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Abstract. The computational effectiveness of Kalman’s state space controllability rests on the
well known Hautus Test which describes a rank condition of the matrix ( d

dt
I −A, B). This paper

generalizes this test to a generic class of behaviors (belonging to a Zariski open set) defined by
systems of PDE (i.e. systems which arise as kernels of operators given by matrices (pij(∂)) whose
entries are in C[∂1, . . . , ∂n]), and studies its implications, especially to issues of genericity. The
paper distinguishes two classes of systems, under-determined and over-determined. The Hautus
test developed here implies that a generic strictly under-determined system is controllable, whereas
a generic over-determined system is uncontrollable.
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1. Introduction

The developments in ‘post war’ Control Theory rest largely on Kalman’s innovative translation
of the Control Problem to a problem about differential equations which describes the evolution of
the state of a linear input-output system. The form of this equation is

(1)
dx

dt
= Ax +Bu

where the state x is in Rℓ, the input u is in Rm, and A ∶ Rℓ → Rℓ, B ∶ Rm → Rℓ are linear maps.
The system (1) is said to be controllable (or state controllable to distinguish it from other related
notions) if given two states x1 and x2, there is an input u ∶ I → Rm (I ⊂ R, an interval in time)
such that x(t1) = x1, x(t2) = x2, for some t1, t2 in I [5].

Kalman’s definition has been generalized in many directions, in particular to (affine) nonlinear
systems defined on smooth manifolds, and to infinite dimensional systems described by 1-parameter
semigroups. This paper is concerned with a more recent and far reaching generalization due to
J.C. Willems, summarized in [17]. (For a historical perspective of this evolution of ideas, please
see [14].) Willems’ Theory of Behaviors is designed to overcome foundational problems with the
Kalman Theory, such as an a priori assumption of a causal structure and its attendant division
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2 S.SHANKAR

of signals into inputs and outputs, the emphasis on state (i.e. first order equations), and the
loss of computational effectiveness in other generalizations of Kalman’s finite dimensional linear
state space theory. Here, computational effectiveness of a theory refers to the existence of finite
procedures to verify its statements. For instance, computational effectiveness of state controllability
is guaranteed by the well known Hautus test:

Theorem 1.1. [4] Define H( d
dt
) = ( d

dt
Iℓ −A, −B). Then (1) is (state) controllable if and only if

for every λ in C, rank(H(λ)) is constant (and thus if and only if H(λ) has full row rank for every
λ in C). ◻

Remark 1.1: The Hautus test is usually written as the above rank condition for the matrix
( d
dt
Iℓ − A, B). As the two ranks are identical, the above statement is dictated only by nota-

tional reasons explained in the next section.

Thus, to determine whether (1) is controllable, it suffices to calculate all the maximal minors

of H( d
dt
), i.e. the determinants of the ℓ × ℓ submatrices of H( d

dt
) – there are ( ℓ +m

ℓ
) of them –

and then to check that these determinants do not have a common zero in C. In other words, is
the ℓ-th determinantal ideal iℓ, generated by the maximal minors of H( d

dt
), equal to C[ d

dt
]? This

computational effectiveness of the Kalman theory was a major reason for its success, and one of
the advantages of Willems’ behavioral theory is that it retains it in a more general setting. Indeed,
this paper shows that behavioral controllability can be effectively determined by a test which is a
generalization of the above Hautus test for state space systems.

In the more general setting of Willems’ theory, a dynamical system is identified with the collection
of all the trajectories (or signals) that can possibly occur. Controllability in this setting is not the
ability to move from one state to another in finite time as in the Kalman theory - indeed there
is no notion of state now - but is, instead, the ability to move from one trajectory to another in
finite time. In its generalization to behaviors defined by systems of PDE, controllability assumes
the following form:

Definition 1.1. Let A = C[∂1, . . . , ∂n] be the ring of (constant coefficient) partial differential op-
erators, and let P be an A-submodule of Ak. Let P (∂) ∶ Fk → F ℓ be the map defined by an ℓ × k

matrix P (∂) whose ℓ rows generate P, and where F is either the space D′ of distributions or the
space C∞ of smooth functions on Rn. The behavior BF(P (∂)), given by the kernel KerF(P (∂)) of
the above map, is said to be controllable if given two subsets U1 and U2 of Rn whose closures do not
intersect, and two elements f1 and f2 of the behavior, there is an element f in the behavior such
that f = f1 on some neighborhood of U1, and f = f2 on some neighborhood of U2.

Remark 1.2: The behavior BF(P (∂)) in the above definition depends only on the submodule P –
it is isomorphic to HomA(Ak/P, F) – and will therefore be denoted BF(P).
Theorem 1.2. [10] The behavior BF(P), when F is either D′ or C∞, is controllable if and only ifAk/P is torsion free. ◻

Remark 1.3: The above theorem is valid when F is either D′ or C∞ because they are injective
cogenerators as A-modules. These are the spaces of principal concern in this paper. Later, other
spaces are briefly considered, such as the space S ′ of temperate distributions and spaces of periodic
functions, where necessary and sufficient conditions for controllability are different (Theorem 3.1 in
[15] and Theorem 4.2 in [8], quoted in Section 5 below). All these conditions are actually necessary
and sufficient conditions that a behavior, given as the kernel of a map P (∂) ∶ Fk → F ℓ, admit
an image representation, i.e. also be equal to the image of some map M(∂) ∶ Fk1 → Fk. It is
elementary that an image is controllable in the sense of Definition 1.1 [10].
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Every behavior in the space D of compactly supported smooth functions, the space E ′ of com-
pactly supported distributions, or the Schwartz space S of rapidly decreasing functions, admits an
image representation (these spaces are flat A-modules), and is therefore controllable [15]. Hence a
test for controllability is vacuous here.

The purpose of this paper is to use a generalization of the Hautus test to study genericity ques-
tions about controllablity (or lack of it) of distributed behaviors, i.e. when the ring of differential
operators is C[∂1, . . . , ∂n]. This generalization is valid for behaviors defined by free submodules P,
and counterexamples show that this is the full extent of a Hautus kind of test. When n = 1, i.e.A = C[ d

dt
], the ring is a PID, hence every submodule of Ak being torsion free is free, and so the

Hautus test is valid for every lumped behavior. When n = 2, i.e. A = C[∂1, ∂2], every controllable
behavior is given by a free submodule (Corollary 4 in [10]) and so the Hautus test is again valid
for every 2 −D behavior (Section 3 below). For general n, free submodules are generic (precise
statements occur in Section 6), so that the Hautus test developed here is valid for behaviors outside
a vanishingly thin set. It turns out that in this case, the rank of the defining matrix P (∂) can
drop, but only at points λ in Cn that lie on an algebraic variety of dimension n − 2 or smaller. As
such sets in C are empty, this generalization does indeed coincide with the state space Hautus test
of Theorem 1.1 above.

This paper distinguishes two classes of behaviors, the under-determined ones and the over-
determined. The Hautus test of this paper implies that, a generic strictly under-determined behavior
is controllable, whereas a generic over-determined behavior is uncontrollable. These results could
be considered the principal contribution of this paper.

Hautus tests for delay-differential systems described by operators of the kind P ( d
dt
,∆) (∆ is the

unit delay) have been obtained by Glüsing-Lüerssen [3] and by Rocha and Willems [12]. There are
also other approaches to generalizing the classical Hautus test, for instance Bourles and Marinescu
[1] and Lomadze [7], who use ideas from homological algebra.

As observed above, the torsion-free condition of Theorem 1.2 is also the condition for the be-
havior, given as a kernel, to admit an image representation (cohomology vanishing), Oberst [9].
(There are other points of contact with Oberst’s seminal paper which are highlighted as remarks in
this paper.) In Physics, the existence of an image representation is precisely the existence of a po-
tential, Pommaret and Quadrat [11]. Recently, Lomadze [6] has shown that controllability implies
that every system trajectory can be obtained from a ‘transfer’ trajectory by differentiation, where a
transfer trajectory is obtained formally from a transfer function. Kalman’s notion of controllability,
and its generalization by Willems to the setting of behaviors, thus remains an important issue in
control theory.

