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Abstract

This paper studies asymptotic behavior of solutions of a free boundary problem modeling the

growth of tumors with two species of cells: proliferating cells and quiecent cells. In previous literatures

it has been proved that this problem has a unique stationary solution which is asymptotically stable

in the limit case ε = 0. In this paper we consider the more realistic case 0 < ε ≪ 1. In this case,

after suitable reduction the model takes the form of a coupled system of a parabolic equation and

a hyperbolic system, so that it is more difficult than the limit case ε = 0. By using some unknown

variable transform as well as the similarity transform technique developed in our previous work, we

prove that the stationary solution is also asymptotically stable in the case 0 < ε ≪ 1.
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totic stability.
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1 Introduction

It has long been observed that under a constant circumstance, a solid tumor will evolve into a
dormant or stationary state [2, 27, 28]. In a dormant state, the tumor does not change in size, while
cells inside it are alive and keep undergoing the process of proliferation. In 1972 Greenspan established
the first mathematical model in the form of a free boundary problem of a system of partial differential
equations to illustrate this phenomenon [26]. Since then an increasing number of tumor models in similar
forms have been proposed by many different groups of researchers (see, e.g., [1], [3]–[5], [16], [18]–[20],
[30]–[33], and the references cited therein). Rigorous mathematical analysis of such models has drawn
great attention during the past twenty years, and many interesting results have been obtained, cf., [6] –
[15], [17], [21] – [25], [34], and references cited therein.

In this paper we study the following free boundary problem modeling the growth of a solid tumor
with two species of cells — proliferating cells and quiescent cells:

εct = △c− F (c) for x ∈ Ω(t), t > 0, (1.1)

c = 1 for x ∈ ∂Ω(t), t > 0, (1.2)

∗This work is supported by the China National Natural Science Foundation under grant number 11171357.
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pt +∇ · (~vp) = [KB(c)−KQ(c)]p+KP (c)q for x ∈ Ω(t), t > 0, (1.3)

qt +∇ · (~vq) = KQ(c)p− [KP (c) +KD(c)]q for x ∈ Ω(t), t > 0, (1.4)

p+ q = 1 for x ∈ Ω(t), t > 0, (1.5)

d

dt

(
vol(Ω(t))

)
=

∫

Ω(t)

∇ · ~v(x, t)dx for t > 0. (1.6)

Here Ω(t) is the domain occupied by the tumor at time t, c = c(x, t), p = p(x, t) and q = q(x, t) are the
concentration of nutrient, the density of proliferating cells and the density of quiescent cells, respectively,
and ~v = ~v(x, t) is the velocity of tumor cell movement. Besides, F (c) is the consumption rate of nutrient
by tumor cells, KB(c) is the birth rate of tumor cells, KP (c) and KQ(c) are transferring rates of tumor
cells from quiescent state to proliferating state and from proliferating state to quiescent state, respectively,
and KD(c) is the death rate of quiescent cells.

Equation (1.1) describes diffusion of nutrient (regarded as one species) within the tumor, where
ε = Tdiffusion/Tgrowth is the ratio of the nutrient diffusion time scale to the tumor growth (e.g., tumor
doubling) time scale. Typically, Tdiffusion ≈ 1min (see pp. 194–195 of [1]), while Tgrowth ≈ 1day, so
that ε ≪ 1. Equation (1.2) reflects the fact that the tumor receives a constant nutrient supply from
its boundary, and we have rescaled c so that the constant supply of it from the tumor boundary is
exactly 1. Equations (1.3) and (1.4) are conservation laws for the proliferating and quiescent tumor
cells, respectively. Equation (1.5) reflects the fact that the mixture of proliferating and quiescent cells
in the tumor has a constant density, and we have rescaled p and q such that this constant equals to 1.
Finally, the equation (1.6) reflects the fact that the variance rate of the whole tumor volume is equal to
accumulation of all local volume variance rate within the tumor (recall that ∇·~v(x, t) is the local volume
variance rate). We assume that F (c), KB(c), KP (c), KQ(c), KD(c) are C∞ functions, and they satisfy
the following conditions:

(A1) F ′(c) > 0 for c ∈ R, and F (0) = 0.

(A2) K ′
B(c) > 0 and K ′

P (c) ≥ 0 for c ∈ R, and KB(0) = KP (0) = 0.

(A3) K ′
D(c) ≤ 0, K ′

Q(c) ≤ 0, KD(c) ≥ 0 and KQ(c) ≥ 0 for c ∈ R.

(A4) K ′
B(c) +K ′

D(c) > 0 for c ∈ R.

(A5) K ′
P (c) +K ′

Q(c) > 0 for c ∈ R.

For simplicity we assume that the tumor is a strict spheroid of radius R(t), so that

Ω(t) = {x ∈ R
3 : r = |x| < R(t)}.

Accordingly, we assume that all unknown functions c, p and q are spherically symmetric in the space
variable, i.e.,

c = c(r, t), p = p(r, t), q = q(r, t),

and
~v = v(r, t)

x

r
.

It follows that the above model reduces into the following system of equations:

εct(r, t) = crr(r, t) +
2

r
cr(r, t)− F (c(r, t)) for 0 < r < R(t), t > 0, (1.7)

cr(0, t) = 0, c(R(t), t) = 1 for t > 0, (1.8)

pt(r, t) + v(r, t)pr(r, t) =f(c(r, t), p(r, t)) for 0 < r < R(t), t > 0, (1.9)
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vr(r, t) +
2

r
v(r, t) = g(c(r, t), p(r, t)) for 0 < r < R(t), t > 0, (1.10)

v(0, t) = 0 for t > 0, (1.11)

Ṙ(t) = v(R(t), t) for t > 0, (1.12)

where

f(c, p)=KP (c) +
[
KM (c)−KN(c)

]
p−KM (c)p2,

g(c, p)=KM (c)p−KD(c),

and
KM (c) = KB(c) +KD(c), KN (c) = KP (c) +KQ(c).

Global well-posedness of this model has been proved in the literature [15] in a more general setting
(see [14] for the limit case ε = 0). In [13] it is proved that under the assumptions (A1)–(A5) the above
model has a unique stationary solution. In [6, 8] it was proved that in the limit case ε = 0, this unique
stationary solution is asymptotically stable. The purpose of this paper is to prove that the result of
[6, 8] can be extended to the more realistic case ε 6= 0 but small, namely, we shall prove that there exists
ε0 > 0 such that the stationary solution of the system (1.7)–(1.12) is also asymptotically stable in the
case 0 < ε < ε0.

To present the precise statement of our main result, we make further reduction to the model as
follows. Let

c̄(r̄, t) = c(r̄ez(t), t), p̄(r̄, t) = p(r̄ez(t), t), v̄(r̄, t) = v(r̄ez(t), t)e−z(t), R(t) = ez(t), (1.13)

where 0 ≤ r̄ ≤ 1, t ≥ 0. Then the system (1.7)–(1.12) is further reduced into the following system (for
simplicity of the notation we remove all bars “ ¯ ”):

εe2z(t)ct(r, t) = crr(r, t) +
[2
r
+ εe2z(t)rv(1, t)

]
cr(r, t)− e2z(t)F (c(r, t)) for 0 < r < 1, t > 0, (1.14)

cr(0, t) = 0, c(1, t) = 1 for t > 0, (1.15)

pt(r, t) + w(r, t)pr(r, t) =f(c(r, t), p(r, t)) for 0 < r < 1, t > 0, (1.16)

vr(r, t) +
2

r
v(r, t) = g(c(r, t), p(r, t)) for 0 < r < 1, t > 0, (1.17)

v(0, t) = 0 for t > 0, (1.18)

ż(t) = v(1, t) for t > 0, (1.19)

where
w(r, t) = v(r, t)− rv(1, t). (1.20)

Let (c∗(r), p∗(r), v∗(r), z∗) be the stationary solution of the system (1.14)–(1.20) ensured by [13].
The main result of this paper is the following:

Theorem 1.1 Let the assumptions (A1)–(A5) be satisfied. There exist positive constants ε0 and µ∗

such that for any 0 < ε < ε0 and 0 < µ < µ∗, there exist corresponding positive constants δ and C such
that for any time-dependent solution (c(r, t), p(r, t), v(r, t), z(t)) of the system (1.14)–(1.20), if the initial
data (c0(r), p0(r), z0) = (c(r, 0), p(r, 0), z(0)) satisfy

c0(r), c
′
0(r) ∈ C[0, 1], c′0(0) = 0, c0(1) = 1, 0 ≤ c0(r) ≤ 1 for 0 ≤ r ≤ 1, (1.21)

p0(r), r(1 − r)p′0(r) ∈ C[0, 1], p0(1) = 1, 0 ≤ p0(r) ≤ 1 for 0 ≤ r ≤ 1, (1.22)
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max
0≤r≤1

|c0(r)− c∗(r)| < δ, sup
0≤r≤1

|c′0(r) − c∗
′

(r)| < δ, (1.23)

max
0≤r≤1

|p0(r) − p∗(r)| < δ, sup
0≤r≤1

r(1−r)|p′0(r) − p∗
′

(r)| < δ, and |z0 − z∗| < δ, (1.24)

then for all t ≥ 0 we have

max
0≤r≤1

[|c(r, t)− c∗(r)|+ max
0≤r≤1

|cr(r, t)− c∗
′

(r)| + max
0≤r≤1

|ct(r, t)|] < Cδe−µt, (1.25)

max
0≤r≤1

|p(r, t)− p∗(r)| + max
0≤r≤1

r(1−r)|pr(r, t) − p∗
′

(r)| + max
0≤r≤1

|pt(r, t)|] < Cδe−µt, (1.26)

and
|z(t)− z∗|+ |ż(t)| < Cδe−µt. (1.27)

Remark: Readers who are familiar with the literatures [24], [12] and [7] might wish to use the
iteration technique used there to prove the above theorem. The author is not successful in trying to do
so. The obstacle lies in making estimates for |r̄−S(r̄, t, s)| and related quantities, where S(r̄, t, s) denotes
the similarity transform introduced in [8] (see (4.16) in Section 4 below). In this paper we use a different
approach; see Section 2 for illustration.

