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STABILITY RESULTS FOR DOUBLY NONLINEAR DIFFERENTIAL

INCLUSIONS BY VARIATIONAL CONVERGENCE

THOMAS ROCHE, RICCARDA ROSSI, AND ULISSE STEFANELLI

Abstract. We present a stability result for a wide class doubly nonlinear equations, featu-
ring general maximal monotone operators, and (possibly) nonconvex and nonsmooth energy
functionals. The limit analysis resides on the reformulation of the differential evolution as a
scalar energy-conservation equation with the aid of the so-called Fitzpatrick theory for the re-
presentation of monotone operators. In particular, our result applies to the vanishing viscosity
approximation of rate-independent systems.

1. Introduction

This note is concerned with a convergence result for doubly nonlinear differential inclusions of
the type

αn (u̇n(t)) + ∂Et(un(t)) ∋ 0 in X∗ for a.a. t ∈ (0, T ). (1.1)

Here, (αn) is a sequence of maximal monotone (and possibly multivalued) operators αn : X ⇒ X∗,
(X, ‖ · ‖) is a (separable) reflexive Banach space, and E : [0, T ]×X → (−∞,∞] is a (proper) time-
dependent energy functional. We will prove that for αn → α in the graph sense any limit point u
of the sequence (un)n∈N is a solution to

α (u̇(t)) + ∂Et(u(t)) ∋ 0 in X∗ for a.a. t ∈ (0, T )

Throughout the paper, we write Et(u) in place of E(t, u). We will understand the multivalued
operator ∂E : (0, T )×X ⇒ X∗ to be a suitable notion of subdifferential for the possibly nonsmooth
and nonconvex map u 7→ Et(u), namely the so-called the Fréchet subdifferential, defined at (t, u) ∈
dom(E) by

ξ ∈ ∂Et(u) if and only if Et(v) ≥ Et(u) + 〈ξ, v − u〉+ o(‖v − u‖) as v → u. (1.2)

Observe that, as soon as the mapping u 7→ Et(u) is convex, the Fréchet subdifferential ∂Et(u)
coincides with the subdifferential of u 7→ Et(u) in the sense of convex analysis.

Doubly nonlinear equations as in (1.1) arise in a variety of different applications, ranging from
Thermomechanics, to phase change, to magnetism. As such, they have attracted a substantial deal
of attention in recent years. Correspondingly, the related literature is quite rich. Being beyond
our scope to attempt here a comprehensive review, we limit ourselves to recording the seminal
observations by Moreau [56, 57] and Germain [37], as well as the early existence results by
Arai [9], Senba [71], Colli & Visintin [26], and Colli [25]. The reader can find a selection of
more recent results in [5, 2, 3, 7, 33, 41, 51, 65, 69]. Without going into details, let us mention
that, over the last decade, the convexity requirement on the map u 7→ Et(u) in the pioneering
papers [9, 71, 26, 25] has been progressively weakened: in particular, in [51] a quite broad class
of nonsmooth and nonconvex energy functionals has been considered. Nonetheless, in all of the
aforementioned contributions the operator α is assumed to fulfill some coercivity property, namely
to have at least linear growth at infinity. We will refer to this case as viscous.
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The case of 0-homogeneous operators α has been recently investigated as well, for it connects
with the modeling of so-called rate-independent systems. We shall hence refer to this situation as
rate-independent. Some references in this direction are to be found in the papers [28, 29, 36, 43,
48, 47, 53, 54, 55].

Additionally, relation (1.1) has been considered in connection with the study of the long-time
behavior of solutions in [4, 31, 68, 70, 69], and their variational characterization in [6, 8, 72, 75].

The focus of this paper is on the study of the stability of the doubly nonlinear flows (1.1).
Namely, we investigate the convergence of solutions un to equations (1.1), under the assumption

αn → α in the graph sense in X ×X∗, (1.3)

viz. for all (ξ, ξ∗) ∈ graph(α) there exists (ξn, ξ
∗
n) ∈ graph(αn) such that ξn → ξ in X and ξ∗n → ξ∗

in X∗ as n → ∞. The main result of this paper, Theorem 4.5, states that cluster points u of the
curves (un) are in fact solutions to the limiting equation

α (u̇(t)) + ∂Et(u(t)) ∋ 0 in X∗ for a.a. t ∈ (0, T ). (1.4)

We have to mention that stability results for the doubly nonlinear flows (1.1) are already
available in the literature. For viscous graphs αn, a first convergence theorem in the case of
convex energies has been obtained by Aizicovici & Yan [1] (see also [72]), whereas stability
results for doubly nonlinear equations with nonconvex energies have been proved in [51] . This
issue has been recently reconsidered by Visintin [80, 81, 82], who has remarkably extended the
reach of the theory to treat subdifferential inclusions of the type

β(u̇(t)) + γ(u(t)) ∋ 0 in X∗ for a.a. t ∈ (0, T ),

with β, γ : X ⇒ X∗ maximal monotone operators, β cyclically monotone and γ noncyclic mono-
tone, by resorting to the so-called Fitzpatrick theory [34].

Let us briefly recall that an operator α : X ⇒ X∗ is cyclically monotone if α is the generalized
gradient of some potential. Namely, if α = ∂ψ for some proper, convex, and lower semicontinuous
function ψ : X → (−∞,∞], where the symbol ∂ here denotes the subdifferential in the sense of
convex analysis. In the cyclic-monotone case α = ∂ψ, it is well known that the relation y ∈ ∂ψ(x)
can be equivalently reformulated as 〈y, x〉 = ψ(x) + ψ∗(y), where ψ∗ is the Legendre-Fenchel
conjugate of ψ and 〈·, ·〉 is the duality pairing between X∗ and X . The use of this variational fact
for the aim of variationally reformulating evolution equations dates back to Brezis-Ekeland
[18, 17] and Nayroles [59, 60]. Among the many contributions stemming from this idea, the
reader is especially referred to the existence proofs by Auchmuty [11] and Roubicek [67], and
to the recent monograph by Ghoussoub [39] on self-dual variational principles (see also the
references in [72]).

The Fitzpatrick theory allows us to extend this variational view to subdifferential inclusions
of the type (1.4), with α possibly noncyclic monotone, by introducing representative functions
fα : X ×X∗ → (−∞,∞] for the operator α. These are convex functions fα with the property

∀(x, y) ∈ X ×X∗, 〈y, x〉 ≤ fα(x, y) and

y ∈ α(x) iff 〈y, x〉 = fα(x, y).
(1.5)

The reader is referred to Section 2 below for a selection of relevant results within this theory.
In particular, in [80] these tools are used in order to reformulate variationally relations (1.1)
for noncyclic monotone operators. This reformulation opens the way to devise a suitable Γ-
convergence analysis toward structural stability of the flows.

As for the rate-independent case, one shall mention the stability results for hysteresis operators
from the classical monographs [19, 42, 78] (see also [74]). Another stability result in the rate-
independent setting is in [72]. Moreover, we recordVisintin [81, 82], which exploits the Fitzpatrick
idea in the rate-independent context, but by taking perturbations in ∂En (again, in a possibly
noncyclic monotone frame).

Finally, the approximation of rate-independent flows by viscous flows (in the cyclic-monotone
case) has been recently attracted a great deal of attention. This is especially critical as viscous and
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rate-independent evolutions usually call for different analytical treatments. The vanishing viscosity
approach to abstract rate-independent systems has been in particular developed in [32, 49, 50].
More specifically, in the latter two papers it has been shown that the vanishing viscosity limit leads
to the notion of BV solution to a rate-independent system. In the recent [52], still within the
cyclic-monotone frame, the pn → 1 limit, where pn is the homogeneity of the potential ψn of αn,
has been addressed, and it has been proved that BV solutions arise in the limit. A stability result
with respect to variational convergence for the latter solution concept has also been obtained.

Our result. The focus here is that of obtaining a stability result for the differential inclusions
(1.1) by allowing for maximal generality on the perturbations αn and on the functional E. In
particular, we shall neither assume super-linear equi-coercivity in αn, nor cyclic monotonicity. As
for the energy E, we do not require neither smoothness nor convexity with respect to u, but still
ask for lower semicontinuity and some coercivity, see Assumption 3.9 below.

This generality sets our result aside from the available contributions on this topic. In particular,
our analysis also encompasses the passage from viscous to rate-independent doubly nonlinear
evolution. Indeed, we are able to treat here the pn → 1 case for noncyclic monotone operators αn
(in this setting, pn is the coercivity exponent for αn). In our general context, we prove that the
so-called local solutions [49, 50] to a rate-independent system arise in the pn → 1 limit.

The basic idea for handling the noncyclic monotone case, is to resort to a variational reformu-
lation of the flows (1.1) which is well suited for discussing limits. By letting fαn

represent the
monotone operator αn in the sense of (1.5) and assuming the validity of a suitable chain rule
for the energy E, relation (1.1) is proved to be equivalent (see Proposition 3.12) to an energy
conservation identity, namely

Et(un(t))︸ ︷︷ ︸
energy at t

+

∫ t

0

fαn

(
u̇n(s),−∂Es(u(s))

)
dt

︸ ︷︷ ︸
dissipated energy on [0, t]

= E0(u(0)︸ ︷︷ ︸
initial energy

+

∫ t

0

∂tEs(u(s))ds

︸ ︷︷ ︸
work of ext. actions

for all t ∈ [0, T ].

(1.6)
The strategy is then to prove that, by passing to the lim inf in (1.6), the structure of the relation
is preserved. In particular, we provide sufficient conditions under which the lim inf of the integral
of the representative functions fαn

is a representative function of the limit graph α. Care here
is given to developing such a lower semicontinuity argument for functions which are only BV in
time. This allows us to directly include the case of rate-independent flows.

Let us once more emphasize that we can encompass in our analysis a broad class of time-
dependent energies E : [0, T ]×X → (−∞,+∞], (possibly) nonsmooth and nonconvex with respect
to the state variable u, but still satisfying a suitable set of coercivity and regularity type conditions
mutuated from [51]. Note that in such a general setting existence of absolutely continuous solutions
un : [0, T ] → X to (1.1) is presently not known. A possibility in order to overcome this would
be to strengthen our assumptions on the energy functional E, for instance assuming it to be a
suitable perturbation of a (λ-)convex functional, as in [66, 65, 51]. We however refrain from this,
for the sake of keeping maximal generality for the convergence result. In this respect, our result
should be regarded purely as a stability analysis, with focus on the convergence properties of the
operators (αn). A stability result with respect to suitable convergence of the energy functionals
could also be obtained, closely following the lines of [51, Thm. 4.8]. Again, we have chosen not
to detail this, in order to highlight the usage of the Fitzpatrick theory to deal with the noncyclic
operators (αn). This very generality will allow us, for instance, to address in the upcoming Section
4.3 the quasistatic limits of a class of dynamical problems, which can be in fact reformulated as
doubly nonlinear equations of the form (1.1).

Structure of the paper. Section 2 contains some background material on Fitzpatrick theory, and
on the notions of variational convergence for functionals and operators which will be relevant for
the subsequent analysis. In Section 3.1, some further preliminaries of measure theory and convex
analysis are provided, whereas in Section 3.2 the basic assumptions on the energy functional E
are stated in detail, and suitable reformulations of (1.1) are discussed. In Section 4 we state our
main stability result Theorem 4.5 and thoroughly comment it. We also give two corollaries (i.e.
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Theorem 4.8 and Proposition 4.9) in two particular cases: specifically, Prop. 4.9 deals with the
pn → 1 vanishing-viscosity limit. We conclude Sec. 4 by discussing classes of energy functionals
to which our results apply (cf. Sec. 4.2), and developing applications to rate-independent limits of
Hamiltonian systems (in Sec. 4.3). The proof of Theorem 4.5 is developed throughout Section 5,
also exploiting some results from Young measure theory which are contained in Appendix A.

2. Fitzpatrick theory

Within this section, we shall systematically use the notation

π(ξ, ξ∗) := 〈ξ∗, ξ〉 for all (ξ, ξ∗) ∈ X ×X∗

for the duality pairing between the reflexive space X and X∗, and identify possibly multivalued
operators α : X ⇒ X∗ with the corresponding graphs α ⊂ X × X∗ without changing notation.
We recall that α : X ⇒ X∗ is monotone if

〈ξ∗ − ξ∗0 , ξ − ξ0〉 ≥ 0 for all ξ∗ ∈ α(ξ), ξ∗0 ∈ α(ξ0)

(where 〈·, ·〉 denotes the duality pairing between X∗ and X), and that it is maximal monotone, if
it is maximal for set inclusion within the class of monotone operators.

We shall provide here a minimal aside on the Fitzpatrick theory, essentially mutuated from [79].
The reader is however referred to [20, 21, 22, 23, 38, 39, 45, 46, 62, 63] for additional material and
a collection of related results and applications to PDEs.

Representative functionals. We denote by F(X) the set of functionals ϕ : X×X∗ → (−∞,∞]
such that

ϕ is convex, lower semicontinuous, and ϕ(ξ, ξ∗) ≥ π(ξ, ξ∗) ∀(ξ, ξ∗) ∈ X ×X∗.

We associate with ϕ ∈ F(X) the set α ⊂ X ×X∗ given by

(ξ, ξ∗) ∈ α ⇔ ϕ(ξ, ξ∗) = π(ξ∗, ξ). (2.1)

Whenever (2.1) holds we say that ϕ represents α, that ϕ is representative, and that α is repre-
sentable. A representable operator can be represented by different representative functionals (cf.
Example 2.4 below). On the contrary, each representative functional represents only one operator.

