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Abstract. It is well known that the self-consistent field (SCF) iteration for solving the Kohn-Sham (KS) equation often fails to converge,

yet there is no clear explanation. In this paper, we investigate the SCF iteration from the perspective of minimizing thecorresponding KS total

energy functional. By analyzing the second-order Taylor expansion of the KS total energy functional and estimating therelationship between the

Hamiltonian and the part of the Hessian which is not used in the SCF iteration, we are able to prove global convergence froman arbitrary initial

point and local linear convergence from an initial point sufficiently close to the solution of the KS equation under assumptions that the gap between

the occupied states and unoccupied states is sufficiently large and the second-order derivatives of the exchange correlation functional are uniformly

bounded from above. Although these conditions are very stringent and are almost never satisfied in reality, our analysisis interesting in the sense

that it provides a qualitative prediction of the behavior ofthe SCF iteration.
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1 Introduction

Consider the discretized Kohn-Sham (KS) equation

H(X)X = XΛ,

XTX = I,
(1)

whereX ∈ R
n×k, the discretized HamiltonianH(X) ∈ R

n×n is a matrix function with respect toX such that

H(X)X is equal to the gradient of some discretized total energy functionalE(X) (to be defined in section 2), and

Λ ∈ R
k×k is a diagonal matrix consisting ofk smallest eigenvalues ofH(X). The discretized KS equation is a

fundamental nonlinear eigenvalue problem arising from thedensity functional theory (DFT) for electronic structure

calculations [16, 19], in which the discretized charge density of electrons is defined as

ρ(X) := diag(XXT), (2)
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wherediag(A) denotes the vector containing the diagonal elements of the matrix A. If no confusion can arise, we

omit the word “discretized” before “KS” and “charge density”, etc.

The most widely used approach for solving (1) is the self-consistent field (SCF) iteration. Starting fromX0 with

(X0)TX0 = I, the SCF iteration computes the(i+1)-th iterateX i+1 as the solution of the linear eigenvalue problem:

H(X i)X i+1 = X i+1Λi+1,

(X i+1)TX i+1 = I.
(3)

When the difference between two consecutive Hamiltonians is negligible, the system is said to be self-consistent and

the SCF procedure is terminated. Heuristics have been proposed to accelerate and stabilize the SCF iteration. For

example, the charge mixing techniques [11, 13] replace the Hamiltonian by a new matrix constructed from a linear

combination of either the potential or the charge densitiescomputed in the previous SCF iterations and a new one

obtained from certain schemes.

It is well known that the basic version of SCF iteration (3) often converges slowly or fails to converge [12] even

with the help of various heuristics for decades, yet a clear explanation is not available. A convergence analysis

of the SCF iteration for solving the Hartree-Fock equationsaccording to the optimal damping algorithm (ODA) is

established in [5]. The interested reader is referred to [1,2, 3, 4, 6, 7, 14] on discussing ODA and its theoretical

properties. Recently, an analysis of gradient-based algorithms for the Hartree-Fock equations is proposed in [15]

using Lojasiewiscz inequality. Some analysis on gradient-based algorithms can also be found in [17]. In [21], the

authors prove that the sequence generated by the SCF iteration converges alternatively to two limit points which

do not satisfy (1) on certain type of problems. A few numerical explanations are provided in [23] by viewing the

SCF iteration as an indirect procedure of minimizing a sequence of quadratic surrogates. A condition is identified

in [21] to guarantee that the SCF iteration becomes a contractive fixed point iteration under a specific form of the

Hamiltonian without involving any exchange correlation term. Basically, the condition characterizes the contribution

of the nonlinear component of the Hamiltonian.

In this paper, we establish some conditions on ensuring global and local convergence of the SCF iteration for

general Kohn-Sham DFT from an optimization point of view. Actually, the KS equation (1) is closely related to the

constrained minimization problem with orthogonality constraints

min
X∈Rn×k

E(X)

s. t. XTX = I.

