, with components
φi(U) = fi+ 1

2
(U), 0 ≤ i ≤ N . We can write the flux-differencing method (2.5) in

vector form:

U ′(t) = − 1

∆x
DΦ, (2.7)

where D is the N × (N + 1) differencing matrix with 1 on the superdiagonal and −1
on the main diagonal.

We split the flux vector based on the vector χ ≡ [χ 1
2
, χ 3

2
, . . . , χN+ 1

2
]T :

U ′(t) = − 1

∆x
DΦ(U) = − 1

∆x
D
[

diag(χ)Φ(U) + (I − diag(χ))Φ(U)
]
,

= − 1

∆x
D diag(χ)Φ(U)︸ ︷︷ ︸
Gχ(U)

− 1

∆x
D(I − diag(χ))Φ(U)︸ ︷︷ ︸

G1−χ(U)

,

= Gχ(U) +G1−χ(U), (2.8)

whereGχ(U) = − 1
∆xD diag(χ)Φ(U), G1−χ(U) = − 1

∆xD(I − diag(χ))Φ(U) and diag(χ)
is the (N + 1)× (N + 1) diagonal matrix that has χ as its main diagonal. Flux-based
partitioning applies different Runge–Kutta methods to Gχ and G1−χ. Because we
have chosen embedded pairs with identical coefficient matrices A, the stage values
Y (j), 1 ≤ j ≤ s, are computed according to (2.2a) in the standard fashion. Different
weights for Gχ and G1−χ are applied, however, according to the formula

Un+1 = Un + ∆t

 s∑
j=1

bjGχ(Y (j)) +

s∑
j=1

b̂jG1−χ(Y (j))

 . (2.9)
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1 # Program 1: Equation -based SPERK implementation

2 # First compute the standard stage values

3 Y(1) = U

4 for i in range(1, N):

5 y
(2)
i = ui - dt/dx

(
a21(y

(1)
i -y

(1)
i−1)

)
6 for i in range(1, N):

7 y
(3)
i = ui - dt/dx

(
a31(y

(1)
i -y

(1)
i−1) + a32(y

(2)
i -y

(2)
i−1)

)
8 # Advance in time from u to unew using:

9 for i in range(1, N):

10 unewi = ui - dt/dx
(
χi

(
b1(y

(1)
i -y

(1)
i−1) + b2(y

(2)
i -y

(2)
i−1) + b3(y

(3)
i -y

(3)
i−1)

)
11 + (1-χi)

(
b̂1(y

(1)
i -y

(1)
i−1) + b̂2(y

(2)
i -y

(2)
i−1) + b̂3(y

(3)
i -y

(3)
i−1)

))
1 # Program 2: Flux -based SPERK implementation

2 # First compute the standard stage values as in lines 3-7 above

3 ...

4 # Then advance in time from u to unew using:

5 for i in range(1, N):

6 unewi = ui - dt/dx
(

7 χi+ 1
2

(
b1y

(1)
i + b2y

(2)
i + b3y

(3)
i

)
- χi− 1

2

(
b1y

(1)
i−1 + b2y

(2)
i−1 + b3y

(3)
i−1

)
8 +

(
1− χi+ 1

2

)(
b̂1y

(1)
i + b̂2y

(2)
i + b̂3y

(3)
i

)
-

(
1− χi− 1

2

)(
b̂1y

(1)
i−1 + b̂2y

(2)
i−1 + b̂3y

(3)
i−1

))
Fig. 2.1. Pseudocode implementation of the equation-based and flux-based SPERK algorithms.

Here we apply one step of an explicit three-stage method to the first-order upwinding spatial dis-
cretization of the advection PDE ut + ux = 0.

This approach (i.e., using (2.9)) may be viewed as applying an additive Runge–
Kutta method [17] to (2.8). We emphasize that the methods we consider have identical
Amatrices and therefore form a special embedded subclass of the additive RK methods.
The effect of the splitting introduced in (2.8) is crucial for understanding the order of
accuracy of flux-based SPERK schemes. Theoretically, we might expect a reduction
of order by one, a result we establish in Theorem 2.4. In practice, however, we
observe that the order of accuracy of SPERK schemes is the minimum order of the
two schemes for both equation- and flux-based partitioning. Section 5 gives some
numerical experiments illustrating this property.

2.3. Accuracy. In general, additive and partitioned Runge–Kutta methods may
exhibit lower order convergence rates than either of their component methods. In
order for the method to be fully accurate, additional order conditions relating the
coefficients of the different component methods must be satisfied. Even then, in
our context of spatial splitting, such methods can exhibit order reduction when the
coefficient matrices A differ [15].

Example 2.2. Flux-based partitioning based on a characteristic function χ gives
the ODE system (2.8). The classical Godunov operator splitting is a first-order method
that may be applied to this system. Applying this splitting yields

U∗ = Un + ∆tGχ(Un),

Un+1 = U∗ + ∆tG1−χ(U∗).
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This can be written as an additive Runge–Kutta method with coefficient arrays

0 0 0
1 1 0

1 0
,

0 0 0
0 0 0

0 1
.

Unlike all other pairs considered in this paper, this pair uses different coefficients aij.
Consider the advection equation ut + ux = 0 discretized in space by upwind dif-

ferencing:

u′i(t) = gi(U) (2.10)

where gi(U) = − 1
∆x (ui − ui−1). Let G = [gi(U)] and take ∆t = ∆x and constant

initial data, u0
i = 1,−∞ < i < ∞. We partition the domain into two regions by

choosing an integer J with χi− 1
2

= 1 for i ≤ J and χi− 1
2

= 0 for i > J . After one
step with this method, the computed solution is

u1
i =


1 for i < J,

0 for i = J,

2 for i = J + 1,

1 for i > J + 1.