The structure of the rest part is as follows: In the next section we make further reduction to the
system (1.14)–(1.20) and illustrate the main idea of the proof of the above theorem. In Sections 3–5 we
make preparations for the proof of Theorem 1.1, which is given in the last section.

2 Reduction of the problem

We define a function m in [0, 1]×R as follows: For any z ∈ R, the function c(r) = m(r; z) (0 ≤ r ≤ 1)
is the unique solution of the following boundary value problem:





c′′(r) +
2

r
c′(r) = e2zF (c(r)) for 0 < r < 1,

c′(0) = 0, c(1) = 1.

(2.1)

Since F ∈ C∞(R), we havem ∈ C∞([0, 1]×R). For the solution (c(r, t), p(r, t), v(r, t), z(t)) of the problem
(1.14)–(1.19), we let

η(r, t) = c(r, t)−m(r; z(t)). (2.2)

It can be easily seen that η satisfies the following equations:




εe2z(t)ηt(r, t) = ηrr(r, t) +
[2
r
+ εe2z(t)rv(1, t)

]
ηr(r, t)− e2z(t)a(r; η(r, t), z(t))η(r, t)

−εe2z(t)v(1, t)
[
mz(r; z(t)) − rmr(r; z(t))

]
for 0 < r < 1, t > 0,

ηr(0, t) = 0, η(1, t) = 0 for t > 0,

(2.3)

where a is a function in [0, 1]× R× R defined as follows: For r ∈ [0, 1] and y, z ∈ R,

a(r; y, z) =

∫ 1

0

F ′(m(r; z) + θy)dθ. (2.4)

Conversely, if η(r, t) satisfies (2.3) and z(t) satisfies (1.19), then c(r, t) = m(r; z(t))+η(r, t) satisfies (1.14)
and (1.15). Hence, under the transformation of unknown variables

(c(r, t), p(r, t), v(r, t), z(t)) 7→ (η(r, t), p(r, t), v(r, t), z(t)) (2.5)
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given by (2.2), the system (1.14)–(1.20) is equivalent to the system (1.16)–(1.20) (with c(r, t) replaced by
m(r; z(t)) + η(r, t)) coupled with (2.3).

We introduce three maps v,w, f : C[0, 1] × C[0, 1] × R → C[0, 1] and a functional g in C[0, 1] ×
C[0, 1]× R as follows: For η, p ∈ C[0, 1] and z ∈ R,

v(r; η, p, z) =





1

r2

∫ r

0

g(m(ρ, z) + η(ρ), p(ρ))ρ2dρ for 0 < r ≤ 1,

0, for r = 0;

w(r; η, p, z) =v(r; η, p, z)− rv(1; η, p, z),

f(r; η, p, z) =f(m(r, z) + η(r), p(r)),

g(η, p, z) =v(1; η, p, z) =

∫ 1

0

g(m(r, z) + η(r), p(r))r2dr.

It can be easily seen that with η as in (2.2), we have

v(r, t)=v(r; η(·, t), p(·, t), z(t)),

w(r, t)=w(r; η(·, t), p(·, t), z(t)),

f(c(r, t), p(r, t))=f(r; η(·, t), p(·, t), z(t)),

v(1, t)=g(η(·, t), p(·, t), z(t)).

Hence, under the transformation of unknown variables given by (2.2) and (2.5), the system (1.14)–(1.20)
reduces into the following system:





εe2z(t)ηt(r, t) = ηrr(r, t) +
[2
r
+ εe2z(t)rg(η, p, z)

]
ηr(r, t)− e2z(t)a(r; η, z)η

−εe2z(t)g(η, p, z)
[
mz(r; z)− rmr(r; z)

]
for 0 < r < 1, t > 0,

ηr(0, t) = 0, η(1, t) = 0 for t > 0,

pt +w(r; η, p, z)pr = f(r; η, p, z) for 0 < r < 1, t > 0,

ż = g(η, p, z) for t > 0.

(2.6)

We shall treat the above system in the following way: Let

Y =
{
η = η(r, t) ∈ C([0, 1]× [0,∞)) : η(r, t) is differentiable in r, ηr ∈ C([0, 1]× [0,∞)),

ηr(0, t) = η(1, t) = 0, ∀t ≥ 0, and ‖η‖Y def
= sup

0≤r≤1

t≥0

eµt|η(r, t)| + sup
0≤r≤1

t≥0

eµt
∣∣∣ηr(r, t)

∣∣∣ < ∞
}
,

where µ is a positive constant to be specified later. It is clear that (Y, ‖ · ‖Y ) is a Banach space. Let δ
and δ′ be two positive constants to be specified later. We assume that the initial value (c0(r), p0(r), z0)
of (c(r, t), p(r, t), z(t)) satisfies the conditions in Theorem 1.1. Given η ∈ Y satisfying the conditions

‖η‖Y ≤ δ′ and η(r, 0) = η0(r)
def
= c0(r) −m(r, z0),
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we first solve the initial value problem




pt +w(r; η, p, z)pr = f(r; η, p, z) for 0 < r < 1 and t > 0,

ż = g(η, p, z) for t > 0,

p(r, 0) = p0(r) for 0 ≤ r ≤ 1, and z(0) = z0,

(2.7)

and next solve the following initial-boundary value problem:




εe2z(t)η̃t = η̃rr +
[2
r
+ εe2z(t)rg(η, p, z)

]
η̃r − e2z(t)a(r; η, z)η̃

−εe2z(t)g(η, p, z)
[
mz(r; z)− rmr(r; z)

]
for 0 < r < 1, t > 0,

η̃r(0, t) = 0, η̃(1, t) = 0 for t > 0,

η̃(r, 0) = η0(r) for 0 ≤ r ≤ 1.

(2.8)

We then obtain a map η 7→ η̃ from the closed ball Bδ′(0) in Y into Y . We shall prove that there exists
ε0 > 0 such that for any 0 < ε ≤ ε0, if δ and δ′ are sufficiently small then this is a self-mapping in Bδ′(0).
Moreover, we shall use the Schauder fixed point theorem to prove it has a fixed point in this ball. The
desired assertion then follows.

3 A preliminary lemma

Lemma 3.1 Assume that F ′(c) > 0 for c ∈ R and F (0) = 0. For all 0 ≤ r ≤ 1 and z ∈ R we have:

(1) 0 < m(r; z) ≤ 1; (2) mr(r; z) ≥ 0; (3) mz(r; z) ≤ 0;

(4) mr(r; z) ≤
1

3
rF (1)e2z; (5) mz(r; z) ≥ −1

3
(1− r2)F (1)e2z.

(6) −2

3
F (1)e2z ≤ mrr(r; z) ≤ F (1)e2z;

(7) mz(r; z) ≥ −1

3
(1− r2)F (1)e2z.

Proof: The assertions (1)∼(3) are well-known. Let c(r) = m(r; z). From the first equation in (2.1)
we have (

c′(r)r2
)′

= e2zF (c(r))r2 .

Integrating both sides from 0 to r and using the assertion (1) we obtain

c′(r) =
e2z

r2

∫ r

0

F (c(ρ))ρ2dρ ≤ 1

3
rF (1)e2z . (3.1)

This proves the assertion (4). Next, differentiating all three equations in (2.1) in z we see that the
function cz(r) = mz(r; z) is the solution of the following boundary value problem:





c′′z (r) +
2

r
c′z(r) = e2zF ′(c(r))cz(r) + 2e2zF (c(r)) for 0 < r < 1,

c′z(0) = 0, cz(1) = 0.

Since F ′(c) > 0, cz(r) ≤ 0 and c(r) ≤ 1, we see that

(
c′z(r)r

2
)′

= e2zF ′(c(r))cz(r)r
2 + 2e2zF (c(r))r2 ≤ 2e2zF (1)r2.
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It follows that

c′z(r) ≤
2e2z

r2
F (1)

∫ r

0

ρ2dρ ≤ 2

3
rF (1)e2z.

Hence

−cz(r) ≤
2

3
F (1)e2z

∫ 1

r

ρdρ =
1

3
(1− r2)F (1)e2z .