(4)

The first-order optimality conditions for (4) are the same as(1) except that the diagonal matrixΛ consists of any

k eigenvalues ofH(X) rather than thek smallest ones. Assume that the second-order derivative of the exchange

correlation energy functional is uniformly bounded from above, which implies the Lipschitz continuity of the Jacobian

of the functional. Inspired by the expression of the exact Hessian ofE(X) discovered in [9, 20], we observe that the

SCF iteration discards a “complicate” term in the Hessian ofthe total energy functionalE(X). Our analysis shows

that this term plays an important role in the performance of the SCF scheme (3). Briefly speaking, it converges if

the gap between thekth and(k + 1)st eigenvalues of the HamiltonianH(X) outweighs the norm of the complicate

term in the Hessian up to some constant. Although this condition is very stringent and is almost never satisfied in

practice, which explains why the simplest SCF iteration often does not converge, our presented analysis is interesting

theoretically in the sense that it provides a qualitative prediction of the behavior of the SCF iteration with respect to

the spectral gap of the nonlinear Hamiltonian relative to the Coulomb interaction.

The rest of this paper is organized as follows. In section 2, we describe the total energy functional and its gradient
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and Hessian, as well as the distance measurements between subspaces in detail. The global and local convergence of

the SCF iteration are presented in section 3 and 4, respectively. Some relationship to the condition in [21] is clarified

in section 5. Finally, we conclude our paper in the last section.

2 Problem Statement

2.1 The KSDFT Total Energy Functional

Consider the discretized KS total energy functional based on plane wave discretization as

E(X) :=
1

4
tr(XTLX) +

1

2
tr(XTVionX) +

1

2

∑

i

∑

l

|xT
i wl|2 +

1

4
ρ⊤L†ρ+

1

2
eTǫxc(ρ), (5)

whereX = [x1, . . . , xk] ∈ R
n×k. The first term of (5) is the so-called kinetic energy, whereL is a finite dimensional

representation of the Laplacian operator. The second term denotes local ionic potential energy, where the diagonal

matrix Vion is the ionic pseudopotentials sampled on the suitably chosen Cartesian grid. The third term defines

the nonlocal ionic potential energy, wherewl represents a discretized pseudopotential reference projection function.

The matrixL† corresponds to the pseudo-inverse ofL and the fourth term denotes the Hartree potential energy,

which is used to model the classical electrostatic average interaction between electrons. The final term denotes the

exchange correlation energy, which is used to describe the nonclassical interaction between electrons. More detailed

description of each terms ofE(X) can be found in [22, 23]. Although the function (5) is can be different if other basis

functions, such as Gaussian atomic orbitals, are used for the discretization, our analysis still holds with some obvious

modifications.

It can be verified that the gradient ofE(X) with respect toX is∇E(X) = H(X)X , where the Hamiltonian

H(X) :=
1

2
L+ Vion +

∑

l

wlw
T
l +Diag(L†ρ) + Diag(µxc(ρ)

Te), (6)

andµxc(ρ) := ∂ǫxc

∂ρ
∈ R

n×n andDiag(x) (with an uppercase letterD) denotes a diagonal matrix withx on its

diagonal. LetL(Rn×k,Rn×k) denote the space of linear operators which mapR
n×k toR

n×k. The Fréchet derivative

of ∇E(X) is defined as the (unique) function∇2E : Rn×k → L(Rn×k,Rn×k) such that

lim
‖S‖F→0

‖∇E(X + S)−∇E(X)−∇2E(X)(S)‖F
‖S‖F

= 0.

The next lemma shows an explicit form of the Hessian operator[9, 20].

Lemma 2.1 (Lemma 2.1 in [20]). Suppose thatǫxc(ρ(X)) is twice differentiable with respect toρ(X). Given a

directionS ∈ R
n×k, the Hessian-vector product ofE(X) is

∇2E(X)[S] = H(X)S +B(X)[S], (7)

whereJ := L† + ∂2ǫxc

∂ρ2 e and

B(X)[S] := 2Diag
(

Jdiag(SXT)
)

X. (8)

We make the following assumptions on the total energy function.
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Condition 2.2. The second-order derivatives of the exchange correlation functionalǫxc(ρ) is uniformly bounded from

above, which implies the Lipschitz continuity of its Jacobian. Without loss of generality, we assume that there exists a

constantσ such that

∥

∥Diag(µxc(ρ)
Te)−Diag(µxc(ρ̃)

Te)
∥

∥

F
≤ σ‖ρ− ρ̃‖2 and

∥

∥

∥

∥

∂2ǫxc

∂ρ2
e

∥

∥

∥

∥

2

≤ σ, for all ρ ∈ R
n.