Remark 1.3: A couple of results in this paper admit proofs shorter than those given here, but which
rely on some facts about Cohen-Macaulay rings. I have however chosen to give these longer proofs
for two reasons: first, the proof itself is used later in the paper; and second, the hope that these
elementary methods will make the paper accessible to a larger number of control theorists who may
not have the background in commutative algebra that they would otherwise need. I do, however,
give references to the shorter proofs in the literature at apposite points in the text of the paper.
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2. The Hautus test for strong controllability

The starting point of this development is to rewrite equation (1) as

( d
dt
Iℓ −A, −B )( x

u
) = 0 ;

in other words, to consider all possible trajectories (x,u) of the state space system as the kernel of
the map ( d

dt
Iℓ −A, −B ) ∶ Fk Ð→ F ℓ

(x,u) ↦ ( d
dt
Iℓ −A, −B)( x

u
)

where F is either D′ or C∞, and k = ℓ+m. (This now explains the remark on notation after Theorem
1.1) More generally, a lumped behavior is given by the kernel of a map

(2) P ( d
dt
) ∶ Fk Ð→ F ℓ

where the entries of the ℓ × k matrix P ( d
dt
) are from the ring A = C[ d

dt
], and ℓ in general could

be larger than k (thus, a state space system is a behavior of a very special kind). Let P be the

submodule of Ak generated by the rows of P ( d
dt
), so that the above behavior, BF(P), is isomorphic

to HomA(Ak/P, F) (Remark 1.2). As the ring C[ d
dt
] is a PID, the finitely generated submodule P

being torsion free, is free. If the ℓ rows of P ( d
dt
) is a minimum set of generators for P, minimum

in the sense that it cannot be generated by any set of ℓ − 1 elements, then the rows are actually
a basis for P, and hence, necessarily, ℓ ⩽ k. In this case the matrix P ( d

dt
) has full row rank over

the field C( d
dt
) of ‘rational symbols’. (The 0 submodule which is generated by the empty set of

elements, and whose behavior is all of Fk, is excluded from all discussion, as all the considerations
of this paper are trivial in this case.)

The Hautus test generalizes perfectly to arbitrary lumped behaviors:

Proposition 2.1. (Willems [17]) Let P be a submodule of Ak and let P ( d
dt
) be any (ℓ× k) matrix

of full row rank whose rows generate P. Then the behavior BF(P) given by the kernel of (2), F
either D′ or C∞, is controllable (in the sense of Definition 1.1 with n = 1) if and only if the matrix

P ( d
dt
) satisfies the Hautus condition, namely that for every λ in C, P (λ) has full row rank, or

equivalently if and only if Ak/P is free.

Proof: The structure theory for modules over a PID implies that there is a basis e1, . . . , ek for Ak,
and elements a1, . . . , aℓ of A such that a1e1, . . . , aℓeℓ is a basis for P, namely the Smith form of
the matrix P ( d

dt
). Thus, for λ in C, the rank of P (λ) equals ℓ if and only a1(λ), . . . , aℓ(λ) are all

nonzero. This latter condition holds for every λ in C if and only if all the aj,1 ⩽ j ⩽ ℓ, are constants.
In other words, P (λ) has full row rank for every λ in C if and only if a basis for P extends to a
basis for Ak.

This last condition is in turn equivalent to saying that the exact sequence

0→ P Ð→ Ak Ð→ Ak/P → 0

splits (the condition asserts that 0→ P → Ak splits). This implies that Ak/P is a submodule of Ak,
hence torsion free, and so free. By Theorem 1.2, this is equivalent to the controllability of BF(P). ◻
Remark 2.1: As observed earlier in the introduction, to say that P (λ) has full row rank for every
λ in C is to say that the ℓ-th determinantal ideal iℓ of P ( d

dt
) is equal to C[ d

dt
]. This ideal equals
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the (k − ℓ)-th Fitting ideal of Ak/P and is therefore independent of the choice of the matrix P ( d
dt
)

whose rows generate P.
Corollary 2.1. (Willems [17]) A state space behavior is controllable in the sense of behaviors if
and only if it is state controllable. Thus Willems’ definition of behavioral controllability is a faithful
generalization of Kalman’s state controllability. ◻

Remark 2.2: Wolovich considers a system of the form {(y,u)∣P ( d
dt
)y = Q( d

dt
)u},det(P ) ≠ 0, and

shows that it is controllable in the Kalman sense if and only if P and Q are coprime (Theorem
5.3.1 in [18]). This is equivalent to the Hautus test of Theorem 1.1.

Consider now distributed behaviors on Rn, i.e. when the ring A of differential operators is
C[∂1, . . . , ∂n]. Proposition 2.1 suggests the following questions about a distributed behavior BF(P),
which the rest of the paper addresses:

Let the rows of the matrix P (∂) be a minimum set of generators for P (Definition 2.1 below). What
does it mean if P (λ) has full row rank for each λ in Cn? Is this a necessary and sufficient condi-
tion for controllability of BF(P)? If not, what is the analogue of the Hautus test for distributed
behaviors? What is the Hautus test for signal spaces F other than D′ and C∞? What can be said
about the set of all controllable behaviors?

As A is now not a PID, a statement analogous to Proposition 2.1 first requires a definition:

Definition 2.1. Let P be a submodule of Ak. Let ℓ be the smallest integer such that P can
be generated by some ℓ elements. Then any set of generators for P, ℓ in number, is said to be
minimum.

Suppose further that P is a free submodule of Ak. Then any ℓ× k matrix P (∂), whose rows is a
minimum set of generators for P, and which therefore is a basis for P, has full row rank (over the
field of rational symbols C(∂1, . . . , ∂n)).

The next proposition shows that the Hautus test, translated verbatim from the case of lumped
behaviors in Proposition 2.1, yields a similar result. The proof is a variant of the proof of Proposition
2.1, and will be further generalized below in Theorem 3.1.

Proposition 2.2. (Oberst [9], pp. 156-158) Let P be a submodule of Ak, and let P (∂) be any ℓ×k

matrix whose ℓ rows is a minimum set of generators for P. Then Ak/P is free if and only if P (λ)
has full row rank for every λ in Cn (or in other words, the ℓ-th determinantal ideal of P (∂) equalsA). Thus BF(P), F either D′ or C∞, is controllable if P (∂) satisfies the Hautus condition.

Proof: Clearly, either of the above statements implies that ℓ ⩽ k: for suppose that Ak/P is free,
then 0 → P Ð→ Ak Ð→ Ak/P → 0 splits, hence P is a direct summand of Ak, and therefore by
Quillen-Suslin, free, of rank ℓ ≤ k; the other statement manifestly implies the inequality. Now, the
value pij(λ) at λ in Cn of an entry pij(∂) of the matrix P (∂) is its image under the morphismA → A/mλ, where mλ is the maximal ideal (∂1 − λ1, . . . , ∂n − λn) corresponding to λ = (λ1, . . . , λn).
Thus rank(P (λ)) = ℓ if and only if there is a minor, say the determinant det(M(λ)) of an ℓ × ℓ

submatrix M(λ) of P (λ), which is not 0. This implies that det(M(∂)) does not belong to mλ.
Then in the localization Amλ

, M(∂) is invertible, hence there is a basis such that the matrix of the

localization Pmλ
(∂) ∶ Ak

mλ
→ Aℓ

mλ
(of the morphism P (∂) ∶ Ak → Aℓ) has an ℓ × ℓ submatrix equal

to the identity Iℓ. By row and column operations, all other entries of Pmλ
(∂) can be made zero.

This implies that
0→ Pmλ

Ð→ Ak
mλ
Ð→ Ak

mλ
/Pmλ

→ 0
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splits. Thus Ak
mλ
/Pmλ

≃ (Ak/P)mλ
is projective, and as this is true for every maximal ideal mλ, it

follows that Ak/P is projective. Again by Quillen-Suslin, Ak/P is free. ◻

By Theorem 1.2, freeness of Ak/P is a sufficient but not necessary condition for BF(P) to be
controllable. However Ak/P is free if and only if it, and therefore also P, are direct summands
of Ak. Then Ak ≃ P ⊕ Ak/P, and this implies that BF(P) ≃ HomA(Ak/P,F) is a direct sum-
mand of Fk. Such a behavior is said to be strongly controllable and the corresponding P (∂) zero
left prime (for instance [13]). Conversely, suppose that BF(P) is a direct summand of Fk, then
any complementary summand is also a behavior as F is injective (for instance [15]). Let B be a
choice of such a summand. As F is also a cogenerator (remark after Theorem 1.2), this behaviorB equals BF(Q) for a unique submoduleQ of Ak. It then follows that Ak ≃ P⊕Q (for instance [16]).