Despite the constant initial data, the local error is O(1) in the maximum norm. �
The difficulty encountered in the example above is typical of methods in which

A 6= Â. In the next two theorems, we establish the accuracy of equation- and flux-
based SPERK methods.

Theorem 2.1. Suppose that the partitioned Runge–Kutta method (2.2) with co-

efficients (A, b, b̂) is applied to the semi-discretization (2.1). Then the fully discretized
system has a local order of accuracy equal to min(p, p̂) where p (respectively, p̂) is the
order of accuracy of the full discretization obtained by using the Runge–Kutta method
with coefficients (A, b) (respectively, (A, b̂)).

Proof. The full discretizations are one-step methods of the form

wn+1
i = Qi(W

n),

ŵn+1
i = Q̂i(Ŵ

n).

The exact solution satisfies

u(xi, tn+1) = Qi(uh(tn)) +O(∆tp+1), (2.11a)

u(xi, tn+1) = Q̂i(uh(tn)) +O(∆tp̂+1). (2.11b)

where uh(tn) = [u(x1, tn), u(x2, tn), . . . , u(xN , tn)]T is a vector of true solution values
at the grid nodes at time tn. Here we have assumed that ∆x is given by some
prescribed relationship in terms of ∆t, so that the error can be characterized in terms
of ∆t only.

We now determine the local truncation error of the discretization: starting from
the exact solution at time tn, the solution computed by the partitioned method is

un+1
i = χni Qi(uh(tn)) + (1− χni )Q̂i(uh(tn)).
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Applying (2.11), we find

un+1
i = χni · u(xi, tn+1) +O(∆tp+1) + (1− χni ) · u(xi, tn+1) +O(∆tp̂+1),

= u(xi, tn+1) +O(∆tmin(p,p̂)+1).

In order to prove accuracy of the flux-based decomposition approach, we need to
know how accurately a Runge–Kutta method approximates the fluxes.

Lemma 2.2. Suppose we are given an initial value problem (2.1) for U ∈ Rn,
a Runge–Kutta method (A, b) of order p, and a smooth function V : Rn → Rn. Let

W (t) =
∫ t

0
V (U(s))ds, Wn = W (tn) and compute Wn+1 using (2.2a) and

Wn+1 = Wn + ∆t

s∑
j=1

bjV (Y (j)). (2.12)

This scheme approximates W (t) to order p, i.e. Wn+1 = W (tn+1) +O(∆tp+1).
Proof. Suppose an O(∆tp) Runge–Kutta method is applied to the system

U ′ = G(U),

W ′ = V (U).

Stage values are given by

Y (j) = Un + ∆t

s∑
k=1

ajkG(Y (k))

Z(j) = Wn + ∆t

s∑
k=1

ajkV (Y (k)), j = 1, . . . , s.

The Z(j), j = 1, . . . , s, are not used and would not be computed in practice. We
advance by one step via

Un+1 = Un + ∆t

s∑
j=1

bjG(Y (j)),

Wn+1 = Wn + ∆t

s∑
j=1

bjV (Y (j)).

Recall that the Runge–Kutta method gives an error that is O(∆tp). Applying this
fact to the second equation gives the desired result.

From Lemma 2.2 we obtain:
Lemma 2.3. Let V : Rn → Rn be a smooth function, and let (A, b), (A, b̂) be an

embedded RK pair with order p, p̂. Given an initial value problem (2.1) in U , let Y (j)

denote the stage values in (2.2a); then

s∑
j=1

bjV (Y (j)) =

s∑
j=1

b̂jV (Y (j)) +O(∆tmin(p,p̂)). (2.13)
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Proof. Applying Lemma 2.2 to both schemes gives

W (t) + ∆t

s∑
j=1

bjV (Y (j)) = W (t+ ∆t) +O(∆tp+1),

W (t) + ∆t

s∑
j=1

b̂jV (Y (j)) = W (t+ ∆t) +O(∆tp̂+1).

Combining these gives the stated result.
One must take care in applying Lemma 2.3 to a PDE semi-discretization, since

the error constant appearing in (2.13) might involve a factor like ∆x−r, r > 0, which
would grow as the spatial grid is refined. A detailed analysis of the propagation of
the spatial discretization error within a Runge–Kutta step is beyond the scope of this
work; we refer the interested reader to [26, 3]. In the following theorem we simply
assume that the error constant in (2.13) is bounded as ∆x→ 0. Note that this is an
assumption on each of the component RK schemes separately. Theorem 2.4 indicates
that if each of the component schemes gives a solution free from order reduction (in
the sense just described), then the embedded pair loses at most one order of accuracy.

Theorem 2.4. Suppose that the flux-based spatially partitioned Runge–Kutta
method (2.6) with coefficients (A, b, b̂) is applied to the semi-discretization (2.5) with
∆t = O(∆x). Furthermore, suppose that the error constant appearing in (2.13) is
bounded as ∆x → 0 when one takes V = fi± 1

2
. Then the full discretization of (2.5)

has order of accuracy equal to min(p, p̂) − 1 where p (respectively, p̂) is the order of
accuracy of the full discretization obtained by using the RK method with coefficients
(A, b) (respectively, (A, b̂)).

Proof. The full discretizations are

wn+1
i = wni −

∆t

∆x

 s∑
j=1

bjfi+ 1
2
(Y (j))−

s∑
j=1

bjfi− 1
2
(Y (j))

 ,

ŵn+1
i = ŵni −

∆t

∆x

 s∑
j=1

b̂jfi+ 1
2
(Y (j))−

s∑
j=1

b̂jfi− 1
2
(Y (j))

 .