We next consider the second part of the Hessian operatorB(X)[S] defined in (8).

Lemma 2.3. Suppose that Condition 2.2 holds. LetX ∈ On×k, Z ∈ On×(n−k) andS ∈ R
n×k. Then

‖B(X)[S]‖F ≤ 2
√
n(‖L†‖2 + σ) · ‖S‖2, (9)

‖ZTB(X)[ZZTS]‖F ≤ 2
√
n(‖L†‖2 + σ) · ‖ZTS‖2. (10)

Proof. We only prove the second inequality. Using‖ZT‖2 ≤ 1 and‖X‖2 = 1, we obtain

‖ZTB(X)[ZZTS]‖F = ‖2ZTDiag(Jdiag(ZZTSXT))X‖F
≤ 2‖ZT‖2‖Diag(Jdiag(ZZTSXT))‖F‖X‖2
≤ 2‖Diag(Jdiag(ZZTSXT))‖F = 2‖Jdiag(ZZTSXT)‖2
≤ 2‖J‖2 · ‖diag(ZZTSXT)‖2 ≤ 2‖J‖2 ·

√
n‖ZZTSXT‖∞

≤ 2
√
n‖J‖2 · ‖ZZTSXT‖2 ≤ 2

√
n‖J‖2 · ‖ZTS‖2,

where the last inequality uses the fact that‖ZM‖2 ≤ ‖M‖2 for any matrixM ∈ R
k×k. This completes the proof.

Our analysis also relies on the gap between thekth and(k + 1)st eigenvalues ofH(X).

Condition 2.4. Letλ1 ≤ . . . ≤ λk < λk+1 ≤ . . . ≤ λn be the eigenvalues of a symmetric matrixH ∈ R
n×n. There

exists a gap between thekth and(k + 1)st eigenvalues, that is,λk+1 − λk ≥ δ for some positive constantδ.

If Condition 2.4 holds for a sequence of matrices{Hi} (i = 1, 2, ...) whoseδ is uniformly bounded away from

zero,{Hi} is said to be uniformly well posed (UWP) in [1, 21].

2.2 Distance Measurements

The SCF iteration maintains orthogonality in each iteration. The feasible set

On×k := {X | X ∈ R
n×k, XTX = I}

is often referred to as the Stiefel manifold. The solutions of the KS equation (1), the SCF iteration (3) and the

minimization problem (4) are invariant with respect to orthogonal transformations. Namely, ifX is a solution, all

points in the set{XU | U ∈ R
k×k, UTU = Ik} are also solutions. Hence, the Euclidean distance is not suitable

to measure the distance between a feasible point to a solution or a solution set of (1). Inspired by the convergence

analysis in [21], we introduce two subspaces distance measurements defined in section 4.3 of [8] for further analysis,

i.e., for anyX1, X2 ∈ On×k,

1. Chordal 2-norm: dc2(X1, X2) := min
Q1,Q2∈Ok×k

‖X1Q1 −X2Q2‖2;

2. Projection 2-norm: dp2(X1, X2) := ‖X1X
T
1 −X2X

T
2 ‖2.
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LetUΣV T be the singular value decomposition ofXT
1 X2. It holds that

dc2(X1, X2) = ‖X1U −X2V ‖2. (11)

Since the equivalence betweendc2 anddp2 is not discussed in [8], we next include a proof for completeness.

Lemma 2.5. Given anyX1, X2 ∈ On×k, the Chordal 2-norm and Projection 2-norm satisfy

dc2(X1, X2) ≥ dp2(X1, X2) ≥
√
2

2
dc2(X1, X2). (12)

Proof. We first consider the first inequality in (12). Let us denoteX̄1 = X1U andX̄2 = X2V , whereU andV are

defined in (11). Then, we observe

0 � (Ik − X̄T
1 X̄2)(Ik − X̄T

2 X̄1) = I − X̄T
1 X̄2 − X̄T

2 X̄1 + X̄T
1 X̄2X̄

T
2 X̄1

= (2Ik − X̄T
1 X̄2 − X̄T

2 X̄1)− (Ik − X̄T
1 X̄2X̄

T
2 X̄1),

which yields

σmax(Ik − X̄T
1 X̄2X̄

T
2 X̄1) ≤ σmax(2Ik − X̄T

1 X̄2 − X̄T
2 X̄1). (13)

LetZ2 ∈ On×(n−k) be the orthogonal complement toX2. The left hand side of (13) satisfies