Thus the above proposition gives a sufficient and necessary condition for strong controllability
of BF(P).

Proposition 2.1 now implies

Corollary 2.2. Every controllable lumped behavior is strongly controllable. ◻
3. The Hautus test for controllability of distributed behaviors

What then are sufficient and necessary conditions, akin to the Hautus test, for controllability of
a distributed behavior? Under generic conditions, made precise later, the next result is such a test.

Theorem 3.1. Let P be a submodule of Ak, and let P (∂) be any ℓ×k matrix whose ℓ rows generateP. Suppose that the ℓ-th determinantal ideal iℓ of P (∂) is not the zero ideal (so that in particular
ℓ ⩽ k). Then Ak/P is torsion free, and hence BF(P) (F either D′ or C∞) is controllable, if and only
if P (λ) has full row rank for all λ in the complement of an algebraic variety in Cn of dimension
⩽ n− 2 (or in other words, that the Krull dimension of the ring A/iℓ be less than or equal to n− 2).
Proof: Suppose to the contrary that rank(P (λ)) is less than ℓ for λ on an algebraic variety of
dimension n − 1 in Cn - it cannot be less than ℓ on all of Cn because iℓ is nonzero, by assumption.
Let V be an irreducible component, and let it be the zero locus of the irreducible polynomial p(∂)
(Krull’s Principal Ideal Theorem). This means that each of the ( k

ℓ
) generators of iℓ is divisible

by p(∂). Let p be the prime ideal (p(∂)), and let Pp(∂) be the image of the matrix P (∂) in the
localization Ap of A at p. Suppose that every entry of some row of Pp(∂), say the first row, is
divisible by p(∂). As divisibility by p(∂) in A and Ap are equivalent, the corresponding row of

P (∂) is also divisible by p(∂), and then clearly Ak/P has a torsion element. By Theorem 1.2,BF(P) is then not controllable. Otherwise, at least one element of this first row of Pp(∂), say the
first element, is not divisible by p(∂), and is therefore a unit in Ap. By row and column operations,
every other element of the first column, and of the first row, can be made zero. Let the matrix
so obtained after these row and column operations, with a unit in the (1,1) entry and the other
entries of the first row and column equal to 0, be denoted P 1

p (∂), and let P1
p be the submodule ofAk

p generated by its rows.

The above argument for Pp(∂) can be repeated now for P 1
p (∂), and it follows that either p(∂)

divides every element of some row, say the second, or that some element in that row, say the (2,2)
entry (the (2,1) entry is zero) is a unit in Ap. In the first case, Ak

p/P1
p has a torsion element, hence

so does Ak/P, and BF(P) is not controllable; otherwise all other elements in the second row and
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second column can be made zero by column and row operations. Eventually, after at most ℓ − 1
such steps, the resultant matrix has units in the (j, j) entries, 1 ⩽ j ⩽ ℓ − 1, and the other entries
zero except in positions (ℓ, j), ℓ ⩽ j ⩽ k. If now p(∂) does not divide every entry of the ℓ-th row,
then it also does not divide the generators of the determinant ideal iℓ, which is a contradiction.

Conversely, suppose BF(P) is not controllable so that Ak/P has a torsion element. This im-
plies that there is an element x(∂) = (a1(∂), . . . , ak(∂)) in Ak ∖ P such that r(∂) = p(∂)x(∂) =(p(∂)a1(∂), . . . , p(∂)ak(∂)) is in P, where p(∂) is nonzero and assumed to be irreducible (see
Section 4 below for more details). As r(∂) is in P, it is an A-linear combination of the ℓ rows
r1(∂), r2(∂), . . . , rℓ(∂) of P (∂), say r(∂) = b1(∂)r1(∂) + . . . + bℓ(∂)rℓ(∂). Clearly the bj(∂) are not
all zero, and are also not all divisible by p(∂), because otherwise it would imply that x(∂) belongs
to P, contrary to its choice. Thus, without loss of generality, let b1(∂) be nonzero and not divisible
by p(∂). Now let B(∂) be the following ℓ × ℓ matrix: its first row is (b1(∂), . . . , bℓ(∂)), it has 1 in
the (j, j) entries, 2 ⩽ j ⩽ ℓ, and all other entries are 0. Then the product B(∂)P (∂) is an ℓ × k
matrix whose first row is r(∂) and whose other rows are the rows r2(∂), . . . , rℓ(∂) of P (∂). By
construction of B(∂), its determinant b1(∂) is not divisible by p(∂), and as every generator of the
ℓ-th determinantal ideal of B(∂)P (∂) is divisible by p(∂), it follows that every generator of the
ℓ-th determinantal ideal iℓ of P (∂) is also divisible by p(∂). This implies that rank(P (λ)) < ℓ at
points λ in Cn where p(λ) = 0, an algebraic variety of dimension n − 1. ◻
Remark 3.1: A remark similar to the one after Proposition 2.1 is relevant here (and elsewhere),
namely that iℓ is the (k− ℓ)-th Fitting ideal of Ak/P. Thus, the assumption that iℓ ≠ 0 implies that
the ℓ rows of P (∂) is a minimum set of generators for P (in conformity with Definition 2.1).

Remark 3.2: A deceptively short proof of a related result on the controllability of discrete systems
defined on Zn, using facts about Cohen-Macaulay rings, appears in Wood [19], namely Corollaries
3.8 and 7.9. The longer proof above is elementary; besides the proof itself finds use in the next
section.

Remark 3.3: Oberst shows in [9], that assuming iℓ ≠ 0, the dimension of the variety V(iℓ) is less
than or equal to n − 2 if and only if the localization tor(Ak/P)p at height 1 primes p is equal to

0, where tor(Ak/P) denotes the submodule of torsion elements of Ak/P. The above theorem is a
stronger statement, namely that assuming iℓ ≠ 0, the dimension of V(iℓ) is less than or equal to
n − 2 if and only if tor(Ak/P) is itself equal to 0. The apparent inconsistency is resolved later in
Remark 4.1 below.

The condition that iℓ be nonzero in the above theorem, and remarks, admits an elementary
interpretation.

Proposition 3.1. Let P be a submodule of Ak, and let P (∂) be any ℓ × k matrix whose ℓ rows
generate P. Then P is free if its ℓ-th determinantal ideal iℓ is nonzero. Conversely, suppose that
the ℓ rows of P (∂) is a minimum set of generators for P. Then iℓ is nonzero if P is free. Thus,
the Hautus test of Theorem 3.1 is valid for behaviors defined by free submodules of Ak.

Proof: Suppose P is not free; then there is a non-trivial relation a1rj1 + . . . + amrjm = 0 between
some of the m (≤ ℓ) rows of P (∂), where by assumption a1, . . . , am are all nonzero. Let P1(∂) be
the m× k submatrix of P (∂) whose m rows are rj1 , . . . , rjm . Then the m-th determinantal ideal of
P1(∂), and hence also the ℓ-th determinantal ideal of P (∂), equals 0.
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Conversely, suppose that iℓ = 0. This means that after localizing at the 0 ideal, i.e over the
function field K = C(∂1, . . . , ∂n), the ℓ rows of P (∂) span a subspace P̄ of Kk, whose projections
to Kℓ, given by choosing ℓ of the k coordinates, are all subspaces of dimension strictly less than ℓ.
If k = ℓ, then the rows of P (∂) are K-linearly dependent, hence there is an A-relation between the
rows of P (∂), and P is not free (as ℓ is the minimum number of elements needed to generate it).

Otherwise, there are ( k

ℓ
) > ℓ such projections, hence P̄ must be of dimension strictly less than ℓ,

so that again, by definition of ℓ, P is not free. ◻
The following example demonstrates that it is essential to assume that P be free in Theorem 3.1

(equivalently, that its ℓ-th determinantal ideal be nonzero).