This proves the assertion (5) and completes the proof of Lemma 3.1. ✷

4 Decay estimates of the solution of (2.7)

We denote by C1
∨[0, 1] the following function space:

C1
∨[0, 1] = {φ ∈ C[0, 1] ∩C1(0, 1) : r(1 − r)φ′(r) ∈ C[0, 1]},

with norm
‖φ‖C1

∨[0,1] = max
0≤r≤1

|φ(r)| + sup
0<r<1

|r(1 − r)φ′(r)| for φ ∈ C1
∨[0, 1].

It is clear that this is a Banach space. Next we denote

X = C[0, 1]× R and X0 = C1
∨[0, 1]× R;

they are both Banach spaces. Given η ∈ Y , we introduce a map F : [0,∞) × X0 → X as follows: For
t ≥ 0 and U = (p, z) ∈ X0,

F(t, U) =
(
−w(·; η(·, t), p, z)p′ + f(·; η(·, t), p, z),g(η(·, t), p, z)

)
.

Then the system (2.7) can be rewritten as the following differential equation in the Banach space X
(regarding X0 as a subspace of X and F(·, t) as an unbounded nonlinear operator in X with domain X0):

U̇ = F(t, U) for t > 0. (4.1)

It is clear that [t 7→ F(t, ·)] ∈ C([0,∞), C∞(X0, X)), and

F(t, U) = A0(t, U)U + F0(t, U) for U ∈ X0, t ≥ 0,

where

A0(t, U)V =
(
−w(·; η(·, t), p, z)q′, 0

)
for U = (p, z) ∈ X, V = (q, y) ∈ X0, t ≥ 0,

F0(t, U) =
(
f(·; η(·, t), p, z),g(η(·, t), p, z)

)
for U = (p, z) ∈ X, t ≥ 0.

It is also clear that [t 7→ A0(t, ·)] ∈ C([0,∞), C∞(X,L (X0, X))) and [t 7→ F(t, ·)] ∈ C([0,∞),
C∞(X,X)). Let U∗ = (p∗, z∗) and V = U − U∗. Then

F(t, U) =A0(t, U)U + F0(t, U)

=A0(t, U
∗ + V )(U∗ + V ) + F0(t, U

∗ + V )

=A0(t, U
∗ + V )V + A0(t, U

∗ + V )U∗ + F0(t, U
∗ + V )

={A0(t, U
∗ + V )V + [∂UA

∗
0(U

∗)V ]U∗ + ∂UF
∗
0(U

∗)V }
+{[∂UA0(t, U

∗)V − ∂UA
∗
0(U

∗)V ]U∗ + [∂UF0(t, U
∗)V − ∂UF

∗
0(U

∗)V ]}
+{[A0(t, U

∗ + V )− A0(t, U
∗)− ∂UA0(t, U

∗)V ]U∗ + [F0(t, U
∗ + V )

−F0(t, U
∗)− ∂UF0(t, U

∗)V ]}+ {A0(t, U
∗)U∗ + F0(t, U

∗)}
=A(t, V )V + B(t)V +G(t, V ) +G(t),
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where ∂UA0(t, U), ∂UF0(t, U), ∂UA
∗
0(U), ∂UF

∗
0(U) denote the Fréchet derivatives of A0(t, U), F0(t, U),

A∗
0(U), F∗

0(U) in the variable U , respectively, where

A∗
0(U)V =

(
−w(·; 0, p, z)q′, 0

)
= lim

t→∞
A0(t, U)V for U = (p, z) ∈ X, V = (q, y) ∈ X0,

F
∗
0(U) =

(
f(·; 0, p, z),g(0, p, z)

)
= lim

t→∞
F0(t, U) for U = (p, z) ∈ X,

and for V ∈ X , W ∈ X0 and t ≥ 0,

A(t, V )W =A0(t, U
∗ + V )W + [∂UA0(t, U

∗)W ]U∗ + ∂UF0(t, U
∗)W,

B(t)V =[∂UA0(t, U
∗)V − ∂UA

∗
0(U

∗)V ]U∗ + [∂UF0(t, U
∗)V − ∂UF

∗
0(U

∗)V ],

G(t, V ) =[A0(t, U
∗ + V )− A0(t, U

∗)− ∂UA0(t, U
∗)V ]U∗ + [F0(t, U

∗ + V )

−F0(t, U
∗)− ∂UF0(t, U

∗)V ],

G(t) =A0(t, U
∗)U∗ + F0(t, U

∗) = F(t, U∗).

Hence (4.1) can be rewritten as follows:

V̇ = A(t, V )V + B(t)V +G(t, V ) +G(t) for t > 0. (4.2)

Note that the above equation is quasi-linear, and

A(t, V ) = A0(t, U
∗ + V ) + B

∗,

where
B
∗W = [∂UA

∗
0(U

∗)W ]U∗ + ∂UF
∗
0(U

∗)W for W ∈ X.

It is easy to see that B∗ ∈ L (X) ∩ L (X0) (cf. Corollary 3.2 of [8]). Moreover, using the mean value
theorem we can easily prove that B ∈ C([0,∞),L (X) ∩ L (X0)), and there exists constant C > 0
independent of η such that

‖B(t)‖L (X) + ‖B(t)‖L (X0) ≤ C[ max
0≤r≤1

|η(r, t)|+ max
0≤r≤1

|ηr(r, t)|] ≤ Cδe−µt (4.3)

for all t ≥ 0. Besides, since η and ηr are bounded functions, It is also easy to see that there is a positive
constant C independent of η such that

‖G(t, V )‖X ≤ C‖V ‖2X , (4.4)

‖G(t, V )‖X0
≤ C‖V ‖2X0

, (4.5)

‖G(t, V1)−G(t, V2)‖X ≤ C(‖V1‖X + ‖V2‖X)‖V1 − V2‖X (4.6)

‖G(t, V1)−G(t, V2)‖X0
≤ C(‖V1‖X0

+ ‖V2‖X0
)‖V1 − V2‖X0

(4.7)

for all t ≥ 0 and small ‖V ‖X , ‖V1‖X0
, ‖V2‖X0

(cf. Corollary 3.3 of [8]). As for the last term on the
right-hand side of (4.2), we have:

Lemma 4.1 Let η ∈ Y and ‖η‖Y ≤ δ. Then G ∈ C([0,∞), X0) and there exists a positive constant
C indepedent of δ such that

‖G(t)‖X0
≤ Cδe−µt for t ≥ 0. (4.8)

Proof: The assertion that G ∈ C([0,∞), X0) follows immediately from Lemma 3.1 of [8]. To prove
(4.8) we note that

G(t) = F(t, U∗) =
(
−w(·; η(·, t), p∗, z∗)p∗′

+ f(·; η(·, t), p∗, z∗),g(η(·, t), p∗, z∗)
)
.
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Since (c∗, p∗, v∗, zs) is stationary solution of (1.14)–(1.20), we have

c∗(r) = m(r, z∗), −v∗(r)p∗
′

(r) + f(c∗(r), p∗(r)) = 0, and

v∗(1) =

∫ 1

0

g(c∗(s), p∗(s))s2ds = 0.

Moreover, since v∗(1) = 0, we have

|w(r; η(·, t), p∗, z∗)− v∗(r)| ≤|v(r; η(·, t), p∗, z∗)− v∗(r)| + r|v(1; η(·, t), p∗, z∗)− v∗(1)|

≤ 1

r2

∫ r

0

|g(c∗(ρ) + η(ρ, t), p∗(ρ))− g(c∗(ρ), p∗(ρ))|ρ2dρ

+r

∫ 1

0

|g(c∗(ρ) + η(ρ, t), p∗(ρ)) − g(c∗(ρ), p∗(ρ))|ρ2dρ

≤Cr max
0≤r≤1

|η(r, t)| for 0 ≤ r ≤ 1, t ≥ 0.

Hence

‖G(t)‖X = max
0≤r≤1

|w(r; η(·, t), p∗, z∗)p∗′

(r) − f(·; η(·, t), p∗, z∗)|+ |g(η(·, t), p∗, z∗)|

≤ max
0≤r≤1

r−1|w(r; η(·, t), p∗, z∗)− v∗(r)| · max
0≤r≤1

rp∗
′

(r)

+ max
0≤r≤1

|f(c∗(r) + η(r, t), p∗(r)) − f(c∗(r), p∗(r))| + |v(1; η(·, t), p∗, z∗)− v∗(1)|

≤C max
0≤r≤1

|η(r, t)| ≤ Cδe−µt for t ≥ 0.

Similarly, by using the above-mentioned equations for (c∗, p∗, v∗, zs) and the fact that rp∗
′

(r),
r2p∗

′′

(r) ∈ C[0, 1] (cf. Lemma 3.1 of [8]) we can also prove that

max
0≤r≤1

|r(1 − r)
∂

∂r
[w(r; η(·, t), p∗, z∗)p∗′

(r) − f(·; η(·, t), p∗, z∗)]|

≤C max
0≤r≤1

|η(r, t)|+ C max
0≤r≤1

|ηr(r, t)| ≤ Cδe−µt for t ≥ 0.