σmax(Ik − X̄T
1 X̄2X̄

T
2 X̄1) = σmax(X̄

T
1 (Ik − X̄2X̄

T
2 )X̄1) = σmax(X̄

T
1 Z2Z

T
2 X̄1)

= ‖ZT
2 X̄1‖22 = d

2
p2(X̄1, X̄2) = d

2
p2(X1, X2), (14)

where the last equality holds due to Theorem 2.6.1 of [10]. Itfollows from (11) that the right hand side of (13) satisfies

σmax(2Ik − X̄T
1 X̄2 − X̄T

2 X̄1) = ‖X̄1 − X̄2‖22 = d
2
c2(X1, X2), (15)

which together with (14) proves the first part of (12).

We now prove the second inequality of (12). According to (14)and the definitions ofU andV , we obtain

d
2
p2(X1, X2) = σmax(Ik − X̄T

1 X̄2X̄
T
2 X̄1) = σmax(Ik − Σ2). (16)

It follows from (15) that

d
2
c2(X1, X2) = σmax(2Ik − X̄T

1 X̄2 − X̄T
2 X̄1) = σmax(2Ik − 2Σ). (17)

SinceX1 andX2 are orthogonal matrices, each diagonal entry of the diagonal matrix Σ is in [0, 1]. The proof is

completed by combining (16) and (17) together.

Theorem 4.11 in [18] and Corollary 7.2.5 in [10] are sufficient to guarantee the convergence of the invariant

subspaces corresponding to thek-smallest eigenvalues.

Lemma 2.6. Suppose that the symmetric matrixH ∈ R
n×n satisfies Condition 2.4. Let∆H ∈ R

n×n be a symmetric

perturbation toH andX, X̃ ∈ R
n×k be the invariant subspaces associated with thek smallest eigenvalues ofH and

5



H +∆H , respectively. If||∆H ||2 is sufficiently small, it holds that

dp2(X, X̃) ≤ C · ||∆H ||2, (18)

whereC is a parameter only related toδ in Condition 2.4.

3 Global Convergence of the SCF Iteration

In this section, we prove global convergence of the SCF iteration based on the reduction of the total energy functional

between two consecutive iterates. Suppose thatX ∈ On×k is an arbitrary feasible point of (4), andY is obtained from

running one SCF iteration withX as the starting point. Namely, the columns ofY are the eigenvectors associated

with thek smallest eigenvalues ofH(X). Such aY is not unique because the linear eigenvalue problem is invariant

with respect to the orthogonal transformation. LetUΣV T be the singular value decomposition ofXTY , where

U, V ∈ Ok×k. Then it follows from (11) that̄Y := Y V UT satisfies

‖X − Ȳ ‖2 = dc2(X,Y ). (19)

Due to the invariance,̄Y is also a solution to the linear eigenvalue problem in the SCFiteration starting fromX and

E(Y ) = E(Ȳ ). For simplicity of notation, we call̄Y as the closest SCF iterate obtained fromX under the Chordal

2-norm.

The second-order Taylor expansion ofE(Y ) atX gives

E(Y ) = E(X) + 〈∇E(X), Y −X〉+ 1

2
〈∇2E(Dt)[Y −X ], Y −X〉,

whereDt = X + t(Y −X) for somet ∈ (0, 1), and the Euclidean inner product〈A1, A2〉 between any real matrices

A1, A2 ∈ R
n×k is defined as tr(AT

1 A2). Using the formulations of the gradient∇E(X) = H(X)X and the Hessian-

vector product (7), we obtain

E(X)− E(Y ) = −〈∇E(X), Y −X〉 − 1

2
〈∇2E(X)[Y −X ], Y −X〉

−1

2
〈∇2E(Dt)[Y −X ], Y −X〉+ 1

2
〈∇2E(X)[Y −X ], Y −X〉

=
1

2
(〈H(X)X,X〉 − 〈H(X)Y, Y 〉)−R

(1)
X (Y,Dt)−R

(2)
X (Y,Dt), (20)

where

R
(1)
X (Y,Dt) :=

1

2
〈(H(Dt)−H(X))(Y −X), Y −X〉, (21)

R
(2)
X (Y,Dt) :=

1

2
〈B(Dt)[Y −X ], Y −X〉. (22)

The first term of the right hand side in (20) corresponds to a reduction of a quadratic form of the linear eigenvalue

problem in the SCF iteration. Lemma 1 in [21] ensures the following reduction.

