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GLOBAL STABILITY AND LOCAL BIFURCATIONS IN A

TWO-FLUID MODEL FOR TOKAMAK PLASMA

D. ZHELYAZOV ∗, D. HAN-KWAN † , AND J.D.M. RADEMACHER ‡

Abstract. We study a two-fluid description of high and low temperature components of the
electron velocity distribution of an idealized tokamak plasma. We refine previous results on the
laminar steady-state solution. On the one hand, we prove global stability outside a parameter set of
possible linear instability. On the other hand, for a large set of parameters, we prove the primary
instabilities for varying temperature difference stem from the lowest spatial harmonics. We moreover
show that any codimension-one bifurcation is a supercritical Andronov-Hopf bifurcation, which yields
stable periodic solutions in the form of traveling waves. In the degenerate case, where the instability
region in the temperature difference is a point, we prove that the bifurcating periodic orbits form an
arc of stable periodic solutions. We provide numerical simulations to illustrate and corroborate our
analysis. These also suggest that the stable periodic orbit, which bifurcated from the steady-state,
undergoes additional bifurcations.

1. Introduction. In this paper we analyze the stability and primary local bi-
furcations of a laminar steady state in the following two-fluid model for high and
low temperature in a tokamak fusion plasma near the scrape-off layer. The model
equations read





∂tρ
+ = T+∂x2

ρ+ − E⊥ · ∇ρ+ + ν∇2ρ+,

∂tρ
− = T−∂x2

ρ− − E⊥ · ∇ρ− + ν∇2ρ−,

E = −∇V,
−∇2V = ρ+ + ρ− − 1,

(1.1)

where E⊥ =
(
E2,−E1

)T
, ν > 0, and are posed in the cylindrical domain

x = (x1, x2) ∈ [0, L1]× R/L2Z,

subject to the Dirichlet boundary conditions

V (0, x2, t) = V (L1, x2, t) = 0,

ρ±(0, x2, t) = ρ±ss(0) , ρ
±(L1, x2, t) = ρ±ss(L1),

(1.2)

where ρ+ss(x1) := 1− x1

L1

, ρ−ss(x1) :=
x1

L1

.

For ν = 0 and without the Dirichlet boundary conditions on ρ±, this system
has been derived in [3] (L1 = L2 was chosen there), to which we refer for details on
the model origins. Briefly, ρ± model miscible phases of ‘hot’ and ‘cold’ plasma with
constant temperatures T+ > T− > 0, and V the electric potential, driving ρ± via the
drift velocity E×B/|B|2 of all charged particles. The addition of viscous terms on the
one hand allow to model additional physics by adding diffusion or dissipation; on the
other hand, it changes the system from hyperbolic to parabolic, whose bifurcations are
easier to analyze. It turns out that ν > 0 allows for richer destabilization scenarios.
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In order to relate our results with the hyperbolic system, we include an analysis of
the case of small ν > 0. For the benefit of a significant simplification of the analysis,
we restrict in this paper to the case of equal viscosity for ρ±.

The introduction of viscosity requires additional boundary conditions. The Dirich-
let boundary conditions on ρ± are suitable in this context and helpful for our analysis,
though in other physical contexts these may not be the right choice. Notably, the
boundary conditions allow for the laminar steady state

ρss = (ρ+ss, ρ
−
ss), (1.3)

for which the electric potential and field vanish, and whose relevance for the system
was noted in [3] for ν = 0. If ν > 0, it is in fact the only steady state that is
independent of x2. In this paper, we present a detailed analysis of its stability and
bifurcations for ν > 0. For moderate viscosity, the equilibrium is unstable in a
bounded interval [∆T1,∆T2] of the parameter ∆T = T+ − T−, see Figure 1. On
the other hand, the equilibrium is stable for large enough temperature difference,
∆T > ∆T2 and also for small enough (including negative) temperature difference
∆T < ∆T1. The parameter ∆T is relevant in our analysis since it arises in the
comoving variable x2 → x2 − T−t, while T− is removed.

For the hyperbolic case ν = 0, it turns out that ∆T1 = 0 and, for the spatially
lowest harmonic eigenfunction,

∆T2 =
4L1L

2
2

π2(L2
2 + 4L2

1)
=

4ℓ2L1

(4 + ℓ2)π2
,

where ℓ = L2/L1 is the aspect ratio. At L1 = L2, that is, ℓ = 1, this is the instability
region already found in [3]. It turns out that ν > 0 and L1 6= L2 allows for much richer
bifurcation scenarios, and it moreover explains the location of the global stability
threshold ∆T∗ = 4L1/π

2 as the limiting linear stability threshold for ν = 0 via

lim
ℓ→∞

∆T2 = ∆T∗.

In fact, this is the upper bound of ∆T for any linear instability.
One of the original motivations for this study from [3] with L1 = L2 was to find

subcritical bifurcations at ∆T1,∆T2, which would also explain a difference between
the local instability threshold ∆T2 (given by spectral stability) and the global stability
threshold ∆T∗ (essentially depending on a Poincaré inequality constant). However, it
turns out that the bifurcations are always supercritical.

Coming back to the model origins, the sign of ∆T can be related to the region
within the tokamak that is modelled by (1.1): ‘good curvature’ (negative ∆T ) and
‘bad curvature’ regions, which is consistent with the different stability properties for
positive and negative ∆T as noted in [3]. The model captures the Electron Temper-
ature Gradient instability. The modelling and physical relations to L-H transition
(see [7]) remain to be understood. “Clearly, the model selection criteria, apart from
the sound physics behind them, should be based on their capability to reproduce key
experimental facts such as spontaneous L-H transitions, characteristic intermediate
regimes (such as dithering), or hysteresis” [6].

In this paper, we pursue a mathematical analysis that may serve as a basis to
investigate further the relations to physical phenomena. The main results may be
summarized as follows, see also Figures 1 and 4.1.
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Global stability (Theorem 8.3). The steady state ρss is globally L
2-stable for

∆T < 0 and ∆T > ∆T∗. Global stability for ν = 0 in a similar region was al-
ready proven in [3] via an explicit Lyapunov functional given by energy conservation.
In the case of dissipation, improved bounds give the present result with exponential
decay. Moreover, the global stability threshold is sharp in the sense that it is realized
as a limiting linear instability threshold in parameter space.

Local bifurcations (Theorems 5.1, 5.3). For a large class of parameter configura-
tions, including L2/L1 < 2

√
2 ≈ 2.8, the following holds. At the stability thresholds

∆Tj , j = 1, 2, the critical modes are spatially the lowest harmonics, and the system
undergoes supercritical Andronov-Hopf bifurcations corresponding to periodic travel-
ling wave bifurcations with velocity ω = π(T+ + T−)/L2. Near the bifurcations, the
reduced dynamics on a center manifold is the generic normal form. For 0 < ν ≪ 1
this always holds at ∆T2, but not necessarily at ∆T1.

The local unfolding of the degenerate case ∆T1 = ∆T2 proves that the two
branches of periodic orbits are locally connected, and form an arc of stable peri-
odic solutions. We numerically corroborate that, further away from this degeneracy,
secondary instabilities occur along the arc. See Figure 2.3 and §5.

In case L2 ≫ L1, the primary instabilities can also be higher spatial harmonics,
even simultaneously. We thus suspect rich dynamics already at onset, but a detailed
analysis is beyond the scope of this paper. It is also possible, that as ∆T increases,
a sequence of destabilization and restabilization occur through different harmonics.
Roughly speaking, a heuristic interpretation for the model background would be that
increasing L2 for fixed L1, ∆T introduces richer bifurcations from the steady state.

(a) (b)

Fig. 1.1. (a) Schematic illustration of the main case of a primary 1-instability region in the
stability analysis of the steady-state ρss when including viscosity. The global stability threshold ∆T∗

is larger than the linear stability threshold, even at ν = 0. However, in the limit ν → 0 the lower
thresholds coincide, and if in addition ℓ → ∞, then also the upper linear thresholds tend to the global
ones. (b) Sketch of local bifurcation diagram of the steady state u = 0 with supercritical branches of
stable limit cycle. Solid line represents stable solutions and dashed lines unstable ones.