Hence (4.8) holds. ✷

Let V ∈ C([0,∞), X) be given. By using some similar arguments as in the proof of Lemma 4.2 of
[8], we can easily prove that the family of unbounded linear operators {A(t, V ) : t ≥ 0} in X is a stable
family of infinitesimal generators of C0 semigroups in X , and {Ã(t, V ) : t ≥ 0}, their parts in X0, is a
stable family of infinitesimal generators of C0 semigroups in X0. By Theorem 3.1 in Chapter 5 of [29],
it follows that A(t, V ) (t ≥ 0) generates an evolution system U(t, s;V ) (t ≥ s ≥ 0). Moreover, by using
a similar argument as in the proof of Lemma 4.3 of [8], we can easily prove that for any U0 ∈ X0 and
s ≥ 0, the initial value problem

U̇(t) = A(t, V )U(t) (for t > s) and U(s) = U0 (4.9)

has a unique solution U = U(t; s, U0) ∈ C([0,∞), X0)
⋂
C1([0,∞), X). By Theorem 4.2 in Chapter 5 of

[29], it follows that U(t; s, U0) = U(t, s;V )U0 for all t ≥ s ≥ 0, and, furthermore, for any F ∈ C([0,∞), X0)
the expression

U(t) = U(t, 0;V )U0 +

∫ t

0

U(t, s;V )F (s)ds for t ≥ 0.
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gives a unique solution U ∈ C([0,∞), X0)
⋂
C1([0,∞), X) of the initial value problem

U̇(t) = A(t, V )U(t) + F (t) (for t > 0) and U(0) = U0.

Hence, given V0 ∈ X0, the unique solution of the equation (4.2) subject to the initial condition V (0) = V0

is also a solution of the integral equation

V (t) = U(t, 0;V )V0 +

∫ t

0

U(t, s;V )[B(s)V +G(s, V )ds+G(s)]ds (4.10)

and vice versa, i.e., the equation (4.2) subject to the initial condition V (0) = V0 is equivalent to the
above integral equation.

Lemma 4.2 Let η ∈ C([0, 1] × [0,∞)) and V = V (t) ∈ C([0,∞), X) be given such that ηr ∈
C([0, 1]× [0,∞)),

sup
0≤r≤1

|η(r, t)|+ sup
0≤r≤1

|ηr(r, t)| ≤ δe−µt and ‖V (t)‖X ≤ C0δe
−µt for t ≥ 0, (4.11)

where C0, δ and µ are given positive constants. There exists a positive constant µ∗ determined by the
operator A∗(0) = lim

t→∞
A(t, U∗) (therefore it is independent of the constants C0, δ and µ), such that for

any 0 < µ′ < µ∗ there exists corresponding constant δ0 > 0 (depending on C0, µ and µ′) such that if
0 < δ ≤ δ0 then the following estimates hold:

‖U(t, s, V )‖L(X) ≤ C1e
−µ′(t−s) for t ≥ s ≥ 0, (4.12)

‖U(t, s, V )‖L(X0) ≤ C2e
−µ′(t−s) for t ≥ s ≥ 0, (4.13)

where C1 and C2 are positive constants depending only on µ′ and not depending on µ and C0.

Proof: Let V (t) = (ϕ(·, t), ζ(t)) and set

p(r, t) = p∗(r) + ϕ(r, t), z(t) = z∗ + ζ(t).

We denote

w(r, t) =w(r; η(·, t), p(·, t), z(t))

=
1

r2

∫ r

0

g(m(ρ, z(t)) + η(ρ, t), p(ρ, t))ρ2dρ− r

∫ 1

0

g(m(ρ, z(t)) + η(ρ, t), p(ρ, t))ρ2dρ

for 0 < r ≤ 1, t ≥ 0 and w(0, t) = 0 for t ≥ 0. Similarly as in the proof of Lemma 4.1 we can prove the
following estimates:

max
0≤r≤1

|w(r, t)− v∗(r)| ≤ Cδr(1 − r)e−µt for t ≥ 0, (4.14)

max
0≤r≤1

∣∣∣∂w(r, t)
∂r

− v∗
′

(r)
∣∣∣ ≤ Cδe−µt for t ≥ 0. (4.15)

Indeed, for 0 < r ≤ 1/2 we have

|w(r, t) − v∗(r)| ≤ 1

r2

∫ r

0

|g(m(ρ, z(t)) + η(ρ, t), p(ρ, t)) − g(m(ρ, z∗), p∗(ρ))|ρ2dρ

+r

∫ 1

0

|g(m(ρ, z(t)) + η(ρ, t), p(ρ, t)) − g(m(ρ, z∗), p∗(ρ))|ρ2dρ

≤Cr[|z(t)− z∗|+ max
0≤r≤1

|η(r, t)| + max
0≤r≤1

|p(r, t)− p∗(r)|]

≤Crδe−µt for t ≥ 0,
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and for 1/2 < r ≤ 1 we have

|w(r, t) − v∗(r)| ≤
( 1

r2
− r

) ∫ 1

0

|g(m(ρ, z(t)) + η(ρ, t), p(ρ, t))− g(m(ρ, z∗), p∗(ρ))|ρ2dρ

+
1

r2

∫ 1

r

|g(m(ρ, z(t)) + η(ρ, t), p(ρ, t))− g(m(ρ, z∗), p∗(ρ))|ρ2dρ

≤C(1 − r)[|z(t)− z∗|+ max
0≤r≤1

|η(r, t)| + max
0≤r≤1

|p(r, t)− p∗(r)|]

≤C(1 − r)δe−µt for t ≥ 0.

Combining the above two estimates together we obtain (4.14). The proof of (4.15) is simplar; we omit it.

Having proved (4.14) and (4.15), it follows that all the results in Section 5 of [8] can be applied to the
family of similarity transforms r̄ 7→ r = S(r̄; t, s) (t ≥ s ≥ 0) of the unit interval [0, 1] to itself obtained
from solving the initial value problem





∂r

∂t
+ v∗(r̄)

∂r

∂r̄
= w(r, t) for 0 ≤ r̄ ≤ 1, t > s,

r|t=s = r̄ for 0 ≤ r̄ ≤ 1.

(4.16)

The estimates (4.12) and (4.13) then follows from a similar argument as in the proof of Lemma 6.4 of [8].
This proves Lemma 4.2. ✷

Let µ∗ be the constant as in Lemma 4.2 and fix a number 0 < µ < µ∗. Later on the notation µ
always denotes this fixed number.

Lemma 4.3 Let η ∈ C([0, 1]× [0,∞)) be given such that ηr ∈ C([0, 1]× [0,∞)) and

sup
0≤r≤1

|η(r, t)| + sup
0≤r≤1

|ηr(r, t)| ≤ δe−µt for t ≥ 0, (4.17)

where δ and µ are given positive constants, δ sufficiently small and µ < µ∗. Let V0 ∈ X0 be such that
‖V0‖X0

≤ δ. Under these conditions, the equation (4.2) subject to the initial condition V (0) = V0 has a
unique solution V ∈ C([0,∞), X0) ∩C1([0,∞), X) satisfying the following estimates:

‖V (t)‖X0
≤ Cδe−µt, ‖V̇ (t)‖X ≤ Cδe−µt for t ≥ 0, (4.18)

where C is a positive constant independent of η, V0 and δ.

Proof: Let M be the set of all functions V = V (t) ∈ C([0,∞), X) satisfying the following conditions:

V (0) = V0, ‖V (t)‖X ≤ Cδe−µt for t ≥ 0, (4.19)

where C is a positive constant to be specified later. We introduce a metric d on M by defining d(V1, V2) =
supt≥0 e

µt‖V1(t) − V2(t)‖X for V1, V2 ∈ M. It is clear that (M, d) is a complete metric space. In what
follows we split into two steps to prove that the equation (4.2) subject to the initial condition V (0) = V0

has a unique solution in M provided δ is sufficiently small, and the solution also satisfies the other two
estimates in (4.19).

Step 1: We prove that if δ is sufficiently small then for any V ∈ M, the initial value problem




U̇(t) = A(t, V (t))U(t) + B(t)U(t) +G(U(t)) +G(t) for t > 0,

U(0) = V0.
(4.20)
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has a unique solution U ∈ C([0,∞), X0) ∩ C1([0,∞), X) satisfying the following estimates:

‖U(t)‖X ≤ Cδe−µt, ‖U(t)‖X0
≤ C′δe−µt, ‖U̇(t)‖X ≤ C′δe−µt for t ≥ 0, (4.21)

where C is the same constant as that appears in (4.19), and C′ is another positive constant to be specified
later. To this end we let

M̃ = {U ∈ C([0,∞), X0) : ‖U(t)‖X ≤ Cδe−µt and ‖U(t)‖X0
≤ C′δe−µt for t ≥ 0},

and introduce a metric d on it by defining d(U1, U2) = supt≥0 e
µt‖U1(t) − U2(t)‖X0

for U1, U2 ∈ M̃.

(M̃, d) is clearly a complete metric space. Given U ∈ M̃, we consider the following initial value problem:





dŨ(t)

dt
= A(t, V (t))Ũ (t) + B(t)U(t) +G(U(t)) +G(t) for t > 0,

Ũ(0) = V0.