Using Lemma 2.3 with V (u) = fi± 1
2
(u) gives

s∑
j=1

bjfi± 1
2
(Y (j)) =

s∑
j=1

b̂jfi± 1
2
(Y (j)) +O(∆tmin(p,p̂)). (2.14)

Flux-based partitioning gives

un+1
i = uni −

∆t

∆x

(
χni+ 1

2

s∑
j=1

bjfi+ 1
2
(Y (j)) + (1− χni+ 1

2
)

s∑
j=1

b̂jfi+ 1
2
(Y (j))

− χni− 1
2

s∑
j=1

bjfi− 1
2
(Y (j))− (1− χni− 1

2
)

s∑
j=1

b̂jfi− 1
2
(Y (j))

)

= uni −
∆t

∆x

 s∑
j=1

bjfi+ 1
2
(Y (j))−

s∑
j=1

bjfi− 1
2
(Y (j))

+O(∆tmin(p,p̂)+1/∆x),



Spatially partitioned embedded Runge–Kutta methods 11

where we have used (2.14). The first two terms on the right are just the solution
computed by the scheme with weights bj , which is accurate to order p by assumption.
Thus, inserting the exact solution in the last equation above and using the assumption
that ∆t = O(∆x) gives the desired result.

Remark 2.1. More generally, for a semi-discretization of an evolution PDE that
is order q in space, one takes (for explicit methods) ∆t = O(∆xq) and a factor of
∆x−q appears in the spatial discretization. The net effect is the same in that it may
reduce the accuracy by a factor of ∆t.

Remark 2.2. It might be tempting to try to apply the theorem to the general
additive Runge–Kutta method

c A

bT
with

ĉ Â

b̂T
, (2.15)

by first making a larger additive Runge–Kutta method that does share abscissae and
stage weights, namely

c A 0

ĉ 0 Â

bT 0

with

c A 0

ĉ 0 Â

0 b̂T
, (2.16)

and then concluding that Theorem 2.1 applied to the latter implies the results on the
former. Indeed the theorem does apply to (2.16); however, the implication does not
follow because (2.15) and (2.16) are not the same method. To see this, note that
(2.15) computes stages combining function values from the two schemes (according to
χ) whereas (2.16) computes each stage value using only one scheme.

2.4. Positivity. The nonlinear stability properties of SPERK schemes are of in-
terest as well. In this section we consider the positivity of flux-based SPERK schemes
that are comprised of two explicit SSP Runge–Kutta schemes.

We begin by reviewing some results. Of particular relevance to our derivations
is that SSP Runge–Kutta schemes may be re-written in optimal Shu–Osher form [27]
via the transformation provided in [8]. For the ODE system U ′ = G(U) this yields
schemes of the form

Y (j) =

(
1−

j−1∑
k=1

αjk

)
Un +

j−1∑
k=1

(αjkY
(k) + ∆tβjkG(Y (k))), (2.17a)

Un+1 = Y (s+1) (2.17b)

where all αjk ≥ 0,
∑j−1
k=1 αjk ≤ 1 and j = 1, 2, . . . , s+ 1.

If both sets of coefficients αjk, βjk are nonnegative, and forward Euler is positivity-
preserving, then it may be shown that the Runge–Kutta scheme preserves positivity
under a suitable time step restriction [29, 10]:

Lemma 2.5. If the forward Euler method is positivity-preserving under the re-
striction 0 ≤ ∆t ≤ ∆tFE, then the Runge–Kutta method (2.17) with βjk ≥ 0 is
positivity-preserving provided

∆t ≤ C∆tFE ,

where C is the SSP coefficient

C ≡ min {cjk : 1 ≤ k < j ≤ s+ 1} where cjk =

{ αjk
βjk

if βjk 6= 0,

∞ otherwise.
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We now show the corresponding result for flux-based SPERK schemes.
Theorem 2.6. Suppose that the flux-differencing semi-discretization (2.5) of the

one-dimensional conservation law (2.4) satisfies the positivity properties

wi −
δt1
∆x

fi+ 1
2
(W ) ≥ 0, for all δt1 ≤ ∆t1, (2.18)

wi +
δt2
∆x

fi− 1
2
(W ) ≥ 0, for all δt2 ≤ ∆t2 (2.19)

for all wi ≥ 0, 1 ≤ i ≤ N . Further, suppose that a flux-based SPERK scheme is applied
to (2.5), and that the schemes composing the embedded pair have SSP coefficients C
and Ĉ. Then the full discretization is positivity-preserving for time steps satisfying

0 ≤ ∆t ≤ min(C, Ĉ)∆t∗ (2.20)

where

∆t∗ =


∆t2 if ∆t1 =∞,
∆t1 if ∆t2 =∞,
∆t1∆t2

∆t1+∆t2
otherwise.

Proof. We give a proof for the case where ∆t1 and ∆t2 are finite; the proof for
the two remaining cases is straightforward and follows in a similar fashion.

Let χn
i+ 1

2

and 1− χn
i+ 1

2

specify the (non-negative) weightings of the two schemes

at the cell boundaries at time step n. The update for U is given by

un+1
i = uni + λ

s∑
j=1

bi

(
−χni+ 1

2
f

(j)

i+ 1
2

+ χni− 1
2
f

(j)

i− 1
2

)
+ λ

s∑
j=1

b̂i

(
−(1− χni+ 1

2
)f

(j)

i+ 1
2

+ (1− χni− 1
2
)f

(j)

i− 1
2

)

= χni+ 1
2

γpuni + λ

s∑
j=1

−bif (j)

i+ 1
2

+ (1− χni+ 1
2
)

γpuni + λ

s∑
j=1

−b̂if (j)

i+ 1
2


+ χni− 1

2

γmuni + λ

s∑
j=1

bif
(j)

i− 1
2

+ (1− χni− 1
2
)