Example: Consider the submodules P1 and P2 of A3 generated by the matrices

P1(∂) = ⎛⎜⎝
0 −∂3 ∂2
∂3 0 −∂1−∂2 ∂1 0

⎞⎟⎠ and P2(∂) = ⎛⎜⎝
0 −∂3 ∂2
∂3 0 −∂1−∂1∂2 ∂2

1
0

⎞⎟⎠
Here k = ℓ = 3. The determinants of P1(∂) and P2(∂) are both 0, i.e. iℓ = 0, yet while A3/P1 is
torsion free, A3/P2 has torsion. Hence, BF(P1) is controllable, whereas BF(P2) is not. ◻

The case when iℓ equals 0, which is not answered by Theorem 3.1, is however not generic in a
sense made precise later in the paper. The question now is whether there is a Hautus type test
in this case. For instance, is controllability then determined by the first nonzero Fitting ideal ofAk/P?

Consider the presentation

Aℓ P t(∂)Ð→ Ak πÐ→ Ak/P → 0

of Ak/P. If it is torsion free, then it injects into a free module, say Ak/P i↪ Ak1 , and in which case

Aℓ P t(∂)Ð→ Ak i○πÐ→ Ak1

is an exact sequence of free modules. This implies that depth(I(P t(∂))) ≥ 2 (for instance, Theorem
20.9 of Eisenbud [2]) where I(P t(∂)) is the first nonzero Fitting ideal of Ak/P. As A is Cohen-
Macaulay, depth equals codimension, and hence the dimension of the variety of I(P t(∂)) ≤ n − 2.
Thus a necessary condition for the controllability of BF(P) is that the dimension of the first nonzero
Fitting ideal be less than or equal to n − 2. This bound on the dimension cannot be a sufficient
condition for controllability, because if Ak/P is not torsion free, then the morphism P t(∂) above
fits into some exact sequence

Aℓ1 Ð→ Aℓ P t(∂)Ð→ Ak

and now, again by the theorem quoted above, depth(I(P t(∂))) ≥ 1, so that a necessary condition
for non-controllability of BF(P) is that the dimension of the first nonzero Fitting ideal be less than
or equal to n − 1. However this bound does not preclude it being less than or equal to n − 2 as the
following calculation indicates!

Example: The first nonzero Fitting ideals of A3/P1 and A3/P2 in the example above, are the first
Fitting ideals, generated by the minors of the 2 × 2 submatrices of P1(∂) and P2(∂). These areI(P1(∂)) = (∂2

1
, ∂2

2
, ∂2

3
, ∂1∂2, ∂1∂3, ∂2∂3) and I(P2(∂)) = (∂3

1
, ∂2

3
, ∂1∂3, ∂2∂3, ∂1∂

2
2
, ∂2

1
∂2), whose radi-

cals are (∂1, ∂2, ∂3) and (∂1, ∂3) respectively. Both their dimensions are less than or equal to 1 (=
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3-2), even though A3/P2 has torsion. ◻
Thus, there does not seem to be a straightforward generalization of the classical Hautus test

when the ideal iℓ equals 0, which is both necessary and sufficient. Theorem 3.1, however, does
exhibit a ‘perfect’ generalization of the classical Hautus test when this ideal is nonzero (and whose
proof is also elementary). For another approach to this question, see Lomadze [7].

The condition iℓ ≠ 0 of Theorem 3.1 is however superfluous when n = 1,2:

n = 1: Now every submodule P of (C[ d
dt
])k is free (being torsion free). Moreover, algebraic subsets

of dimension n− 2 are empty. Hence, Theorem 3.1 specializes without qualification to the classical
Hautus test, and to Proposition 2.1.

n = 2: Assume now that A = C[∂1, ∂2], and that the behavior BF(P) of a submodule P of Ak is
controllable. Equivalently, Ak/P is torsion free, and then it injects into a free module Ak1 as in
the above presentation. This implies that in a minimal resolution

→ Aℓ1 Ð→ Aℓ P t(∂)Ð→ Ak Ð→ Ak1 Ð→ Ak1/(Ak/P)→ 0

Aℓ1 = 0, because the global dimension of the ring A equals 2. Thus the morphism P t(∂) is injective,
and this implies that its image P is free (see also Corollary 4 of [10]). Every controllable 2 −D
behavior is therefore given by a free submodule, so that the corresponding ideal iℓ is always nonzero.
Theorem 3.1 then implies the following result of Wood ([19]) and Zerz ([21]) on 2 −D behaviors:

Corollary 3.1. A 2 −D behavior BF(P) is controllable if and only if P (λ) drops rank at most at
a finite number of points in C2 (where the ℓ rows of P (∂) is a minimum set of generators for P).
Proof: By the above discussion it is unnecessary to assume that iℓ ≠ 0, so that by Theorem 3.1,BF(P) is controllable if and only if the dimension of the variety of iℓ is 0. The finite set of points
of this variety is precisely where P (λ) drops rank. ◻

The following example explains a classical terminology:

Example: Consider the special case of a scalar system given by p1(∂)f = p2(∂)g, i.e. the behavior
defined by the kernel of the map

( p1(∂), −p2(∂) ) ∶ F2 Ð→ F
(f, g) ↦ (p1(∂),−p2(∂))( f

g
)

The ℓ-th determinantal ideal, here ℓ = 1, is the ideal i1 = (p1, p2) generated by p1 and p2. Theorem
3.1 asserts that this behavior is controllable if and only if there is no non-constant p which divides
both p1 and p2. This is the classical pole-zero cancellation criterion, a theorem in the behavioral
setting (Willems [17]). ◻

This example suggests the following definition:

Definition 3.1. Let ℓ be the minimum number of elements needed to generate P. Then the ideal
iℓ generated by the determinants of the ℓ × ℓ submatrices of (any) P (∂) whose ℓ rows generate P,
and its variety V(iℓ) (in Cn), are called the cancellation ideal and the cancellation variety of the
behavior BF(P) respectively.
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Thus, Theorem 3.1 states that a behavior, whose cancellation variety is not all of Cn, is control-
lable if and only if this variety is of dimension ⩽ n − 2.
Definition 3.2. Again let ℓ be the minimum number of elements needed to generate P ⊂ Ak. Its
behavior BF(P) is said to be under-determined if ℓ ⩽ k, and strictly under-determined if ℓ < k.
It is over-determined if ℓ ⩾ k, and now it is the k-th determinantal ideal ik, generated by the
determinants of k × k submatrices of (any) P (∂), whose ℓ rows generate P, that is relevant: ik is
the 0-th Fitting ideal of Ak/P; it is the characteristic ideal of BF(P) (or of P), and V(ik) is its
characteristic variety [9, 16]. Finally, a behavior is said to be square if ℓ = k (i.e. when it is both
under-determined and over-determined).

Remark 3.4: In the language that Oberst uses in [9], the points λ in Cn where the rank of P (λ)
is strictly less than min{ℓ, k} is the variety of rank singularities. It is more convenient for the
purposes here to treat the two cases separately, namely the cancellation variety when iℓ ≠ 0, and
the characteristic variety when ik ≠ 0.

Theorem 3.1 implies that a behavior whose cancellation ideal iℓ is nonzero, and which is control-
lable, must necessarily be strictly under-determined, the only exception being a square behavior
whose cancellation ideal equals A (and then the behavior is 0). For if ℓ = k, then iℓ is a principal
ideal not equal to 0 or (1), hence V(iℓ) is of dimension n − 1 and the behavior is not controllable,
contradicting the assumption. The theorem below is the more general statement. It is included
here even though it is well known, for instance [9, 10, 11, 19, 21], in order to provide a convenient
point of reference for results on genericity in Section 6.

Theorem 3.2. Let P be a submodule of Ak, and let P (∂) be any ℓ×k matrix whose rows generate P.
Suppose that ik is not the zero ideal (so that ℓ ⩾ k). Then the behavior BF(P) is over-determined,
and is not controllable unless ik = A (when the behavior equals 0).

Proof: If BF(P) were not over-determined, then ik would be the zero ideal.
Now let d be the determinant of a k × k submatrix D(∂) of P (∂), i.e. a generator of ik. Let

D′(∂) be the matrix adjoint to D(∂), so that D′D is the k × k diagonal matrix whose diagonal
elements are all equal to d. But each row of D′D is in P, and thus it follows that if some element a
of A is in ik, then there is a k×k diagonal matrix whose diagonal entries are this a, and whose rows
are in P. Thus ik = A if and only if P = Ak. Its behavior then is 0 (and is trivially controllable).