Since U(t) ∈ C([0,∞), X0), we have G(U(t)) ∈ C([0,∞), X0). Since also G ∈ C([0,∞), X0), it follows

that the above problem has a unique solution Ũ ∈ C([0,∞), X0) ∩C1([0,∞), X), given by

Ũ(t) = U(t, 0, V )V0 +

∫ t

0

U(t, s, V )[B(s)U(s) +G(U(s))ds+G(s)]ds. (4.22)

Choose a number µ′ such that µ < µ′ < µ∗. By Lemma 4.2, if δ is sufficiently small then there exist
constants C1, C2 > 0 depending only on µ′ such that for any V = V (t) ∈ C([0,∞), X) satisfying (4.19),
the following estimates hold:

‖U(t, s, V )‖L(X) ≤ C1e
−µ′(t−s) for t ≥ s ≥ 0, (4.23)

‖U(t, s, V )‖L(X0) ≤ C2e
−µ′(t−s) for t ≥ s ≥ 0, (4.24)

Using (4.22), (4.23), (4.4), (4.8), the fact that ‖V0‖X ≤ ‖V0‖X0
≤ δ and the condition ‖U(t)‖X ≤ Cδe−µt

we see that for some positive constant C′′,

‖Ũ(t)‖X≤C1e
−µ′t‖V0‖X + C1

∫ t

0

e−µ′(t−s)[‖B(s)U(s)‖X + ‖G(U(s))‖X + ‖G(s)‖X ]ds

≤C1δe
−µ′t + C1C

′′

∫ t

0

e−µ′(t−s)[Cδ2e−2µs + C2δ2e−2µs + δe−µs]ds

≤
(
1 + 2C′′C2δ

)
C1δ

∫ t

0

e−µ(t−s)e−2µsds+
C1C

′′δ

µ′ − µ
e−µ′t

∫ t

0

e(µ
′−µ)sds

≤
(
1 +

2

µ
C′′C2δ +

C′′

µ′ − µ

)
C1δe

−µt.

Hence, if we first choose the constant C > 0 sufficiently large such that C ≥
(
2 +

C′′

µ′ − µ

)
C1 and next

choose δ0 > 0 sufficiently small such that
2

µ
C′′C2δ0 ≤ 1, then for all 0 < δ ≤ δ0 we have

‖Ũ(t)‖X ≤ Cδe−µt for all t ≥ 0.

Similalrly, by using (4.22), (4.24), (4.5), (4.8), the fact that ‖V0‖X0
≤ δ and the condition ‖U(t)‖X0

≤
C′δe−µt we see that by first choosing C′ sufficiently large and next choosing δ0 further small (when
necessary), we also have

‖Ũ(t)‖X0
≤ C′δe−µt for all t ≥ 0.
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Hence Ũ ∈ M̃. We now define a map S̃ : M̃ → M̃ by setting S̃(U) = Ũ for every U ∈ M̃. A similar
argument by using (4.7) instead of either (4.4) or (4.5) we can prove that by choosing δ0 further small

when necessary, S̃ is a contraction mapping. It follows from the Banach fixed point theorem that S̃ has

a fixed point in M̃, which is clearly a solution of the problem (4.20) in C([0,∞), X0). Uniqueness of the
solution follows from a standard argument. The assertion that the solution U ∈ C1([0,∞), X0) and it
satisfies the third estimate in (4.21) are easy consequences of the equation in the first line of (4.20) (cf.
the proof of Lemma 7.1 of [8]).

The assertion obtained in Step 1 in particular implies that for every V in M, the solution U of (7.2)
also belongs to M. Thus we can define a mapping S : M → M as follows: For any V ∈ M,

S(V ) = U = the solution of (4.20).

Step 2: We prove that if δ is sufficiently small, S is a contraction mapping. For this purpose, let
V1, V2 ∈ M and denote U1 = S(V1), U2 = S(V2) and W = U1 − U2. Then W satisfies





dW (t)

dt
= A(t, V1(t))W (t) + [A(t, V1(t))− A(t, V2(t))]U2(t)

+B(t)W (t) + [G(U1(t)) −G(U2(t))] for t > 0,

W (0) = 0,

so that

W (t) =

∫ t

0

U(t, s, V1){[A(s, V1(s))− A(s, V2(s))]U2(s)ds+ B(s)W (s) + [G(U1(s)) −G(U2(s))]}ds.

It can be easily shown that (cf. the proof of Lemma 7.2 of [8])

‖[A(s, V1(s))− A(s, V2(s))]U2(s)‖X ≤ C‖V1(s)− V2(s)‖X‖U2(s)‖X0
≤ Cδe−2µsd(V1, V2). (4.25)

Besides, from (4.3) we have

‖B(s)W (s)‖X ≤ Cδe−µs‖W (s)‖X ≤ Cδe−2µsd(U1, U2),

and from (4.6) we have

‖G(U1(s))−G(U2(s))‖X≤C
(
‖U1(s)‖X + ‖U2(s)‖X

)
‖U1(s)− U2(s)‖X

≤Cδe−µs‖W (s)‖X ≤ Cδe−2µsd(U1, U2).

From these relations and (4.21) we get

‖U1(t)− U2(t)‖X≤Cδd(V1, V2)

∫ t

0

e−µ(t−s)e−2µsds+ Cδd(U1, U2)

∫ t

0

e−µ(t−s)e−2µsds

≤Cδe−µtd(V1, V2) + Cδe−µtd(U1, U2),

which yields d(U1, U2) ≤ Cδd(V1, V2) + Cδd(U1, U2). The desired assertion now easily follows.

It follows that if δ is sufficiently small then the map S has a fixed point U in M. Since the image

of S is contained in M̃, we obtain the assertion of Lemma 4.3. This completes the proof of Lemma 4.3.
✷

Remark: A similar argument as in Step 2 of the above proof shows that if V1, V2 are solutions of the
equation (4.2) with respect to η1, η2 ∈ Y respectively (with same initial data), then we have the following
estimate:

d(V1, V2) ≤ Cδ sup
0≤r≤1

t≥0

eµt|η1(r, t)− η2(r, t)|. (4.26)
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Indeed, to emphasize the dependence of the operator A(t, V ) on η we redenote it as A(η, V ). Similarly
as in (4.25) we have

‖[A(η1(·, s), V1(s))− A(η2(·, s), V2(s))]U2(s)‖X
≤C sup

0≤r≤1
|η1(r, s)− η2(r, s)|‖U2(s)‖X0

+ C‖V1(s)− V2(s)‖X‖U2(s)‖X0

≤Ce−2µsδ sup
0≤r≤1

t≥0

eµt|η1(r, t)− η2(r, t)|+ Cδe−2µsd(V1, V2).

From this inequality and a similar argument as before we obtain the desired assertion.

The estimate (4.26) will be useful in Section 6.

5 Decay estimates of the solution of (2.8)

Lemma 5.1 Let (η, p, z) = (η(r, t), p(r, t), z(t)) (0 ≤ r ≤ 1, t ≥ 0) be given such that η, ηr ∈
C([0, 1]× [0,∞))(= C([0,∞), X)), p ∈ C([0,∞), X0), z ∈ C1[0,∞). Assume that

sup
0≤r≤1

|η(r, t)| + sup
0≤r≤1

|ηr(r, t)| ≤ δe−µt for t ≥ 0, (5.1)

sup
0≤r≤1

|p(r, t)− p∗(r)| + sup
0<r<1

|r(1 − r)[pr(r, t)− p∗
′

(r)]| ≤ δe−µt for t ≥ 0, (5.2)

|z(t)− z∗|+ |ż(t)| ≤ δe−µt for t ≥ 0. (5.3)

Let η̃ = η̃(r, t) (0 ≤ r ≤ 1, t ≥ 0) be the solution of (2.8) with initial data η̃(r, 0) = η0(r) satisfying

sup
0≤r≤1

|η0(r)| + sup
0≤r≤1

|η′0(r)| ≤ ε′δ, (5.4)

where ε′ is a given small positive constant. Under these conditions, there exist constants ε0, ε
′
0 > 0 and

C > 0 independent of δ such that if 0 < ε ≤ ε0 and 0 < ε′ ≤ ε′0 then

|η̃(r, t)|+ |η̃r(r, t)| ≤ C(ε+ ε′)δe−µt (5.5)

for all 0 ≤ r ≤ 1 and t ≥ 0.

Proof: Let c0 = min
−δ0≤c≤1+δ0

F ′(c) > 0 and λ = c0e
2(z∗−δ0). Since g(0, p∗, z∗) = v∗(1) = 0, we have

g(η(·, t), p(·, t), z(t))=|g(η(·, t), p(·, t), z(t)) − g(0, p∗, z∗)|

≤
∫ 1

0

|g(m(ρ, z(t)) + η(ρ, t), p(ρ, t))− g(m(ρ, z∗), p∗(ρ))|ρ2dρ

≤C[ max
0≤r≤1

|η(r, t)|+ max
0≤r≤1

|p(r, t)− p∗(r)| + |z(t)− z∗|]

≤Cδe−µt. (5.7)

Besides, we also have

z∗ − δ0 ≤ z∗ − δe−µt ≤ z(t) ≤ z∗ + δe−µt ≤ z∗ + δ0,

|mz(r; z)− rmr(r; z)| ≤ Ce2z(t) ≤ Ce2(z
∗+δ0),

a(r; η(r, t), z(t)) =

∫ 1

0

F ′(m(r, z(t)) + θη(r, t))dθ ≥ c0.
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It follows that
|εe2z(t)g(η, p, z)

[
mz(r; z)− rmr(r; z)

]
| ≤ Cεδe−µt,

and
e2z(t)a(r; η, z) ≥ c0e

2(z∗−δ0) = λ.