Example 2.1. In the cyclically monotone case of α = ∂ψ for some (proper) convex and lower
semicontinuous potential ψ : X → (−∞,∞], a representative functional for α is given by the
bipotential (according to the terminology of [20])

ϕ(ξ, ξ∗) = ψ(ξ) + ψ∗(ξ∗). (2.2)

We have the following strict set inclusions

{maximal monotone operators} $ {representable operators} $ {monotone operators}.

Namely, representable operators are intermediate between monotone and maximal monotone. One
may wonder how to translate maximality at the level of representative functionals. The following
result provides a useful criterium for the representability of a maximal monotone operator.

Proposition 2.2 (Representative of a maximal monotone operator [76]). A functional ϕ ∈ F(X)
represents a maximal monotone operator iff ϕ∗ ∈ F(X∗). In this case, if ϕ represents α then ϕ∗

represents α−1 = {(ξ, ξ∗) : (ξ∗, ξ) ∈ α}.

The Fitzpatrick and the Penot functions. Given α ⊂ X × X∗ with α 6= ∅ we define the
Fitzpatrick function (associated with α) fα : X ×X∗ → (−∞,∞] by

fα(ξ, ξ
∗) := π(ξ, ξ∗) + sup{π(ξ0 − ξ, ξ∗ − ξ∗0) : (ξ0, ξ

∗
0) ∈ α}

= sup{π(ξ0, ξ
∗)− π(ξ0 − ξ, ξ∗0) : (ξ0, ξ

∗
0) ∈ α} for all (ξ, ξ∗) ∈ X ×X∗ (2.3)

and the Penot function (associated with α) ρα : X ×X∗ → (−∞,∞] by

ρα := (π + Iα)
∗∗. (2.4)
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Both fα and ρα represent α. Moreover fα and ρα are respectively the minimal and maximal
element (with respect to pointwise ordering) of the functional interval

I(α) = {ϕ ∈ F(X) : ϕ represents α}. (2.5)

In particular, in the cyclically monotone case of α = ∂ψ, there holds

fα(ξ, ξ
∗) ≤ ψ(ξ) + ψ∗(ξ∗) ≤ ρα(ξ, ξ

∗) for all (ξ, ξ∗) ∈ X ×X∗. (2.6)

Let us also point out that, in view of the definitions (2.3) and (2.4) of fα and ρα the following
formulae hold

fα(ξ, ξ
∗) = sup{π(ξ0, ξ

∗) + π(ξ, ξ∗0 )− ρα−1(ξ∗0 , ξ0) : (ξ0, ξ
∗
0) ∈ X×X∗} ∀ (ξ, ξ∗) ∈ X×X∗, (2.7)

ρα(ξ, ξ
∗) = sup{π(ξ0, ξ

∗) + π(ξ, ξ∗0 )− fα−1(ξ∗0 , ξ0) : (ξ0, ξ
∗
0) ∈ X×X∗} ∀ (ξ, ξ∗) ∈ X×X∗, (2.8)

namely fα (ρα, resp.) is the convex conjugate of the Penot (Fitzpatrick, resp.) function of the
inverse operator α−1.

Finally, for later use we observe that

0 ∈ α(0) ⇒ fα(ξ, ξ
∗) ≥ 0 for all (ξ, ξ∗) ∈ X ×X∗. (2.9)

Self-dual representatives. Recall that a function ϕ : X ×X∗ → (−∞,∞] is called self-dual iff

ϕ(ξ, ξ∗) = ϕ∗(ξ∗, ξ) for all (ξ, ξ∗) ∈ X ×X∗.

The interval I(α) from (2.5) includes self-dual representative functions [63, Thm. 3.3]. In the
cyclically monotone case of α = ∂ψ, an example in this direction is given by the bipotential
(2.2). Out of the cyclically monotone realm, an example of a self-dual representative in the case
α = γ + ∂ψ with γ skew adjoint is (ξ, ξ∗) 7→ ψ(ξ) + ψ∗(−γξ + ξ∗) [38].

In the general case, the indirect proof of the existence of self-dual representative functions is
due to Penot [61, 62] and Svaiter [76], whereas direct constructions have been firstly provided
by Penot & Zălinescu [64] under some restriction on α. An explicit self-dual representative
function in the general maximal monotone case has been recently obtained by Bauschke & Wang
[15] and reads

(ξ, ξ∗) 7→
1

2
inf

(ζ,ζ∗)∈X×X∗

{
fα(ξ + ζ, ξ∗ + ζ∗) + fα(ξ − ζ, ξ∗ − ζ∗) + ‖ζ‖2 + ‖ζ‖2∗

}
. (2.10)

Note that neither the Fitzpatrick function fα nor the Penot function ρα are self-dual in general.

Let us now recast the characterization of maximal monotonicity of Proposition 2.2 in the fol-
lowing.

Proposition 2.3 (Self-dual representatives = maximality). An operator α : X ⇒ X∗ is maximal
monotone iff it is represented by a self-dual functional ϕ.

Proof. By [15], if α is maximal monotone, then it admits the self-dual representative (2.10).

As for the converse implication, note that by self-duality of ϕ and π we get

ϕ∗(ξ∗, ξ) = ϕ(ξ, ξ∗) ≥ π(ξ, ξ∗) = π∗(ξ∗, ξ).

Thus, ϕ∗ ∈ F(X∗) and Proposition 2.2 applies. �

Self-dual representatives vs. Fitzpatrick and Penot functions. Let α ⊂ X × X∗ be a
cyclically monotone operator with α = ∂ψ for some convex and lower semicontinuous potential
ψ : X → (−∞,∞]. As already observed, a self-dual representative of α is the sum of ψ and its
convex conjugate. However in general the Fitzpatrick functional fα may differ from ψ + ψ∗, as
shown by the following.

Example 2.4. Consider X = R = X∗ and set α = identity, namely α = ∂ψ with ψ(ξ) = 1
2 ξ

2.

The Fitzpatrick function of ∂ψ is f∂ψ(ξ, ξ
∗) = ξ2/4 + (ξ∗)

2
/4 + ξ · ξ∗/2, which is not self-dual.
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Fitzpatrick and Penot functions in the case of 1-positively homogeneous potentials.
Our next result reveals that, when α = ∂ψ and ψ : X → (−∞,+∞] is positively homogeneous of
degree 1, then also the Fitzpatrick functional fα coincides with the bipotential (2.2).

Proposition 2.5. Let ψ : X → (−∞,∞] be convex, lower semicontinuous, and positively homo-
geneous of degree 1, viz. ψ(λξ) = λψ(ξ) for all ξ ∈ X and λ ≥ 0.

Then, the Fitzpatrick function of the subdifferential of ψ coincides with the sum of ψ and its
convex conjugate, i.e.

f∂ψ(ξ, ξ
∗) = ψ(ξ) + ψ∗(ξ∗) for all (ξ, ξ∗) ∈ X ×X∗. (2.11)

Before developing the proof, we recall that, for all ψ convex, lower semicontinuous, and 1-homogeneous
there exists a closed convex set 0 ∈ K ⊂ X such that ψ coincides with the Minkowski functional
of K, viz.

ψ(ξ) =MK(ξ) = inf

{
σ > 0 :

ξ

σ
∈ K

}
. (2.12a)

Furthermore,
ψ∗(ξ∗) = IK∗(ξ∗) where K∗ ⊂ X∗ is the polar set of K, i.e.

K∗ = {ξ∗ ∈ K∗ : π(ξ, ξ∗) ≤ 1 ∀ ξ ∈ K},
(2.12b)

so that

∀ (ξ, ξ∗) ∈ ∂ψ MK(ξ) + IK∗(ξ∗) = π(ξ, ξ∗) . (2.12c)

For later convenience, we also recall that

ψ(ξ) = sup
ξ∗∈K∗

π(ξ, ξ∗) for all ξ ∈ X . (2.12d)

Proof of Proposition 2.5. It follows from the definition of the Fitzpatrick function (2.3) and from
(2.12c) that

f∂ψ(ξ, ξ
∗) = sup{π(ξ0, ξ

∗)−MK(ξ0)︸ ︷︷ ︸
≤IK∗ (ξ∗)

+ π(ξ, ξ∗0 )− IK∗(ξ∗0)︸ ︷︷ ︸
≤MK(ξ)

: (ξ0, ξ
∗
0 ) ∈ α}

Hence, we obtain that f∂ψ(ξ, ξ
∗) ≤MK(ξ) + IK∗(ξ∗) for all (ξ, ξ∗) ∈ X ×X∗.

For the opposite inequality assume first that ξ∗ /∈ K∗. Then there exists ξ0 ∈ K such that
π(ξ0, ξ

∗) > 1. Choose an arbitrary ξ∗0 ∈ ∂MK(ξ0) = ∂MK(λξ0) for any positive λ > 0. Then,
taking into account that MK(λξ0) + IK∗(ξ∗0) = λπ(ξ0, ξ

∗
0) ≤ λ, we get

π(λξ0, ξ
∗)−MK(λξ0) + π(ξ, ξ∗0 )− IK∗(ξ∗0)

≥ λ (π(ξ0, ξ
∗)− 1) + π(ξ, ξ∗0 ) → +∞ as λ→ ∞.

Therefore f∂ψ(ξ, ξ
∗) ≥ IK∗(ξ∗). On the other hand, taking into account that ∂MK(0) = K∗, we

deduce that

f∂ψ(ξ, ξ
∗) ≥ sup {π(ξ, ξ∗0 ) : ξ

∗
0 ∈ K∗} =MK(ξ) .

Eventually, we get that f∂ψ(ξ, ξ
∗) ≥ MK(ξ) + IK∗(ξ∗) for all (ξ, ξ∗) ∈ X ×X∗, which concludes

the proof. �

Corollary 2.6. Let ψ : X → (−∞,∞] be convex, lower semicontinuous and positively homoge-
neous of degree 1. Then

f∂ψ(ξ, ξ
∗) = ψ(ξ) + ψ∗(ξ∗) = ρ∂ψ∗(ξ, ξ∗) for all (ξ, ξ∗) ∈ X ×X∗. (2.13)

Proof. To prove (2.13) we observe that

f∂ψ = ψ + ψ∗ = (ψ + ψ∗)∗ = f∗
∂ψ = ρ∂ψ∗

where the first identity is due to Proposition 2.5, the second one to the fact that ψ+ψ∗ is self-dual,
and the last one to (2.8). �
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2.1. Approximation of maximal monotone operators. In the next lines, the symbol X may
stand for the space X , for X∗, or for X ×X∗. Let fn, f : X → (−∞,∞] be convex, proper, and
l.s.c. functionals and let αn, α ⊂ X × X∗ be maximal monotone operators. We introduce the
notation

Γ–liminf
n→∞

fn(x) := min{lim inf
n→∞

fn(xn), xn ⇀ x in X},

Γ–limsup
n→∞

fn(x) := min{lim sup
n→∞

fn(xn), xn → x in X}.

These correspond to the classical Γ–liminf and Γ–limsup constructions (cf. e.g. [27]), with respect
to the weak and the strong topology of X, respectively. We will use the following convergence
notions, for which the reader is referred to [10]:

fn
M
−→ f ⇔ Γ–limsup

n→∞

fn ≤ f ≤ Γ–liminf
n→∞

fn

αn
g

−→ α ⇔ ∀(ξ, ξ∗) ∈ α ∃(ξn, ξ
∗
n) ∈ αn : ξn → ξ, ξ∗n → ξ∗.

where the symbol
M
−→ stands for Mosco convergence in X and

g
−→ is usually referred to as graph

convergence. In particular, Mosco convergence corresponds to Γ-convergence with respect to both
the strong and the weak topology of X and can be made more explicit by

fn
M
−→ f ⇔

{
∀xn ⇀ x, f(x) ≤ lim inf

n→∞
fn(xn)

∀x ∈ X, ∃xn → x : fn(xn) → f(x)

In the case of cyclically monotone operators, graph convergence is known to be equivalent to
the Mosco convergence of the respective potentials (up to some normalization condition), viz. we
have the following result.

Theorem 2.7 ([10, Thm. 3.66, p. 373]). Let φn, φ : X → (−∞,+∞] be proper, convex and
lower semicontinuous functionals. The following are equivalent:

i) ∂φn
g

−→ ∂φ in X ×X∗ and there exist (ξn, ξ
∗
n) ∈ ∂φn such that ξn → ξ in X, ξ∗n → ξ∗ in

X∗, φn(ξn) → φ(ξ), and (ξ, ξ∗) ∈ ∂φ;

ii) φn
M
−→ φ in X.

The importance of graph convergence is revealed by the following identification lemma, basically
consisting of the approximation version of [16, Prop. 2.5, p. 27].

Lemma 2.8. Let αn
g

−→ α, (ξn, ξ
∗
n) ∈ αn, ξn ⇀ ξ, ξ∗n ⇀ ξ, and lim infn→∞ π(ξn, ξ

∗
n) ≤ π(ξ, ξ∗).

Then (ξ, ξ∗) ∈ α.

In order to prove this, quite classical, approximation lemma, in the particular case of cyclically
monotone operators, what is actually needed is just the implication i) ⇒ ii) in Theorem 2.7 above.