Assume now that ik ≠ A, so that P is strictly contained in Ak. As the rows of D′D above
are d ⋅ ej , j = 1, . . . , k, ej = (0, . . . ,1, . . . ,0) – 1 in the j-th place – it also follows that d is in the

annihilator ann(Ak/P) of Ak/P. This implies that

(3) ik ⊆ ann(Ak/P)
and hence, as ik is assumed to be nonzero, that the set of torsion elements of Ak/P is nonzero.
Then, by Theorem 1.2, it follows that BF(P) is not controllable. ◻

Remark 3.5: Consider a square behavior, i.e. ℓ = k, so that the assumption ik ≠ 0 in Theorem 3.2
is equivalent to iℓ ≠ 0 in Theorem 3.1. But then iℓ is a (nonzero) principal ideal, its variety is of
dimension n − 1 (unless iℓ = (1) when its variety is empty), and hence BF(P) is not controllable
also by Theorem 3.1. Thus, Theorems 3.1 and 3.2 coincide when they are both the case. This
again shows that a behavior whose cancellation ideal iℓ is nonzero, and which is controllable, must
necessarily be strictly under-determined (unless P (∂) is the identity matrix, i.e. P = Ak; then
iℓ = (1), and the behavior is 0).
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In particular:

Corollary 3.2. Any controllable 2 −D (nonzero) behavior is strictly under-determined.

Proof: It is unnecessary to assume that iℓ ≠ 0 when n = 2. ◻

Example: This statement is of course not true when n ≥ 3. For instance, the behavior BF(P1) in
the above examples is controllable (P1(∂) is the curl operator), yet is not strictly under-determined.

◻

An over-determined system such that ik ≠ 0 is also called an autonomous system; [9, 10] describe
its basic properties. Some of these properties follow directly from the Hautus test and are collected
together in the last section to illustrate the test’s importance, just as the classical Hautus test is
important for lumped systems. This last section also studies the degenerate case when ik = 0.

4. The structure of the cancellation variety

This section collects a few results about the cancellation ideal of a behavior, and its variety.
They will be used in Section 6 on genericity, and also in Section 5 to obtain Hautus tests for
controllability over spaces other than D′ and C∞. These results follow from the proof of Theorem
3.1.

Recollect that a prime ideal p is an associated prime of an A-module M if it is equal to the
annihilator ann(x) of some element x of M. An element a of A is a zero divisor for M if there
is a nonzero x in M such that ax = 0. The maximal elements of the family {ann(x)∣0 ≠ x ∈M}
are associated primes ofM, hence the union of all the associated primes is the set of all the zero
divisors forM (for instance [2]). It then follows that M is torsion free if and only if 0 is its only
associated prime, and hence BF(P) is controllable if and only if 0 is the only associated prime ofAk/P.

Returning to the case at hand, namely when the module M equals Ak/P with P a free sub-
module of Ak (equivalently, whose cancellation ideal iℓ is nonzero), the first half of Theorem 3.1
demonstrates that an irreducible p(∂) which divides every generator of iℓ is a zero divisor for Ak/P.

Conversely, suppose that a(∂) is a zero divisor for Ak/P, and that x is an element of Ak
∖ P

such that ax ∈ P. Because A here is a UFD, a is a unique product of irreducible factors, and it
follows (as observed in the second half of the proof of Theorem 3.1) that there is an x′ in Ak

∖P
such that px′ ∈ P for some irreducible factor p(∂) of a(∂). In other words, the maximal elements of
the family of principal ideals generated by zero divisors of Ak/P are the principal ideals generated
by irreducible zero divisors. Furthermore, by the second half of the proof of Theorem 3.1, every
irreducible zero divisor divides every generator of iℓ. Together with the above paragraph, this shows
that the set of irreducible zero divisors for Ak/P is precisely the set of irreducible common factors

of the ( k

ℓ
) generators of the cancellation ideal iℓ. As the latter set is finite, it follows that the set

of irreducible zero divisors for Ak/P is a finite set.
This in turn implies that the nonzero associated primes of Ak/P are precisely the principal ideals

generated by the irreducible zero divisors described above. For suppose that some associated prime
p is not principal. Let p1 be an irreducible element of p such that its degree is minimum amongst
all elements in p. Let p2 be an irreducible element in p ∖ (p1), again of minimum degree. Then
it is elementary that p1 + αp2 is irreducible for all α in C. These infinite number of ireducible
elements are all in p, and hence are all zero divisors for Ak/P, contradicting the assertion above.
This establishes the following theorem:
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Theorem 4.1. Let P be a free submodule of Ak (that is, whose cancellation ideal iℓ is nonzero).
Then the nonzero associated primes of Ak/P are the principal ideals generated by the irreducible
p(∂) that divide every generator of iℓ. ◻

Aside: A part of the above theorem, that the associated primes are principal, also follows from
general considerations. Let m be a maximal ideal containing an associated prime p of Ak/P.
Localizing at m, Pm is a free submodule of Ak

m, hence the following sequence

0→ Aℓ
m Ð→ Ak

m Ð→ Ak
m/Pm → 0

is exact. This implies that the projective dimension pd(Ak
m/Pm) is equal to 1. By Auslander-

Buchsbaum (for instance, Theorem 19.9 in [2]), depth(Ak
m/Pm) = depth(Am) − pd(Ak

m/Pm), which
equals n − 1 (as Am is Cohen-Macaulay, its depth is equal to n, its dimension). On the other
hand, depth(Ak

m/Pm) ≤ dim(Am/p) (Proposition 18.2 in [2] for instance), hence it follows that
height(p) = dim(Am) − dim(Am/p) ≤ 1, so that p is a principal ideal. ◻

The following corollary is now immediate.

Corollary 4.1. The affine varieties of the nonzero associated primes of Ak/P, when the cancella-
tion ideal iℓ of P is nonzero, are the irreducible components of dimension n − 1 of the cancellation
variety V(iℓ). ◻

A remark on the controllable-uncontrollable decomposition of a behavior (see also [9]): SupposeBF(P) is a general behavior determined by a (not necessarily free) submodule P of Ak. Let P ′ be
the submodule {x ∈ Ak∣ax ∈ P, a ≠ 0}. Then P ′ contains P, and the quotient P ′/P is the submodule
tor(Ak/P) of torsion elements of Ak/P. The following sequence

0→ P ′/P Ð→ Ak/P Ð→ Ak/P ′ → 0

is exact, where Ak/P ′ is torsion free. In general, given a short exact sequence of A-modules, the
associated primes of the middle term is contained in the union of the associated primes of the other
two modules [2]. Here however, it is clear, that there is equality.

Lemma 4.1. Ass(Ak/P) = Ass(P ′/P)⋃Ass(Ak/P ′). Hence, if P ⊊ P ′ ⊊ Ak, then Ass(Ak/P ′) =
{0} and Ass(P ′/P) is the set of all the nonzero associated primes of Ak/P. ◻

Remark 4.1: Under the assumption iℓ ≠ 0, the nonzero associated primes of Ak/P are all of height 1
(Theorem 4.1 above). Thus the associated primes of tor(Ak/P) are precisely these height 1 primes
(the above lemma). Therefore, to say that the localization tor(Ak/P)p equals 0 at height 1 primes

is to say that the set of associated primes of tor(Ak/P) is empty, which in turn is to say that
tor(Ak/P) = 0. This resolves the ‘inconsistency’ discussed in Remark 3.3.

Applying the functor HomA(−,F), F either C∞ or D′, to the above sequence gives

0→ BF(P ′) Ð→ BF(P) Ð→ HomA(P ′/P, F) → 0

which is exact as F is an injective A-module. As Ak/P ′ is torsion free, the behavior BF(P ′) is
controllable, and is a sub-behavior of BF(P); in fact, it is the largest controllable sub-behavior
of BF(P) in the sense that any other controllable sub-behavior is contained in it. The quotient
behavior HomA(P ′/P,F) ≃ BF(P)/BF (P ′) is not only not controllable, it also does not contain any
nonzero controllable sub-behaviors, and is uncontrollable by definition. Note that this uncontrollable
behavior is not a sub-behavior of BF(P) unless the above sequences split. In the case of lumped
behaviors, i.e. when n = 1, Ak/P ′ is free being torsion free, hence the sequences split, and then this
uncontrollable behavior can also be considered a sub-behavior of BF(P), [17].
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Thus, if P = P ′, then Ak/P is torsion free (equivalently, 0 is its only associated prime) and BF(P)
is controllable, while if P ′ = Ak, then Ak/P is a torsion module (equivalently, 0 is not an associated
prime), and BF(P) does not contain any nonzero controllable behavior, hence is uncontrollable.