Using these estimates, we can easily verify that

η+(r, z) = 2λ−1Cεδe−µt + ε′δe−λt/ε and η−(r, z) = −2λ−1Cεδe−µt − ε′δe−λt/ε

are respectively upper and lower solutions of the problem (2.8) provided ε is sufficiently small. Hence,
by the maximum principle we see that

−2λ−1Cεδe−µt − ε′δe−λt/ε ≤ η̃(r, z) ≤ 2λ−1Cεδe−µt + ε′δe−λt/ε (5.8)

for all 0 ≤ r ≤ 1 and t ≥ 0.

Next, by differentiating the equation in the first line of (2.8) in r and using the boundary value
conditions for η̃, we see that η̃r satisfies





εe2z(t)(η̃r)t = (η̃r)rr +
[2
r
+ εe2z(t)rg(η, p, z)

]
(η̃r)r −

[
e2z(t)a(r; η, z) +

2

r2
− εe2z(t)g(η, p, z)

]
η̃r

−e2z(t)ar(r; η, z)η̃ − e2z(t)aη(r; η, z)η̃ηr

−εe2z(t)g(η, p, z)
[
mrz(r; z)− rmrr(r; z)−mr(r; z)

]
for 0 < r < 1, t > 0,

η̃r(0, t) = 0, η̃rr(1, t) + [2 + εe2z(t)g(η, p, z)]η̃r(1, t) = −εe2z(t)g(η, p, z)mr(1; z) for t > 0,

η̃r(r, 0) = η′0(r) for 0 ≤ r ≤ 1.

(5.9)

If ε is sufficiently small we have

e2z(t)a(r; η, z) +
2

r
− εe2z(t)g(η, p, z) ≥ e2(z

∗−δ0)c0 + 2− Cεδ0 > λ.

Moreover, using the assumptions on η, z and also using (5.7) and (5.8), we see that

|e2z(t)ar(r; η, z)η̃ + e2z(t)aη(r; η, z)η̃ηr + εe2z(t)g(η, p, z)
[
mrz(r; z)− rmrr(r; z)−mr(r; z)

]
|

≤Cεδe−µt + Cε′δe−λt/ε.

Since for ε sufficiently small we also have

2 + εe2z(t)g(η, p, z) ≥ 1 and |εe2z(t)g(η, p, z)
[
mz(1; z)−mr(1; z)

]
| ≤ Cδεe−µt,

again by using the maximum principle we conclude that if ε and ε′ are sufficiently small then

−(1 + 2λ−1)Cεδe−µt − ε′δe−λt/ε ≤ η̃r(r, z) ≤ (1 + 2λ−1)Cεδe−µt + Cε′δe−λt/ε (5.10)

for all 0 ≤ r ≤ 1 and t ≥ 0. Combining (5.8) and (5.10), and choosing ε0 further small when necessary
so that λ/ε ≥ µ for 0 < ε ≤ ε0, we obtain (5.5). This proves Lemma 5.1. ✷

Lemma 5.2 Under the same conditions as in Lemma 5.1, there also holds the following estimate:

∫ t

0

∫ 1

0

e−
2c0
ε

(t−s)|η̃rr(r, s)|2r2drds ≤ Cεδ2e−2µt (5.11)
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for all t ≥ 0.

Proof: From the equation in the first three lines in (5.9) we have

ε(η̃r)t = e−2z(t)r−2(r2η̃rr)r + εrg(η, p, z)η̃rr −
[
a(r; η, z) +

2

r2
e−2z(t) − εg(η, p, z)

]
η̃r

−ar(r; η, z)η̃ − aη(r; η, z)η̃ηr − εg(η, p, z)
[
mrz(r; z)− rmrr(r; z)−mr(r; z)

]
.

Multiply both sides of this equation with η̃rr
2 and next integrating with respect to r in [0, 1], we get

ε

2

d

dt

∫ 1

0

|η̃r|2r2dr

=−e−2z(t)

∫ 1

0

|η̃rr|2r2dr + εg(η, p, z)

∫ 1

0

η̃rr η̃rr
3dr −

∫ 1

0

a(r; η, z)|η̃r |2r2dr

−2e−2z(t)

∫ 1

0

|η̃r|2dr + εg(η, p, z)

∫ 1

0

|η̃r|2r2dr −
∫ 1

0

ar(r; η, z)η̃η̃rr
2dr

−
∫ 1

0

aη(r; η, z)η̃ηr η̃rr
2dr − εg(η, p, z)

∫ 1

0

[
mrz(r; z)− rmrr(r; z)−mr(r; z)

]
η̃rr

2dr.

We have

e−2z(t)

∫ 1

0

|η̃rr|2r2dr ≥ e−2(z∗+δ0)

∫ 1

0

|η̃rr|2r2dr def
= C0

∫ 1

0

|η̃rr|2r2dr,

εg(η, p, z)

∫ 1

0

η̃rrη̃rr
3dr =

ε

2
g(η, p, z)|η̃r(1, t)|2 −

3ε

2
g(η, p, z)

∫ 1

0

|η̃r|2r2dr

≤Cε3δ3e−3µt (by (5.5) and (5.7)),

∫ 1

0

a(r; η, z)|η̃r |2r2dr ≥ c0

∫ 1

0

|η̃r|2r2dr,

2e−2z(t)

∫ 1

0

|η̃r|2dr ≥ 0.

Moreover, by using (5.5), (5.7) and the boundedness of η, p, z (with bounds independent of special choice
of these functions) we have

∣∣∣εg(η, p, z)
∫ 1

0

|η̃r|2r2dr −
∫ 1

0

ar(r; η, z)η̃η̃rr
2dr −

∫ 1

0

aη(r; η, z)η̃ηr η̃rr
2dr

−εg(η, p, z)

∫ 1

0

[
mrz(r; z)− rmrr(r; z)−mr(r; z)

]
η̃rr

2dr
∣∣∣

≤Cε3δ3e−3µt + Cε2δ2e−2µt + Cε2δ3e−3µt + Cε2δ2e−2µt ≤ Cε2δ2e−2µt.

It follows that

ε

2

d

dt

∫ 1

0

|η̃r|2r2dr ≤ −C0

∫ 1

0

|η̃rr|2r2dr − c0

∫ 1

0

|η̃r|2r2dr + Cε2δ2e−2µt.

From this inequality we easily deduce that if ε is sufficiently small such that 0 < ε < c0
2µ , then

∫ 1

0

|η̃r|2r2dr +
2C0

ε

∫ t

0

∫ 1

0

e−
2c0
ε

(t−s)|η̃rr(r, s)|2r2drds

≤e−
2c0
ε

t

∫ 1

0

|η′0(r)|2r2dr + Cε2δ2e−2µt ≤ Cδ2e−4µt + Cε2δ2e−2µt.
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The estimate (5.11) now immediately follows. ✷

Corollary 5.3 Under the same conditions as in Lemma 5.1, for any 0 < ν < µ there exists
corresponding constant C > 0 such that the following estimate holds:

∫ ∞

0

∫ 1

0

e2νt|η̃rr(r, t)|2r2drdt ≤ Cδ2. (5.12)

Proof: Multiplying both sides of (5.11) with e2νt and integrating with respect to t over [0,∞), we
get ∫ ∞

0

∫ t

0

∫ 1

0

e2νt−
2c0
ε

(t−s)|η̃rr(r, s)|2r2drdsdt ≤ Cεδ2
∫ ∞

0

e−2(µ−ν)tdt =
Cεδ2

2(µ− ν)
.