γmuni + λ

s∑
j=1

b̂if
(j)

i− 1
2

 (2.21)

where λ = ∆t
∆x , γp = ∆t2

∆t1+∆t2
, and γm = ∆t1

∆t1+∆t2
. We denote the fluxes associated

with stage j by f
(j)

i± 1
2

≡ fi± 1
2
(Y (j)) where Y (j) is the approximation of uh(tn) at the

jth stage. The first term will be non-negative if

γpu
n
i + λ

s∑
j=1

−bif (j)

i+ 1
2

(2.22)

is non-negative. Transforming (2.22) to optimal Shu–Osher form yields

γp

1−
s∑
j=1

αs+1,j

uni + γp

 s∑
j=1

αs+1,jy
(j)
i −

λ

γp
βs+1,jf

(j)

i+ 1
2

 .
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We observe that forward Euler is positivity-preserving when applied to the semi-
discretization (2.5) provided ∆t ≤ ∆t∗. An application of Lemma 2.5 gives Y (j) ≥
0, 1 ≤ j ≤ s, provided the step-size restriction (2.20) is satisfied and Un ≥ 0, where
vector inequalities are to be interpreted as being taken componentwise. Combining
this result with ∆t ≤ C∆t∗ and hypothesis (2.18) yields that the first term in (2.21)
is non-negative. The proof follows by applying a similar analysis to the second, third,
and fourth terms in (2.21).

The theorem may be applied to a variety of common discretizations. For example,
consider an upwind discretization of the linear advection equation

ut + aux = 0, a > 0,

on a grid with uniform spacing ∆x. In this example fi+ 1
2

= aui from which we observe

that ∆t2 = ∞ and ∆t1 = 1
a∆x. Assuming that the schemes forming the embedded

pair have SSP coefficients C and Ĉ we find that the flux-based SPERK scheme is
positivity-preserving provided

∆t ≤ 1

a
min(C, Ĉ)∆x. (2.23)

We can also apply the theorem to a discretization of the diffusion equation. Con-
sider

ut − νuxx = 0, ν > 0,

on a grid with uniform spacing ∆x. Taking fi+ 1
2

= ν
∆x (−ui+1+ui) gives ∆t1 = ∆t2 =

1
ν∆x2. Assuming that the schemes forming the embedded pair have SSP coefficients

C and Ĉ, we find that the flux-based SPERK scheme is positivity-preserving under
the time step-size restriction

∆t ≤ 1

2ν
min(C, Ĉ)∆x2. (2.24)

The proof for equation-based partitioning follows in a similar manner. For com-
pleteness we state the result below.

Theorem 2.7. Suppose that the semi-discretization (2.1) of the one-dimensional
conservation law (2.4) satisfies the positivity property

W + ∆tG(W ) ≥ 0

for all W ≥ 0 and ∆t ≤ ∆tFE where the inequalities are taken component-wise.
Further, suppose that an equation-based SPERK scheme is applied to (2.1), and that
the schemes composing the embedded pair have SSP coefficients C and Ĉ. Then the
full discretization is positivity-preserving for time steps satisfying

0 ≤ ∆t ≤ min(C, Ĉ)∆tFE .

3. Generalizations. In this section we provide some useful generalizations of
our previous spatial partitioning methods. For notational simplicity we state these
results for partitions that are invariant in time; however, it is also possible to vary
the partitioning function χ at each time level n.
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3.1. More than two methods. Both equation- and flux-based partitioning can
be generalized to more than two methods. Accuracy and positivity results essentially
identical to those in Sections 2.3 and 2.4 can be shown for both cases.

3.1.1. Equation-based partitioning. Let (I1, I2, . . . Ir) be a partitioning of
the integers from 1 to N (i.e., the partitioning satisfies ∪rk=1Ik = {1, 2, . . . , N}, and
Ij ∩ Ik = ∅ if j 6= k). The generalization to r embedded methods defined by the
coefficients A, b(1), . . . , b(r) is defined as

Y (j) = Un + ∆t

s∑
k=1

ajkG(Y (k)), 1 ≤ j ≤ s,

Un+1 = Un + ∆t

r∑
k=1

s∑
j=1

b
(k)
j diag(χ(k))G(Y (j)),

where

χ
(k)
i =

{
1 if i ∈ Ik,
0 otherwise.

3.1.2. Flux-based partitioning. Flux-based partitioning can also be written
more generally in terms of b(1), . . . , b(r). In this case we take

Y (j) = Un − ∆t

∆x

s∑
k=1

ajkDΦ(Y (k)), 1 ≤ j ≤ s,

Un+1 = Un − ∆t

∆x

r∑
k=1

s∑
j=1

b
(k)
j D diag(χ(k))Φ(Y (j)),

to combine the r different embedded schemes.

3.2. Blending and accuracy. Rather than shifting discontinuously between
methods from one spatial point to the next, an appealing approach is to have a
transition region in which a weighted average of the two methods is used, with the
weight shifting from one method to the other over the transition region. The following
proposition shows that this approach is still accurate in time, which is a necessary
condition for the full SPERK discretization to be accurate.

Proposition 3.1. Let (A, b(1)), (A, b(2)), . . . , (A, b(r)) denote a set of embedded
RK methods, and let pk denote the order of accuracy of method (A, b(k)). Then the
RK method (

A,

r∑
k=1

αkb
(k)

)
where

r∑
k=1

αk = 1

has order of accuracy at least p = mink pk.
Proof. The order conditions involve only expressions that are linear in the weights.

Since all of the component method coefficients satisfy the conditions up to order
p = mink pk, the averaged method does as well.

Remark 3.1. The proposition applies only to embedded methods. If the compo-
nent methods had different coefficient matrices A, their average would in general be
only first-order accurate, even if they share common abscissas c.

Theorems 2.1 and 2.4 for equation- and flux-based SPERK methods can be ex-
tended to the blended case in this way. In practice, we observe the full accuracy when
blending using either approach.
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4. Example: Advection-diffusion. The semi-discretization of certain time-
dependent PDEs leads to systems of ODEs with eigenvalues near the negative real
axis, whereas the semi-discretization of others leads to systems with eigenvalues near
the imaginary axis. Appropriate time integrators must include the corresponding
portions of the complex plane in their absolute stability regions. In problems with
strongly varying coefficients or mesh spacing the relevant portion of the complex
plane may vary spatially. This may complicate the selection of an appropriate time
integrator.