This paper is organized as follows. Section 2 contains numerical computations,
illustrating the results. In §3 we reformulate the problem for a subsequent bifurcation
analysis. Section 4 concerns the spectrum of the linearized operator around the steady
state ρss. In §5 we discuss the center manifold reduction, reduced vector fields and
prove the main bifurcation results. In §6 we explain the relation to travelling wave
bifurcations, and briefly consider pattern formation in case of an infinite strip. In §7
we discuss nonlinear instability for ν ≥ 0 in the linearly unstable region. Finally, §8
contains the global stability result.
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the contract of Association between EURATOM/FOM, was carried out within the
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2. Numerical results. For illustration of the upcoming analytical bifurcation
results, we present in this section some numerical computations. We compute the
deviation u = ρ − ρss (see (3.1)) and discretize with a finite-dimensional spectral
decomposition (see (4.3) for the definition of the harmonics gk):

ul(x, t) =

Nx1∑

k1=1

Nx2∑

k2=−Nx2

Ck1,k2,l(t)gk1,k2
(x) , l = 1, 2. (2.1)

We integrate the resulting system of ODEs using a semi-implicit Crank-Nicolson
scheme, where only the linear part is implicit1. We used the parameter values

ν = 9.10−4, L1 = L2 = 2, T− = 10−1, (2.2)

while ∆T = T+ − T− varied across the instability region. Note that this lies in
the region L2 < 2

√
2L1, thus the primary instabilities come from the lowest spatial

harmonics as proven in Theorem 4.4. All the simulations were made with Nx1
=

Nx2
= 32, though we selectively checked with Nx1

= Nx2
= 64.
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Fig. 2.1. Contour plots of u1(t2) = ρ1(t2)− ρss with t2 sufficiently large for ∆T ∈ (∆T1,∆T2)
and parameters as in (2.2). (a) the dynamics is a translation in the periodic x2-direction, ∆T =
0.159291, and (b) ∆T = 0.146122, the dynamics resembles a modulated travelling wave.

In Figure 2.1 we plot two periodic travelling wave solutions near the upper stabil-
ity threshold ∆T2 ≈ 0.162 and further inside the nonlinear regime as can be seen by
the locus of parameters in Figure 2.2(a). The weakly nonlinear solution for ∆T ≈ ∆T2
closely resembles the unstable eigenfunction, while the solution further inside the non-
linear regime has a clear nonlinear structure.

In order to trace the stable branches of solutions bifurcating from the supercritical
Andronov-Hopf bifurcations at ∆T = ∆T1,∆T2, we perform a simple continuation:

1We modified a code by Jean-Christophe Nave - MIT Department of Mathematics,
jcnave@mit.edu for Navier-Stokes equations in vorticity formulation.
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for ∆T near the bifurcation at ∆T1, we simulate an initial condition close to ρss
and after a long transient compute the sup-norm over a long time interval. We then
slightly increase ∆T and repeat this step with the initial condition being the solution
at the final time of the previous step. In this way we obtain the bifurcation diagram
in Figure 2.2, where the numerical instability thresholds are in very good agreement
with the analytical ones.
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Fig. 2.2. Bifurcation diagrams in ∆T with maxt1≤t≤t2
‖u1(t)‖∞ on the vertical axis, where

t1, t2 are taken sufficiently large (t1 ≥ 400), so that we get a good approximation of the attractor.
(a) parameters as in2.2, and (b) L1 = 0.9, L2 = 0.9, ν = 9.10−3, the diagram is in agreement with
corollary 5.2.

As predicted by Theorem 5.1, the slope of the resulting curve is larger near the left
endpoint of the instability region than near the right endpoint. Further away from
these endpoints, the solution shapes change and we conjecture a period doubling
bifurcation near ∆T = 0.0646, rapidly followed by a torus bifurcation. This would
be consistent with the sharper increase in the sup-norms in Figure 2.2, and the fact
that the periods of the solutions become rather large, see Figure 2.3(b). Despite this
detour to another attractor, the solution is eventually turning into the near harmonic
periodic solution bifurcating from the right endpoint ∆T2, see Figure 2.1 (a).
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Fig. 2.3. Time traces of u1 at the midpoint (x1, x2) = (L1/2, L2/2). (a) ∆T = 0.056, and (b)
∆T = 0.08. Compare Figure 2.2.
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As an example for instabilities caused by higher spatial harmonics, we plot in
Figure 2.4 a solution that emerged from an instability with wavenumber k2 = 2.
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Fig. 2.4. Contour plot of u1(t2) inside the nonlinear regime. In this case, the critical eigen-
function has a wavenumber k2 = 2.

3. Reformulation and setting. For the bifurcation study it is convenient to
formulate (1.1) through the deviation u = (u1, u2) from ρss,

ρ+ = u1 + ρ+ss, ρ
− = u2 + ρ−ss.

In terms of u, and in the comoving variable x2 → x2 + T−t, system (1.1) reads






∂tu1 = ∆T∂x2
u1 + E2/L1 − E⊥ · ∇u1 + ν∇2u1,

∂tu2 = −E2/L1 − E⊥ · ∇u2 + ν∇2u2,

E = −∇V,
−∇2V = u1 + u2,

x ∈ [0, L1]× R/L2Z ,t ≥ 0,

(3.1)

subject to (periodic b.c. in x2 and) homogeneous Dirichlet boundary conditions

u1(0, x2, t) = u2(0, x2, t) = V (0, x2, t) = 0,

u1(L1, x2, t) = u2(L1, x2, t) = V (L1, x2, t) = 0.
(3.2)

Remark 1. We want to briefly point out a peculiarity of the nonlinearity in
(1.1) and equivalently (3.1): viewed on complexified phase space, each eigenspace of
the laplacian is flow invariant and the dynamics is purely linear.

Indeed, take an eigenfunction e with eigenvalue λ and set uj = αje with αj ∈ C

so that E = (α1 + α2)/λ∇e. Hence, E⊥ · ∇uj = 0 so that (3.1) is in fact linear.
However, this does not provide flow invariant spaces for the real equations since

all eigenvalues and eigenspaces are complex, and the previous argument is incorrect
for linear combinations. Co-moving frames do not generate real eigenspaces due to
the asymmetric advection terms.

Next we choose a simple functional analytic setting for a formulation of (3.1) as a
parabolic problem by solving the Poisson equation. This is convenient for the center
manifold reduction, but also gives a simple well-posedness setting.
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Let Ω := [0, L1]× [0, L2] and denote the Sobolev spaces Hj = Hj([0, L1]×R/L2Z)
as well as

X := H1
0 ([0, L1]× R/L2Z),

Y := {f ∈ H
2 : f(0, x2) = f(L1, x2) = 0},

Z := {f ∈ H
3 : f(0, x2) = f(L1, x2) = 0},

(3.3)

which incorporate the Dirichlet boundary conditions. We shall use standard nota-
tion: for f1, f2 ∈ L

2([0, L1] × R/L2Z) we denote the scalar product by 〈f1, f2〉 =∫
Ω f1(x)f2(x)dx and for fj = (fj,1, fj,2) ∈ L2([0, L1]× R/L2Z)

2 j = 1, 2 by 〈f1, f2〉2 =
〈f1,1, f2,1〉+ 〈f1,2, f2,2〉.

Thanks to these boundary conditions, we can solve the Poisson equation in (3.1);
see also §4 for explicit solutions. We thus obtain E via the bounded operators Aj :
Z → H

3 defined by

Ajf := ∂xj
(∇2)−1f, j = 1, 2,

Af = (A1f,A2f)
T ,

A⊥f = (A2f,−A1f)
T .

(3.4)

Notably, A2 in fact maps into Z, because E2 = ∂x2
V vanishes for x1 = 0, L1 due to

the Dirichlet boundary conditions.
In order to apply standard results on parabolic equations, let us write (3.1) equiv-

alently in the standard form

du

dt
= Lu+R(u), (3.5)

so that solutions of this and (1.1) are in 1-to-1 correspondence. Here

Lu =

(
∆T∂x2

u1 +
1
L1

A2(u1 + u2) + ν∇2u1
− 1

L1

A2(u1 + u2) + ν∇2u2

)
,

R(u) =

(
−A⊥(u1 + u2) · ∇u1
−A⊥(u1 + u2) · ∇u2

)
.

Note that L ∈ L(Z ×Z,X ×X) is the linearization of (1.1) in ρss. We have that
R : Z × Z → Y × Y since ∇uj vanish at x1 = 0, L1 and H

2 is a Banach algebra;
R is in fact analytic in u. See also §5. Moreover, the imbeddings Z2 →֒ Y 2 →֒ X2

are dense and the uniformly elliptic operator −L : Z × Z ⊂ X × X → X × X
is a sectorial operator, generating an analytic semigroup, and so (3.1) admits mild
and classical solutions u(t) for any initial condition u(0) ∈ Y × Y . The sectoriality
is a consequence of the fact that the laplacian is sectorial in Y with domain L

2 of
the cylinder [5], and this is robust under addition of the lower order terms in L. It
thus also possesses a square root, which then provides an isomorphism from L

2 to
X . Hence, L is also sectorial on Z with domain X . Note also that L has a compact
resolvent and thus discrete spectrum accumulating at −∞. We discuss its spectrum
in detail in the next section.