Since ∫ ∞

0

∫ t

0

∫ 1

0

e2νt−
2c0
ε

(t−s)|η̃rr(r, s)|2r2drdsdt

=

∫ ∞

0

∫ 1

0

(∫ ∞

s

e−2(
c0
ε
−ν)tdt

)
|η̃rr(r, s)|2r2drds

=
ε

2(c0 − νε)

∫ ∞

0

∫ 1

0

|η̃rr(r, s)|2r2drds,

we see that (5.12) follows. ✷

Corollary 5.4 Under the same conditions as in Lemma 5.1, for any 0 < ν < µ there exists
corresponding constant C > 0 such that the following estimate holds:

∫ ∞

0

∫ 1

0

e2νt|η̃t(r, t)|2r2drdt ≤
Cδ2

ε
. (5.13)

Proof: This follows from Corollary 5.3 combined with the equation (2.7) and the fact that max
0≤r≤1

|η̃(r, t)| ≤
Cδe−µt and max

0≤r≤1
|η̃r(r, t)| ≤ Cδe−µt for all t ≥ 0. ✷

6 The proof of Theorem 1.1

The proof of Theorem 1.1: Let µ∗ be the positive constant specified in Lemma 4.2, and arbitrarily
choose a positive constant µ such that 0 < µ < µ∗ and fix it. Let δ and ε′ be positive constants which we
shall specify later. We assume that the initial data (c0(r), p0(r), z0) of (c(r, t), p(r, t), z(t)) satisfy (1.21),
(1.22) and the following conditions:

max
0≤r≤1

|c0(r)− c∗(r)| < ε′δ, sup
0≤r≤1

|c′0(r)− c∗
′

(r)| < ε′δ, (6.1)

max
0≤r≤1

|p0(r)− p∗(r)| < δ, sup
0<r≤1

r(1−r)|p′0(r) − p∗
′

(r)| < δ, and |z0 − z∗| < ε′δ. (6.2)

Let (Y, ‖ · ‖Y ) be the Banach space introduced in Section 2, and consider the following set S ⊆ Y :

S = {η ∈ Y : η(r, 0) = η0(r), ‖η‖Y ≤ δ},

where η0(r) = c0(r) −m(r, z0). Let η ∈ S and V0 = (p0, z0). It is clear that V0 ∈ X0 and, due to the
conditions in (6.2), we have ‖V0‖X0

≤ δ. It follows by Lemma 4.3 that there exists positive constant
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δ0 depending only on the choice of µ such that if 0 < δ ≤ δ0 then the equation (4.2) subject to the
initial value condition V (0) = V0 has a unique solution V ∈ C([0,∞), X0) ∩ C1([0,∞), X) satisfying the
estimates in (4.18). Let V (t) = (ϕ(·, t), ζ(t)) and set p(r, t) = p∗(r) + ϕ(r, t), z(t) = z∗ + ζ(t). From the
deduction in Section 4 we see that (p, z) is a solution of the system (2.7). Clearly, (p, z) satisfies (1.26)
and (1.27), so that it also satisfies (5.2) and (5.3) when we replace δ in those conditions with Cδ. Now
we consider the problem (2.8). It is clear that the condition (5.1) is satisfied and, by (6.1) and (6.2), the
condition (5.4) is also satisfied. It follows by Lemma 5.1 that there exist constants ε0, ε

′
0 > 0 independent

of δ such that if 0 < ε ≤ ε0 and 0 < ε′ ≤ ε′0 then the solution η̃ = η̃(r, t) of (2.8) satisfies the estimate
(5.5), so that

|η̃(r, t)|+ |η̃r(r, t)| ≤ C(ε+ ε′)δe−µt ≤ δe−µt

provided C(ε0 + ε′0) ≤ 1. This implies that η̃ ∈ S if ε and ε′ are sufficiently small. Let F : S → S be the
map F (η) = η̃. In what follows we prove that F has a fixed point.

We first prove that F is continuous with respect to the metric

d1(η1, η2) = sup
t≥0

eµt
( ∫ 1

0

|η1(r, t)− η2(r, t)|2r2dr
) 1

2

.

Given η1, η2 ∈ S, we let η̃i = F (ηi), i = 1, 2. Then η̃i is the solution of the following problem:




εη̃it = e−2zi(t)r−2(r2η̃ir)r + εrg(ηi, pi, zi)η̃ir − a(r; ηi, zi)η̃i

−εg(ηi, pi, zi)
[
mz(r; zi)− rmr(r; zi)

]
for 0 < r < 1, t > 0,

η̃ir(0, t) = 0, η̃i(1, t) = 0 for t > 0,

η̃i(r, 0) = η0(r) for 0 ≤ r ≤ 1,

where (pi, zi) is the solution of the problem (2.7) for η = ηi, i = 1, 2. It follows that

ε

2

d

dt

∫ 1

0

|η̃1 − η̃2|2r2dr

=−e−2z1(t)

∫ 1

0

|η̃1r − η̃2r|2r2dr − [e−2z1(t) − e−2z2(t)]

∫ 1

0

η̃2r(η̃1r − η̃2r)r
2dr

−3ε

2
g(η1, p1, z1)

∫ 1

0

|η̃1 − η̃2|2r2dr + ε[g(η1, p1, z1)− g(η2, p2, z2)]

∫ 1

0

[η̃1 − η̃2]η̃2rr
3dr

−
∫ 1

0

a(r; η1, z1)|η̃1 − η̃2|2r2dr −
∫ 1

0

[a(r; η1, z1)− a(r; η2, z2)][η̃1 − η̃2]η̃2r
2dr

−ε

∫ 1

0

{g(η1, p1, z1)
[
mz(r; z1)− rmr(r; z1)

]
− g(η2, p2, z2)

[
mz(r; z2)− rmr(r; z2)

]
}

×[η̃1 − η̃2]r
2dr.

Since a(r; η1, z1) ≥ c0 > 0 and ηi, pi, zi (i = 1, 2) are bounded functions with bounds independent of
special choice of these functions, by using (5.5), (5.7) and some standard arguments we see that if δ is
sufficiently small then

ε

2

d

dt

∫ 1

0

|η̃1 − η̃2|2r2dr

≤−1

2
e−2z1(t)

∫ 1

0

|η̃1r − η̃2r|2r2dr −
1

2
c0

∫ 1

0

|η̃1 − η̃2|2r2dr

+Cδ2e−2µt[ max
0≤r≤1

|η1(r, t)− η2(r, t)|2 + max
0≤r≤1

|p1(r, t)− p2(r, t)|2 + |z1(t)− z2(t)|2]

+Cε2[ max
0≤r≤1

|η1(r, t)− η2(r, t)|2 + max
0≤r≤1

|p1(r, t)− p2(r, t)|2 + |z1(t)− z2(t)|2].
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Neglecting the first term on the right-hand side of the above inequality, assuming that ε is sufficiently
small so that Cε ≤ 1

2c0, and using the estimate (4.26), we get

ε

2

d

dt

∫ 1

0

|η̃1 − η̃2|2r2dr ≤ −c0
2

∫ 1

0

|η̃1 − η̃2|2r2dr + C(δ2 + ε2)e−2µt sup
0≤r≤1

t≥0

e2µt|η1(r, t)− η2(r, t)|2.

It follows that by assuming that ε is further small such that c0 − 2µε ≥ 1
2c0 when necessary, we have

∫ 1

0

|η̃1(r, t)− η̃2(r, t)|2r2dr ≤ C(δ2 + ε2)e−2µt
(

sup
0≤r≤1

t≥0

eµt|η1(r, t)− η2(r, t)|
)2

. (6.3)

By applying the three-dimensional interpolation inequality

‖u‖∞ ≤ C‖∇u‖
3

5

∞‖u‖
2

5

2 for u ∈ H1
0 (B1(0)), ∇u ∈ L∞(B1(0))

to the case u(x) = u(|x|), we get the following inequality:

sup
0≤r≤1

|u(r)| ≤ C
(

sup
0≤r≤1

|u′(r)|
) 3

5

(∫ 1

0

|u(r)|2r2dr
) 1

5

. (6.4)

It follows that for any η1, η2 ∈ S we have

sup
0≤r≤1

t≥0

eµt|η1(r, t)− η2(r, t)| ≤ Cδ
3

5 sup
t≥0

(
e2µt

∫ 1

0

|η1(r, t)− η2(r, t)|2r2dr
) 1

5

. (6.5)

Substituting (6.5) into (6.3) we get

d1(η̃1, η̃) ≤ Cδ
3

5 (δ2 + ε2)
1

2 d
2

5

1 (η1, η2).

Hence, the map F : S → S is continuous with respect to the metric d1.

Let

S0 =
{
η ∈ S : η(r, t) is twice weakly differentiable in r and weakly differentiable in t,
∫ ∞

0

∫ 1

0

eµt|ηrr(r, t)|2r2drdt ≤ Cδ2 and

∫ ∞

0

∫ 1

0

eµt|ηt(r, t)|2r2drdt ≤
Cδ2

ε

}
,

where C is the constant appearing in (5.12) and (5.13) for the case ν = µ/2. By Lemma 5.3 and Lemma
5.4 we see that F (S) ⊆ S0.

Let S̄ be the closure of S with respect to the metric d1, and let F̄ : S̄ → S̄ be the unique continuous
extension of the map F onto S̄. Then F̄ (S̄) ⊆ S̄0, where S̄0 is the closure of S0 with respect to the
metric d1. By using a standard ∗-weak compactness argument we easily see that

S̄0 ⊆
{
η ∈ C([0,∞), L2((0, 1), r2dr)) ∩ L2((0,∞), H2((0, 1), r2dr), eµtdt)

∩H1((0,∞), L2((0, 1), r2dr), eµtdt) : η(r, 0) = η0(r) for a. e. r ∈ (0, 1),

η(1, t) = 0 for a. e. t > 0, esssup
0≤r≤1

t≥0

eµt|η(r, t)| ≤ δ, esssup
0≤r≤1

t≥0

eµt|ηr(r, t)| ≤ δ,

∫ ∞

0

∫ 1

0

eµt|ηrr(r, t)|2r2drdt ≤ Cδ2 and

∫ ∞

0

∫ 1

0

eµt|ηt(r, t)|2r2drdt ≤
Cδ2

ε

}
.
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Let

Ȳ =
{
η ∈ C([0,∞), L2((0, 1), r2dr)) : ‖η‖Ȳ

def
= sup

t≥0
eµt

(∫ 1

0

|η(r, t)|2r2dr
) 1

2

< ∞
}
.

