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CONVERGENCE OF THE RELATIVE VALUE ITERATION FOR

THE ERGODIC CONTROL PROBLEM OF NONDEGENERATE

DIFFUSIONS UNDER NEAR-MONOTONE COSTS

ARI ARAPOSTATHIS∗, VIVEK S. BORKAR† , AND K. SURESH KUMAR‡

Abstract. We study the relative value iteration for the ergodic control problem under a near-

monotone running cost structure for a nondegenerate diffusion controlled through its drift. This

algorithm takes the form of a quasilinear parabolic Cauchy initial value problem in R
d. We show

that this Cauchy problem stabilizes, or in other words, that the solution of the quasilinear parabolic

equation converges for every bounded initial condition in C2(Rd) to the solution of the Hamilton–

Jacobi–Bellman (HJB) equation associated with the ergodic control problem.
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value iteration; reverse martingales
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1. Introduction. This paper is concerned with the time-asymptotic behavior

of an optimal control problem for a nondegenerate diffusion controlled through its

drift and described by an Itô stochastic differential equation (SDE) in R
d having the

following form:

(1.1) dXt = b(Xt, Ut) dt+ σ(Xt) dWt .

Here Ut is the control variable that takes values in some compact metric space. We

impose standard assumptions on the data to guarantee the existence and uniqueness

of solutions to (1.1). These are described in §3.1. Let r : Rd × U → R be a contin-

uous function bounded from below, which without loss of generality we assume it is

nonnegative, referred to as the running cost. As is well known, the ergodic control

problem, in its almost sure (or pathwise) formulation, seeks to a.s. minimize over all

admissible controls U the functional

(1.2) lim sup
t→∞

1

t

∫ t

0

r(Xs, Us) ds .

A weaker, average formulation seeks to minimize

(1.3) lim sup
t→∞

1

t

∫ t

0

E
U
[
r(Xs, Us)

]
ds .
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Here EU denotes the expectation operator associated with the probability measure on

the canonical space of the process under the control U . We let ̺ be defined as

(1.4) ̺ , inf
U

lim sup
t→∞

1

t

∫ t

0

E
U
[
r(Xs, Us)

]
ds ,

i.e., the infimum of (1.3) over all admissible controls (for the definition of admissible

controls see §3.1). Under suitable hypotheses solutions to the ergodic control problem

can be synthesized via the Hamilton–Jacobi–Bellman (HJB) equation

(1.5) aij(x) ∂ijV +H(x,∇V ) = ̺ ,

where a = [aij ] is the symmetric matrix 1
2σσ

T and

H(x, p) , min
u

{b(x, u) · p+ r(x, u)} .

The desired characterization is that a stationary Markov control v is optimal for the

ergodic control problem if and only if it satisfies

(1.6) H
(
x,∇V (x)

)
= b

(
x, v(x)

)
· ∇V (x) + r

(
x, v(x)

)

a.e. in R
d. Obtaining solutions to (1.5) is further complicated by the fact that ̺ is

unknown. For controlled Markov chains the relative value iteration originating in the

work ofWhite [20] provides an algorithm for solving the ergodic dynamic programming

equation for the finite state finite action case. Moreover its ramifications have given

rise to popular learning algorithms (Q-learning) [1].

In [3] we introduced a continuous time, continuous state space analog of White’s

relative value iteration (RVI) given by the quasilinear parabolic evolution equation

(1.7) ∂tϕ(t, x) = aij(x) ∂ijϕ(t, x) +H(x,∇ϕ)− ϕ(t, 0) , ϕ(0, x) = ϕ0(x) .

Under a uniform (geometric) ergodicity condition that ensures the well-posedness of

the associated HJB equation we showed in [3] that the solution of (1.7) converges as

t → ∞ to a solution of (1.5), the limit being independent of the initial condition ϕ0.

In a related work we extended these results to zero-sum stochastic differential games

and controlled diffusions under the risk sensitive criterion [5].