Indeed, let ∂φn
g

−→ ∂φ, (ξn, ξ
∗
n) ∈ ∂φn, with ξn ⇀ ξ, ξ∗n ⇀ ξ∗, and lim infn→∞ π(ξn, ξ

∗
n) ≤ π(ξ, ξ∗)

be given. We readily have that

0 ≤ φ(ξ) + φ∗(ξ∗)− π(ξ, ξ∗) ≤ lim inf
n→∞

(
φn(ξn) + φ∗n(ξ

∗
n)− π(ξn, ξ

∗
n)
)
= 0

where we have used the fact that φ∗n
M
−→ φ∗ iff φn

M
−→ φ [10, Thm. 3.18, p. 295], i.e. the

bicontinuity of the Legendre-Fenchel transformation with respect to the topology induced by the
Mosco convergence. Therefore we conclude that (ξ, ξ∗) ∈ α.

Remark 2.9. As indeed one just needs

∂φn
g

−→ ∂φ ⇒ φ ≤ Γ–liminf
n→∞

φn in V and φ∗ ≤ Γ–liminf
n→∞

φ∗n in V ∗

in order to check for Lemma 2.8, one may wonder if asking directly the two Γ–liminf conditions
above would weaken the convergence requirements on the functionals. This is however not the
case. Indeed, under some very general condition of equi-properness type, we have that the two

separate Γ–liminf conditions are indeed equivalent to φn
M
−→ φ [72, Lemma 4.1] and hence entail

∂φn
g

−→ ∂φ.
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Our next aim is that of extending the above arguments to the case of noncyclically maximal
monotone operators. In particular, we present an extension of Theorem 2.7 in terms of represen-
tative functions, and in particular of the Fitzpatrick and of the Penot functionals.

Theorem 2.10. Let (αn), α be maximal monotone operators αn, α : X ⇒ X∗. The following are
equivalent:

i) αn
g

−→ α in X ×X∗,
ii) fα ≤ Γ–liminf

n→∞
fαn

in X ×X∗,

iii) Γ–limsupn→∞ ραn
≤ ρα in X ×X∗.

Exactly as above, the proof of Lemma 2.8 follows just from implication i) ⇒ ii). We shall
however give a full equivalence proof for the sake of completeness and comparison with Theorem

2.7. In particular, note that Condition ii) above is weaker than fαn

M
−→ fα. That is to say that

the former Theorem 2.7 does not follow directly from Theorem 2.10.

Proof. Claim 1: i) ⇒ ii). Fix (ξ0, ξ
∗
0) ∈ α and let (ξ0n, ξ

∗
0n) ∈ αn be such that ξ0n → ξ0 in X

and ξ∗0n → ξ∗0 in X∗. Moreover, let ξn ⇀ ξ in X and ξ∗n ⇀ ξ∗ in X∗. We have that

lim inf
n→∞

fαn
(ξn, ξ

∗
n) ≥ lim inf

n→∞
(π(ξ0n, ξ

∗
n)− π(ξ0n − ξn, ξ

∗
0n))

= π(ξ0, ξ
∗)− π(ξ0 − ξ, ξ∗0 ).

In particular, by passing to the supremum with respect to (ξ0, ξ
∗
0 ) ∈ α, we conclude that fα ≤

Γ–liminfn→∞ fαn
.

Claim 2: i) ⇒ iii). Observe that αn
g

−→ α implies α−1
n

g
−→ α−1, hence Claim 1 yields fα−1 ≤

Γ–liminf
n→∞

fα−1

n
. By convex conjugation and taking into account (2.8) and [10, Thm. III.3.7, p. 271],

we then have

ρα = (fα−1)∗ ≥
(
Γ–liminf
n→∞

fα−1

n

)∗
= Γ–limsup

n→∞

ραn
.

Claim 3: iii) ⇒ i). Fix (ξ, ξ∗) ∈ α and let (ξn, ξ
∗
n) ∈ αn fulfill ξn → ξ in X , ξ∗n → ξ∗ in X∗, and

lim sup
n→∞

ραn
(ξn, ξ

∗
n) ≤ ρα(ξ, ξ

∗) = π(ξ, ξ∗)

(such sequences exist as Γ–limsupn→∞ ραn
≤ ρα). In particular, we have that

ραn
(ξn, ξ

∗
n) < π(ξ, ξ∗) + εn

for some sequence εn → 0. By exploiting the extension of the Brønsted-Rockafellar approximation
Lemma from [44, Thm. 3.4], we have that there exist (ξ̃n, ξ̃

∗
n) ∈ αn such that for all n ∈ N

‖ξn − ξ̃n‖
2 ≤ εn, ‖ξ∗n − ξ̃∗n‖

2
∗ ≤ εn.

Then, a classical diagonal-extraction argument yields ξ̃n → ξ in X and ξ̃∗n → ξ∗ in X∗.

Claim 4: ii) ⇒ i). Again by convex conjugation, and (2.8), we deduce from ii) that

ρα−1 ≥ Γ–limsup
n→∞

ρα−1

n
.

Therefore, in view of Claim 3 we have that α−1
n

g
−→ α−1, whence αn

g
−→ α. �

3. Setup and preliminary results

Before stating our working assumptions in Sec. 3.2, in the upcoming Sec. 3.1 we recall all the basic
definitions, and tools of measure theory and convex analysis, which we will use in the following.
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3.1. Preliminaries of measure theory, BV functions, and convex analysis. We start with
the notion of measure with values in a Banach space X, which later on will either coincide with
the reflexive space X , or with R.

Definition 3.1 (Vector measure). Let (Ω,Σ) be a measurable space. A function µ : Σ → X is
called a (Banach-space valued) vector measure, if

∀ (Ai)i∈N
, Ai ∈ Σ with (i 6= j ⇒ Ai ∩Aj = ∅) it holds µ

(
⋃

i∈N

Ai

)
=

∞∑

i=1

µ (Ai) . (3.1)

Here the convergence of the series on the right-hand side has to be understood in terms of the
norm of X.

Definition 3.2 (Variation of a measure). Let (Ω,Σ) be a measurable space and µ : Σ → X a
vector measure. Then the variation of µ, denoted by ‖µ‖ : Σ → [0,∞], is given by

‖µ‖(A) := sup

{
∞∑

i=1

‖µ(Ai)‖ : (Ai)i∈N ⊂ Σ ,
⋃

i∈N

Ai = A , ∀i 6= j : Ai ∩ Aj = ∅

}
(3.2)

for all A ∈ Σ. If ‖µ‖(Ω) <∞ then we say µ is of bounded variation.

Indeed, ‖µ‖ itself is a (positive) measure on (Ω,Σ), see [30, Prop. 9, p. 3].

Definition 3.3 (Absolute continuity and singularity of measures). Let (Ω,Σ) be a measurable
space, µ : Σ → X a vector measure, and ν : Σ → [0,∞] be a (real-valued, positive) measure. We
say that µ is absolutely continuous w.r.t. to ν, and write µ≪ ν, if

∀A ∈ Σ :
[
ν(A) = 0 =⇒ µ(A) = 0

]
. (3.3)

Moreover, we say that two real-valued, positive measures µ and ν are singular, and write µ ⊥ ν,
if there exist B1, B2 ∈ Σ with B1 ∪B2 = Ω and B1 ∩B2 = ∅ such that

∀A ∈ Σ : µ(A) = µ (A ∩B1) and ν(A) = ν (A ∩B2) (3.4)

We recall the following generalization of the Lebesgue decomposition theorem, see e.g. [30, Thm.
9, p. 31].

Theorem 3.4 (Lebesgue decomposition theorem). Let (Ω,Σ) be a measure space, σ be a Banach
space-valued measure of bounded variation and λ a real valued, positive measure. Then there exist
two unique vector measures σac, σsin on (Ω,Σ), which are of bounded variation, such that

‖σac‖ ≪ λ , ‖σsin‖ ⊥ λ and σ = σac + σsin . (3.5)

BV functions. We fix here some definitions and notation concerning BV -functions on [0, T ] with
values in a Banach space X, referring e.g. to [58] for a comprehensive introduction to the topic.
We denote by BV ([0, T ];X) the space of the measurable, pointwise defined at every time t ∈ [0, T ],
functions v : [0, T ] → X such that their pointwise total variation on [0, T ] is finite, i.e.

Var(v; [0, T ]) = sup

{
M∑

m=1

‖v(tm)− v(tm−1)‖ : 0 = t0 < t1 < . . . < tM−1 < tM = T

}
<∞ .

More in general, given a convex, lower semicontinuous, 1-positively homogeneous functional ψ :
X → [0,+∞), we denote by Varψ the induced total variation, i.e.

Varψ(v; [0, T ]) = sup

{
M∑

m=1

ψ(v(tm)− v(tm−1)) : 0 = t0 < t1 < . . . < tM−1 < tM = T

}
<∞ .

(3.6)

It is well known that the distributional derivative dv of a curve v ∈ BV (0, T ;X) is a vector
measure in M(0, T ;X), where

M(0, T ;X) = { Radon vector measures µ : (0, T ) → X with bounded variation },

which we will endow with the weak∗-topology.
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Notation 3.5. Let u ∈ BV ([0, T ];X). Applying Thm. 3.4 with the choices σ = du and λ = L

(where L denotes the one-dimensional Lebesgue measure on [0, T ]), we find that there exist vector
measures ( du)ac, ( du)sin ∈ M(0, T ;X) such that

‖( du)ac‖ ≪ L, ‖( du)sin‖ ⊥ L and du = (du)ac + (du)sin . (3.7)

Thanks to the Radon-Nikodým property of the reflexive space X , the Radon-Nikodým derivatives

u̇ac(t) :=
( du)ac
dL

, u̇sin(t) :=
( du)sin
‖( du)sin‖

exist for a.a. t ∈ (0, T ). (3.8)

For later use, we remark that for any convex, lower semicontinuous, 1-positively homogeneous
ψ : X → [0,+∞) there holds

Varψ(u; [0, T ]) =

∫ T

0

ψ(u̇ac(t)) dt+

∫ T

0

ψ(u̇sin(t))‖( du)sin‖(t) . (3.9)

The recession function. Finally, we recall the concept of recession function (see [35, Chap. 4]).
Note that the following definitions and results, which are stated in [35] for convex functions on
Rm, in fact extend to an infinite-dimensional setting, as it can be easily checked.

Definition 3.6 (Recession function). Let X be a vector space and g : X → (−∞,∞] be a convex
functional. Its recession function g∞ is defined as

g∞(z) := sup {g(y + z)− g(y) : y ∈ D(g)} . (3.10)

Trivially adapting the argument from [35, Thm. 4.70, p. 290], it can be shown that that g∞ is
positively homogeneous of degree 1 and convex. Moreover, if g is lower semicontinuous, so is g∞.
Furthermore, there holds

g∞(z) = lim
t→∞

g(y + tz)− g(y)

t
= sup

t>0

g(y + tz)− g(y)

t
for every y ∈ D(g) . (3.11)

In what follows, we will denote by f∞
α the recession function of the Fitzpatrick function fα, viz.

f∞
α (ξ, ξ∗) = sup {fα(ξ + x, ξ∗ + x∗)− fα(x, x

∗) : (x, x∗) ∈ D(fα)} . (3.12)

We now prove a useful representation formula for f∞
α , cf. [35, Prop. 4.77, p. 294].

Lemma 3.7. There holds

f∞
α (ξ, ξ∗) = sup{〈ξ∗, ξ0〉+ 〈ξ∗0 , ξ〉 : (ξ0, ξ

∗
0) ∈ D(ρα−1)} ∀ (ξ, ξ∗) ∈ X ×X∗ . (3.13)

Proof. Following the proof of [35, Prop. 4.77], from (3.11) and (2.7) we infer

f∞
α (ξ, ξ∗) = sup

t>0

fα(x+ tξ, x∗ + tξ∗)− fα(x, x
∗)

t

≥ sup
t>0

1

t

(
t 〈ξ∗, ξ0〉+ t 〈ξ∗0 , ξ〉

+ 〈ξ∗0 , x〉+ 〈x∗, ξ0〉 − ρα−1(ξ0, ξ
∗
0)− fα(x, x

∗)
)

≥ 〈ξ∗, ξ0〉+ 〈ξ∗0 , ξ〉

+
1

t
(〈ξ∗0 , x〉+ 〈x∗, ξ0〉 − ρα−1(ξ0, ξ

∗
0)− fα(x, x

∗)) ∀ (ξ0, ξ
∗
0) ∈ X ×X∗, t > 0 .

In view of (2.7), we thus conclude that

f∞
α (ξ, ξ∗) ≥ sup{〈ξ∗, ξ0〉+ 〈ξ∗0 , ξ〉 : (ξ0, ξ

∗
0 ) ∈ D(ρα−1)} .

The converse inequality may be proved arguing along the very same lines, cf. also the proof of [35,
Prop. 4.77]. �

As a direct consequence of Lemma 3.7, we have the following representation formula for the
recession function of fα, in the case α is the subdifferential of a 1-positively homogeneous potential.
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Corollary 3.8. Let ψ : X → R be convex, lower semicontinuous and positively homogeneous of
degree 1, and let K∗ ⊂ X∗ be the associated polar set, cf. (2.12). Then,

f∞
∂ψ(ξ, ξ

∗) = sup{〈ξ∗0 , ξ〉+ 〈ξ∗, ξ0〉 : (ξ0, ξ
∗
0) ∈ X ×K∗} . (3.14)

Proof. Formula (3.14) follows from (3.13), taking into account that

ρα−1 = ρ∂ψ∗ = ψ + ψ∗ = ψ + IK∗ ,

and that D(ψ) = X by assumption. �

3.2. Basic assumptions. In what follows, we will suppose that

X is a reflexive Banach space (3.15)

and that

α : X ⇒ X∗ is a maximal monotone operator with 0 ∈ α(0). (3.α0)

As for the energy functional E, along the lines of [51] we require the following coercivity and
regularity type conditions. Recall that ∂E denotes the Fréchet subdifferential of the map u 7→
Et(u), cf. (1.2).