It is clear that (Ȳ , ‖ · ‖Ȳ ) is a Banach space and S̄ is a closed convex subset of this space. For any
T > 0, we let YT , ȲT , ST , S̄T , S0T and S̄0T be respectively the restrictions of Y , Ȳ , S, S̄, S0 and S̄0 on
[0, 1] × [0, T ], and correspondingly define FT , F̄T to be respectively the “restrictions” of F , F̄ on ST

and S̄T , i.e., for any ζ ∈ ST we choose an η ∈ S such that η|[0,T ] = ζ and define FT (ζ) = F (η)|[0,T ], and
similarly for F̄T . By uniqueness of solutions of the problems (2.7) and (2.8) in any interval [0, T ] we see
that these definitions make sense. Moreover, it is clear that FT is a continuous self-mapping in ST , F̄T

is a continuous self-mapping in S̄T , FT (ST ) ⊆ S0T and F̄T (S̄T ) ⊆ S̄0T . Note that, in particular,

ȲT =
{
η ∈ C([0, T ], L2((0, 1), r2dr)) : ‖η‖ȲT

def
= sup

0≤t≤T
eµt

(∫ 1

0

|η(r, t)|2r2dr
) 1

2

< ∞
}
,

S̄0T⊆
{
η ∈ C([0, T ], L2((0, 1), r2dr)) ∩ L2((0, T ), H2((0, 1), r2dr)) ∩H1((0, T ), L2((0, 1), r2dr)) :

η(r, 0) = η0(r) for a. e. r ∈ (0, 1), η(1, t) = 0 for a. e. t ∈ (0, T ), sup
0≤r≤1

0<t<T

eµt|η(r, t)| ≤ δ,

sup
0≤r≤1

0<t<T

eµt|ηr(r, t)| ≤ δ,

∫ T

0

∫ 1

0

eµt|ηrr(r, t)|2r2drdt ≤ Cδ2 and

∫ T

0

∫ 1

0

eµt|ηt(r, t)|2r2drdt ≤
Cδ2

ε

}
.

Clearly, S̄T is a closed convex subset of ȲT . Moreover, it is also easy to see that S̄0T is a compact
subset of ȲT . Indeed, let {ηn}∞n=1 be a sequence in S̄0T . By compactness of the embedding H1((0, 1)×
(0, T ), r2drdt) →֒ L2([0, 1]× [0, T ], r2drdt), ∗-weak compactness of bounded sets in L∞([0, 1]× [0, T ]), and
weak compactness of bounded sets in L2([0, 1]× [0, T ]), we see that there exists a subsequence of {ηn}∞n=1

which we assume, for simplicity of the notation, to be {ηn}∞n=1 itself, and η ∈ S̄0T such that as n → ∞,

ηn → η strongly in L2([0, 1]× [0, T ], r2drdt),

ηrn → ηr ∗-weakly in L∞([0, 1]× [0, T ]),

ηrrn → ηrr weakly in L2([0, 1]× [0, T ], r2drdt),

ηtn → ηt weakly in L2([0, 1]× [0, T ], r2drdt).

Integrating the equation

d

dt

∫ 1

0

|ηn(r, t)− η(r, t)|2r2dr = 2

∫ 1

0

[ηn(r, t)− η(r, t)][ηnt(r, t)− ηt(r, t)]r
2dr,

and using the Cauchy-Schwartz inequality and the inequalities

∫ T

0

∫ 1

0

eµt|ηnt(r, t)|2r2drdt ≤
Cδ2

ε
(n =

1, 2, · · · ) and
∫ T

0

∫ 1

0

eµt|ηt(r, t)|2r2drdt ≤
Cδ2

ε
, we get

sup
0≤t≤T

∫ 1

0

|ηn(r, t)− η(r, t)|2r2dr =
Cδ√
ε

(∫ T

0

∫ 1

0

|ηn(r, t)− η(r, t)|2]r2drdt
) 1

2

, n = 1, 2, · · · .

It follows that lim
n→∞

‖ηn − η‖ȲT
= 0. This proves the desired assertion.

It follows by the Schauder fixed point theorem that F̄T has a fixed point in S̄T , which we denote as
ηT .
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We now prove that ηT ∈ S0T and it is a fixed point of FT . We first prove that ηT ∈ C([0, 1]× [0, T ]).
This assertion follows from the fact that S̄0T ⊆ C([0, 1] × [0, T ]), which is proved as follows: First, for
any p > 1 by integrating the equation

d

dt

∫ 1

0

|η(r, t)|pr2dr = p

∫ 1

0

|η(r, t)|p−1sgnη(r, t)ηt(r, t)r
2dr

and using a similar argument as before we see that for any η ∈ S̄0T such that η(·, 0) = 0, we have

sup
0≤t≤T

∫ 1

0

|η(r, t)|pr2dr =
Cδp−1

√
ε

( ∫ T

0

∫ 1

0

|η(r, t)|2r2drdt
) 1

2

.

Next, by integrating the equation
d

dr
|η(r, t)|2 = 2η(r, t)ηr(r, t)

and using the Hölder inequality for p > 3 we see that for any η ∈ S̄0T we have

sup
0≤r≤1

0<t<T

|η(r, t)|2 ≤2 sup
0≤t≤T

∫ 1

0

|η(r, t)|dr · sup
0≤r≤1

0<t<T

|ηr(r, t)| ≤ Cδ sup
0≤t≤T

∫ 1

0

|η(r, t)|r 2

p · r− 2

p dr

≤Cδ sup
0≤t≤T

( ∫ 1

0

|η(r, t)|pr2dr
) 1

p

Combining the above two inequalities we get

sup
0≤r≤1

0<t<T

|η(r, t)| ≤ Cδ1−
1

2p

p
√
ε

(∫ T

0

∫ 1

0

|η(r, t)|2r2drdt
) 1

4p

. (6.6)

Using this inequality to ηn − η for any η ∈ S̄0T and a corresponding sequence ηn ∈ S0T (n = 1, 2, · · · )

such that lim
n→∞

∫ T

0

∫ 1

0

|ηn−η|2r2drdt = 0, we see that ηn converges to η uniformly in [0, 1]× [0, T ], so that

η ∈ C([0, 1]× [0, T ]). This proves that S̄0T ⊆ C([0, 1]× [0, T ]) and, consequently, ηT ∈ C([0, 1]× [0, T ]).

It follows that the problem (2.7) with η replaced by ηT has a unique classical solution for 0 ≤ t ≤ T ,
which we denotes as (pT , zT ). Since ηT , pT ∈ C([0, 1] × [0, T ]) and zT ∈ C[0, T ], by using the standard
Lp-theory for parabolic equations we see that when (η, p, z) is replaced by (ηT , pT , zT ), the problem (2.8)
has a unique strong solution in [0, 1]× [0, T ] which we denote as η̃T . Clearly, η̃T ∈ W 2,1

p ((0, 1)× (0, T ))

for any 1 < p < ∞. Using a limit argument we can easily show that η̃T = ηT . Indeed, by choosing a

sequence ηn ∈ S0T (n = 1, 2, · · · ) such that lim
n→∞

∫ T

0

∫ 1

0

|ηn−ηT |2r2drdt = 0 (which implies, by (6.6), that

also lim
n→∞

sup
0≤r≤1

0<t<T

|ηn− ηT | = 0) and defining η̃n = FT (ηn), we see that η̃n → η̃T uniformly in [0, 1]× [0, T ].

Since also η̃n = FT (ηn) → F̄T (η
T ) = ηT strongly in ȲT , by uniqueness of the limit we obtain the desired

assertion. It follows that (ηT , pT , zT ) is a solution of the problem (2.6) in [0, 1]× [0, T ]. Using this fact
and the bootstrap argument we immediately obtain the assertion that ηTr ∈ C([0, 1] × [0, T ]). Hence
ηT ∈ S0T . The assertion that ηT is a fixed point of FT now follows from the fact that η̃T = ηT .

Since (ηT , pT , zT ) is a classical solution of the problem (2.6) in the time interval [0, T ], by uniqueness
of the solution of this problem, we conclude that for any 0 < T1 < T2 we have ηT1(r, t) = ηT2(r, t) for
(r, t) ∈ [0, 1] × [0, T1]. It follows that the following definition of the function η in [0, 1] × [0,∞) makes
sense:

η(r, t) = ηT (r, t) for any (r, t) ∈ [0, 1]× [0, T ] and T > 0.
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Moreover, by letting T → ∞ in the relations ηT ∈ S0T and FT (η
T ) = ηT , we see that η ∈ S0 ⊆ S and it

is a fixed point of the map F : S → S.

Having proved that F has a fixed point in S, the desired assertions in Theorem 1.1 then immediately
follow from Lemma 4.3 and Lemma 5.1. This completes the proof of Theorem 1.1. ✷
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