Recollect that the minimal elements of the set of associated primes of M coincide with the
minimal elements of the support Supp(M) of M, where Supp(M) = {p ∣ Mp ≠ 0}. When M is
finitely generated, these are also the minimal primes containing the annihilator ann(M) of M.
These observations immediately lead to a strengthening of Theorem 3.2.

Theorem 4.2. Let P be strictly contained in Ak, and let P (∂) be any ℓ × k matrix whose rows
generate P. Suppose that ik is not the zero ideal (so that ℓ ⩾ k). Then the over-determined systemBF(P) is uncontrollable, i.e. it does not contain any nonzero controllable sub-behavior.

Proof: Inclusion (3) in the proof of Theorem 3.2 implies as before that ann(Ak/P) is nonzero, and
hence that 0 is not an associated prime of Ak/P (see also [10]). ◻

5. The Hautus test for other signal spaces

The above description of the associated primes of Ak/P when iℓ is nonzero (namely Theorem 4.1
and Corollary 4.1), leads to a Hautus test for other signal spaces F . It will be convenient in this

section to use the notation Dj =
1

ı
∂
∂j
, so that the ring A of partial differential operators is also the

polynomial ring C[D1, . . . ,Dn].
The first step in obtaining a Hautus test for other spaces F is to reformulate the ‘patching’

definition of controllability of Definition 1.1 so as to be meaningful for these F . This is easily done
using the ‘cutoff’ formulation of controllability in [10].

Lemma 5.1. [10] A behavior B in D′ or C∞ is controllable if and only if for any subset U of Rn

and any open subset O that contains the closure of U , there is for every f in B an element fc in B
that equals f on some neighborhood of U and equals 0 in the complement of O. Such an fc is said
to be a cutoff of f with respect to U and O. ◻

This cutoff formulation of controllability cannot be carried over in toto to an arbitrary F because
it might be that with respect to some U and O, there is no cutoff fc of an f in B, even in Fk.

Example: Let F be the space S ′ of temperate distributions on R2. Let U = {(x, y) ∈ R2∣y < 0} and
O = {(x, y) ∈ R2∣y < e−x2}. Then no cutoff of a constant function with respect to this U and O can
be in S ′ (the derivatives of any such cutoff would not be tempered). ◻

Thus the only possible way to generalize the cutoff formulation of controllability to an arbitraryF is the following:

Definition 5.1. Let the signal space be an A-submodule F of D′. A subset U of Rn and an open
set O that contains its closure are said to be admissible with respect to F if every f in it admits a
cutoff fc in F with respect to U and O.

A behavior B in F is said to be controllable if for any U and O admissible with respect to F ,
every f in B admits a cutoff fc in B with respect to U and O.

Thus the subsets U and O of R2 in the above example are not admissible with respect to S ′.
Some examples of admissible U and O are given in the following proposition.
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Proposition 5.1. (i) Let F be D′ or C∞. Then any pair U and O as in the above definition is
admissible (for which reason, no qualification was ever necessary thus far in the paper).

(ii) Suppose that the distance between U and the complement Oc of O is bounded away from 0, i.e.
∥x−y∥ ⩾ ǫ > 0 for all x ∈ U,y ∈ Oc (for instance, suppose the boundary of U is compact). Then such
a pair is admissible with respect to the space S ′ of temperate distributions.

Proof: (i) is elementary, for let ρ be any smooth function which equals 1 on some neighborhood U ′
of U in O, and 0 on the complement of O. Then for an element f in D′ or C∞, ρf is the required
cutoff.

(ii) Let U ′ be an open subset containing U and contained in O, such that the distance between
U ′ and the complement of O is ǫ

2
. Let χ be the characteristic function of U ′, and let κ be a smooth

‘bump’ function supported in the ball of radius ǫ
4
centered at the origin, i.e. κ is identically 1 in

some smaller ball about the origin. Then the convolution ρ = κ ⋆ χ is a smooth function that is
identically 1 on U ′, 0 on the complement of O, and such that all its derivatives are bounded on Rn.
Then for any f in S ′, ρf is also in S ′. ◻

Consider now the space S ′ of temperate distributions on Rn. It is an A-submodule of D′ which
is injective, but not a cogenerator (for instance [15]). Necessary and sufficient conditions for con-
trollability of a behavior in S ′ is the following result from [15].

Theorem 5.1. Let A = C[D1, . . . ,Dn], and let the signal space F be the space S ′ of temperate
distributions on Rn. Let P be a submodule of Ak. Then the behavior BS ′(P) is controllable (in the
sense of Definition 6.1) if and only if the varieties of the nonzero associated primes of Ak/P (in
Cn) do not contain real points.

Proof: This statement is the translation of Theorem 3.1 (iii) of [15] when the ring of differential
operators is written as polynomials in Dj =

1

ı
∂j (instead of in ∂j), and gives necessary and sufficient

conditions for a behavior, given as a kernel, to admit an image representation. Images are clearly
controllable in the sense of Definition 5.1, for the image of an arbitrary cutoff, with respect to any
admissible U and O, is a cutoff of an element in the behavior that also belongs to the behavior. ◻

Combining this with Corollary 4.1 above, gives the analogue of Theorem 3.1 for behaviors in the
space S ′.
Theorem 5.2. Let P be a free submodule of Ak, and let P (D), D = 1

ı
∂, be any ℓ×k matrix whose

ℓ rows is a basis for P (so that the ℓ-th determinantal ideal iℓ of P (D) is not zero). Then BS ′(P)
is controllable if and only if P (λ) has full row rank for all λ in the complement of an algebraic
variety in Cn of dimension ⩽ n−1, where every irreducible component of this variety, of dimension
n − 1, does not intersect Rn.

Proof: By Corollary 4.1, if there is an irreducible variety of dimension n − 1 with real points on
which P (λ) drops rank, then the principal ideal generated by the corresponding irreducible poly-
nomial is an associated prime of Ak/P, whose variety therefore contains real points. By Theorem
5.1, BS ′(P) is then not be controllable. ◻

Similar considerations apply to the following spaces defined by periodic functions [8]. Let T be
the torus Rn/2πZn. Let C∞(T) be the space of smooth functions on T, in other words, smooth
functions on Rn periodic with respect to the lattice 2πZn. Let C∞(T)fin be the A-submodule
of C∞(T) consisting of those periodic functions whose Fourier series expansion is a finite sum.
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Let F = C∞(T)fin[x1, . . . , xn] be the subalgebra of C∞(Rn) obtained by adjoining the coordinate
functions x1, . . . , xn to C∞(T)fin.

For positive integers N1 dividing N2, the natural A-module morphism C∞(Rn/2πN1Z
n) →C∞(Rn/2πN2Z

n) identifies the space of functions periodic with respect to the lattice 2πN1Z
n with

a closed subspace of the space of functions periodic with respect to the larger lattice 2πN2Z
n. LetC∞(PT) be the direct limit lim→ C∞(Rn/2πNZn). (These functions live on a protorus, which is

by definition the inverse limit of the tori Rn/2πNZn, see [8].) As before let C∞(PT)fin be those
functions in C∞(PT) whose Fourier expansion is a finite sum. Finally, let C∞(PT)fin[x1, . . . , xn] be
the subalgebra of C∞(Rn) obtained by adjoining x1, . . . , xn to C∞(PT)fin.

Necessary and sufficient conditions for a behavior, given as a kernel and to admit an image
representation in these spaces, is the following theorem.

Theorem 5.3. (Theorem 4.2 in [8]) (i) Let A = C[D1, . . . ,Dn], and let F = C∞(PT)fin[x1, . . . , xn].
Then the behavior BF(P) of a submodule P ⊂ Ak is the image of some morphism, and hence
controllable in the sense of Definition 5.1, if and only if the varieties of the nonzero associated
primes of Ak/P do not contain rational points.

(ii) Now let F = C∞(T)fin[x1, . . . , xn]. Then BF(P) is the image of some morphism, and hence
controllable in the sense of Definition 6.1, if and only if the varieties of the nonzero associated
primes of Ak/P do not contain integral points. ◻

Corollary 4.1 now gives the analogues of Theorem 3.1.