4. Spectrum of the linearization. For the bifurcation analysis, we distinguish
the stable spectrum of L, σ−(L) := {λ ∈ σ(L) : ℜλ < 0}, its neutral spectrum σ0(L) =
{λ ∈ σ(L) : ℜλ = 0} and its unstable spectrum σ+(L) = {λ ∈ σ(L) : ℜλ > 0}.
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The next Lemma characterizes the spectrum and is the basis for the identifica-
tion of bifurcations. While this concerns the comoving variable of system (3.1), the
spectrum for the original system is the same up to a scaling of the imaginary parts.
See §6.

Lemma 4.1. The spectrum σ(L) of L consists of the eigenvalues

λ±k = iπ
k2∆T

ℓL1
− π2 ν

L2
1

(
k21 +

4k22
ℓ2

)
±
√
Dk, k ∈ N∗ × Z, (4.1)

where N∗ = N \ {0} and

Dk =
k22∆T

ℓ2L1

(
4

k21 + 4(k2/ℓ)2
− π2∆T

L1

)
. (4.2)

In particular, λ−k ∈ σ−(L), and if Dk ≤ 0 then λ+k ∈ σ−(L). Moreover, ℜ
(
λ+(k1,k2)

)
<

ℜ
(
λ+(1,k2)

)
.

We will start to discuss the relevance and implications of this result after the
proof. In preparation of the proof, choose the orthogonal basis of X given by

gk(x) := sin

(
k1πx1
L1

)
e

2iπk2x2

L2 , (4.3)

where k ∈ N∗ × Z. In order to express the operator A, denote

φk(x) := cos

(
k1πx1
L1

)
e

2iπk2x2

L2 . (4.4)

Indeed, if f ∈ X , the explicit solution to the Poisson equation −∇2V = f in terms of
this basis reads

V (x) =
2

π2

∑

k∈N∗×Z

1
L2

L1

k21 + 4L1

L2

k22

(∫

Ω

f(y)gk(y)dy

)
gk(x).

We therefore get the explicit formula for A:

Af(x) = − 2

π

∑

k∈N∗×Z

〈f, gk〉
(
L2

L1
k21 +

4L1

L2
k22

)−1(
k1φk(x)/L1

2ik2gk(x)/L2

)
. (4.5)

Proof. [Lemma 4.1] Consider functions of the form qgk(x), k ∈ N∗ × Z, where
q ∈ C2 is an arbitrary constant vector. Since

A2gk(x) = −2L1i

π

k2
L2

L1

k21 + 4L1

L2

k22
gk(x), (4.6)

the action of L on such functions is

(Lqgk)(x) =Mkqgk(x), (4.7)

where

Mk :=

(
C1(k)∆T − C2(k)− C3(k) −C2(k)

C2(k) C2(k)− C3(k)

)
, (4.8)
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with

C1(k) :=
2πk2i

L2
, C2(k) :=

2i

π

k2
L2

L1

k21 +
4L1

L2

k22
, C3(k) := νπ2

(
k21
L2
1

+
4k22
L2
2

)
.

.
The eigenvalues of Mk are readily computed to be λ±k . The claims on the real

parts of λ±k immediately follow from inspecting (4.1) – in particular Dk monotonically
decreases in k1.

Note that the proof also implies that eigenfunctions of L have the form

ζk(x) := ξkgk(x) ∈ Z × Z, (4.9)

with ξk a eigenvector of Mk.

The last statement in Lemma 4.1 means that only Dk > 0 and λ+(1,k2)
with

k2 ∈ Z \ {0} allow for destabilization, and the real part in this case is given by

ℜ
(
λ+(1,k2)

)
= −π2 ν

L2
1

(
1 +

4k22
ℓ2

)
+

√
k22∆T

ℓ2L1

(
4

1 + 4(k2/ℓ)2
− π2

∆T

L1

)
. (4.10)

Note that this is a function of the three parameters ν/L2
1, ∆T/L1, (k2/ℓ)

2. As ex-
pected, increasing viscosity always stabilizes, with increasing impact for increasing
(k2/ℓ)

2. However, the dependence of the real part on k2/ℓ is not necessarily mono-
tone, which allows for intricate destabilization scenarios.

The imaginary part, ℑ(λ+(1,k2)
), is never zero, which means that all bifurcations

are non-stationary and we generically expect Andronov-Hopf bifurcations, where k2
determines the wavenumber of bifurcating solutions.

We consider the temperature difference ∆T as the primary bifurcation parameter
and therefore focus on the location of instabilities as ∆T varies, as well as on the
wavenumber of destabilizing modes determined by k2.
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Fig. 4.1. Real parts of eigenvalues as functions of ∆T for L1 = L2 = 1. The unstable
eigenvalues with k ∈ {1, ...,10} × {−10, ..., 10} are plotted for (a) ν = 10−3, (b) ν = 4 · 10−3.

In Figure 4.1 we plot sample computations of spectrum as ∆T varies, illustrating
the stabilizing effect of the viscosity. Crossings of eigenvalue curves at zero real part
can occur, which is expected to generate rich bifurcations. However, in this paper we
focus on simple Andronov-Hopf bifurcations.
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Recall the spectral conditions at a primary Andronov-Hopf bifurcation

(i) There is a constant γ > 0 s.t. sup{ℜλ : λ ∈ σ−(L)} < −γ,
(ii) σ0(L) = {±iω}, ω > 0 and ± iω are simple eigenvalues,

(iii) σ+(L) = ∅,
(4.11)

and in the nondegenerate case, the critical eigenvalues transversely cross the imaginary
axis upon parameter variation.

It turns out that we can characterize a large part of parameter space, where
critical eigenvalues have k2 = 1, that is, k = kc := (1, 1). We therefore define the
following particular case of (4.11).

Hypothesis 1. It holds that ℜλ+kc
= ℜλ+

kc

= 0 and there is γ > 0 such that

ℜλ±k < −γ for k ∈ N∗ × Z \ {kc, kc}.
Here and in the following we denote κ = (κ1,−κ2) for κ ∈ R2.
Rearranging sign conditions on (4.10) and squaring, we readily compute that the

sign of ℜ(λ+(1,k2)
), for κ2 = k22 is the sign of

d(∆T, κ2) =
4L3

1

4κ2 + ℓ2
∆T − L2

1π
2

ℓ2
∆T 2 − ν2π4 (4κ2 + ℓ2)2

κ2ℓ4
, (4.12)

which is somewhat simpler to handle. In particular, zeros of d are the critical eigen-
values for bifurcations. This yields the following a priori bounds on ∆T for linear
instability.

Lemma 4.2. For all ν, ℓ and κ2 > 0, the real roots of d(·, κ2) lie in [0, 4L1/π
2].

Moreover, the real roots approach the endpoints in the limit ℓ→ ∞ if ν = o(ℓ−1).
Proof. Since d(0, κ2) ≤ 0 and ∂∆Td(0, κ2) > 0 the lower bound holds. For

the upper bound, observe that d(4L1/π
2, κ2) < 0 and ∂∆Td(4L1/π

2, κ2) < 0, which
proves the claim since the quadratic coefficient of ∆T is negative. The statement on
the limits readily follows from (4.12) upon multiplication by ℓ2.

Note that d(·, κ2), as a quadratic polynomial in ∆T , has two real roots ∆T1(κ2) ≤
∆T2(κ2) if and only if the viscosity is sufficiently small,

ν ≤ νcrit(κ2) :=
2
√
κ2ℓ

3L2
1

(4κ2 + ℓ2)2π3
, (4.13)

with a double root at equality. Hence, this is a necessary and sufficient condition for
the occurrence of critical eigenvalues λ+(1,√κ2)

as ∆T varies. However, it is subtle to

determine when the critical eigenvalues destabilize the equilibrium as this requires to
exclude unstable eigenvalues for all other k2.

Nevertheless, the location of these parabola’s maxima in ∆T is at

∆T =
2ℓ2L1

(4κ2 + ℓ2)π2
, (4.14)

which is strictly decreasing in κ2. Therefore, the k2-value of these parabola in ∆T
can be identified by the relative location of their maxima.