Assumption 3.9 (Assumptions on the energy). We assume that the pair (E, ∂E) has the following
properties:

Lower semicontinuity: The domain of E is of the form D(E) = [0, T ] × D for some D ⊂ X,
and ∂E : [0, T ]×D ⇒ X∗. Furthermore, we ask that

u 7→ Et(u) is l.s.c. for all t ∈ [0, T ], ∃C0 > 0 : ∀(t, u) ∈ [0, T ]×D : Et(u) ≥ C0 and
graph(∂E) is a Borel set of [0, T ]×X ×X∗ .

(3.E0)

Coercivity: Set G(u) := supt∈[0,T ] Et(u) for every u ∈ D. We require that

u 7→ G(u) has compact sublevels. (3.E1)

Time-differentiability: For any u ∈ D the map t 7→ Et(u) is differentiable with derivative
∂tEt(u) and it holds

∃C1 > 0 : ∀u ∈ D : |∂tEt(u)| ≤ C1Et(u) (3.E2)

Weak closedness: For all t ∈ [0, T ] and for all sequences (un)n∈N ⊂ X, ξn ∈ ∂Et(un), En =
Et(un) and pn = ∂tEt(un) with

un → u in X, ξn ⇀ ξ in X∗, pn → p, and En → E in R

it holds

(t, u) ∈ D(∂E), ξ ∈ ∂Et(u), p ≤ ∂tEt(u) and E = Et(u) . (3.E3)

Remark 3.10. In fact, up to a translation, we may always suppose that the constant involved in
(3.E0) is strictly positive. As in [51], combining (3.E2) with the Gronwall Lemma we observe that

∃C > 0 ∀ (t, u) ∈ [0, T ]×D G(u) ≤ C inf
t∈[0,T ]

Et(u). (3.16)

Later on, Assumption 3.9 will be complemented by a suitable version of the chain rule for E, cf.
Assumption 4.4 below. As already mentioned, in order to investigate the stability properties of
the doubly nonlinear equation

α(u̇(t)) + ∂Et(u(t)) ∋ 0 in X∗ for a.a. t ∈ (0, T ) , (3.17)

under graph convergence of α, it is essential to resort to the Fitzpatrick function fα associated with
α. In the following lines, we will therefore shed light on how (3.17) can be in fact reformulated in
terms of an energy identity (cf. (3.20) below) featuring fα. At first, we will confine the discussion
to the case of absolutely continuous solutions u to (3.17).
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Reformulations of (3.17) in the absolutely continuous case. Preliminarily, let us precisely
define what we understand by an absolutely continuous solution to (3.17).

Definition 3.11 (Absolutely continuous solution). In the framework of (3.15), (3.α0), and (3.E0),
we say that a curve u ∈W 1,1(0, T ;X) is a solution to (3.17), if there exists ξ ∈ L1(0, T ;X∗) with

ξ(t) ∈ (−α(u̇(t))) ∩ ∂Et(u(t)) for a.a. t ∈ (0, T ) . (3.18)

In what follows, with a slight abuse of notation we will sometimes say that (u, ξ) is a solution to
(3.17), meaning that (3.18) holds.

In Proposition 3.12, we reformulate (3.18) by means of an energy identity involving the Fitz-
patrick function fα. In the proof, a key role is played by the chain-rule condition (3.19) below on
the energy E, whereas note that not all of the conditions collected in Assumption 3.9 are needed.

Proposition 3.12 (Variational reformulation). In the framework of (3.15), let α : X ⇒ X∗ fulfill
(3.α0) and suppose that E : [0, T ]×X → (−∞,+∞] complies with (3.E0), (3.E1), (3.E2), and the
following chain rule: for every u ∈ W 1,1(0, T ;X) and ξ ∈ L1(0, T ;X∗) such that

sup
t∈[0,T ]

Et(u(t)) <∞, ξ(t) ∈ ∂Et(u(t)) for a.a. t ∈ (0, T ) ,

∫ T

0

fα(u̇(t),−ξ(t)) dt <∞,

(observe that, thanks to (3.E2), the first of the conditions above guarantees
∫ T
0 |∂tEt(u(t))| dt <∞

as well), there holds

the map t 7→ Et(u(t)) is absolutely continuous and

d

dt
Et(u(t)) = 〈ξ(t), u̇(t)〉+ ∂tEt(u(t)) for a.a. t ∈ (0, T ).

(3.19)

Then, the following implications hold:

(1) if (u, ξ) ∈W 1,1(0, T ;X)× L1(0, T ;X∗) fulfills the energy identity

Et(u(t)) +

∫ t

0

fα (u̇(s),−ξ(s)) ds = E0(u(0)) +

∫ t

0

∂tEs(u(s)) ds for all t ∈ (0, T ], (3.20)

then (u, ξ) is a solution to (3.17) in the sense of Def. 3.11.
(2) every solution (u, ξ) to (3.17) (in the sense of Def. 3.11) fulfilling

sup
t∈[0,T ]

Et(u(t)) <∞,

∫ T

0

| 〈ξ(t), u̇(t)〉 | dt <∞, (3.21)

complies in addition with the energy identity (3.20).

Observe that, for every solution (u, ξ) to (3.17), since −ξ ∈ α(u̇) a.e. in (0, T ) and 0 ∈ α(0), we

have 〈−ξ, u̇〉 ≥ 0 a.e. in (0, T ). Hence the second of (3.21) in fact reduces to
∫ T
0 〈−ξ, u̇〉dt <∞.

Proof. Let (u, ξ) fulfill (3.20). Taking into account that fα(u̇,−ξ) ≥ 0 a.e. in (0, T ) thanks to
(2.9), and exploiting (3.E2) we gather

Et(u(t)) ≤ E0(u(0)) + C1

∫ t

0

Es(u(s)) ds for all t ∈ (0, T ], (3.22)

whence supt∈[0,T ] Et(u(t)) < ∞. Therefore, a fortiori (3.20) yields fα(u̇,−ξ) ∈ L1(0, T ). Hence

the pair (u, ξ) fulfills the conditions for the chain rule (3.19), which yields for all t ∈ (0, T ]
∫ t

0

fα (u̇(s),−ξ(s)) ds ≤ E0(u(0))− Et(u(t)) +

∫ t

0

∂tEs(u(s)) ds

≤

∫ T

0

〈−ξ(s), u̇(t)〉 ds .

(3.23)

Using that fα represents α, it is immediate to deduce from the above inequality that −ξ(t) ∈
α (u̇(t)) for almost all t ∈ (0, T ), thus (u, ξ) is a solution to (3.17) in the sense of Def. 3.11.
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Conversely, let (u, ξ) ∈W 1,1(0, T ;X)×L1(0, T ;X∗) be a solution to (3.17) (in the sense of Def.
3.11) fulfilling in addition (3.21). Then, since fα(u̇,−ξ) = 〈−ξ, u̇〉, the chain rule (3.19) applies,
yielding, for all t ∈ [0, T ], the energy identity

∫ t

0

fα (u̇(s),−ξ(s)) ds =

∫ t

0

〈−ξ(s), u̇(t)〉 ds

= E0(u(0))− Et(u(t)) +

∫ T

0

∂tEs(u(s)), ξ(s)) ds .

�

Remark 3.13. A few comments on Proposition 3.12 are in order.

(1) It is not difficult to check that in Proposition 3.12 the Fitzpatrick function fα could be
replaced by any representative functional for α.

(2) Observe that, in the chain of inequalities (3.23) leading to the proof of part (1) of Propo-
sition 3.12, it is in principle necessary for (3.20) and for the chain rule (3.19) to hold as
inequalities, only. The proof of part (2) requires (3.19) to hold as an equality, instead.

4. Main results

Before stating Thm. 4.5, let us precise our hypothesis on the sequence (αn) of maximal monotone
operators.

Assumption 4.1. Let αn : X ⇒ X∗ fulfill (3.α0) for all n ∈ N and

∃ c1, c2, c3 > 0, p ≥ 1, q > 1 ∀n ∈ N ∀(x, y) ∈ αn :

〈y, x〉 ≥ c1‖x‖
p + c2‖y‖

q
∗ − c3 .

(3.α1)

Furthermore, there exists α : X ⇒ X∗ fulfilling (3.α0) such that αn
g

−→ α.

Remark 4.2. Combining (3.α1) with the graph convergence of (αn) to α, it is immediate to conclude

〈y, x〉 ≥ c1‖x‖
p + c2‖y‖

q
∗ − c3 for all (x, y) ∈ α . (4.1)

The following example guarantees that our analysis encompasses the pn → 1 vanishing-viscosity
limit.

Example 4.3. Let (pn) ⊂ [1,+∞) fulfill pn ↓ 1 as n→ ∞, and let us set

ψn(x) =
1

pn
‖x‖pn , αn = ∂ψn : X ⇒ X∗ .

Clearly, (ψn) Mosco-converges to ψ(x) = ‖x‖, hence (αn) converges in the sense of graphs to
α = ∂ψ. Observe that ψ∗

n(y) =
1
qn
‖y‖qn∗ with qn = pn/(pn − 1) ∈ [2,∞] for all n ∈ N, and that

〈y, x〉 =
1

pn
‖x‖pn +

1

qn
‖y‖qn∗ = ‖x‖pn = ‖y‖qn∗ for all (x, y) ∈ αn .

Therefore, Assumption 4.1 is satisfied.

The main result of this section addresses the passage to the limit as n → ∞ in the doubly
nonlinear equations

αn(u̇(t)) + ∂Et(u(t)) ∋ 0 in X∗ for a.a. t ∈ (0, T ) . (4.2)

In particular, we will assume to be given a sequence (un) of absolutely continuous solutions to (4.2)
and we will show that, if the sequence (αn) complies with Assumption 4.1, up to a subsequence
(un) converges to a curve u fulfilling a suitable generalized formulation of (3.17).

Observe that, (3.α1) in principle only allows for a bound of the type ‖u̇n‖L1(0,T ;X) ≤ C. That
it why, we can only expect a BV ([0, T ];X)-regularity for the limiting curve u, and (3.17) has to
be weakly formulated accordingly. This will be done through an energy inequality akin to (3.20),
cf. (4.5) below. Therein, suitable replacements of the “time-derivative” of u are suitably handled



14 THOMAS ROCHE, RICCARDA ROSSI, AND ULISSE STEFANELLI

in terms of the Fitzpatrick function fα and of its recession function f∞
α (cf. Definition 3.6), and

of the absolutely continuous and singular parts of the Radon derivative du of u. Having in mind
the role of the chain rule (3.19) relating (3.17) and the energy identity (3.20), it is to be expected
that a suitable BV version of (3.19) will play a relevant role. We state it in the following:

Assumption 4.4. Let u ∈ BV ([0, T ];X) and ξ ∈ L1(0, T ;X∗) fulfill

sup
t∈[0,T ]

Et(u(t)) <∞, ξ(t) ∈ ∂Et(u(t)) for a.a. t ∈ (0, T ) ,

∫ T

0

fα(u̇(t),−ξ(t)) dt <∞,

and suppose that the map t 7→ Et(u(t)) is almost everywhere equal on (0, T ) to a function E ∈
BV ([0, T ]). Furthermore let du and dE denote the Radon derivatives of u and E.

Then, for almost all Lebesgue points t0 of the absolutely continuous parts u̇ac and Ėac of du
and dE there holds

Ėac(t0) ≥ 〈ξ(t0), u̇ac(t0)〉+ ∂tEt0(u(t0)) for all ξ(t0) ∈ ∂Et0(u(t0)) . (3.E4)

Observe that, since X has the Radon-Nikodým property, the set of Lebesgue points of u̇ac and
Ėac has full Lebesgue measure in (0, T ).

As it will be clear from the proof of Thm. 4.5 below, Assumption 4.4 does not only provide a
motivation for the energy inequality (4.5), but it also has a key role in the proof of the passage to
the limit as n→ ∞ in (4.2).

Theorem 4.5. Assume (3.15). Let αn, α : X ⇒ X∗ fulfill Assumption 4.1, and suppose that
E : [0, T ]×X → (−∞,+∞] complies with Assumptions 3.9 and 4.4. Let us consider a sequence
(un0 ) ⊂ D of initial data such that

un0 ⇀ u0 in X, E0(u
n
0 ) → E0(u0), (4.3)

and let (un, ξn) ⊂W 1,1(0, T ;X)×L1(0, T ;X∗) be solutions to (4.2) in the sense of Definition 3.11,
fulfilling the initial conditions un(0) = un0 . Suppose that, in addition, for all n ∈ N the functions
(un, ξn) comply with the energy identity (3.20).