Lemma 3.1. Suppose that Condition 2.4 holds atH(X), andY is a solution obtained from running one SCF iteration

with X as the starting point. Then we have

〈H(X)X,X〉 − 〈H(X)Y, Y 〉 ≥ δ · d2
p2(X,Y ). (23)
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We next estimateR(1)
X (Y,Dt) andR(2)

X (Y,Dt) for the reduction ofE(X)− E(Y ).

Lemma 3.2. Suppose that Condition 2.2 holds. LetX be an orthogonal matrix withH(X) satisfying Condition 2.4,

andY be a solution obtained from running one SCF iteration withX as the starting point. Then

E(X)− E(Y ) ≥ 1

2
δ · d2

p2(X,Y )− k
√
n(‖L†‖2 + σ) · (d2

c2(X,Y ) + d
3
c2(X,Y )). (24)

Proof. Let Ȳ be the closest SCF iterate obtained fromX under the Chordal 2-norm. Using the facts that the second

term of the left hand side in (23) is invariant with respect toorthogonal transformation onY anddp2(X,Y ) =

dp2(X, Ȳ ), we obtain

〈H(X)X,X〉 − 〈H(X)Ȳ , Ȳ 〉 ≥ δ · d2
p2(X, Ȳ ). (25)

Simple calculations show that

‖XXT −DtD
T
t ‖2 ≤ 2‖X −Dt‖2 ≤ 2‖Ȳ −X‖2. (26)

The definition ofH(X), Condition 2.2 and the inequality (26) give

‖H(Dt)−H(X)‖F
= ‖Diag(L†(ρ(X)− ρ(Dt)))‖F + ‖Diag(µxc(ρ(X))Te)−Diag(µxc(ρ(Dt))

Te)‖F
≤ (‖L†‖2 + σ)‖ρ(X)− ρ(Dt)‖2
≤

√
n(‖L†‖2 + σ)‖diag(XXT)− diag(DtD

T
t )‖∞

≤
√
n(‖L†‖2 + σ)‖XXT −DtD

T
t ‖2

≤ 2
√
n(‖L†‖2 + σ)‖Ȳ −X‖2,

which further yields

R
(1)
X (Ȳ , Dt) ≤

∣

∣

∣

∣

1

2
〈(H(Dt)−H(X))(Ȳ −X), Ȳ −X〉

∣

∣

∣

∣

≤ 1

2
‖H(Dt)−H(X)‖F‖Ȳ −X‖2‖Ȳ −X‖F

≤ k
√
n(‖L†‖2 + σ)‖Ȳ −X‖32. (27)

It follows from (9) in Lemma 2.3 that

〈B(Dt)[Ȳ −X ], Ȳ −X〉 ≤ ‖B(Dt)[Ȳ −X ]‖F‖Ȳ −X‖F
≤ 2

√
n‖J‖2‖Dt(Ȳ −X)T‖2 · k · ‖Ȳ −X‖2

≤ 2k
√
n(‖L†‖2 + σ)‖Ȳ −X‖22,

where the last inequality is implied by‖Dt‖2 = ‖X + t(Ȳ −X)‖2 ≤ 1. Consequently, we have

R
(2)
X (Ȳ , Dt) ≤

∣

∣

∣

∣

1

2
〈B(Dt)[Ȳ −X ], Ȳ −X〉

∣

∣

∣

∣

≤ k
√
n(‖L†‖2 + σ)‖Ȳ −X‖22. (28)
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Substituting (25), (27) and (28) into (20), we obtain

E(X)− E(Ȳ ) ≥ 1

2
δ · d2

p2(X, Ȳ )− k
√
n(‖L†‖2 + σ)(‖X − Ȳ ‖22 + ‖X − Ȳ ‖32). (29)

Finally, the inequality (24) is proved by using (19),dp2(X,Y ) = dp2(X, Ȳ ) andE(Y ) = E(Ȳ ).