Remark 2. For κ2 = 1 the roots satisfy ∆T1 = O(ν2) and ∆T2 = 4ℓ2L1

π2(ℓ2+4) +

O(ν2), which was already illustrated in Figure 1.
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The geometric nature of bifurcating solutions is determined by the k2-value of
critical and destabilizing eigenvalues as ∆T in- or decreases from outside [0, 4L1/π

2].
We thus define

Definition 4.3. For given L1, ℓ, ν, we say that L possesses a k2-instability
region, if d(·, k2) has two positive roots ∆T1(k

2
2) ≤ ∆T2(k

2
2). We call a k2-instability

region locally primary, if there is a neighbourhood S ⊆ R of J := (∆T1(k
2
2),∆T2(k

2
2)),

s.t. the steady state u = 0 is stable for ∆T ∈ S \ J and ∆Tj(k
2
2) 6= ∆Tj(κ2) for

κ2 6= k22, j = 1, 2. Moreover, we say that the k2-instability region is primary, if it is
locally primary and S = R.

To ease notation, we simply write ∆Tj for ∆Tj(1), j = 1, 2.
As a first step to understand the nature of destabilizing k2-instability regions, we

consider the case k2 = 1 and in preparation define the following condition.
Hypothesis 2. Suppose that for given L1, ℓ, ν > 0 we have

∆T

ν2π4
>

(4 + ℓ2)(4k22 + ℓ2)

16ℓ4L3
1k

2
2

(ℓ4 − 16k22) (4.15)

and ν < νcrit(1) for ∆T ∈ {∆T1,∆T2}, and all k2 ∈ N∗, k2 ≥ 2.
Note that Hypothesis 2 requires a ratio of temperature difference and viscosity to

dominate a ratio involving domain geometry and linear mode harmonics.
Theorem 4.4.

1. A 1-instability region of L is locally primary if and only if Hypothesis 2 holds.
If it holds, then Hypothesis 1 is satisfied at ∆T = ∆Tj, j = 1, 2. The critical
eigenvalues are λj = ±iωj with ωj = π∆Tj/(ℓL1).

2. For 0 < ℓ ≤ 2
√
2 ≈ 2.8 any 1-instability region of L is primary and Hypothe-

sis 1 is satisfied at ∆T = ∆Tj, j = 1, 2.
The point of the theorem is that it provides conditions (Hypothesis 2 or ℓ ≤

2
√
2) under which the destabilizing mode for increasing and decreasing ∆T is known,

namely the lowest spatial harmonic. Note that the values of ℓ in particular include
the case ℓ = 1 considered in [3].

Proof.
1. A direct calculation gives

d(∆T, 1)− d(∆T, κ2)

κ2 − 1
=

16∆Tκ2ℓ
4L3

1 − (4 + ℓ2)(4κ2 + ℓ2)(ℓ4 − 16κ2)ν
2π4

κ2ℓ4(4 + ℓ2)(4κ2 + ℓ2)
.

(4.16)

In particular, Hypothesis 2 is indeed equivalent to a 1-instability region being
locally primary. The claims on ∆T follow readily from inspection of the zeros
of d.

2. This is the trivial observation that the right hand side in condition 4.15 is
strictly negative for these values of ℓ, while the left hand side is positive at
all possible real roots ∆T of d(·, κ2) on account of Lemma 4.2.

Remark 3. The critical frequencies in the original x2-variable of (1.1) are in
fact

ωj =
T+
j + T−

j

L2
π.

11



Now, we are going to present a condition, which guarantees that other destabi-
lization scenarios also occur.

Corollary 4.5. Let κ2 > 1 and let ℓ be the unique positive solution ℓ = ℓκ2
of

ℓ6 − κ2ℓ
4 − 80κ2ℓ

2 − 64κ2(2 + κ2) = 0. (4.17)

Then for ν = νcrit(1) the 1-instability region is a point, ∆T1 = ∆T2, that coincides
with ∆T2(κ2). Notably, ℓκ2

is strictly increasing in κ2.
This means that the 1-instability region is not primary. In fact, it is also not

primary for nearby parameter values that produce ∆T2(4) > ∆T2(1). The solution
to (4.17) for κ2 = 4 is ℓ4 ≈ 5.37, and for κ2 = 9 it is ℓ9 ≈ 7.22. See Figure 4.2.
For ℓ between these value (and slightly above ℓ9), we numerically find that the 2-
instability region is primary. We omit the tedious analysis. In general, for any given
k2 Hypothesis 2 is violated for sufficiently large ℓ (with ν, L1 fixed), since ∆T is
bounded (Lemma 4.2).

Remark 4. It is possible to show that for ν small enough, there is a primary
1-instability region, if ℓ < ℓ∗ ≈ 4.053, where ℓ∗ is the unique positive root of the
polynomial 16(ℓ2 + 4)2 − (ℓ2 − 8)(ℓ2 + 8)(ℓ2 + 16) = 0.
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Fig. 4.2. Real parts of eigenvalues λ+

k
, k = (1, k2), as functions of ∆T . The parabola are

ordered in k2 by the decreasing location of maxima. Here ν = νcrit(1) so that ∆T1 = ∆T2. (a)
ℓ = ℓ4, with near primary 2-instability region. (b) ℓ = ℓ9, with primary 2-instability region.

Proof. [Corollary 4.5] Substituting the critical ν2 =
4l6L4

1

(4+l2)4π6 from (4.13) and the

corresponding critical value of ∆T = 2ℓ2L1

π2(4+ℓ2) at the double root into the nominator

of the right hand side of 4.16 gives

4ℓ6L4
1

(4 + ℓ2)3π2
(64κ2(2 + κ2) + 80κ2ℓ

2 + 4κ2ℓ
4 − ℓ6),

where κ2 = k22 . The first factor is positive and roots of the second factor, which we
denote by q, precisely solve (4.17). We have

∂(ℓ2)q = 80κ2 + 8κ2ℓ
2 − 3ℓ4,

which is positive at ℓ = 0 so that the cubic q with negative cubic coefficient has
a unique positive root. In addition, this implies that ∂ℓq < 0 at this root so that
together with

∂κ2
q = 4(32 + 32κ2 + 20ℓ2 + ℓ4) > 0

we infer from implicit differentiation that the location of this root strictly increases
with κ2.
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For the case of small viscosity (and ℓ > 2.8), we omit the somewhat tedious
detailed analysis for the destabilizing left endpoint. However, we immediately obtain
the following.

Corollary 4.6. As ν → 0, L has k2-instability regions for k2 → ∞ with
∆T1(k

2
2) < ∆T2(k

2
2). For sufficiently small ν, the conditions of Hypothesis 1 are

satisfied at ∆T2(1), and this is an instability threshold.
Proof. The presence of all k2-instability regions clearly holds at ν = 0 in view of

(4.13). In addition, from (4.16) we infer at ν = 0 that

d(∆T, 1)− d(∆T, κ2) > 0,

so that the critical eigenfunction at the right endpoint of the instability interval has
mode number k2 = ±1. This persists for sufficiently small ν > 0, since the thresholds
depend continuously on ν, and again from 4.16 we see that for each ν > 0 there is
only a finite range of κ2 values, for which d(∆T, 1)− d(∆T, κ2) < 0 is possible.

Lastly, we point out the possibility of multiple disjoint primary k2-instability re-
gions, where changing ∆T destabilizes and stabilizes multiple times. In Figure 4.3 we
plot eigenvalue curves, where two k2-instability regions consist of a point. Parameters
ν = νcrit(k2) = νcrit(k

′
2) and ℓ that produce such scenarios can be readily computed

from (4.13); here we take k2 = 1, k′2 = 4. For perturbed ν < νcrit(1) the instability
regions become disjoint open intervals.
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Fig. 4.3. Real parts of eigenvalues λ+

k
, k = (1, k2), as functions of ∆T . Here ℓ = 2

√

2 + 3
√
2

so that νcrit(1) = νcrit(4). In the region plotted only the curves with k2 = 1, 4 are present.

Remark 5. On account of (4.13), for decreasing ν and also for increasing ℓ, there
is an increasingly long sequence of secondary instabilities of Andronov-Hopf type as
∆T increases from zero, with higher and higher spatial harmonics, and another reverse
sequence as ∆T reaches ∆T∗. See Figure 4.1.