Consider, for example, the nonlinear advection-diffusion equation

ut + (b(x)u)x = (a(x)(u2)x)x, (4.1)

with periodic boundary conditions on [0, 1] and initial conditions

u(x, 0) = 1
10 sin3(2πx) + 2.

Discretizing the spatial derivatives in (4.1) with three-point centered differences yields
the flux-differencing method (2.5) with

fi+ 1
2

= b(xi+ 1
2
)

(
ui+1 + ui

2

)
− a(xi+ 1

2
)

1

∆x

(
u2
i+1 − u2

i

)
and a constant mesh spacing ∆x. We take a(x) > 0 and b(x) to be functions that are
periodically defined by

a(x) = 1
1000 + 1

10000 (cos(2πx− 1
2π) + 1)10,

b(x) = 1 + 1
10 (cos(2πx− 3

2π) + 1)10.

As shown in Fig. 4.1, there is a region centered at x = 0.25 where diffusion domi-
nates and negative real axis inclusion is critical for the design of the time-stepping
scheme. Similarly, in the region around x = 0.75, convection dominates and imagi-
nary axis inclusion is the most crucial design feature. The strong spatial variation in
the dominant term makes this a good problem for testing the performance of SPERK
schemes.

Remark 4.1. This nonlinear advection-diffusion problem serves as a proto-
type where the relative importance of real and imaginary eigenvalues varies spatially.
We now develop explicit time-stepping schemes suitable for such problems. Explicit
schemes have the advantage of being easy to implement and do not require the solution
of nonlinear systems or the inversion of matrix systems. We remark that for the case
of advection-diffusion, implicit-explicit (IMEX) time-stepping schemes might also be
considered. IMEX schemes apply an explicit scheme to nonstiff terms and an implicit
scheme to stiff terms, and are particularly effective when a linear, symmetric diffusion
term arises. See, e.g., [1] for further details.

4.1. Second-order embedded pairs. We now design three- and four-stage
embedded explicit Runge–Kutta pairs suitable for this problem. In each embedded
pair, one method has a stability polynomial that maximizes (or nearly maximizes) the
real axis interval of absolute stability, while the other method has a stability poly-
nomial that maximizes (or nearly maximizes) the imaginary axis interval of absolute
stability. Given a coefficient matrix A, the stability polynomial of a Runge–Kutta
method (and hence its linear stability properties) can be chosen by solving a linear



16 Ketcheson, Macdonald and Ruuth

0 0.5 1
0

0.02

0.04

0.06

0.08

0.1

0.12

x

a
(x

)

0 0.5 1
0

20

40

60

80

100

120

x

b
(x

)

Fig. 4.1. The variable coefficients a(x) (left) and b(x) (right). We observe a spatial variation
in the relative importance of advection and diffusion.

system of equations for the weights bj . We do not consider two-stage pairs since all
second-order two-stage schemes have the same stability polynomial.

The stability polynomial of a three-stage, second-order RK method has the form
R(z) = 1+z+z2/2+α3z

3 where α3 = bTAc. For real-axis stability, we take the 3-stage
Runge–Kutta–Chebyshev method of the family presented in [35], which we refer to
as RKC(3,2), as the second scheme of our embedded pair. The stability polynomial
of this method is a Bakker–Chebyshev polynomial and contains nearly the largest
possible portion of the negative real axis over the class of three-stage second-order
schemes. The first scheme is obtained by setting α3 = 1/4, which approximately

maximizes imaginary axis inclusion, and selecting weights b̂j corresponding to the
resulting polynomial. This gives the following embedded pair:

0
3/8 3/8
3/8 3/16 3/16

b̂T −1/3 −20/9 32/9
bT −1/3 4/9 8/9

(4.2)

The absolute stability regions are shown in Fig. 4.2 (left).
The stability polynomial of a four-stage, second-order RK method has the form

R(z) = 1 + z + z2/2 + α3z
3 + α4z

4 where α3 = bTAc and α4 = bTA2c. The optimal
imaginary axis inclusion occurs for the choice α3 = 1/6, α4 = 1/24, which gives the
stability polynomial of the classical fourth-order Runge–Kutta method. Hence we
take the classical method, which we shall denote by RK4, as the first scheme of our
pair. Sufficient degrees of freedom remain to obtain a scheme with the same linear
stability as the optimal four-stage, second-order scheme RKC(4,2). This gives the
following embedded pair (with absolute stability regions as shown in Fig. 4.2 right)

0
1/2 1/2
1/2 0 1/2
1 0 0 1

b̂T 1/6 1/3 1/3 1/6
bT 2/125 17/25 36/125 2/125

(4.3)

4.2. Numerical results. We now give the results of numerical experiments car-
ried out using our three- and four-stage SPERK schemes. The partitioning parameter
χ is set equal to 1 wherever a(x) is more than 0.005; elsewhere it is zero. More gener-
ally, χ could be selected based on the local Reynolds number. In all cases, we vary the
time step-size and compute max-norm absolute errors by comparing to a highly accu-
rate RK4 approximation of the spatially discretized system at the final time t = 0.1.
All computations use a constant mesh spacing of ∆x = 1/250.



Spatially partitioned embedded Runge–Kutta methods 17

Fig. 4.2. Absolute stability regions for the three-stage embedded pair (4.2) (left) and the four-
stage embedded pair (4.3) (right). The shaded red region corresponds to the method optimized for real
axis inclusion and the black line corresponds to the method optimized for imaginary axis inclusion.
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Fig. 4.3. Maximum norm absolute errors for SPERK schemes applied to the variable coefficient
advection-diffusion problem. The left plot gives results for three-stage schemes: (a) scheme with
maximal imaginary axis inclusion, (b) RKC(3,2), (c) equation-based partitioning. The right plot
gives results for four-stage schemes: (a) RK4, (b) our variant of RKC(4,2), (c) equation-based
partitioning.