Theorem 5.4. Let P be a free submodule of Ak, and let P (D), D = 1

ı
∂, be any ℓ×k matrix whose

ℓ rows is a basis for P (so that the ℓ-th determinantal ideal iℓ of P (D) is not zero).
Suppose F = C∞(PT)fin[x1, . . . , xn] (respectively, F = C∞(T)fin[x1, . . . , xn]). Then BF(P) admits

an image representation, and is therefore controllable, if and only if P (λ) has full row rank for all
λ in the complement of an algebraic variety in Cn of dimension ⩽ n − 1, where every irreducible
component of this variety, of dimension n−1, does not intersect Qn (respectively, does not intersect
Zn). ◻

6. Genericity

The purpose of this section is to show that a generic strictly under-determined behavior is
controllable, whereas a generic over-determined behavior is uncontrollable.

These genericity results are with respect to the choice of a topology on the set of behaviors.
The topology discussed below is dictated by considerations of structured perturbations, which is
natural in this context. For instance, perturbations of an under-determined behavior should result
only in under-determined behaviors (and similarly for over-determined behaviors). This is because
we expect that perturbing a behavior, which is equivalent to perturbing the differential equations
defining the behavior, should involve perturbing the coefficients that appear in the differential
equations, and should not involve any change in the basic structure of the defining differential
equations, such as a change in the number of equations, for instance. Thus, if the behavior is
defined by a submodule P ⊆ Ak, i.e. if the behavior is BF(P), and if P can be generated by ℓ

elements, then any perturbation of this behavior should be of the form BF(P ′), where the perturbed
submodule P ′ can also be generated by ℓ elements. This is a reasonable requirement because the
equations defining the behavior would arise from physical laws governing the behavior, such as
the Newton, Maxwell, or thermodynamic equations, and from structural configurations involving
interconnections of sub-systems etc. (see Willems [17]). Thus, these equations, when perturbed,
would result in similar equations but with different coefficients.
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This section is in two parts. In the first, genericity results are established for matrices Mℓ,k of
size ℓ × k, with entries in A = C[∂1, . . . , ∂n]. The above discussion naturally leads to two distinct
cases, the strictly under-determined when ℓ < k, and the over-determined when ℓ ⩾ k. In the second
part, these genericity results for matrices are used to obtain corresponding genericity results for
behaviors. Here some care must be exercised, because in general, the rows of infinitely many ma-
trices inMℓ,k generate the same submodule of Ak. The difficulty in this descent from matrices to
behaviors is compounded by the fact that matrices with different number of rows, i.e. different ℓ,
can generate the same submodule. This difficulty is circumvented by working with the subset Rℓ,k

of those matrices whose rows are a minimum set of generators for the submodules they generate
(namely Definition 2.1). It turns out that the complement of Rℓ,k is contained in a proper Zariski
closed subset of Mℓ,k, and is therefore a vanishingly thin subset. Restricting to Rℓ,k permits the
definition of a topology on the set of behaviors in a consistent manner satisfying the requirements
of structured perturbations explained above. Genericity results for behaviors with respect to this
topology then follow from genericity results forMℓ,k.

Consider first the case of under-determined matricesMℓ,k with ℓ ⩽ k. LetMℓ,k(d) be the subset
of those matrices in Mℓ,k whose entries are all bounded in degree by d. For d1 < d2, there is a
natural inclusion Mℓ,k(d1) ↪Mℓ,k(d2), and as d tends to infinity, the direct limit of Mℓ,k(d) isMℓ,k. The lemma below states that the set of ℓ × k matrices such that iℓ ≠ 0 is Zariski open inMℓ,k(d) for every d, and hence in the direct limitMℓ,k. Finally allowing ℓ to vary between 1 and

k shows that this condition on iℓ is generically satisfied on the disjoint unionMℓ≤k = ⋃k
ℓ=1Mℓ,k.

Lemma 6.1. In the notation of the above paragraph, iℓ ≠ 0 is satisfied by elements in a Zariski
open subset of Mℓ≤k.

Proof: Consider the set Mℓ,k(d), and let P (∂) be an element of it. Each entry of P (∂) is a

polynomial in n indeterminates, of degree at most d. There are ( n + d

n
) such monomials, and

there are ℓk entries, hence P (∂) is a point in CN(d) where N(d) = ℓk( n + d

n
) (and thus N(d) is a

polynomial in d of degree n).
The determinant of an ℓ× ℓ submatrix of P (∂) inMℓ,k(d) is bounded in degree by ℓd, and there

are ( n + ℓd

n
) such monomials. There are ( k

ℓ
) many minors, hence the ℓ-th determinantal ideal

of P (∂) is a point in CM(d), where M(d) = ( k

ℓ
)( n + ℓd

n
) is again a polynomial in d of degree n.

Thus the ℓ-th determinantal ideal is a morphism

iℓ(d) ∶ CN(d) Ð→ CM(d)

where iℓ(d) coincides with iℓ(d − 1) on CN(d−1) ↪ CN(d). Each of the M(d) components of the
morphism iℓ(d) is polynomial in the entries of the argument, and is therefore algebraic. This
implies that iℓ(d)−1(0) is a proper Zariski closed subset, and hence that the set of P (∂) inMℓ,k(d),
for which iℓ(d) ≠ 0, is Zariski open.

For d1 < d2, Mℓ,k(d1) injects into Mℓ,k(d2), and the topology of the former is the topology it
inherits as a subspace of the latter (and thus Mℓ,k is a strict direct limit of the directed system{Mℓ,k(d)}d=1,2,...). The lemma now follows from the definition of the topology on the direct limit. ◻

Corollary 6.1. The Hautus tests of Theorems 3.1, 5.2 and 5.4 are valid for a generic under-
determined matrix, namely those belonging to a Zariski open set given by the condition iℓ ≠ 0.

◻



THE HAUTUS TEST 17

An argument similar to the proof of Lemma 6.1 gives:

Lemma 6.2. Consider the set of strictly under-determined matrices Mℓ<k = ⋃k−1
ℓ=1Mℓ,k. Then

the condition that two or more generators of iℓ are nonzero is satisfied by elements belonging to a
Zariski open subset.

Proof: The set of all elements inMℓ,k(d) such that exactly one of the ( k

ℓ
) minors is nonzero, is

a closed subset of the open set CN(d)
∖ iℓ(d)−1(0). ◻

Now let p(∂) be a nonconstant operator in A of degree δ. Multiplication in A by p(∂) increases
degree by δ, and hence there is an injective morphism

p(∂) ∶ C( n + d

n
) Ð→ C

( n + d + δ

n
)

where its domain is the space of all operators in A of degree less than or equal to d, and its
codomain, the space of all operators of degree less than or equal to d + δ.

Lemma 6.3. The image of the above morphism p(∂) is contained in a proper Zariski closed subset
of the codomain.

Proof: Let X be the closure of the image of the morphism p(∂). Then X is irreducible, and the

morphism p(∂) ∶ C( n + d

n
) → X is dominant. This implies that dim(X) = ( n + d

n
) < ( n + d + δ

n
)

(for instance Theorem 13.8 in [2]). ◻

This leads to a genericity result for strictly under-determined matrices with respect to the Zariski
topology:

Theorem 6.1. The behavior of a generic strictly under-determined matrix inMℓ<k is controllable,
for this set of matrices contains a Zariski open set.