5. Center manifold reduction. In this section, we consider the vicinity of
parameters with critical ∆T = ∆Tj for j = 1 or j = 2 and assume that no other
eigenvalues lies on the imaginary axis. The main example is a primary 1-instability
region. For the unfolding of the bifurcation in the generic case ∆T1 < ∆T2 we
introduce the parameter µ1 by ∆T = ∆Tj + µ1. In the degenerate case ∆T1 = ∆T2,
where ν = νcrit(1), we additionally unfold with µ2 defined by ν = νcrit(1) − µ2

2. For
readability we frequently suppress the index j.

At bifurcation, the critical eigenvalues are then ±iω and we denote the associated
eigenfunctions by ζ(x) := ζkc

(x), ζ(x), see (4.9). Then L possesses a two-dimensional
real central subspace Ec := span{ℜζ,ℑζ} ⊂ Z2 and we will show that there is a
locally invariant 2D center manifold

Wc = {u0 + ψ(u0, µ) : u0 ∈ OEc
} ⊂ OZ2 , µ ∈ OR2 ,
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with ψ : OEc
→ E♯

c, Ec ⊕ E♯
c = Z2, and neighbourhoods OR2 of µ = 0, and OEc

,
OZ2 of 0 ∈ Z2. In case of a primary bifurcation the center manifold is also locally
exponentially attracting.

Since we consider k = kc = (1, 1), it is not surprising that the coefficients Cm(kc)
defined in (4.8) show up. It turns out that following modifications are convenient.

c1 :=
π∆T

L2
, c2 :=

2

π
(
L2

L1

+ 4L1

L2

) , c3 := νπ2

(
1

L2
1

+
4

L2
2

)
. (5.1)

We first consider the generic case of (4.13), where the unfolding goes by µ1 only.

Theorem 5.1. Assume that Hypothesis 1 holds for a fixed parameter set for
which ∆T1 < ∆T2. Then the steady state u = 0 of system (3.5) possesses a locally
exponentially attracting and locally invariant 2D center manifold near u = 0 with the
reduced dynamics

dz

dt
= iωz + µ1az + bz|z|2 +O(|z|(|µ|+ |z|2)2), (5.2)

where

ω =
π∆T

L2
,

a =
2πc22

L2(c1 − c3i)(c1i− 2c2i− c3)
,

b = − L3
1

4π2ν

c21 + c23
L2

2

L1
+ 4L1

.

(5.3)

The following corollary proves the nature of the resulting bifurcations, see Fig.
1(a) for an illustration.

Corollary 5.2. Assume the Hypotheses of Theorem 5.1. Then the steady state
u = 0 of system (3.5) undergoes a generic supercritical Andronov-Hopf bifurcations as
µ1 varies. Specifically, the reduced vector field coefficients satisfy b < 0, ℑ(a) = O(ν2),
and sgn(ℜa) = −(−1)j at ∆T = ∆Tj.

In particular, near the stability thresholds there exist heteroclinic connections be-
tween the unstable steady-state and the stable limit cycle.

As ν ↓ 0, the radius of the limit cycles, |z(t)|, scales near ∆T1 as |z(t)| ∝
ν−1

√
∆T −∆T1, and near ∆T2 as |z(t)| ∝ √

∆T2 −∆T .

Before giving the proof, we formulate the result for unfolding the codimension-2
case ∆T1 = ∆T2, where the critical eigenvalues do not transversely cross the imaginary
axis.

Theorem 5.3. Assume that Hypothesis 1 holds for a fixed parameter set for
which ∆T1 = ∆T2. Then the steady state u = 0 of system (3.5) possesses a locally
exponentially attracting and locally invariant 2D center manifold near u = 0 with the
reduced dynamics

dz

dt
= i(ω + a0µ1)z + a1µ1 (a2µ2 − a3µ1) z + bz|z|2 +R (5.4)

R = O
(
µ2
2 + |µ1µ

3
2|+ |z|(|µ|+ |z|2)2

)
,
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where aj ∈ R, j = 0, 1, 2, 3, are given by a0 = ℑ(a),

a1 =
ℜ(a)π

L2(c2 − c1)
, a2 =

1√
πL1L2

, a3 =
π

L2
2

,

and a, b are the constants from Theorem 5.1.
In particular, for 0 < |µ2| ≪ 1, there exists a branch of stable periodic orbits, that

is parametrized by µ1 and that terminates in supercritical Andronov-Hopf bifurcations
at ∆T + µ1 = ∆Tj, j = 1, 2.

The following Theorem shows, that the bifurcation results 5.1-5.3 can be gener-
alized to instabilities caused by higher spatial harmonics.

Theorem 5.4. Assume (4.11) holds with critical wavenumber k2, so that λ+(1,k2)
=

iω. If ∆T1(k
2
2) < ∆T2(k

2
2) then the statements of Theorem 5.1 and Corollary 5.2 hold

with ∆Tj replaced by ∆Tj(k
2
2), and L2 replaced by L2/k2 for the coefficients on the

center manifold. If ∆T1(k
2
2) = ∆T2(k

2
2) then the statement of Theorem 5.3 holds for

the same modifications.
Proof. Under condition (4.11) the center manifold theorem applies as in the first

parts of the proofs of Theorems 5.1 and 5.3. This yields a stable locally invariant
manifold with reduced dynamics of Hopf normal form. The only remaining question
is the sign of the coefficients.

If k2 is the critical wavenumber in x2-direction on the domain [0, L1]× [0, L2] then
1 is this wavenumber on the domain [0, L1] × [0, L2/k2] so that Hypothesis 1 holds
there. Hence, on this domain and with the modifications in the claim, Theorem 5.1,
Corollary 5.2 and Theorem 5.3 hold fully.

The theorem now follows since the bifurcating branches imbed into the original
domain.

Remark 6. Recall that there is a sequence of secondary Andronov-Hopf insta-
bilities as noted in Remark 5. Whenever these occur with a simple pair of complex
conjugate eigenvalues, analogous center manifold reduction results hold for an un-
stable 2D manifold. The reduced vector fields are of the same form with coefficients
given analogous to the above results, but to be computed at different k2 and other
parameters.

We start with the proof of Theorem 5.1.
Proof. [Theorem 5.1] For the unfolding with µ1, we modify the definition of R

in (3.5) by adding the term µ1∂x2
u1 in the first component and denote the result by

R(u;µ1). For the resulting bifurcation problem, we verify the hypotheses of the center
manifold theorem [4, Theorem 3.3, p.46].

As noted after (3.5), L ∈ L(Z2, X2) is sectorial so that Hypothesis 2.7 in that
theorem holds, using [4, Remark 2.18 p. 37]. Hypotheses 3.1(i) and 2.4 hold on account
of Theorem 4.4. It remains to show Hypotheses 3.1(ii): smoothness of R. From (3.5)
we explicitly compute

DR(u;µ1)v =

(
µ1∂x2

v1 −A⊥(v1 + v2) · ∇u1 −A⊥(u1 + u2) · ∇v1
−A⊥(v1 + v2) · ∇u2 −A⊥(u1 + u2) · ∇v2

)
,

D2R(u;µ1)[v, w] = −
(
A⊥(v1 + v2) · ∇w1 +A⊥(w1 + w2) · ∇v1
A⊥(v1 + v2) · ∇w2 +A⊥(w1 + w2) · ∇v2

)
.

Note that A⊥(v1 + v2) ∈ Z2 and ∇w ∈ Y 2. Since H
2 is a Banach algebra (see for

instance [1, Theorem (4.39]), there is a constant C0 > 0, such that

‖A⊥(v1 + v2) · ∇w‖Y ≤ C0‖A⊥(v1 + v2)‖Y 2‖∇w‖Y 2 .
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Hence ‖D2R(u;µ1)[v, w]‖Y 2 ≤ C‖v‖Z2‖w‖Z2 , that is, R(u;µ1) ∈ C2(Z2, Y 2). More-
over all the higher derivatives are identically 0, hence R is analytic. This establishes
the existence of the 2D center manifold and smoothness of ψ as needed below, and for
which the reduced dynamics has the normal form (5.2). Here the critical frequency is
ω = π∆T/L2 due to Theorem 4.4. In order to analyze the coefficients of the reduced
equation, we write functions in the central subspace as

u0(t) = z(t)ζ + z(t)ζ, z(t) ∈ C.