The results for three-stage methods are given in the left-hand plot of Fig. 4.3.
We find that the scheme that is designed for advection-dominated flows gives good
results for ∆t ≤ 1.45×10−5. Stability is lost for larger time step-sizes. The second
method, RKC(3,2), is unstable for ∆t ≥ 1.93×10−5. The SPERK scheme derived
from the combination is stable for values of ∆t that are more than two times greater.

The right-hand plot of Fig. 4.3 gives the results for four-stage methods. The
classical fourth-order Runge–Kutta method RK4 has a small error but becomes un-
stable for time steps larger than 2×10−5. Our variant of RKC(4,2) has a similar time
step restriction but produces a larger error (because it is second order). The SPERK
scheme gives improved stability and allows for time steps that are more than three
times larger. In this example, whenever RK4 is stable, the SPERK scheme gives the
same accuracy because the largest error occurs in the convection-dominated region.

For both embedded pairs, if we repeat the experiments with flux-based partition-
ing, we observe essentially the same errors. This is because the largest errors occur
away from the switching interface.

5. Example: Spatially partitioned time-stepping for WENO. Weighted
essentially non-oscillatory (WENO) spatial discretizations involve an adaptive, data-
dependent combination of several candidate stencils to compute fluxes [28]. The most
commonly used scheme provides fifth-order accuracy in smooth regions of the solution
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and formally third-order spatial discretizations near shocks or other discontinuities.
Assuming a positive flux function, the finite difference WENO scheme computes the
positive flux differences in (2.5) with

fj+ 1
2

= ω0

(
2
6fj−2 − 7

6fj−1 + 11
6 fj

)
+ ω1

(
− 1

6fj−1 + 5
6fj + 2

6fj+1

)
+ ω2

(
2
6fj + 5

6fj+1 − 1
6fj+2

)
, (5.1)

where the weights ω0, ω1, and ω2 are chosen by computing data-dependent smoothness
indicators [28]. In smooth regions, ω0,1,2 will be close to 1

10 , 6
10 and 3

10 respectively
whereas near nonsmooth spatial features (such as a discontinuity), they adopt a binary
choice biasing the stencil away from the discontinuity [28].

5.1. An embedded pair for WENO. We start with the SSPRK(5,3) scheme
[31]. This will be the lower-order scheme which is used in spatial regions where the
solution is not smooth. If we embed this method in a larger 7-stage, 5th-order method,
we have the following Butcher tableau

0
0.3773 0.3773
0.7545 0.3773 0.3773
0.7290 0.2430 0.2430 0.2430
0.6992 0.1536 0.1536 0.1536 0.2385
c6 a61 a62 a63 a64 a65
c7 a71 a72 a73 a74 a75 a76

b̂T 0.2067 0.2067 0.1171 0.1818 0.2876 0 0

bT b1 b2 b3 b4 b5 b6 b7

(5.2)

where we display only a few digits of the SSPRK(5,3) coefficients. The unknown
coefficients will determine an RK(7,5) scheme that will be optimized for linear stability
and used in spatial regions where the solution is smooth.

A technique for determining these coefficients by satisfying the order conditions
is explored in [20] following a strategy designed in [34]. We attempt to maximize the
linear stability properties of the RK(7,5) scheme; these are determined by the stability
polynomial which in this case is parameterized by the coefficients of the z6 and z7

terms [12], polynomial expressions in the coefficients (5.2) which we denote by α6

and α7 respectively. We find that specifying the SSPRK(5,3) coefficients restricts the
possible solutions to a straight line through the α6–α7 space. By examining the linear
stability properties along this line (see Fig. 5.1), we can choose one of the degrees
of freedom (the “homogeneous polynomial” I65, see [20] for details) to maximize the
linear stability properties of the resulting scheme. There are still six (nonlinear) order
conditions to satisfy and six coefficients to be determined. Solving these remaining
equations with a computer algebra system results in a single discrete solution and a
one-parameter family of solutions. The one-parameter family was discarded because
each member had either a negative node c6 or unreasonably large coefficients. The lone
solution did not have these deficiencies and we use it for our numerical experiments.
The coefficients are shown to 15 digits in Table 5.1.

5.2. Mask selection. Various approaches to spatially switching between differ-
ent schemes have been proposed in the context of nonlinear hyperbolic PDEs; see
e.g., [13] and references therein. One particularly simple but effective approach used
in [13] is to consider the second order differences of the solution:

χi =

{
1 if |∆2qi| < C∆x2

0 if |∆2qi| ≥ C∆x2.
(5.3)
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Fig. 5.1. Choosing the linear stability properties for RK(7,5) scheme. Left: various mea-
surements of the linear stability region versus a parameter I65. Here ρ is the radius of the largest
inscribed disc and ρ2 is the radius of the largest interval of the imaginary axis included. Right:
the “WENO bean”, the spectrum of the linearized WENO operator in smooth regions [16, 36, 22]:
ρ3 measures the largest scaling of this bean that will fit in the linear stability region. We choose
I65 = 0.0037 and find ρ3 ≈ 1.76, ρ ≈ 1.58, and ρ2 ≈ 1.2.