Proof: By Lemma 6.2, two or more generators of the cancellation ideal iℓ of a generic strictly
under-determined matrix are nonzero. For such matrices, dim(V(iℓ)) = n−1 if and only if there is a
nonconstant polynomial which divides all these generators. The complement of this set of matrices
contains a Zariski open set by Lemma 6.3. ◻

The arguments in the case of over-determined matrices are similar. Thus, now let ℓ ≥ k, and letMℓ,k(d) again be the set of ℓ × k matrices with entries in A of degree less than or equal to d. Let

N(d) = ℓk( n + d

n
) be as before, but now let M(d) = ( ℓ

k
)( n + kd

n
), so that the k-th determinantal

ideal of an element inMℓ,k(d) is a point in CM(d). Thus the k-th determinantal ideal is a morphism

ik(d) ∶ CN(d) → CM(d) which is algebraic, and an argument identical to the above shows:

Lemma 6.4. The condition ik ≠ 0 is satisfied by a Zariski open subset of Mℓ,k, ℓ ⩾ k. ◻

Finally, allowing ℓ to equal k, (k + 1), (k + 2), . . . shows that the above condition is satisfied by
a generic over-determined matrix in the disjoint unionMℓ⩾k = ⋃ℓ⩾kMℓ,k. Combining this lemma
with Theorem 4.2 gives:

Theorem 6.2. The behavior of a generic over-determined matrix inMℓ⩾k is uncontrollable, namely
those belonging to a Zariski open set given by the condition ik ≠ 0. In particular, the behavior of a
generic square matrix is uncontrollable. ◻



18 S.SHANKAR

These genericity results in terms of matrices are now used to obtain genericity results for be-
haviors. Consider, for the sake of simplicity, behaviors defined in the space of distributions D′
or smooth functions C∞. As these are both injective cogenerators as modules over A, there is a
bijective correspondence between submodules of Ak and behaviors in Fk ( F = D′ or C∞). Hence,
to define a topology on the set of behaviors in these Fk, it suffices to define it on submodules ofAk.

Consider first the case of under-determined behaviors. Motivated by the considerations explained
in the beginning of this section, it is necessary to restrict to the subset Rℓ,k ofMℓ,k consisting of

those matrices whose ℓ rows is a minimum set of generators for the submodules of Ak that they
generate (Definition 2.1). Thus the submodule generated by the rows of a P (∂) ∈ Rℓ,k cannot be
generated by less than ℓ elements. Clearly, the ℓ-th determinantal ideal iℓ of an element in the
complement of Rℓ,k in Mℓ,k equals 0, hence Rℓ,k contains a Zariski open set of Mℓ,k by Lemma
6.1.

Let Sℓ be the set of submodules of Ak which can be generated by ℓ (< k) elements, but not fewer.
Consider the map

Π ∶ Rℓ,k Ð→ Sℓ
P (∂) ↦ P

ℓ = 1, . . . , k − 1, which maps a matrix in Rℓ,k to the submodule of Ak generated by its rows. This
is a surjective map, and the quotient topology on Sℓ, descending from the Zariski topology on the
subspace Rℓ,k ⊂Mℓ,k, is the strongest topology such that Π is continuous. This topology on Sℓ
is also called the Zariski topology. The disjoint union Sℓ<k = ⋃k−1

ℓ=1 Sℓ defines the set of strictly
under-determined behaviors, and carries the above Zariski topology.

Theorem 6.1 now descends to behaviors:

Theorem 6.3. The behavior of a generic strictly under-determined submodule in Sℓ<k is control-
lable, for this set of behaviors contains a Zariski open set. ◻

The case of over-determined behaviors is analogous. Thus, let Sℓ be the set of submodules ofAk which can be generated by ℓ (⩾ k) elements, but not fewer. The Zariski topology on Sℓ is again
the quotient topology it inherits from the corresponding projection Π ∶ Rℓ,k → Sℓ. Let Sℓ⩾k be the
disjoint union ⋃ℓ⩾k Sℓ. Theorem 6.2 then implies:

Theorem 6.4. The behavior of a generic over-determined behavior in Sℓ⩾k is uncontrollable,
namely those belonging to a Zariski open set given by the condition ik ≠ 0. In particular, the
behavior of a generic square behavior is uncontrollable. ◻

7. Coordinate controllability

All the results in this paper on the Hautus test, and on genericity, depend on conditions on
the two ideals of importance, namely the cancellation ideal iℓ and the characteristic ideal ik of the
behavior. This section introduces a weak notion of controllability suggested by these results. It
also collects a few additional comments, some of which are well known to experts, but which, for
the sake of completeness, are included here.

An argument similar to the proof of Theorem 3.2 (see for instance [16]), implies further that

ik ⊆ ann(Ak/P) ⊆√ik

Thus ik = 0 is equivalent to ann(Ak/P) = 0. The stronger condition, that Ak/P be torsion free,
is equivalent to controllability of BF(P), namely Theorem 1.2. What does this weaker condition
imply about the behavior?
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Proposition 7.1. Let P ⊂Ak, and BF(P) its behavior in Fk, where F is either D′, C∞ or S ′. Let
πj ∶ Fk → F , (f1, . . . , fk) ↦ fj be the projection onto the j-th coordinate. Then ann(Ak/P) = 0 if
and only if there is a j, 1 ⩽ j ⩽ k, such that the restriction πj ∶ BF(P) → F is surjective, and hence
that πj(BF(P)) is controllable.

Proof: Let ij ∶ A → Ak, a ↦ (0, . . . , a, . . . ,0) be the inclusion in the j-th coordinate. By Proposi-

tion 4.1 in [15], πj(BF(P)) = BF(i−1j (P)). Now, ann(Ak/P) = 0 is equivalent to saying that there

is a j, 1 ⩽ j ⩽ k, such that i−1j (P) = 0. By the proposition quoted above, this is equivalent to

πj(BF(P)) = F . (In this, the fact that F is an injective A-module is crucial.) ◻

This weaker notion may be called coordinate controllability; hence a behavior BF(P) is coordinate-
controllable if and only if ann(Ak/P) = 0. For instance, suppose that a submodule P of Ak can be
generated by some ℓ elements, ℓ < k. This is the case of a strictly under-determined system, and
then ik = 0. Thus

Corollary 7.1. A strictly under-determined system is coordinate-controllable. ◻

In addition, the discussion preceding Theorem 4.2 implies the following counterpart to it –
henceforth, as then, assume that F equals D′ or C∞.
Proposition 7.2. A strictly under-determined system always contains nonzero controllable sub-
behaviors, and thus it contains a unique (nonzero) maximal controllable sub-behavior.

Proof: As ik = 0, so is ann(Ak/P), and hence 0 is an associated prime of Ak/P. ◻

To formulate behavioral controllability (Definition 1.1) in these terms, consider a general homo-
thety: given r(∂) = (a1(∂), . . . , ak(∂)) in Ak, let ir ∶ A → Ak be the morphism a(∂) ↦ a(∂)r(∂)
(which is an injection when r(∂) ≠ 0). Applying HomA(−,F) to this morphism gives r(∂) ∶ Fk → F ,
which maps f = (f1, . . . , fk) to a1(∂)f1+. . .+ak(∂)fk (and which is a surjection when r(∂) ≠ 0); thus,
the injections ij and the projections πj in Proposition 7.1 correspond to r(∂) = (0, . . . ,1, . . . ,0).
Behavioral controllability is then an assertion about the restrictions of the maps r(∂) above to
r(∂) ∶ BF(P) → F , for all r(∂) in Ak.

Proposition 7.3. Let P be a submodule of Ak. The behavior BF(P) is controllable if and only if
every image r(∂)(BF(P)) is controllable (in other words if and only if every r(∂)(BF(P)) is either
0 or all of F).
Proof: Consider the map A Ð→ Ak/P

1 ↦ r(∂) +P
It is the 0 map if r(∂) is in P; otherwise it is injective as Ak/P is torsion free. Hence, applying
HomA(−, F) to the above map implies the proposition. ◻

A coordinate onto which a behavior surjects can play the role of an input [17]. This raises the
question: can the projection of a controllable behavior to several coordinates also be surjective?
The example below from [20], shows that in general this need not be the case.

Example: Let A = C[∂1, ∂2]. The behavior given by the kernel of the map (∂1, ∂2) ∶ F2 → F
is controllable (for instance, its cancellation variety, the origin in C2, is of codimension 2). By
Proposition 7.1, each πj ∶ BF((∂1, ∂2))→ F , j = 1,2, is surjective, but BF((∂1, ∂2))→ F2 is clearly
not.
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A strongly controllable behavior (namely, the discussion after Proposition 2.2) does however
surject onto several of its coordinates (equal in number to the rank of the free module Ak/P). ◻

Thus, three graded notions of controllability of a behavior BF(P) have now been identified, each
corresponding to increasingly weaker requirements on Ak/P.

Table 1. notions of controllability

strong controllability ⇐⇒ Ak/P is free

behavioral controllability ⇐⇒ Ak/P is torsion free
coordinate controllability ⇐⇒ ann(Ak/P) = 0

Because these notions can be understood in terms of projections of the behavior to various
coordinates (as the above propositions indicate), they amount to notions of inputs and outputs,
and hence to a notion of causality, but will not be pursued any further here.
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