We now present our global convergence results based on the reduction of the total energy functioanl in Lemma 3.2

and the relationship between the distance measurements in Lemma 2.5.

Theorem 3.3. Suppose that Condition 2.2 holds. Let{X i} be a sequence generated by the SCF iteration such that

{H(X i)} is uniformly well posed with a constantδ. Then{X i} converges to a solution to the KS equation(1), if

δ > 12k
√
n(‖L†‖2 + σ). (30)

Proof. It follows from Lemma 2.5 and Lemma 3.2 that, for anyi = 1, 2, ...,

E(X i)− E(X i+1) ≥
(

1

4
δ − k

√
n(‖L†‖2 + σ)

)

d
2
c2(X

i, X i+1)

−k
√
n(‖L†‖2 + σ)d3

c2(X
i, X i+1). (31)

SinceX i andX i+1 are both orthogonal matrices, we have

dc2(X
i, X i+1) ≤ ‖X i‖2 + ‖X i+1‖2 = 2. (32)

Substituting (32) into (31), we obtain

E(X i)− E(X i+1) ≥ (
1

4
δ − 3k

√
n(‖L†‖2 + σ))d2

c2(X
i, X i+1). (33)

By summing (33) over all indices from0 to i, we obtain

E(X i+1) ≤ E(X0)− (
1

4
δ − 3k

√
n(‖L†‖2 + σ))

i
∑

j=0

d
2
c2(X

i, X i+1). (34)

SinceE(X i) is bounded below, we have thatE(X0)− E(X i+1) is less than some positive constant for alli. Hence,

by taking limits in (34), we have

lim
i→∞

dc2(X
i, X i+1) = 0. (35)

Namely,{X i} converges. Let

X∗ := lim
i→∞

X i, (36)

andX̃ be consisted of the eigenvectors associated with thek smallest eigenvalues ofH(X∗). It follows from Lemma

2.6 that

dp2(X
i+1, X̃) ≤ C · ||H(X i)−H(X∗)||2. (37)
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Taking limit on both sides and using the continuity ofH(X), we obtain

0 ≤ dp2(X
∗, X̃) = lim

i→∞
dp2(X

i+1, X̃) ≤ lim
i→∞

C · ||H(X i)−H(X∗)||2 = 0. (38)

Namely,X∗ = X̃, which completes the proof.

Theorem 3.3 guarantees the convergence of the SCF iterationto a solution of the KS equation, which is more than

the first-order optimality conditions for (4). In fact, whenthe inequality (30) holds, the reduction of the total energy

(33) implies that any global minimizer of (4) is a solution ofthe KS equation.

4 Local Convergence of the SCF Iteration

In this section, we establish local convergence of the SCF iteration by exposing the relationship between two consecu-

tive iterates in terms of their distances to a particular solution of (1). The results are called local analysis since it relies

on the Taylor expansion in a small neighborhood of that optimal solution.

Lemma 4.1. Suppose that Conditions 2.2 holds. LetX∗ be a solution to the KS equation(1) whoseH(X∗) satisfies

Condition 2.4,X ∈ On×k be in a sufficiently small neighborhood ofX∗, andY be a solution obtained from running

one SCF iteration withX as the starting point. Thendp2(X
∗, Y ) is of the same order ofdp2(X

∗, X), namely

dp2(X
∗, Y ) = O(dp2(X

∗, X)). (39)

Proof. Using the continuity ofH(X), the fact thatX is in a sufficiently small neighborhood ofX∗ and Lemma 2.6,

we obtain

dp2(X
∗, Y ) ≤ C · ||H(X)−H(X∗)||2 = O(||X −X∗||2), (40)

which proves (39).

Theorem 4.2. Suppose that Conditions 2.2 holds. LetX∗ be a solution to the KS equation(1) whoseH(X∗) satisfies

Condition 2.4,X be in a sufficient small neighborhood ofX∗, andY be a solution obtained from running one SCF

iteration withX as the starting point. Then

dp2(X
∗, Y ) ≤ 2

√
n(‖L†‖2 + σ)

δ
· dp2(X

∗, X) +O(d2
p2(X

∗, X)). (41)

Proof. For convenience of exposition, we introduce∆X := X∗ − X and∆Y := X∗ − Y . Recalling the fact that