Table 5.1
Coefficients of the embedded RK(7,5)/SSPRK(5,3) method.

a21 = 0.377268915331368,
a31 = 0.377268915331368, a32 = 0.377268915331368,
a41 = 0.242995220537396, a42 = 0.242995220537396, a43 = 0.242995220537396,
a51 = 0.153589067695126, a52 = 0.153589067695126, a53 = 0.153589067695126,

a54 = 0.23845893284629, b̂1 = 0.206734020864804, b̂2 = 0.206734020864804,

b̂3 = 0.117097251841844, b̂4 = 0.18180256012014, b̂5 = 0.287632146308408,
a61 = 0.113015751552667, a62 = 1.49947221487533, a63 = 0.134753400626063,
a64 = −1.06421259296782, a65 = 0.205145170072233, a71 = −0.512110930783855,
a72 = 3.91735780781337, a73 = −0.0470520461913835, a74 = −0.218621292015928,
a75 = −1.64543995945252, a76 = −0.494133579369683, b1 = 0.122097569374901,
b2 = 0.492898173466563, b3 = −0.232023614650883, b4 = −1.98394581022939,
b5 = 1.85394392181784, b6 = 0.965538124667539, b7 = −0.21850836444657.

This approach sets χ = 0 (so the lower-order SSP scheme will be used) wherever ∆2q
is large. In practice, setting C = 500 seems to work well for the problems investigated
below.

Alternatively, one may conveniently use the WENO weights ω0,1,2 to select the
mask χ in a WENO-based SPERK scheme. One possible choice is

χi =

{
1 if |ω0 − 1

10 | ≤ 0.06 and |ω1 − 6
10 | ≤ 0.06 and |ω2 − 3

10 | ≤ 0.06,

0 otherwise,
(5.4)

where 0.06 is an adjustable threshold parameter. That is, if the WENO weights are
within this small threshold of their theoretical smooth-region values then we propagate
the higher-order linearly stable RK(7,5) solution, otherwise we propagate the lower-
order SSPRK(5,3) solution. We compute the mask based on the weights corresponding
to Un, the solution at time tn and thus fix the mask over each time step.

With either approach, we then set

χi = min
|j|≤4

χi+j ; (5.5)

i.e., the mask is widened by four grid cells to increase the usage of the SSP scheme.
This was suggested in [13] and is essential to ensure that a shock does not leave the
zone in which the SSP method is used during one time step.

Remark. There are many possibilities for choosing the mask χ; here we have
suggested two simple approaches but this not intended to be exhaustive, nor have we
tried to optimize the 0.06 threshold parameter or the value of C.
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Table 5.2
Convergence studies for various mask functions χ(x), performed on Burgers’ equation with

smooth initial conditions discretized using WENO and the SPERK 5th-order/3rd-order pair. We
compute to tf = 0.25 using a CFL number of 1.2; error measured in an approximate L2 norm.

error for different χ(x) functions
partitioning ∆x 1 0 Heaviside(x) random(0,1)

equation- 1/320 1.29×10−7 5.59×10−7 1.29×10−7 3.33×10−7

based 1/640 4.09×10−9 7.00×10−8 4.44×10−9 3.76×10−8

1/1280 1.29×10−10 8.64×10−9 5.48×10−10 4.39×10−9

est. order 4.99 3.02 3.45 3.08

flux-based 1/320 2.01×10−8 1.08×10−7 2.44×10−8 6.63×10−8

1/640 6.38×10−10 1.34×10−8 1.87×10−9 8.06×10−9

1/1280 2.00×10−11 1.65×10−9 2.18×10−10 1.05×10−9

est. order 4.99 3.02 3.44 2.99

5.3. Burgers’ equation. We perform convergence studies which demonstrate
that the SPERK methods achieve the predicted orders of accuracy. Our tests use the
inviscid Burgers’ equation ut + (u2)x = 0 on the periodic domain [−1, 1] with smooth
initial conditions

u(x, 0) =
1

2
− 1

2
cos

(
π

(
x− sin 2πx

4π

))
. (5.6)

Table 5.2 shows that the methods achieve (at least) their expected orders of accuracy.
Namely, five when the fifth-order scheme is used (χ(x) = 1 for all x) and three when
using the third-order scheme at any subset of points. As noted in Section 3.2, χ
need not be a binary choice: we see that the method maintains third-order even
when random values of χ (in the range [0, 1]) are selected at each point and at each
time-step. Note also that the flux-partitioned scheme exhibits an order of accuracy
min(p, p̂) = 3, without the loss of one order predicted by our Theorem 2.4; this is
typical of what we observed in all our numerical tests.

In addition to these finite difference convergence studies, we also tested the
equation-based SPERK scheme with a finite-volume WENO code [21] and observed
similar results.

5.3.1. Total variation tests. We consider the discrete total variation seminorm
of the solution on two test problems shown in Fig. 5.2. The first consists of the inviscid
Burgers’ equation with a square wave initial condition in [0, 1]. We determined the
largest CFL number σ, ∆t = σ∆x, such that the resulting solution experiences no
significant increase in the TV seminorm. For the flux-partitioned scheme we find
in Fig. 5.3 that the SSPRK(5,3) scheme (i.e., χ = 0 everywhere) is no longer TVD
for σ > 1.4. The TV error of the RK(7,5) solution slowly increases with σ and,
for example, exhibits a TV error larger than 10−4 for σ > 0.5. With the SPERK
embedded pair (using χ as chosen by the WENO weights using (5.4) and (5.5)), the
loss of the TVD property occurs for σ > 1.4 (that is, the same as the SSPRK(5,3)
scheme). The results using equation-based partitioning are very similar.

Next consider the inviscid Burgers’ equation with smooth initial conditions (5.6).
The WENO weights are again used to choose χ. Table 5.3 shows that the embed-
ded pair SPERK scheme offers high-order accuracy when the solution is smooth and
remains TVD later when the solution is non-smooth; the best of both worlds!
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Fig. 5.2. Solution profiles for Burgers’ equation with the two initial conditions used in §5.3:
an initially smooth curve that evolves into a shock (left) and shock and expansion fan from a square
wave initial condition (right). Solutions computed with the WENO-based SPERK method using
∆x = 0.025.
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Fig. 5.3. Total variation increase for Burgers’ equation with square wave initial conditions
(initial total variation 2), ∆x = 0.025, tf = 0.5, and WENO regularization parameter ε = 10−30.
Note that for most CFL numbers, the SPERK curve overlays the SSPRK(5,3) results.