Using the expressions in [4, p. 125] (see also Scholarpedia on Andronov-Hopf bifurca-
tion), we have

a = 〈R11(ζ) + 2R20(ζ, ψ001), ζ
∗〉2, (5.5)

b = 〈2R20(ζ, ψ110) + 2R20(ζ̄ , ψ200) + 3R30(ζ, ζ, ζ̄), ζ
∗〉2. (5.6)

The quantities in these expressions are defined as follows: ζ∗ is the adjoint eigenvector
to ζ, the operators Rik are given by, see [4, p. 95-96],

R01 := ∂µ1
R(0; 0) = 0,

R20[v, w] :=
1

2
D2R(0; 0)[v, w]

= −1

2

(
A⊥(v1 + v2) · ∇w1 +A⊥(w1 + w2) · ∇v1
A⊥(v1 + v2) · ∇w2 +A⊥(w1 + w2) · ∇v2

)
,

R11v := ∂µ1
DR(0; 0)v =

(
∂x2

v1 ∇2v1
0 ∇2v2

)
,

R30 =
1

3!
D3R = 0,

(5.7)

and the functions ψijk , from the expansion of ψ, are the unique solutions to

−Lψ001 = R01,

(2ωi− L)ψ200 = R20(ζ, ζ),

−Lψ110 = 2R20(ζ, ζ̄).

(5.8)

Computation of a. Since R01 = 0 and ker(L) = {0}, −Lψ001 = R01 implies
ψ001 = 0. For this result the parameter µ2 is held fixed at zero so that, using (5.5),
the coefficient a of the reduced system (5.2) is

a = 〈R11(ζ), ζ
∗〉2 =

2πξ1i

L2
〈(g1,1, 0)T , ζ∗〉2, (5.9)

where ζ∗ is the adjoint eigenfunction, satisfying

L∗ζ∗ = −iωζ∗ , 〈ζ, ζ∗〉2 = 1. (5.10)

with the adjoint operator of L given by (using integration by parts)

L∗v =

(−∆T∂x2
v1 +

1
L1

Bv + ν∇2v1
1
L1

Bv + ν∇2v2

)
, v ∈ Y2

Bv(x) =
4i

L2π

∑

k∈N∗×Z

k2
L2

L1
k21 +

4L1

L2
k22

〈v1 − v2, gk〉gk(x).
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The critical adjoint eigenfunction ζ∗, as any eigenfunction of L∗, has the form ζ∗(x) =
ηgm(x), where η = (η1, η2) ∈ C2 is an eigenvector of M∗

m derived from (4.8). If
m 6= (1, 1), then 〈ζ, ζ∗〉2 = 0, therefore m = (1, 1), and hence M∗

1,1η = −iωη so that
from 〈g11, g11〉 = L1L2/2 and (5.9) we infer

a = πξ1η1L1i. (5.11)

Due to (4.7), there is ξ ∈ C2 such that

M1,1ξ = iωξ, ξ = (ξ1, ξ2)T , (5.12)

and using (5.1) at the bifurcation points ∆T = ∆Tj , j = 1, 2, we have

c23 = c1(2c2 − c1). (5.13)

Together with equation (5.10) we readily check that

(M1,1 − iω)ξ =

(
c1i− c2i− c3 −c2i

c2i −c1i + c2i− c3

)
ξ = 0

(M∗
1,1 + iω)η =

(
−c1i + c2i− c3 −c2i

c2i c1i− c2i− c3

)
η = 0

ξ·η =
2

L1L2
.

(5.14)

Due to (5.13), the eigenvectors can be chosen as

ξ =

(
c2i

c1i− c2i− c3

)
, η = δ

(
−c2i

c1i− c2i− c3

)

δ =
2

L1L2

1

(c1i− c3)(c1i− 2c2i− c3)
,

(5.15)

where δ 6= 0 provides the normalization. Therefore, (5.11) yields a = πc22L1δi as
claimed.

Computation of b. We first show ψ200 = 0; recall (5.8). Thanks to (5.12), ζ(x) =
ξg1,1(x) and for k ∈ N∗ × Z we have

A1gk(x) = −L2

π

k1
L2

L1
k21 + 4L1

L2
k22
φk(x). (5.16)

A direct calculation yields R20(ζ, ζ) = 0. Since ker(2iω − L) = {0} on account of
Theorem 4.4, the equation for ψ200 from (5.8) implies ψ200 = 0. Together with
R30 = 0 and (5.6), this means

b = 〈2R20(ζ, ψ110), ζ
∗〉2. (5.17)

Next, we compute ψ110 using (5.8). From ζ = ξg11 and (3.4), (4.6), (4.5) as well as
(5.16), straightforward calculations give

−Lψ110 = 2R20(ζ, ζ) =
2i

L2

L1
+ 4L1

L2

ξg2,0.
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Since the eigenvectors (gk)k∈N∗×Z of L are mutually orthogonal andM2,0 is a multiple
of the identity, we have that ψ110 = αξg2,0, where

α =
L2
1i

2π2ν

ξ1 + ξ2

L2

L1

+ 4L1

L2

.

It follows, after straightforward calculations, that R20(ζ, ψ110) = βg1,1φ2,0, where

β = α

(
2i(ξ1 + ξ2)
L2

L1
+ 4L1

L2

ξ − i
L1(ξ1 + ξ2)

2L2

)
.

Substitution into (5.17) yields

b = 〈2R20(ζ, ψ110), ζ
∗〉2 = 2β · η〈g1,1φ2,0, g1,1〉 = −L1L2

2
β · η.

Finally, we use that ξ · η = 0, see (5.15), and together with ξ · η = 2
L1L2

we obtain

b = − L3
1

4π2ν

c21 + c23
L2

2

L1
+ 4L1

,

which concludes the proof.

We now turn to the proof of Corollary 5.2.
Proof. [Corollary 5.2] From (5.3) and (5.1) we readily check b < 0.
Writing (5.3) in terms of cj and using (5.15), a straightforward calculation gives

ℜ(a) = 4π

L2

c22c3
|(c1 − c3i)(c1i− 2c2i− c3)|

(c2 − c1). (5.18)

Thanks to cj > 0, j = 1, 2, 3, all factors in this expression are positive, except possibly
the last one, and therefore the sign of ℜ(a) is the sign of c2 − c1. Note that

2π

L2
(c2 − c1) = ∂∆Td(∆T, 1)/L

4
1, (5.19)

and that the quadratic polynomial d(·, 1) has negative quadratic coefficient. Therefore,
c1 < c2 at ∆T = ∆T1 and so ℜ(a) > 0, while at ∆T = ∆T2 we have c2 < c1, hence
ℜ(a) < 0. We readily compute that ℑ(a) = c23ℜ(a)/(c3(c2 − c1)) = O(ν2).

In conclusion, there are generic supercritical Andronov-Hopf bifurcations at both
endpoints of the instability region. As usual, the local invariance of the center manifold
from Theorem 5.1 implies the existence of the claimed heteroclinic orbit between the
unstable steady-state and the stable limit cycle, contained in the center manifold.

Now consider the behaviour of a and b for small viscosity 0 < ν ≪ 1. With
c4 := c3

ν
we get c2, c4 = O(1), and

a =
2πc22

L2(c1 + νc4i)((c1 − 2c2)i− νc4)
,

b = − L3
1

4π2ν

c21 + ν2c24
L2

2

L1

+ 4L1

.
(5.20)
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Left endpoint of the instability region: ∆T1. Inspecting the formula for d∆T we
find c1 = c2 −

√
c22 − ν2c24, where c

2
2 − ν2c24 > 0 by (4.13). Hence,

c1 =
c24
2c22

ν2 +O(ν4),

and we obtain

a =
πc2
L2c4

1

ν
+O(ν), b = − L4

1c
2
4

4π2(4L2
1 + L2

2)
ν +O(ν3).

Therefore the radius of the stable limit cycle |z(t)| for sufficiently small µ1 is

2π

L2
1c4

(
π(4L2

1 + L2
2)c2

L2c4

) 1

2

1

ν
µ

1

2

1 +O(ν
1

2 ).

Right endpoint of the instability region: ∆T2. Here c1 = c2+
√
c22 − ν2c24, therefore

c1 = 2c2 +O(ν2) and so

a = − c22π

c24L2

1

ν
+O(ν), b =

L4
1c

2
2

π2(4L2
1 + L2

2)

1

ν
+O(ν)

hence the radius of the stable limit cycle for small −µ1 is

π

L2
1c4

(
4L2

1 + L2
2

L2

) 1

2

(−µ1)
1

2 +O(ν
1

2 ).

This concludes the proof.