∇E(X) = H(X)X , we obtain the first-order Taylor expansion of∇E(X∗) atX as follows,

H(X∗)X∗ = ∇E(X∗) = ∇E(X) +∇2E(X)[∆X ] +O(‖∆X‖22)
= H(X)X +H(X)∆X +B(X)[∆X ] +O(‖∆X‖22)
= H(X)Y +H(X)∆Y +B(X)[∆X ] +O(‖∆X‖22). (42)
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Using Lemma 4.1 and substitutingX∗ by Y +∆Y , we have

X∗(X∗)TH(X∗)X∗ = (Y +∆Y )(Y +∆Y )T(H(X)Y +H(X)∆Y +B(X)[∆X ] +O(‖∆X‖22))
= Y Y TH(X)Y + Y∆Y TH(X)Y +∆Y Y TH(X)Y

+Y Y TH(X)∆Y + Y Y TB(X)[∆X ] +O(‖∆X‖22). (43)

By using the fact thatX∗ is a global solution of (1) andY is an SCF iterate obtained fromX , we have

H(X∗)X∗ = X∗(X∗)TH(X∗)X∗, (44)

H(X)Y = Y Y TH(X)Y. (45)

It follows from the relations (42)-(45) that

H(X)∆Y − (Y∆Y TH(X)Y +∆Y Y TH(X)Y + Y Y TH(X)∆Y )

= −(I − Y Y T)B(X)[∆X ] +O(‖∆X‖22). (46)

Consequently, the above relation and Lemma 4.1 imply that

H(X∗)∆Y − (X∗∆Y TH(X)Y +∆Y (X∗)TH(X∗)X∗ +X∗Y TH(X)∆Y )

= −(I −X∗(X∗)T)B(X)[∆X ] +O(‖∆X‖22). (47)

LetZ∗ be the orthogonal complement toX∗. Multiplying both sides of (47) with(Z∗)⊤ yields:

(Z∗)TH(X∗)∆Y − (Z∗)T(X∗∆Y TH(X)Y +∆Y (X∗)TH(X∗)X∗ +X∗Y TH(X)∆Y )

= −(Z∗)TB(X)[∆X ] + (Z∗)TX∗(X∗)TB(X)[∆X ] +O(‖∆X‖22), (48)

which can be rewritten as

(Z∗)TH(X∗)∆Y − (Z∗)T∆Y (X∗)TH(X∗)X∗ = −(Z∗)TB(X)[∆X ] +O(‖∆X‖22). (49)

Let Λk andΛn−k be the diagonal matrices consisting of thek smallest andn − k largest eigenvalues ofH(X∗),

respectively. It follows from (44) and the definition ofZ∗ that

Λn−k(Z
∗)T∆Y − (Z∗)T∆Y Λk = −(Z∗)TB(X)[(Z∗(Z∗)T +X∗(X∗)T)∆X ] +O(‖∆X‖22). (50)

By using the orthogonality ofX , we have(X∗ −∆X)T(X∗ −∆X) = XTX = I, which further gives,

(X∗)T∆X = O(‖∆X‖2). (51)

It follows from (51) that

Λn−k(Z
∗)T∆Y − (Z∗)T∆Y Λk = −(Z∗)TB(X)[Z∗(Z∗)T∆X ] +O(‖∆X‖22). (52)
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Taking Frobenius-norm on both sides of (52), we have

‖Λn−k(Z
∗)T∆Y ‖F − ‖(Z∗)T∆Y Λk‖F ≤ ‖(Z∗)TB(X)[Z∗(Z∗)T∆X ]‖F +O(‖∆X‖22). (53)

Condition 2.4 implies

‖Λn−k(Z
∗)T∆Y ‖F − ‖(Z∗)T∆Y Λk‖F ≥ δ‖(Z∗)T∆Y ‖F. (54)

By using Lemma 2.3 and substituting (54) into (53), we obtain

δ‖(Z∗)T∆Y ‖F ≤ 2
√
n‖J‖2 · ‖(Z∗)T∆X‖2 +O(‖∆X‖22). (55)

It is clear thatdp2(X
∗, Y ) = ‖(Z∗)T∆Y ‖2 ≤ ‖(Z∗)T∆Y ‖F anddp2(X

∗, X) = ‖(Z∗)T∆X‖2. Recalling (51) and

the definition ofZ∗, we obtain

||∆X ||2 ≥ ‖(Z∗)T∆X‖2 ≥ ||∆X ||2 − ||(X∗)T∆X ||2 = ||∆X ||2 −O(||∆X ||22). (56)

Namely,O(‖∆X‖2) = O(dp2(X
∗, X)) holds, which completes the proof.