Then, there exist functions u ∈ BV ([0, T ];X) and ξ ∈ Lq(0, T ;X∗) (with q > 1 from (3.α1))
satisfying u(0) = u0, ξ(t) ∈ ∂Et(u(t)) for almost all t ∈ (0, T ), and such that up to a (not relabeled)
subsequence

un(t) → u(t) ∀t ∈ [0, T ] , dun = (u̇n)ac · L|[0,T ]
∗
⇀ du ∈ M(0, T ;X), (4.4)

and (u, ξ) satisfies the energy inequality

Et(u(t)) +

∫ t

0

fα (u̇ac(s),−ξ(s)) ds+

∫ t

0

f∞
α (u̇sin(s), 0) ‖( du)sin‖(s)

≤ E0(u(0)) +

∫ t

0

∂tEs(u(s)) ds for all t ∈ [0, T ],

(4.5)

as well as

ξ(t) ∈ (−α(u̇ac(t))) ∩ ∂Et(u(t)) for a.a. t ∈ (0, T ) . (4.6)

Furthermore, there exists E ∈ BV ([0, T ]) such that

E(t) = Et(u(t)) for a.a. t ∈ (0, T ), E(t) ≥ Et(u(t)) for all t ∈ [0, T ], (4.7)

and we have the pointwise energy identity

Ėac(t) + fα (u̇ac(t),−ξ(t)) = ∂tEt(u(t)) for a.a. t ∈ (0, T ). (4.8)

Remark 4.6. In view of Proposition 3.12, a sufficient condition for functions (un, ξn) solving (4.2)
to comply with the energy identity (3.20), is that they fulfill

sup
t∈(0,T )

Et(un(t)) <∞ and 〈−ξn, u̇n〉 ∈ L1(0, T ).

This, provided that the absolutely continuous version (3.19) of the chain rule holds.
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In Section 4.2, we will discuss some sufficient conditions on E for both the chain rule (3.19) and
its BV -version of Assumption 4.4 to hold.

4.1. Further results. We conclude this section with some results which shed light on the inter-
pretation of the energy identities (4.5) and (4.8) satisfied by the pair (u, ξ). More precisely:

- Proposition 4.7 focuses on the case in which we have the additional information that u is
absolutely continuous. For instance, this is granted whenever u occurs as limiting curve
of a sequence (un) ⊂W 1,1(0, T : X) of solutions to the differential inclusions (4.2), driven
by operators (αn) which fulfill a stronger version of condition (3.α1), cf. Thm. 4.8 ahead.

- In Proposition 4.9 we address the special case in which α = ∂ψ, with ψ : X → [0,+∞)
a convex, lower semicontinuous, and 1-homogeneous dissipation potential. We show that
in this case any u ∈ BV ([0, T ];X) complying with the energy inequality (4.5) is a local
solution (cf. [49, 50]) to the rate-independent system (X,E, ψ).

The absolutely continuous case. Under a slightly stronger version of the chain rule of As-
sumption 4.4, Proposition 4.7 shows that, if in addition we have that the curve u is absolutely
continuous on (0, T ), then f∞

α (u̇sin(t), 0) = 0 for ‖( du)sin‖-a.a. t ∈ (0, T ), and (4.5) holds on every
sub-interval [s, t] ⊂ [0, T ]. Furthermore, the pair (u, ξ) solves (3.17) in the sense of Definition 3.11,
cf. (4.11) below.

Proposition 4.7. In the framework of (3.15), let α : X ⇒ X∗ fulfill (3.α0), and E : [0, T ] ×
X → (−∞,+∞] comply with Assumption 3.9 and with the following chain rule: for every u ∈
W 1,1(0, T ;X) and ξ ∈ L1(0, T ;X∗) such that

sup
t∈[0,T ]

Et(u(t)) <∞, ξ(t) ∈ ∂Et(u(t)) for a.a. t ∈ (0, T ) ,

∫ T

0

fα(u̇(t),−ξ(t)) dt <∞,

then

( du)sin = 0 ⇒ ( dE)sin = 0 (4.9)

and the chain rule inequality (3.E4) holds.

Let (u, ξ, E) ∈ BV ([0, T ];X) × L1(0, T ;X∗) × BV ([0, T ]) fulfill (4.7) and (4.8). Suppose in
addition that u ∈W 1,1(0, T ;X). Then,

E ∈W 1,1(0, T ). (4.10)

Furthermore, the pair (u, ξ) fulfills

− ξ(t) ∈ α(u̇(t)) for a.a. t ∈ (0, T ), (4.11)

and there holds the improved energy inequality

Et(u(t)) +

∫ t

s

fα (u̇(r),−ξ(r)) dr

≤ Es(u(s)) +

∫ t

s

∂tEr(u(r)) dr for all t ∈ (0, T ], for a.a. s ∈ (0, t) and for s = 0.

(4.12)

Finally, if E also fulfills the enhanced chain rule (3.19), then (4.12) holds as an equality for
every 0 ≤ s ≤ t ≤ T .

Proof. Since u ∈ W 1,1(0, T ;X), its distributional derivative du has zero singular part, viz. du =

u̇acL. Then, it follows from (4.9) that dE = ĖacL, viz. E is absolutely continuous. Therefore,
(4.8) becomes

Ė(t) + fα (u̇(t),−ξ(t)) = ∂tEt(u(t)) for a.a. t ∈ (0, T ). (4.13)

Now, combining this with the chain rule inequality (3.E4), we conclude that fα (u̇(t),−ξ(t)) ≤
〈−ξ(t), u̇(t)〉 for almost all t ∈ (0, T ), hence (4.11) holds. Then, to prove (4.12) we integrate
(4.13), thus obtaining

E(t) +

∫ t

s

fα (u̇(r),−ξ(r)) dr = E(s) +

∫ t

s

∂tEr(u(r)) dr for all 0 ≤ s ≤ t ≤ T, (4.14)
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and we use (4.7).

If moreover E complies with the chain rule (3.19), then E(t) = Et(u(t)) for all t ∈ [0, T ], since
both functions t 7→ E(t) and t 7→ Et(u(t)) are continuous on [0, T ] and coincide on a set of full
Lebesgue measure. Therefore from (4.14) we get (4.12) for t 7→ Et(u(t)). This concludes the
proof. �

As a straightforward consequence of Prop. 4.7 we have the following result, showing that,
under a stronger coercivity assumption on the sequence of maximal monotone operators (αn) (cf.
(4.15) below), any sequence (un) of solutions to (4.2) converges up to a subsequence to a curve
complying with (4.10)–(4.12). In particular, observe that, unlike in (3.α1), in (4.15) we do not
allow the “degenerate” value 1 for exponent p. Indeed, Theorem 4.8 below for instance applies
to a sequence of operators αn = ∂ψn, with ψn(v) = 1/pn‖v‖pn and pn ↓ p > 1 as n → ∞. In
this way, we obtain a stability result for doubly nonlinear differential inclusions driven by viscous
dissipation potentials, which generalizes the results in [1, Thms. 3.1, 3.2].

Theorem 4.8. In the frame of (3.15), suppose that E : [0, T ] × X → (−∞,+∞] complies with
Assumptions 3.9 and 4.4. Let αn : X ⇒ X∗ fulfill (3.α0) for all n ∈ N and

∃ c1, c2, c3 > 0, p > 1, q > 1 ∀n ∈ N ∀(x, y) ∈ αn :

〈y, x〉 ≥ c1‖x‖
p + c2‖y‖

q
∗ − c3 .

(4.15)

Suppose that there exists α : X ⇒ X∗ fulfilling (3.α0) such that αn
g

−→ α. Let (un0 ) ⊂ D be a
sequence of initial data fulfilling (4.3) and let (un, ξn) ⊂W 1,1(0, T ;X)×L1(0, T ;X∗) be solutions
to (4.2), fulfilling un(0) = un0 and (3.21) for every n ∈ N.

Then, there exists u ∈W 1,p(0, T ;X) with u(0) = u0 such that up to a (not relabeled) subsequence

un(t) → u(t) for all t ∈ [0, T ] , un ⇀ u in W 1,p(0, T ;X), (4.16)

and there exists ξ ∈ Lq(0, T ;X∗) such that the pair (u, ξ) is a solution to (3.17) in the sense of
Definition 3.11, fulfilling the improved energy inequality (4.12).

The proof is outlined at the end of Sec. 5.

The rate-independent case. Let us now focus on the case in which

α = ∂ψ with ψ : X → [0,+∞) convex, lower semicontinuous and 1-positively homogeneous
(4.17)

with associated polar set K∗ ⊂ X∗. In this case, the energy inequality (4.5) rephrases in a more
explicit way.

Proposition 4.9. Assume (3.15). Let α fulfill (4.17) and let (u, ξ) ∈ BV (0, T ;X)×L1(0, T : X∗)
satisfy the energy inequality (4.5). Then, (u, ξ) fulfill

− ξ(t) ∈ K∗ for a.a. t ∈ (0, T ), (4.18)

Et(u(t)) + Varψ(u; [0, t]) ≤ E0(u(0)) +

∫ t

0

∂tEs(u(s)) ds for all t ∈ [0, T ] , (4.19)

with Varψ from (3.6).

In the frame of rate-independent evolution, (4.18) is interpreted as a local stability condition,
while the energy inequality (4.19) balances the stored energy Et(u(t)) and the dissipated energy

Varψ(u; [0, t]), with the initial energy and the work of the external forces
∫ t
0
∂tEs(u(s)) ds. In fact,

the local stability (4.18) and the energy inequality (4.19) yield (a slightly weaker version of) the
notion of local solution to the rate-independent system (X,E, ψ) from [49, 50]. Therein, it was
observed that this concept is the weakest among all notions of rate-independent evolution, in that
it yields the least precise information on the behavior of the solution at jump points. On the other
hand, local solutions arise in the limit of a very broad class of approximations of rate-independent
systems. This is in the same spirit as the stability results of this work. In particular, notice that
the maximal monotone operators αn converging in the sense of graphs to α = ∂ψ need not be
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cyclically monotone. An example in this direction in the plane X = R2 is given by the graphs
αn = ∂ψ+(1/n)Q where Q is a rotation of π/2. In this case αn

g
−→ ∂ψ but each αn is noncyclic.

We now proceed with the

Proof of Proposition 4.9. Let (u, ξ) ∈ BV (0, T ;X)× L1(0, T : X∗) fulfill (4.5). Now, in view of
Proposition 2.5 and of formula (2.12b), we have

fα (u̇ac(t),−ξ(t)) = ψ(u̇ac(t)) + ψ∗(−ξ(t)) = ψ(u̇ac(t)) + IK∗(−ξ(t)) for a.a. t ∈ (0, T ) . (4.20)

Furthermore, we have that

f∞
α (u̇sin(t), 0) ≥ sup

ξ∗
0
∈K∗

〈ξ∗0 , u̇sin(t)〉 = ψ(u̇sin(t)) for ‖( du)sin‖-a.a. t ∈ (0, T ) (4.21)

where the first inequality is due to (3.14) and the second identity to (2.12d).

Then, taking into account formula (3.9) for Varψ, (4.5) yields

Et(u(t)) + Varψ(u; [0, t]) +

∫ t

0

IK∗(−ξ(s)) ds ≤ E0(u(0)) +

∫ t

0

∂tEs(u(s)) ds for all t ∈ [0, T ],

which is equivalent to (4.18)–(4.19). �

4.2. Sufficient conditions for closedness and chain rule. Following [51], we now show that
conditions of λ-convexity type on the energy functional E ensure the validity of the closedness
property (3.E3), of the chain rules (3.19), (3.E4), and of property (4.9).

More precisely, in [51, Sec. 2] the following subdifferentiability property was introduced.

Definition 4.10. Let E : [0, T ]×X → (−∞,+∞] fulfill (3.E0). For every R > 0, set

DR = {u ∈ D : G(u) ≤ R} .

We say that E is uniformly subdifferentiable (w.r.t. the variable u) if for all R > 0 there exists a
modulus of subdifferentiability ωR : [0, T ]×DR ×DR → [0,+∞) such that for all t ∈ [0, T ]:

ωRt (u, u) = 0 for every u ∈ DR,

the map (t, u, v) 7→ ωRt (u, v) is upper semicontinuous, and

Et(v)− Et(u)− 〈ξ, v − u〉 ≥ −ωRt (u, v)‖v − u‖ for all u, v ∈ DR and ξ ∈ ∂Et(u).

(4.22)

It was shown in [51, Sec. 2] that, a sufficient condition for (4.22) is that the map u 7→ Et(u) is
λ-convex uniformly in t ∈ [0, T ], namely

∃λ ∈ R ∀ t ∈ [0, T ] ∀u0, u1 ∈ D ∀ θ ∈ [0, 1] :

Et((1 − θ)u0 + θu1) ≤ (1− θ)Et(u0) + θEt(u1)−
λ

2
θ(1 − θ)‖u0 − u1‖

2 .
(4.23)

Suitable perturbations of λ-convex functionals also fulfill the closedness and the chain rule prop-
erties: we refer to [66, 51, 65] for more details and explicit examples.

We have the following

Proposition 4.11. Let E : [0, T ]×X → (−∞,+∞] fulfill (3.E0), (3.E2), and the uniform subd-
ifferentiability condition (4.22). Then, E complies with the closedness condition (3.E3), with the
chain rules (3.19) and (3.E4), and with property (4.9).

Proof. In [51, Prop. 2.4], it was proved that condition (4.22) implies (3.E3) and (3.19). The validity
of (3.E4) and (4.9) can be checked trivially adapting the arguments developed for the proof of [51,
Prop. 2.4], to which the reader is referred. �
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4.3. Examples of quasistatic limits. Our approach to the approximation of doubly nonlinear
evolution equations in particular allows us to discuss quasistatic limits of dynamical problems.
Indeed, the flexibility in the choice of the approximating graphs αn, possibly noncyclic monotone,
makes it possible to take rate-independent limits of Hamiltonian systems. We shall provide here
some examples of ODEs and PDEs that can be reformulated within our frame.