We finally provide the proof of Theorem 5.3.
Proof. [Theorem 5.3] In order to unfold in µ2, we cannot cite a center manifold

theorem from [4] verbatim. The reason is that µ2 modifies the second order derivative
terms, but the results in [4] are formulated only for parameter dependence of lower
order terms. However, as pointed out in [4, Remark 3.7], there is no problem, if
the domain of L is independent of the parameter. This is the case here as long as
ν = νcrit(1) − µ2

2 > 0, which is valid for the purpose of unfolding from ν = νcrit.
More precisely, the proof of [4, Theorem 3.3, p. 46], which considers the phase space
extended by the unfolding parameter space, applies as follows for νcrit(1) > µ2

2 due

to the linearity in µ2
2. Set µ = (µ1, µ

2
2), ũ = (u, µ) and L̃ũ = (L + µ1∂x2

(u1, 0)
T −

µ2
2∇2u, 0) as well as R̃(ũ) = (R(u), 0). (We use µ2

2 as the parameter instead of µ2 only
for more pleasant reduced equations.) For the extended problem, the parameter-free
center manifold theorem applies [4, Theorem 2.9].

Therefore, as in the first part of the proof of Theorem 4.4, we obtain existence
of the center manifold and the coefficient b is unchanged. Let A denote the real
coefficient of z in the vector field on the center manifold. It remains to derive the
claimed aj-dependent form

A = a1µ1 (a2µ2 − a3µ1) +O(µ2
2 + |µ1µ

3
2|).

For this we simply note that in the present case, (5.9) is replaced by the more general
form

A = 〈R11(ζ)µ, ζ
∗〉2 = µ1a− µ2

2〈∇2ζ, ζ∗〉2,
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where ζ = ξg1,1. Using ∇2g1,1 = −π2
(

1
L2

1

+ 4
L2

2

)
g1,1 as well as 〈ζ, ζ∗〉2 = 1, we obtain

A = µ1a+ µ2
2π

2

(
1

L2
1

+
4

L2
2

)
= µ1a+O(µ2

2), (5.21)

with a from Theorem 5.1, whose dependence on µ2 is considered next. Recall that
ν = νcrit − µ2

2, with µ2 = 0 giving equality in (4.13). Hence,

νcrit =
2

πL1L2c̃23
,

where c̃3 stems from writing

d(∆T, 1)/L4
1 = (2c̃1 − c̃2∆T )∆T − ν2c̃23,

with suitably defined c̃j , j = 1, 2, 3 (note the relation to cj in (5.1)). Then d(∆T, 1) =
0 gives

∆Tcrit = c̃1 +
c̃3
2
µ2

√
2νcrit − µ2

2.

Using (5.18), (5.19) with ∆T = ∆Tcrit + µ1 then yields

a = a1

(
c̃3µ2

√
2νcrit − µ2

2 − 2c̃2µ1

)
.

The above formula for νcrit and expansion in µ2 = 0 gives claimed form of A, when
substituting the resulting a into (5.21).

The bifurcation scenario can be immediately read off the reduced vector field.

6. Travelling wave bifurcation. As mentioned in the introduction, due to the
translation symmetry in x2, the Andronov-Hopf bifurcations correspond to periodic
travelling wave bifurcations. Specifically, each periodic orbit is a steady state in a
comoving frame y2 = x2 − st for certain s. While this is somewhat folklore, for
completeness we give some details. The converse is clear: periodic travelling wave
bifurcations imply Andronov-Hopf bifurcations.

First note that the effect of the co-moving variable is the introduction of an ad-
vection term s∂y2

on the right hand side of the first two equations in (1.1). Therefore,
the linearization Mk is replaced by

Mk,s =Mk + sC1(k)Id,

where C1(k) = 2πik2/L2. Hence, if λk is an eigenvalue of Mk then λk + sC1(k) is an
eigenvalue of Mk,s and choosing critical k2 = +1, the frequency at bifurcation ω is
replaced by ω + s2π/L2. The reduced equation on the center manifold then reads

ż = i(ω + s2π/L2) + µ1a+ bz|z|2,

where a and b are unmodified since the matrices made of cj in (5.14) do not depend
on s. Hence, for s = s∗ := −ωL2/2π we find steady state supercritical pitchfork
bifurcations. Note the choice k2 = −1 reverses the sign of ω, simply leading to the
complex conjugate equation.

This argument is slightly incomplete since the spectrum of the modified L pos-
sesses a double zero eigenvalue at s = s∗. Hence, the coefficients on the center manifold
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are not immediately given by the Andronov-Hopf case used above. However, the re-
duced vector field on the 2D center manifold of the double zero eigenvalue reduces to
a scalar equation, undergoing a pitchfork bifurcation, precisely due to the translation
symmetry. In polar coordinates of the Hopf normal form, this is due to detuning
the trivial angular equation, co-rotation with velocity sC1(1), to stationarity. Such
reductions due to continuous symmetry also hold in more abstract contexts, see, e.g.,
Theorem 2.18 of [4], where an additional reflection symmetry is assumed.

In the context of travelling waves, let us briefly take the perspective of pattern
formation, for which the infinite strip x ∈ [0, L1]×R is the natural domain here. The
linear stability analysis of the laminar in this case involves the eigenvalues λ±k from
§4 with continuous and rescaled k2: these are eigenmodes in the essential spectrum
given by λ±k with k = (k1, L2k2), (k1, k2) ∈ N∗ × R. In particular, the critical modes
can only be λ+(1,L2k2)

, k2 ∈ R.

We are then lead to search for pattern-forming instabilities, and indeed, the sys-
tem easily allows for the analogue of Turing-Hopf instabilities from reaction-diffusion
systems, which is also well known in fluid dynamics, for instance Rayleigh-Benard
convection. A detailed analysis is tedious, and we only give a numerical example in
Figure 6.1, which is derived from that in Figure 4.2(a). Here the critical modes at
onset of the instability on the infinite strip have wavenumber near 0.75. The periodic
solutions of §5, alias, wavetrains, are a signature of the bifurcating continuum of peri-
odic solutions. The fact that these are supercritical suggests supercritical Turing-Hopf
bifurcations.

0.2 0.4 0.6 0.8 1.0 1.2 1.4
k 2

-0.10

-0.08

-0.06

-0.04

-0.02

0.02
Re Λ

Fig. 6.1. A Turing-Hopf instability for parameters as in Figure 4.2(a): real parts of eigenvalues
λ+

k
, k = (1, k2), as functions of k2 for ∆T = 0.05 (stable), ∆T = 0.08 (near bifurcation) and

∆T = 0.2 (unstable).

7. Nonlinear Instability. In this short paragraph, we give some details on
the fact that the linear instability of the laminar state ρss is indeed an instability
for the nonlinear equation uniformly in ν. Roughly speaking, this means that in
(∆T1,∆T2), there are initial data which are arbitrarily close to the steady state and
which get “far” from it exponentially quickly. We thus assume ∆T1 < ∆T2 and take
∆T ∈ (∆T1,∆T2). This means that σ+(L) 6= ∅ (see the proof of Theorem 4.4).

In the parabolic formulation (3.5), the sectoriality of L allows to apply the well-
known nonlinear instability results from [5] for spectrum in the right half plane. How-
ever, this heavily relies on ν > 0 and the following does not. Furthermore, the result
given for the specific case here is actually stronger than the general ones in [5].

As in [3, Theorem 6.1], the following instability result holds for ν ≥ 0:
Theorem 7.1. Suppose ∆T ∈ (∆T1,∆T2). There exist constants δ0, η1, η2 > 0

such that for any 0 < δ < δ0 and any s ≥ 0 there exists a solution (ρ±, E) to (1.1)
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with ‖ρ(0)− ρss‖Hs ≤ δ but such that:

‖ρ(tδ)− ρss‖L2 ≥ η1 and ‖E(tδ)‖L2 ≥ η2,

with tδ = O(| log δ|).
Since the proof is almost identical to that of Theorem 6.1 in [3], we refer to this

paper for details. The main idea is to apply the method of Grenier [2].

8. Global Nonlinear Stability. Let us now investigate the stability of the
steady state ρss, outside of [∆T1,∆T2]. We first state the results and then give the
proofs.

The key point is the following energy identity:

Lemma 8.1. For any initial data ρ0 ∈ L∞, we have the following estimate for
the solution of the system (1.1)

E(t) := ‖ρ− ρss‖2L2 − 2

L1∆T

∫

Ω

|∇V |2dx

+ 2ν

∫ t

0

[ −2

L1∆T
‖ρ+ + ρ− − 1‖2

L2 + ‖∇(ρ− ρss)‖2L2

]
ds

≤ E(0) = ‖ρ0 − ρss‖2L2 − 2

L1∆T

∫

Ω

|∇V|t=0|2dx,

(8.1)

with ‖ρ− ρss‖2L2 = ‖ρ+ − ρ+ss‖2L2 + ‖ρ− − ρ−ss‖2L2 , ‖∇(ρ− ρss)‖2L2 = ‖∇(ρ+ − ρ+ss)‖2L2 +
‖∇(ρ− − ρ−ss)‖2L2 and ∇V = ∇(∇2)−1(ρ+ + ρ− − 1).