5.4. Euler equations: conservation and equation-based partitioning. As
we have seen, equation-based partitioning is non-conservative and can lead to incorrect
shock speeds. It is suggested in [13] that correct shock speeds should be obtained as
long as the switching between schemes occurs in regions where the solution is smooth.

We consider the Euler equations of compressible fluid dynamics; specifically, we
solve the Shu–Osher problem of [30], in which a shock wave impacts a sinusoidally-
varying density field. We use the fifth-order WENO wave-propagation method of [19]
and a standard Roe Riemann solver with entropy fix. First, integrating with the
5th-order RK method, the solver fails for any CFL number greater than 0.89, due to
the appearance of negative densities near the shock in the sixth Runge–Kutta stage
of the first time step. Next, using the third-order SSP(5,3) method, the integration
is successful using a CFL number of 1.2. The accuracy obtained with either method
is similar, with the largest errors occurring at the shock.

Finally, the problem is solved using the embedded pair, with switching based
on (5.3) and applying (5.5) to ensure that switching does not occur too near the
shock. A sample solution and a plot of χ are shown in Fig. 5.4. The SPERK method
propagates the shock correctly and captures the high-frequency region behind the
shock as accurately as either of the component schemes.

6. Discussion and future work. This paper considers spatially partitioned
embedded Runge–Kutta (SPERK) schemes. Such methods give an efficient means to
apply two or more Runge–Kutta methods to a spatially discretized PDE. In this paper,
SPERK schemes are applied in two ways. The first of these partitions the ODEs, and
is therefore referred to as equation-based partitioning. In these methods the order
of accuracy is shown to equal the minimum of the order of accuracy of the schemes
composing the embedded pair. Equation-based partitioning is not conservative when
applied to a conservation law, however. The second partitioning method partitions
by fluxes. This flux-based partitioning has the advantage of being conservative when
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Table 5.3
The flux-partitioned SPERK scheme combined with WENO has the best features of each method.

Here the initial smooth curve sharpens into a shock. At small times t = 0.25 before shock formation,
both of the underlying schemes exhibit their design orders of 5 and 3 respectively. At a later time
t = 1.25, a shock has formed; all schemes exhibit larger errors as the solution is no longer smooth.
However, RK(7,5) now exhibits spurious oscillations, indicated by an increase in the total variation
seminorm. We use a CFL number of 1.2, ∆x = 1

320
, and error measured in an approx. L2 norm.

method time error error (∆x/2) est. order TV increase

RK(7,5) t = 0.25 2.01e-8 6.38e-10 4.98 0
t = 1.25 8.72e-3 8.79e-3 — 0.264

SSPRK(5,3) t = 0.25 1.08e-7 1.34e-8 3.01 0
t = 1.25 1.35e-3 9.53e-4 0.50 0

SPERK t = 0.25 2.01e-8 6.38e-10 4.98 0
t = 1.25 1.35e-3 9.53e-4 0.50 0
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Fig. 5.4. Solution of the Shu–Osher problem at time t = 1.8. Left: the solid line represents a
reference solution computed with just the SSP scheme and 6400 points; the black circles are computed
using the embedded pair and 400 points with CFL number 1.2. Right: The mask χ, showing that
the SSP scheme is used only in a small region around the shock.

applied to a conservation law. Theoretically, it may lead to a loss of one order of
accuracy when compared to the underlying schemes; however, this loss of accuracy is
not observed in practice. We show that both equation- and flux-based partitioning
are positivity-preserving under a suitable time step restriction when the underlying
schemes are strong-stability-preserving (SSP). Numerical experiments on a spatially
discretized variable coefficient advection-diffusion equation show that SPERK schemes
can have superior linear stability properties than either scheme individually. SPERK
schemes may be applied to weighted non-oscillatory (WENO) spatial discretizations
of conservation laws. One approach to partitioning is carried out using the weights
introduced in the WENO spatial discretization. Specifically, a fifth-order Runge–
Kutta method is used in smooth regions where WENO chooses a fifth-order stencil,
and a third-order SSP Runge–Kutta method is used in non-smooth regions where
WENO chooses a formally third-order stencil. We find that this combination avoids
oscillations in problems with shocks, and gives fifth-order accuracy in smooth flows.

As part of this paper, several explicit SPERK schemes are designed and numeri-
cally validated. Future work will carry out a more systematic development of SPERK
schemes. Of particular interest for us are methods that have good monotonicity where
the solution is nonsmooth, and good accuracy elsewhere. Such methods are partic-
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ularly attractive for approximating conservation laws with isolated shocks and other
nonsmooth features.

Schemes with improved local absolute stability properties (like those designed in
Section 4) seem promising for problems with strong spatial variation in the coefficients
or grid size. The stability polynomial optimization algorithm developed in [18] could
be used more generally to design appropriate methods for such problems.

Theoretically, the accuracy of flux-based partitioning is expected to be less than
the accuracy of the schemes composing the embedded pair but this loss of accuracy
is not seen in our tests. This effect may be similar to what is observed in multirate
schemes. For example, the Osher–Sanders scheme [23] is locally inconsistent, but
has been found to give first-order convergence in practice. An explanation for this is
given in [15] where it is shown that local inconsistencies may not show up in the global
errors due to cancellation and damping effects. We hope to transfer this analysis to
the case of SPERK schemes to obtain a better understanding of the unexpectedly
good performance of flux-based partitioning.

We have not attempted to prescribe general techniques for selecting the function
χ, since those must depend on the nature of the problem and the purpose of switching
between schemes. In the context of switching based on smoothness of the solution,
simple but useful approaches have been proposed in [14, 13]. Investigation of effective
switching methods for specific classes of problems is left to future work.
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