Let us start by considering the case of a nonlinearly damped oscillator. In particular, let q = q(t)
represent the set of generalized coordinates of the system, M be the mass matrix, and U = U(q)
its smooth and coercive potential energy. Assume moreover that the system dissipates energy
in terms of a positively 1-homogeneous and nondegenerate dissipation potential D = D(q̇). By
rescaling time t as εt, the quasistatic limit of the system corresponds to the limit as ε→ 0 in the
equation

ε2Mq̈ + ∂D(q̇) +∇U(q) ∋ 0. (4.24)

The latter can be rephrased as a single doubly nonlinear Hamiltonian system in the pair v = (p, q),
by introducing the Hamiltonian H(p, q) = U(p) + q·M−1q/2, the symplectic operator

J =

(
0 1
−1 0

)
,

and the dissipation potential D̂(ṗ, q̇) = D(ṗ). Then, (4.24) reads

∂D̂(ṗ, q̇) + εJ(ṗ, q̇) +∇H(p, q) ∋ (0, 0), (4.25)

which can be equivalently rewritten as

∂D(ṗ) + εq̇ +∇U(p) ∋ 0,

−εṗ+M−1q = 0,

Taking the quasistatic limit ε→ 0 in relation (4.25) requires to deal with the graphs αε = ∂D̂+εJ ,
which are noncyclic monotone for all ε > 0. Apart from the coercivity assumption (3.α1) (which
can however be relaxed in this case), this situation fits into our theory. In particular, solution
trajectories to the dynamic problem (4.24) converge to solutions of the corresponding quasistatic
limit. By generalizing the choice of the graphs αε, convergence can be obtained for a large class
of different approximating problems.

The nonlinear oscillator example can be turned into a first PDE example by considering the
nonlinearly damped semilinear wave equation

ε2utt + ∂D(ut)−∆u+ f(u) = 0. (4.26)

This is to be posed in the cylinder Ω × (0, T ) for some smoothly bounded open set Ω ⊂ Rn,
along with the positively 1-homogeneous and nondegenerate dissipation potential D, the smooth
and polynomially bounded function f , and suitable initial and homogeneous Dirichlet boundary
conditions (for simplicity). Equation (4.26) can be variationally reformulated in terms of a first-
order system as

∂D(ut, vt) + εJ(ut, vt) + ∂H(u, v) ∋ (0, 0) in U∗×V∗ for a.a. t ∈ (0, T ), (4.27)

where U = H1
0 (Ω), V = L2(Ω), the functionals D : V2 → [0,∞], and H : U×V → (−∞,∞] are

given by

D(ut, vt) =

∫

Ω

D(ut) dx, H(u, v) =

∫

Ω

(
1

2
|∇u|2 + f̂(u) +

1

2
|v|2
)

dx

for f̂ ′ = f , and J(ut, vt)(x) = J(ut(x), vt(x)) for almost every x ∈ Ω. Equation (4.27) fits in
our frame along with the choice αε = ∂D + εJ, which are noncyclic monotone for all ε > 0. In
particular, owing to our analysis we can take the quasistatic limit ε → 0 in the latter (again by
suitably circumventing the lack of coercivity, which is inessential here).

Let us now provide a second PDE example by considering the quasistatic limit in linearized
elastoplasticity with linear kinematic hardening [40]. We let Ω ⊂ R3 be the reference configura-
tion of an elastoplastic body which is subject to a displacement u : Ω → R3 and a plastic strain
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p : Ω → R3×3
dev (traceless or deviatoric symmetric 3×3 tensors). Then, the evolution of the elasto-

plastic medium is described by the system of the (time-rescaled) momentum balance (in R3) and
constitutive equation (in R3×3

dev ) as

ε2ρutt −∇·(C(ε(u)−p)) = b,

∂D(pt) +Hp = C(ε(u)−p)

in Ω× (0, T ), where ρ = ρ(x) stands for the material density, C is the elasticity tensor (symmetric,
positive definite), ε(u) = (∇u+∇u⊤)/2 is the symmetrized strain gradient, b = b(t, x) denotes
some body force density, H is the hardening tensor, and D is a positively 1-homogeneous and
nondegenerate dissipation potential. The choice D(pt) = R|pt| for some R > 0 corresponds to
the classical Von Mises plasticity. We shall close the latter elastoplasticity system by imposing
homogeneous Dirichlet conditions on u and no-traction conditions at the boundary (for simplicity).
Then, the system can be recast in the form of a first-order system by augmenting the variables,
including the momentum vt = ρut. In particular, we can variationally reformulate the system as

∂D(ut, vt, pt) + εJ(ut, vt, pt) + ∂H(u, v, p) ∋ (b, 0, 0) in U∗×V∗×P∗ for a.a. t ∈ (0, T ), (4.28)

where now the spaces are defined as U = {u ∈ H1(Ω;R3) : u = 0 in ∂Ω}, V = L2(Ω;R3),
P = L2(Ω;R3×3

dev ). The functionals and the operator are given by

D(ut, vt, pt) =

∫

Ω

D(pt) dx ∀pt ∈ L1(Ω;R3×3
dev ),

H(u, v, p) =

∫

Ω

(
1

2
(ε(u)−p):C(ε(u)−p) +

1

2
p:Hp+

1

2ρ
|v|2
)

dx ∀(u, v, p) ∈ U×V×P,

J(ut, vt, pt) =



vt
−ut
0


 ∀(u, v, p) ∈ U×V×P.

Once again, the operators αε = ∂D+ εJ are noncyclic monotone for all ε > 0. In particular, our
analysis is suited in order to analyze the quasistatic limit ε→ 0 in the elastoplastic system (4.28).
This clearly distinguishes our frame from the former variational principle from [73], which is of no
use in the dynamical case.

5. Proof of Theorem 4.5

Outline. Our starting point is the fact that, the functions (un, ξn) fulfill for every n ∈ N the
energy identity

Et(un(t)) +

∫ t

0

fαn
(u̇n(s),−ξn(s)) ds = E0(u

n
0 ) +

∫ t

0

∂tEs(un(s)) ds for all t ∈ (0, T ]. (5.1)

From (5.1), we will deduce a priori estimates on the sequence (un, ξn). Relying on well-known
strong and weak compactness results, we will then prove the convergence (up to a subsequence)

of (un, ξn) to a limit pair (u, ξ̂). Hence we will pass to the limit as n → ∞ in (5.1), following
the lines of the proof of [51, Thm. 4.4]. Namely, we will combine the finite-dimensional lower
semicontinuity theorem [35, Theorem 5.27], with tools from infinite-dimensional Young measure
theory (see Appendix A for some basic recaps), and refined selection arguments mutuated from
the proof of [51, Thm. 4.4]. Such arguments will yield the existence of a function ξ ∈ L1(0, T ;X∗)
such that the pair (u, ξ) fulfill the energy inequality (4.5).

Notation 5.1. Hereafter we will denote by the symbols C, C′ various positive constants, which
may change from line to line, only depending on known quantities and in particular independent
of n ∈ N. We will also use the place-holders

En(t) := Et(un(t)), Pn(t) := ∂tEt(un(t)). (5.2)
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Step 1 - A priori estimates and compactness: It follows from (5.1) and (3.E2) (cf. also

estimate (3.22)) that En(t) ≤ En(0) + C1

∫ t
0 En(s) ds for all t ∈ [0, T ]. Since supn∈NEn(0) ≤ C

by (4.3), applying the Gronwall Lemma we deduce supt∈[0,T ]{En(t) : t ∈ [0, T ]} ≤ C. Therefore,

in view of assumption (3.E2) and property (3.16), we conclude that

∃C > 0 ∀n ∈ N : sup
t∈[0,T ]

(G(un(t)) + |Pn(t)|) ≤ C. (5.3)

Thanks to (3.E1) we then infer that

∃K ⋐ X ∀n ∈ N ∀ t ∈ [0, T ] : un(t) ∈ K. (5.4)

Then, taking into account that fαn
(u̇n,−ξn) ≥ 0 a.e. in (0, T ) in view of (2.9), (5.1) yields

∃C > 0 ∀n ∈ N : ‖fαn
(u̇n,−ξn)‖L1(0,T ) ≤ C. (5.5)

In view of assumption (3.α1), from (5.5) we conclude

∫ T

0

c1‖u̇n(s)‖ + c2‖ξn(s)‖
q
∗ ds ≤ C.

Also due to (5.4), we ultimately deduce that

∃C > 0 ∀n ∈ N : ‖un‖BV ([0,T ];X) + ‖ξn(s)‖Lq(0,T ;X∗) ≤ C . (5.6)

Furthermore, from the energy identity (5.1) we immediately infer that, setting hn(t) := En(t) −∫ t
0 Pn(s) ds, there holds

hn(t)− hn(s) = −

∫ t

s

fαn
(u̇n(r),−ξn(r)) ds ≤ 0 ∀ 0 ≤ s ≤ t ≤ T.

Therefore we have Var(hn; [0, T ]) = En(0)−En(T )) +
∫ T
0 Pn(s) ds ≤ C thanks to (5.3) and (4.3).

Since (Pn) is uniformly bounded in L∞(0, T ), we conclude that

∃C > 0 ∀n ∈ N : Var(En; [0, T ]) ≤ C . (5.7)

Estimates (5.4), (5.6), (5.7), and the Helly principle guarantee that there exists a subsequence
(nk) and functions u ∈ BV ([0, T ];X) and E ∈ BV ([0, T ]) such that, as k → ∞,

(unk
(t),Et (unk

(t))) → (u(t), E(t)) in X × R for all t ∈ [0, T ], (5.8)

dunk
= u̇nk

· L
∗
⇀ du in M(0, T ;X). (5.9)

Exploiting Thm. 3.4, we decompose du as

du = (du)ac + (du)sin = u̇acL+ u̇s ‖( du)sin‖.

Observe that, by the lower semicontinuity (3.E0),

E(t) ≥ Et(u(t)) for all t ∈ [0, T ]. (5.10)

Further, in view of estimate (5.5), there exists µ ∈ M(0, T ) such that (up to not relabeled a
subsequence)

fαk
(u̇k(·),−ξk(·)) · L

∗
⇀ µ in M(0, T ) (5.11)

Moreover, by an infinite-dimensional version of the fundamental compactness theorem of Young
measure theory (cf. Thm. A.3 in Appendix A), we can associate with (possibly a subsequence of)
(ξnk

, Pnk
) a limiting Young measure (σt)t∈(0,T ) ∈ Y (0, T ;X×R) such that, for almost all t ∈ (0, T )

it holds σt(X ×R) = 1 and σt is supported on the set of the limit points of (ξnk
(t), Pnk

(t)) w.r.t.
the weak topology on X∗ × R, viz.

supp (σt) ⊂
⋂

j∈N

{(ξnk
(t), Pnk

(t)) : k ≥ j}
weak

(5.12)
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(where with B
weak

we denote the closure of a set B ⊂ X∗×R w.r.t. the weak topology). Further-
more, it holds

ξnk
⇀

∫

X∗×R

ζ dσt(ζ, p) =: ξ̂ in Lq(0, T ;X∗) and (5.13)

Pnk

∗
⇀

∫

X∗×R

p dσt(ζ, p) =: P̂ in L∞(0, T ) . (5.14)

Step 2 - Nonemptyness of admissible sets: From now on, for the sake of simplicity, we shall
write k instead of nk . There exists a negligible set N ⊂ (0, T ) such that for every t ∈ (0, T ) \N
convergences (5.8) and the support property (5.12) hold. Taking into account the closedness
condition (3.E3), it can be easily checked (cf. also [51, Sec. 6]), that for almost all t ∈ (0, T ) there
holds

(t, u(t)) ∈ D(∂E),
Et(u(t)) = E(t), E0(u(0)) = E(0),
supp (σt) ⊂ {(ζ, p) ∈ X∗ × R : ζ ∈ ∂Et(u(t)) , p ≤ ∂tEt(u(t))} .

(5.15)

In particular, from (5.14) and the third of (5.15) it follows that

P̂ (t) ≤ ∂tEt(u(t)) for a.a. t ∈ (0, T ) . (5.16)

Step 3 - lim inf result for the Fitzpatrick function: In the next lines, we are going to prove
that

lim inf
k→∞

∫ t

0

fαk
(u̇k(r),−ξk(r)) dr

≥

∫ t

0

∫

X∗×R

fα (u̇ac(r),−ζ) dσr(ζ, p) dr +

∫ t

0

f∞
α (u̇s(r), 0) ‖( du)sin‖(r) .

(5.17)

In order to do so, employing [35, Corollary 1.116, p. 75], we decompose the measure µ from (5.11)
as follows: there exist µac, µsin, µ⊥ in M(0, T ) such that

µac ≪ ‖( du)ac‖ , µsin ≪ ‖( du)sin‖ , µ⊥ ⊥ ‖( du)ac‖+ ‖( du)sin‖ and
µ = µac + µsin + µ⊥

(5.18)

In particular, µac is absolutely continuous w.r.t. the Lebesgue measure L. Since fαk
(u̇k,−ξk) ≥ 0

a.e. in (0, T ), we obtain µ⊥ ≥ 0. We will split the proof of (5.17) in two steps.