Remark 7. We take the opportunity to point out an error in the energy of [3,
Theorem 5.1]: in equations (5.1) and (5.2) of this paper, there is a factor 2 which is
missing in front of

∫
Ω
|∇V |2dx.

We shall use in the following Poincaré type inequalities:

Lemma 8.2. With the same notations as before, we have, for any t ≥ 0:

‖∇V ‖2
L2 ≤ 2L2

1

π2
‖ρ− ρss‖2L2, (8.2)

‖ρ− ρss‖2L2 ≤ L2
1

π2
‖∇(ρ− ρss)‖2L2 . (8.3)

As a consequence of the energy identity, we can prove L2-return to equilibrium, with
exponential (and explicit) speed, for negative or large enough ∆T .

Theorem 8.3. If ∆T < 0 or ∆T > ∆T∗ := 4L1

π2 , then the steady-state ρss is
globally asymptotically stable in L

2, with exponential convergence given by −2π2 ν
L2

1

.

Remark 8. Notably, the constants in all these results are independent of L2,
and the convergence rate is larger on thinner domains (with smaller L1), but also
balancing with viscosity.

Recall that by Lemma 4.2, for fixed ℓ = L2/L1 the higher instability threshold ∆T2
satisfies ∆T2 < ∆T∗ = 4L1

π2 , but that limℓ→+∞ ∆T2 = ∆T∗ if ν = o(ℓ−1). Hence, the
global threshold ∆T∗ is also linked to linear instability.

Let us now Lemma 8.1, Lemma 8.2 and Theorem 8.3.

Proof. [Lemma 8.1] The proof follows from computations that are similar to those
that can be found in [3], for the model without viscosity (that is ν = 0). We keep the
notations of Section 3.
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Taking the scalar product with u := (u1, u2) in the transport equations satisfied
by u1 and u2 in (3.1), and integrating with respect to x entails:

1

2

d

dt
‖u‖2

L2 =

∫

Ω

E2

L1
u1 dx−

∫

Ω

E2

L1
u2 dx+ ν

∫

Ω

u1∇2u1 dx+ ν

∫

Ω

u2∇2u2 dx. (8.4)

Note indeed that due the periodicity with respect to x2, the following contribution
vanishes:

∫

Ω

∂x2
u1u1dx =

∫

Ω

1

2
∂x2

u21dx = 0 =

∫

Ω

∂x2
u2u2dx.

Likewise, with Green’s Formula, using divE⊥ = 0 and E2 = −∂x2
V = 0 on x1 = 0, L1,

we have (for i = 1, 2):

∫

Ω

E⊥ · ∇ui uidx =
1

2

∫

Ω

E⊥ · ∇(ui)
2dx = 0.

Recall an identity proved in [3, Lemma 5.1]: for any t > 0, there holds

∫

Ω

E2u1dx = −
∫

Ω

E2u2dx. (8.5)

For the sake of completeness, we quickly reproduce the proof. Observe that

∫

Ω

E2 (u2 − u1) dx =

∫

Ω

E2 (u1 + u2 − 2u1) dx

=

∫

Ω

E2

(
−∇2V − 2u1

)
dx

= −2

∫

Ω

E2u1dx.

(8.6)

Indeed, relying on the periodicity in the x2 direction and since ∂x2
V = 0 on x1 = 0, L,

we get:

∫

Ω

∂x2
V∇2V dx = −

∫

Ω

∂x2
∇V · ∇V dx+

∫

Ω

div(∂x2
V∇V )dx

︸ ︷︷ ︸
=0

= −
∫

Ω

∂x2

( |∇V |2
2

)
dx = 0.

This completes the proof of (8.5). Therefore, we have:

∫

Ω

−E2

L1
u1 dx+

∫

Ω

E2

L1
u2 dx = −2

∫

Ω

E2

L1
u1 dx.
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Now compute, using the equations satisfied by (u1, u2, V ):
∫

Ω

E2u1 dx =

∫

Ω

V ∂x2
u1dx−

∫

Ω

div(V u1e2)dx

︸ ︷︷ ︸
=0

=
1

∆T

∫

Ω

V

(
∂tu1 + E⊥ · ∇u1 −

E2

L1

)
dx− ν

∆T

∫

Ω

V∇2u1dx

=
1

∆T

∫

Ω

V
(
∂t(u1 + u2) + E⊥ · ∇(u1 + u2)

)
dx

+
1

∆T

∫

Ω

−T−V ∂x2
u2dx− ν

∆T

∫

Ω

V∇2(u1 + u2)dx

=
1

∆T

∫

Ω

−V
(
∂t∇2V − E⊥ · ∇(∇2V )

)
dx− ν

∆T

∫

Ω

V∇2(u1 + u2)dx.

(8.7)
Observe that by Green’s formula:

∫

Ω

−V
(
∂t∇2V − E⊥ · ∇(∇2V )

)
dx =

d

dt

1

2

(∫

Ω

|∇V |2dx
)
.

Finally, using again (8.5), we have
∫

Ω

E2

L1
u1 dx −

∫

Ω

E2

L1
u2 dx =

1

L1(T+ − T−)

d

dt

(∫

Ω

|∇V |2dx
)
dx− 2ν

L1(T+ − T−)

∫

Ω

V∇2(u1 + u2)dx.

Note that using Green’s formula and the Poisson equation satisfied by V , we have the
identities: ∫

Ω

V∇2(u1 + u2)dx =

∫

Ω

∇2V (u1 + u2)dx = −‖u1 + u2‖2L2 .

and

ν

∫

Ω

u1∇2u1 dx+ ν

∫

Ω

u2∇2u2 dx = −ν
∫

Ω

|∇u1|2 dx− ν

∫

Ω

|∇u2|2 dx

Gathering all pieces together, we have proved that d
dt
E(t) = 0.

Let us now prove the Poincaré inequalities of Lemma 8.2.
Proof. [Lemma 8.2] We only prove (8.2) ((8.3) can be treated similarly). Using

the orthogonal basis (4.3), we write:

u1 + u2 =
∑

k1∈N∗,k2∈Z

ak1,k2
gk.

Recall the Poisson equation satisfied by V :

−∇2V = u1 + u2.

This yields:

V =
∑

k1∈N∗,k2∈Z

1

π2
(

k2

1

L2

1

+
4k2

2

L2

2

)ak1,k2
gk,

∇V =
∑

k1N∗,k2∈Z

1

π2
(

k2

1

L2

1

+
4k2

2

L2

2

)ak1,k2
π

(
k1

L1
φk

2ik2

L2
gk

)
.
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Therefore,
∫

Ω

|∇V |2dx ≤ L2
1

π2
‖u1 + u2‖2L2 ≤ 2L2

1

π2
(‖u1‖2L2 + ‖u2‖2L2), (8.8)

which proves (8.2).
Gathering all pieces together, we can now prove Theorem 8.3.
Proof. [Theorem 8.3] Using the energy identity (8.1) and applying the Poincaré

inequality (8.2) we get:

‖ρ− ρss‖2L2 ≤ ‖ρ(0)− ρss‖2L2 +
2

L1∆T

∫

Ω

|∇V |2dx

− 2ν

∫ t

0

[ −4

L1∆T
‖ρ− ρss‖2L2 + ‖∇(ρ− ρss)‖2L2

]
ds

≤ ‖ρ(0)− ρss‖2L2 +
1

L1∆T

4L2
1

π2
‖ρ− ρss‖2L2

− 2ν

∫ t

0

[ −4

L∆T
‖ρ− ρss‖2L2 + ‖∇(ρ− ρss)‖2L2

]
ds.

Hence, using the Poincaré inequality (8.3),

(
1− 4L1

π2∆T

)
‖ρ− ρss‖2L2

≤ ‖ρ(0)− ρss‖2L2 + 2ν

(
4

L1∆T
− π2

L2
1

)∫ t

0

‖ρ− ρss‖2L2ds.

As a consequence, by Gronwall inequality, we obtain L
2-stability and L

2-return to
equilibrium, provided that

∆T < 0, or ∆T >
4L1

π2
,

which in particular implies π2

L2

1

− 4
L1∆T

> 0. More specifically, we have:

‖ρ− ρss‖2L2 ≤ ‖ρ(0)− ρss‖2L2 exp (−γt) , (8.9)

with γ := 2ν
(

π2

L2

1

− 4
L1∆T

) (
1− 4L1

π2∆T

)−1
= 2ν π2

L2

1

> 0.
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