Hence, when2
√
n(‖L†‖2 + σ) < δ holds, Theorem 4.2 implies that the SCF iteration convergeslinearly to the

solutionX∗ of the KS equation once the sequence locates in a sufficientlysmall neighborhood ofX∗.

5 Comparison with the Results of Yang et al. in [21]

In this section, we explain the difference between our convergence results and these of Yang et al. [21] on a special

form of the total energy functional as

E(X) :=
1

2
tr(XTLX) +

α

4
ρ(X)TL−1ρ(X),

whose Hamiltonian is

H(X) := L+ αDiag(L−1ρ(X)).

Since there is no exchange correlation energy functional inthis case, the constantσ = 0 in Condition 2.2.

Theorem 3.3 provides global convergence from any initial point if

α < αG :=
δ

12k
√
n‖L−1‖2

. (57)

According to Theorem 4.2, the SCF iteration converges linearly to the optimal solution from an initial point located in

a neighborhood of that solution, ifα satisfies

α < αL :=
δ

2
√
n‖L−1‖2

. (58)

On the other hand, Yang et al. [21] proves convergence of a variant of the SCF iteration whose the density function

is computed by

ρ = diag(fµ(H)).
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Herefµ(t) := 1
1+eβ(t−µ) andfµ(H) := VDiag(fµ(λ1), . . . , fµ(λn))V

T, whereH = VDiag(λ1, . . . , λn)V
T is the

eigenvalue decomposition ofH . They provide global linear convergence if

α < αF :=
2

n4β‖L−1‖1
, (59)

whereβ andµ satisfy

trace(fµ(H)) = k.

For a given constantγ ≪ 1, the smoothing can be achieved by requiring







1
1+eβ(λk−µ) ≥ 1− γ,

1

1+e
β(λk+1−µ) ≤ γ,

which is equivalent to

β ≥ max

{

ln 1−γ
γ

µ− λk

,
ln 1−γ

γ

λk+1 − µ

}

.

Notice that

min
µ

max

{

ln 1−γ
γ

µ− λk

,
ln 1−γ

γ

λk+1 − µ

}

=
2

δ
· ln 1− γ

γ
,

whose minimum is achieved atµ = λk+λk+1

2 . Therefore, we obtainβ ≥ 2
δ
· ln 1−γ

γ
. Namely,

αF <
δ

ln 1−γ
γ

· n4‖L−1‖1
. (60)

We notice thatk
√
n < n1.5 < n4 andk

√
n ≪ n4 whenn is sufficiently large. Moreover,ln 1−γ

γ
> 12 if

γ < 6.1442 × 10−6, whereasln 1−γ
γ

· n4 > 12k
√
n, whenγ < 0.1070 andn ≥ 2. By comparing (60) to (57), we

can obtain thatαF < αG under a reasonable value ofγ. Furthermore,αF ≪ αG holds whenn is sufficiently large.

Hence, we can conclude that our condition is no more restricted than the one in [21].

6 Conclusion

We study the convergence issues of the well-known self-consistent field (SCF) iteration for solving the Kohn-Sham

equation in density functional theory. Our analysis is based on the second-order Taylor expansion of the total energy

functional. We show that a “complicate” part of the Hessian plays an important role in ensuring the convergence of

the SCF iteration. Both global and local convergence can be guaranteed if the gap between thekth and(k + 1)th

eigenvalues of the HamiltonianH(X) outweighs the norm of the complicate term in the Hessian up tosome constant

and if the second-order derivatives of the exchange correlation energy is uniformly bounded from above.

Although our conditions are restrictive for the convergence of the SCF iteration and they are almost never satisfied

in reality, they still provide us some insights on the performance of the algorithm. Recently, numerical evidences show

that the exact Hessian can speed up the convergence of the SCFiteration in the trust-region framework [20]. Our

analysis has not covered the acceleration scheme using charge mixing since it is a fixed-point algorithm in terms of

the charge density rather than minimizing the total energy functional.
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