First step: Now, it follows from (3.8) and (5.18) and the Radon-Nikodým property of X that the
set of the points t0 ∈ (0, T ) such that σt0(X

∗ × R) = 1 and

u̇ac(t0) = lim
ε→0

( du) ([t0 − ε, t0 + ε] ∩ [0, T ])

ε
,

ξ̂(t0) = lim
ε→0

1

ε

∫ t0+ε/2

t0−ε/2

ξ̂(t) dt, and

dµac

dL
(t0) = lim

ε→0

µ ([t0 − ε, t0 + ε] ∩ [0, T ])

ε
<∞

(5.19)

has full Lebesgue measure. From now on, we shall use the notation

Qε(t0) := [t0 − ε, t0 + ε] ∩ [0, T ] with t0 ∈ (0, T ) such that (5.19) holds. (5.20)

We then prove that
dµac

dL
(t0) ≥

∫

X∗×R

fα (u̇ac(t0),−ζ) dσt0 (ζ, p) (5.21)

with t0 ∈ (0, T ) such that (5.19) holds. For any such t0, it is also possible to choose a vanishing
sequence (εm)m such that for all m ∈ N there holds

µ ({t0 − εm, t0 + εm} ∩ [0, T ]) = ( du) ({t0 − εm, t0 + εm} ∩ [0, T ]) = 0 . (5.22)

In order to show (5.21), we will use (2.7), which yields

fα (u̇ac(t0),−ζ) = sup{〈x∗, u̇ac(t0)〉 − 〈ζ, x〉 − ρα−1(x
∗, x) : (x, x∗) ∈ X ×X∗} . (5.23)
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In view of (5.23), we thus confine ourselves to showing that

dµac

dL
(t0) ≥ 〈x∗, u̇ac(t0)〉 −

∫

X∗×R

〈ζ, x〉 dσt0(ζ, p)− ρα−1(x, x∗)

for all (x, x∗) ∈ X ×X∗ with ρα−1(x, x∗) <∞.

(5.24)

Now, to check (5.24) we observe that, since αk
g

−→ α also α−1
k

g
−→ α−1 in the graph sense, we can

apply Theorem 2.10 to ρα−1

k
= f∗

αk
. Therefore, for any (x, x∗) ∈ X ×X∗ there exists a sequence

(xk, x
∗
k)k∈N

such that

(xk, x
∗
k) → (x, x∗) and lim sup

n→∞

ρα−1

k
(x∗k, xk) ≤ ρα−1(x∗, x). (5.25)

Combining (5.11) with the third of (5.19) (for the sequence (εm)m fulfilling (5.22)), we have that

dµac

dL
(t0)

= lim
m→∞

lim
k→∞

ε−1
m

∫

Qεm (t0)

fαk
(u̇k(t),−ξk(t)) dt

≥ lim inf
m→∞

lim inf
k→∞

ε−1
m

∫

Qεm (t0)

(
〈x∗k, u̇k(t)〉+ 〈−ξk(t), xk〉 − ρα−1

k
(x∗k, xk)

)
dt,

(5.26)

where in the latter inequality we have plugged in the sequence (xk, x
∗
k) from (5.25) and applied

formula (5.23) for fαk
. On account of convergences (5.9) and (5.13), and of the fact that (xk, x

∗
k) →

(x, x∗), we have for every m ∈ N
∫

Qεm (t0)

〈x∗k, u̇k(t)〉 dt→

∫

Qεm (t0)

〈x∗, du(t)〉 . (5.27)

∫

Qεm (t0)

〈ξk(t), xk〉 dt→

∫

Qεm (t0)

〈
ξ̂(t), x

〉
dt

=

∫

Qεm (t0)

(∫

X∗×R

〈ζ, x〉 dσt(ζ, p)

)
dt .

(5.28)

Inserting (5.27)–(5.28) into (5.26) and using (5.25), we thus get

dµac

dL
(t0)

≥ lim inf
m→∞

1

εm

(∫

Qεm (t0)

〈x∗, du(t)〉+

∫

Qεm (t0)

(∫

X∗×R

〈−ζ, x〉 dσt(ζ, p) − ρα−1(x, x∗)

)
dt

)

and in view of (5.19) we infer (5.24), whence the desired (5.21).

Second step: choose t0 ∈ (0, T ) such that it satisfies

u̇sin(t0) = lim
ε→0

( du) ([t0 − ε, t0 + ε] ∩ [0, T ])

‖( du)sin‖ ([t0 − ε, t0 + ε] ∩ [0, T ])
,

0 = lim
ε→0

L ([t0 − ε, t0 + ε] ∩ [0, T ])

‖( du)sin‖ ([t0 − ε, t0 + ε] ∩ [0, T ])
, and

dµsin

‖( du)sin‖
(t0) = lim

ε→0

µ ([t0 − ε, t0 + ε] ∩ [0, T ])

‖( du)sin‖ ([t0 − ε, t0 + ε] ∩ [0, T ])
<∞ .

(5.29)

The set of all t0 failing any of (5.29) is a ‖( du)sin‖-null set. We are now going to prove that

dµsin

‖( du)sin‖
(t0) ≥ f∞

α (u̇sin(t0), 0) . (5.30)

for any t0 ∈ (0, T ) complying with (5.29). As before, we will use the notation (5.20) for the
set Qε(t0) with any such t0, and we choose correspondingly a vanishing sequence (εm) such that
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(5.22) is satisfied. In order to show (5.30), in view of the representation formula (3.13) for f∞
α it

is sufficient to show that

dµsin

‖( du)sin‖
(t0) ≥ 〈x∗, u̇sin(t0)〉 for all (x, x∗) such that ρα−1(x, x∗) <∞. (5.31)

With the same argument as in the previous lines, we see that

dµsin

‖( du)sin‖
(t0)

= lim
m→∞

lim
k→∞

1

‖( du)sin‖ (Qεm(t0))

∫

Qεm (t0)

fαk
(u̇k(t),−ξk(t)) dt

≥ lim inf
m→∞

lim inf
k→∞

1

‖( du)sin‖ (Qεm(t0))

∫

Qεm (t0)

(〈x∗k, u̇k(t)〉+ 〈−ξk(t), xk〉 − ραk
−1(x∗k, xk)) dt ,

(5.32)
where (xk, x

∗
k) as in (5.25) approximates (x, x∗) from (5.31). Once again, due to (5.9) and (5.13)

we have for every fixed m ∈ N that
∫

Qεm (t0)

〈x∗k, u̇k(t)〉 dt→

∫

Qεm (t0)

〈x∗, du(t)〉 and

∫

Qεm (t0)

〈ξk(t), xk〉 dt →

∫

Qεm (t0)

〈
ξ̂(t), x

〉
dt .

By construction (cf. (5.29)), there holds

lim
m→∞

1

‖( du)sin‖ (Qεm(t0))

∫

Qεm (t0)

〈x∗, du(t)〉 = 〈x∗, u̇sin(t0)〉 ,

lim
m→∞

1

‖( du)sin‖ (Qεm(t0))

∫

Qεm (t0)

〈
−ξ̂(t), x

〉
dt = 0,

lim
m→∞

L(Qεm(t0))

‖( du)sin‖ (Qεm(t0))
ρα−1(x, x∗) = 0 .

We thus conclude (5.31), whence (5.30).

In conclusion, passing to the limit as nk → ∞ in (5.1) and relying on the initial data convergence
(4.3), the energy convergence (5.8) joint with (5.10), (5.14), and the lower semicontinuity (5.17),
we have obtained

Et(u(t)) +

∫ t

0

∫

X∗×R

fα (u̇ac(s),−ζ) dσs(ζ, p) ds+

∫ t

0

f∞
α (u̇sin(s), 0) ‖( du)sin‖(s)

≤ E(t) +

∫ t

0

∫

X∗×R

fα (u̇ac(s),−ζ) dσs(ζ, p) ds+

∫ t

0

f∞
α (u̇sin(s), 0) ‖( du)sin‖(s)

≤ E0(u(0)) +

∫ t

0

∫

X∗×R

p dσs(ζ, p) ds for all t ∈ (0, T ] .

(5.33)

Step 4 - Enhanced support properties of the Young measure (σt)t∈(0,T ): We can now
improve the third of (5.15), showing that indeed

supp (σt) ⊂ {(ζ, p) ∈ X∗ × R : ζ ∈ ∂Et(u(t)) , −ζ ∈ α(u(t)) , p ≤ ∂tEt(u(t))} for a.a. t ∈ (0, T ).
(5.34)

To this end, observe that, passing to the limit as nk → ∞ in (5.1) (written on the interval (s, t)),
yields, in view of convergences (5.8), (5.11), and (5.14), the following energy identity

E(t) + µ([s, t]) = E(s) +

∫ t

s

p(r) dr for all 0 ≤ s ≤ t ≤ T with (5.35a)

µ([s, t]) ≥

∫ t

s

∫

X∗×R

fα (u̇ac(r),−ζ) dσr(ζ, p) dr (5.35b)
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the latter inequality due to (5.21). In particular, observe that

∫ T

0

∫

X∗×R

fα (u̇ac(t),−ζ) dσt(ζ, p) dt <∞ . (5.36)

Let T ⊂ [0, T ] be the set of all Lebesgue points t0 of P̂ (5.14), such that relations (5.19) and (5.21)
hold, and

Ėac(t0) = lim
ε→0

E
(
t0 +

ε
2

)
− E

(
t0 −

ε
2

)

ε
.

Then T has full measure. Let us now choose a sequence (εm), εm ↓ 0, such that (5.22) holds.
Then, passing to the limit as εm ↓ 0 in (5.35) (written for s = t0 − εm/2 and t = t0 + εm/2), we
obtain

Ėac(t0) +

∫

X∗×R

fα(u̇ac(t0),−ζ) dσt0(ζ, p) ≤

∫

X∗×R

p dσt0(ζ, p) for all t0 ∈ T (5.37)

(up to removing from T a set of zero Lebesgue measure). Now, observe that thanks to the third
of (5.15) and (5.36), the Young measure (σt)t∈(0,T ) satisfies the assumptions of the forthcoming
Lemma A.4. Therefore, in view of the Young measure version of the chain rule inequality (3.E4)
therein, we find that

−Ėac(t0) +

∫

X∗×R

p dσt0(ζ, p) ≤

∫

X∗×R

〈−ζ, u̇ac(t0)〉 dσt0 (ζ, p) for almost all t0 ∈ T . (5.38)

Combining (5.37) and (5.38), we deduce that for almost all t0 ∈ T (and hence for almost all
t0 ∈ (0, T )) it holds

∫

X∗×R

(fα(u̇ac(t0),−ζ)− 〈−ζ, u̇ac(t0)〉) dσt0(ζ, p) ≤ 0 . (5.39)

Since fα is a representative function for α, we easily see that (5.39) holds as an equality, and that
in fact

−ζ ∈ α(u̇ac(t0)) for σt0 -a.a. (ζ, p) ∈ supp(σt0).

Since t0 ∈ (0, T ) is arbitrary out of a Lebesgue-null set, we have ultimately proved the desired
support property (5.34). Furthermore, as a by-product of (5.37)–(5.39) holding as equalities, we
infer the following pointwise energy equality

Ėac(t) +

∫

X∗×R

fα(uac(t),−ζ) dσt(ζ, p) =

∫

X∗×R

p dσt(ζ, p) for a.a. t ∈ (0, T ). (5.40)

Step 5 - Selection argument and conclusion of the proof: We can now apply Lemma A.5
and deduce that there exist measurable functions ξ : (0, T ) → X and P : (0, T ) → R such that

(ξ(t), p(t)) ∈ argmin {fα(u̇ac(t),−ζ)− p : (ζ, p) ∈ S (t, u(t), u̇ac(t))} for a.a. t ∈ (0, T ), (5.41)

with S(t, u(t), u̇ac(t)) := {(ζ, p) ∈ X∗ × R : ζ ∈ ∂Et(u(t)), −ζ ∈ α(u̇ac(t)), p ≤ ∂tEt(u(t))}. In
particular,

ξ(t) ∈ ∂Et(u(t)) , −ξ(t) ∈ α(u̇ac(t)), and P (t) ≤ ∂tEt(u(t)) for a.a. t ∈ (0, T ), (5.42)

We then have the following chain of inequalities for almost all t ∈ (0, T )

−Ėac(t) =

∫

X∗×R

(fα(u̇ac(t),−ζ)− p) dσt(ζ, p)

≥ fα(u̇ac(t),−ξ(t)) − P (t)

≥ 〈−ξ(t), u̇ac(t)〉 − ∂tEt(u(t)) ≥ −Ėac(t),

(5.43)

where the first identity follows from (5.40), the second inequality from (5.41), the third one from
the fact that fα is a representative function for α and from (5.42), and the last one from the chain
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rule inequality (3.E4). Therefore we infer that all inequalities in (5.43) hold as equalities, which
proves (4.8). In particular, we have that for almost all t ∈ (0, T )

P (t) =

∫

X∗×R

p dσt(ζ, p) = ∂tEt(u(t)),

fα(u̇ac(t),−ξ(t)) =

∫

X∗×R

fα(u̇ac(t),−ζ) dσt(ζ, p) = 〈−ξ(t), u̇ac(t)〉 .

(5.44)

Combining (5.44) with (5.33) we ultimately deduce (4.5). Now, from (4.5) with (4.6) we have that∫ T
0 | 〈−ξ(t), u̇ac(t)〉 | dt <∞. Since α complies with (4.1), we then conclude that ξ ∈ Lq(0, T ;X∗).
This completes the proof.

Remark 5.2 (The role of the Fitzpatrick function). As pointed out in Remark 3.13, the variational
reformulation of the doubly nonlinear differential inclusion (3.17) could be given in terms of any
representative functional for α. The distinguished role of the Fitzpatrick function fα is apparent
in the passage to the limit argument developed in Step 3 of the proof of Thm. 4.5. Therein (cf.
(5.21)–(5.28)), we exploit the duality formula (2.7) for fα, as well as Theorem 2.10.

Remark 5.3 (Refinement of the measurable selection argument). A close perusal of Step 5 in the
above proof reveals that, in principle, it should be sufficient to select the functions t 7→ (ξ(t), p(t)) in

the set S̃(t, u(t)) := {(ζ, p) ∈ X∗×R : ζ ∈ ∂Et(u(t)), p ≤ ∂tEt(u(t))}, i.e. dropping the requirement

−ζ ∈ α(u̇ac(t)). Indeed, if we were in the position of applying Lemma A.5 to the set S̃, from the
chain of inequalities (5.43) the second of (5.44) would still follow, yielding −ξ(t) ∈ α(u̇ac(t)) for
almost all t ∈ (0, T ), i.e. (4.6).

Nonetheless, the extension of Lemma A.5 to the set S̃ seems to be an open problem, at the
moment, cf. the upcoming Remark A.6.

We conclude this section with the

Proof of Theorem 4.8. Repeating the calculations from Step 1 of the proof of Thm. 4.5, we prove
that the sequence (un) is bounded in W 1,p(0, T ;X) and in addition fulfills estimate (5.3). There-
fore, convergence (4.16) holds. We use the arguments from the above Steps 1 and 4 to in-
fer that there exist (ξ, E) ∈ L1(0, T ;X∗) × BV ([0, T ]) complying with (4.7) and (4.8). Since
u ∈W 1,p(0, T ;X), Proposition 4.7 applies, and we conclude the proof. �

Appendix A. Young measure results

We fix here some definitions and results on parameterized (or Young) measures (see e.g. [12, 13,
14, 77]) with values in a reflexive Banach space Y. In particular, in Section 5 the upcoming results
are applied to the space Y = X∗ × R.

Notation A.1. In what follows, we will denote by L(0,T ) the σ-algebra of the Lebesgue measurable
subsets of (0, T ) and by B(Y) the Borel σ-algebra of Y. We use the symbol ⊗ for product σ-
algebrae. We recall that a L(0,T ) ⊗ B(Y)-measurable function h : (0, T ) × Y → (−∞,+∞] is a
normal integrand if for a.a. t ∈ (0, T ) the map y 7→ ht(y) = h(t, y) is lower semicontinuous on Y.

We consider the space Y endowed with the weak topology, and say that a L(0,T ) ⊗ B(Y)–
measurable functional h : (0, T )×Y → (−∞,+∞] is a weakly-normal integrand if for a.a. t ∈ (0, T )
the map

y 7→ h(t, y) is sequentially lower semicontinuous on Y w.r.t. the weak topology. (A.1)

We denote by M (0, T ;Y) the set of all L(0,T )-measurable functions y : (0, T ) → Y. A sequence
(yn) ⊂ M (0, T ;Y) is said to be weakly-tight if there exists a weakly-normal integrand h : (0, T )×
Y → (−∞,+∞] such that the map

y 7→ ht(y) has compact sublevels w.r.t. the weak topology of Y, and sup
n

∫ T

0

h(t, yn(t)) dt <∞.
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Definition A.2 (Young measures with values in Y). A (time-dependent) Young measure
in the space Y is a family σ := {σt}t∈(0,T ) of Borel probability measures on Y parameterized by
t ∈ (0, T ), such that the map on (0, T )

t 7→ σt(B) is L(0,T )-measurable for all B ∈ B(Y). (A.2)

We denote by Y (0, T ;Y) the set of all Young measures in Y.

The following result is taken from [51] (cf. Thms. A.2 and A.3 therein). It is a generalization of
the so-called Fundamental Theorem of Young measures (cf. the classical results [12, Thm. 1], [13,
Thm. 2.2], [14], [77, Thm. 16]), to the case of Young measures with values in Y endowed with the
weak topology (see also [66, Thm. 3.2] for the case in which Y is a Hilbert space endowed with the
weak topology).

Theorem A.3 (The Fundamental Theorem for weak topologies). Let (yn) ⊂ M (0, T ;Y) be a
weakly-tight sequence. Then,

(1) there exists a subsequence (ynk
) and a Young measure σ = (σt)t∈(0,T ) ∈ Y (0, T ;Y) such

that

lim sup
k↑∞

‖ynk
(t)‖Y <∞ and supp(σt) ⊂

∞⋂

j=1

{ynk
(t) : k ≥ j}

weak
for a.a. t ∈ (0, T ), (A.3)

(where B
weak

denotes the closure of a set B ⊂ Y w.r.t. the weak topology), and such that
for every weakly-normal integrand h : [0, T ] × Y → (−∞,∞] such that h− (·, ynk

(·)) is
uniformly integrable it holds

lim inf
k→∞

∫ T

0

h (t, ynk
(t)) dt ≥

∫ T

0

∫

Y

h (t, y) dσt(y) dt . (A.4)

(2) In particular, let (yn) ⊂ Lq(0, T ;Y) be a bounded sequence, with q ∈ (1,+∞]. Then, there
exists a further (not relabeled) subsequence (ynk

) and a Young measure σ = {σt}t∈(0,T ) ∈
Y (0, T ;Y) such that for a.a. t ∈ (0, T ) properties (A.3) hold. Setting y(t) :=

∫
Y
y dσt(y)

for almost all t ∈ (0, T ), there holds

ynk

∗
⇀ y in Lp(0, T ;Y). (A.5)

A.1. A Young-measure version of the chain rule. In what follows, we will work with Young
measures with values in the space Y = X∗ × R. Our first result, a small variation of [51, Prop.
B.1], provides the version of the chain rule inequality (3.E4) in terms of Young measures used in
Step 4 of the proof of Thm. 4.5.

Lemma A.4. In the frame of (3.15), let α : X ⇒ X∗ fulfill (3.α0) and the coercivity condition
(4.1), and let E : [0, T ] × X → (−∞,+∞] comply with Assumption 4.4. Let u ∈ BV ([0, T ];X)
satisfy

sup
t∈[0,T ]

Et(u(t)) <∞ , (t, u(t)) ∈ dom(∂E) for a.a. t ∈ (0, T ),

∫ T

0

|∂tEt(u(t))| dt <∞,

∃E ∈ BV ([0, T ]) such that E(t) = Et(u(t)) for a.a. t ∈ (0, T ),

(A.6)

and let (σt)t∈(0,T ) ∈ Y (0, T ;X∗ × R) be a Young measure such that

∀(ξ, p) ∈ supp(σt) : ξ ∈ ∂Et(u(t)) , p ≤ ∂tEt(u(t)) for a.a. t ∈ (0, T ) (A.7)
∫ T

0

∫

X∗×R

fα(u̇ac(s),−ζ) dσ(ζ, p)ds <∞ (A.8)

Then, for almost all t ∈ (0, T ) such that t is Lebesgue point of Ėac and u̇ac there holds

Ėac(t) ≥

∫

X∗×R

(〈ζ, u̇ac(t)〉 + p) dσt(ζ, p) . (A.9)
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Proof. We consider the set K(t, u(t)) := {(ξ, p) ∈ X∗ × R : ξ ∈ ∂Et(u(t)), p ≤ ∂tEt(u(t))}.
Repeating the very same arguments as in the proof of [51, Prop. B.1], we can show that there
exists a sequence (ξn, pn) of strongly measurable functions (ξn, pn) : (0, T ) → X∗ × R such that

{(ξn(t), pn(t)) : n ∈ N} ⊂ K(t, u(t)) ⊂ {(ξn(t), pn(t)) : n ∈ N } for a.a. t ∈ (0, T ) (A.10)

(where B denotes the closure of B ⊂ X∗ × R w.r.t. the strong topology of X∗ × R).

We now claim that the sequence (ξn, pn) can be chosen such that

∀n ∈ N : ξn ∈ L1(0, T ;X∗) and sup
n∈N

∫ T

0

fα(u̇ac(t),−ξn(t)) dt <∞ . (A.11)

To this aim, we define the function g(t) := inf{fα(u̇ac(t),−ζ) : (ζ, p) ∈ K(t, u(t))} for almost all
t ∈ (0, T ). Notice that due to (A.10) it holds

g(t) := inf
n∈N

{fα(u̇ac(t),−ξn(t))} for a.a. t ∈ (0, T ) (A.12)

and hence g is measurable on (0, T ). Moreover,
∫ T

0

g(t) dt ≤

∫ T

0

∫

X×R

fα(u̇ac(t),−ζ) dσt(ζ, p) dt <∞. (A.13)

With a straightforward adaptation of the argument of [51, Prop. B.1] (see also [66, Lemma 3.4]),
from (A.12) and (A.13) we deduce (A.11).

In view of the obtained (A.10) and (A.11), we are in the position to apply the chain rule
inequality (3.E4) to the pair (u, ξn) for every n ∈ N. Therefore for every n ∈ N there exists a set

Tn ⊂ (0, T ) of full measure such that Ėac(t) ≥ 〈ξn(t), u̇ac(t)〉+ pn(t) for all t ∈ Tn, where we have
also used that pn(t) ≤ ∂tEt(u(t)). The set T =

⋂
n∈N

Tn, has still full measure, and there holds
for all t ∈ T

Ėac(t) ≥ 〈ζ, u̇ac(t)〉 + p for all (ζ, p) ∈ conv K(t, u(t)), (A.14)

the latter set denoting the closed convex hull of K(t, u(t)). Integrating (A.14) w.r.t. the measure
σt we obtain (A.9). �

We conclude with the measurable selection result exploited in Step 5 of the proof of Thm. 4.5.

Lemma A.5. In the framework of (3.15), let α : X ⇒ X∗ fulfill (3.α0) and the coercivity
condition (4.1), and let E : [0, T ] × X → (−∞,+∞] comply with Assumptions 3.9 and 4.4.
Furthermore, let u ∈ BV ([0, T ];X) fulfill (A.6). Suppose that for almost all t ∈ (0, T )

S(t, u(t), u̇ac(t)) := {(ζ, p) ∈ X∗ × R : ζ ∈ ∂Et(u(t)) , −ζ ∈ α(u̇ac(t)) , p ≤ ∂tEt(u(t))} 6= ∅ .
(A.15)

Then, there exist measurable functions ξ : (0, T ) → X∗ and P : (0, T ) → R such that

(ξ(t), P (t)) ∈ argmin {fα(u̇ac(t),−ζ)− p : (ζ, p) ∈ S(t, u(t), u̇ac(t))} for a.a. t ∈ (0, T ) . (A.16)

Proof. The argument follows the very same lines of [51, Lemma B.2]. First of all, we observe that

argmin{fα(u̇ac(t),−ζ) − p : (ζ, p) ∈ S(t, u(t), u̇ac(t))} 6= ∅ for a.a. t ∈ (0, T ) . (A.17)

To this aim, let (ζn, pn) ⊂ S(t, u(t), u̇ac(t)) be an infimizing sequence: then there exist constants
C, C′ > 0 such that for every n ∈ N

C ≥ fα(u̇ac(t),−ζn)− pn = 〈−ζn, u̇ac(t)〉 − pn ≥ c1‖u̇ac(t)‖
p + c2‖ζn‖

q
∗ − c3 − C′ (A.18)

where we have used that −ζn ∈ u̇ac(t), the coercivity property (4.1) of α, and that pn ≤
∂tEt(u(t)) ≤ C due to the fact that supt∈[0,T ] Et(u(t)) < ∞ and to (3.E2). Therefore, we in-

fer that supn∈N(‖ζn‖
q
∗ + |pn|) < ∞. Hence, there exist (ζ, p) ∈ X∗ × R such that, up to a not

relabeled subsequence, ζn ⇀ ζ inX∗ and pn → p. Thanks to the closedness condition (3.E3) and to
the weak closedness of α(u̇ac(t)), we have (ζ, p) ∈ S(t, u(t), u̇ac(t)). Using that ζ 7→ fα(u̇ac(t),−ζ)
is (sequentially) weakly-lower semicontinuous, we conclude that

lim inf
n→∞

(fα(u̇ac(t),−ζn)− pn) ≥ fα(u̇ac(t),−ζ)− p
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and (A.17) ensues.

Once obtained (A.17), the argument for (A.16) is a straightforward adaptation of the proof of
[51, Lemma B.2], to which we refer for all details. Let us only mention here that the existence
of (ξ, P ) as in (A.16) is a consequence of the measurable selection results [24, Cor. III.3, Thm.
III.6]. �

Remark A.6. Let us stress that the requirement ζ ∈ α(u̇ac(t)) in the definition (A.15) of the set
S(t, u(t), u̇ac(t)) has a crucial role in proving that

argmin{fα(u̇ac(t),−ζ)− p : (ζ, p) ∈ S(t, u(t), u̇ac(t))}

is nonempty. In fact, it ensures the estimates in (A.18) for any infimizing sequence (ζn, pn).
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indépendant du temps. C. R. Acad. Sci. Paris Sér. A-B, 282(17):Aii, A971–A974, 1976.
[19] M. Brokate and J. Sprekels. Hysteresis and Phase Transitions. Number 121 in Appl. Math. Sci. Springer,

Berlin, 1996.
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