Even though the work in [3] was probably the first such study of convergence of a

relative iteration scheme for continuous time and space Markov processes, the blanket

stability hypothesis imposed weakens these results. Models of controlled diffusions

enjoying a uniform geometric ergodicity do not arise often in applications. Rather,

what we frequently encounter is a running cost which has a structure which penalizes

unstable behavior and thus renders all stationary optimal controls stable. Such is

the case for quadratic costs typically used in linear control models. A fairly general

class of running costs of this type, which includes ‘norm-like’ costs, consists of costs

satisfying the near-monotone condition:

(1.8)
{
x ∈ R

d : min
u

r(x, u) ≤ ̺
}

is a compact set.
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In this paper we relax the blanket geometric ergodicity assumption and study the

relative value iteration in (1.7) under the near-monotone hypothesis (1.8). It is well

known that for near-monotone costs the HJB equation (1.5) possesses a unique up to

a constant solution V which is bounded below in R
d [4]. However, this uniqueness

result is restricted. In general, for β > ̺ the equation

(1.9) aij(x) ∂ijV +H(x,∇V ) = β

can have a multitude of solutions which are bounded below [4]. As a result, the policy

iteration algorithm (PIA) may fail to converge to the optimal value [2, 17]. In order

to guarantee convergence of the PIA to an optimal control, in addition to the near-

monotone assumption, a blanket Lyapunov condition is imposed in [17, Theorem 5.2]

which renders all stationary Markov controls stable. In contrast, the RVI algorithm

always converges to the optimal value function when initialized with some bounded

initial value ϕ0. The reason behind the difference in performance of the two algorithms

can be explained as follows: First, recall that the PIA algorithm consists of the

following steps:

1. Initialization. Set k = 0 and select some stationary Markov control v0 which

yields a finite average cost.

2. Value determination. Determine the average cost ̺vk under the control vk

and obtain a solution Vk to the Poisson equation

aij(x) ∂ijVk + bi
(
x, vk(x)

)
∂iVk(x) + r

(
x, vk(x)

)
= ̺vk , x ∈ R

d .

3. Termination. If

H(x,∇Vk) =
[
b
(
x, vk(x)

)
· ∇Vk(x) + r

(
x, vk(x)

)]
a.e. ,

then return vk.

4. Policy improvement. Select vk+1 ∈ USM which satisfies

vk+1(x) ∈ Argmin
u∈U

[
b(x, u) · ∇Vk(x) + r(x, u)

]
, x ∈ R

d .

It is straightforward to show that if V̂ is a solution to (1.9) whose growth rate does not

exceed the growth rate of an optimal value function V from (1.5), or in other words

the weighted norm ‖V̂ ‖V is finite, then β = ̺ and V̂ is an optimal value function.

It turns out that if the value function ϕ0 determined at the first step k = 0 does

not grow faster than an optimal value function V then the algorithm will converge

to an optimal value function. Otherwise, it might converge to a solution of (1.9)

that is not optimal. However, the growth rate of an optimal value function is not

known, and there is no simple way of selecting the initial control v0 that will result

in the right growth rate for ϕ0. To do so one must solve a HJB-type equation, which

is precisely what the PIA algorithm tries to avoid. In contrast, as we show in this

paper, the solution of the RVI algorithm has the property that x 7→ ϕ(t, x) has the



4 ARI ARAPOSTATHIS, VIVEK S. BORKAR AND K. SURESH KUMAR

same growth rate as the optimal value function V , asymptotically in t. This is an

essential ingredient of the mechanism responsible for convergence.

The proof of convergence of (1.7) is facilitated by the study of the value iteration

(VI) equation

(1.10) ∂tϕ(t, x) = aij(x) ∂ijϕ(t, x) +H(x,∇ϕ)− ̺ , ϕ(0, x) = ϕ0(x) .

The initial condition is the same as in (1.7). Also ̺ is as in (1.4), so it is assumed

known. Note that if ϕ is a solution of (1.7), then

(1.11) ϕ(t, x) = ϕ(t, x)− ̺ t+

∫ t

0

ϕ(s, 0) ds , (t, x) ∈ R+ × R
d .

solves (1.10). We have in particular that

(1.12) ϕ(t, x)− ϕ(t, 0) = ϕ(t, x) − ϕ(t, 0) ∀x ∈ R
d , ∀t ≥ 0 .

It follows that the function f , ϕ− ϕ does not depend on x ∈ R
d and satisfies

(1.13)
df

dt
+ f = ̺− ϕ(t, 0) .

Conversely, if ϕ is a solution of (1.10) then solving (1.13) one obtains a corresponding

solution of (1.7) that takes the form [3, Lemma 4.4]:

(1.14) ϕ(t, x) = ϕ(t, x)−

∫ t

0

es−t ϕ(s, 0) ds+ ̺ (1− e−t) , (t, x) ∈ R+ × R
d .

It also follows from (1.14) that if t 7→ ϕ(t, x) is bounded for each x ∈ R
d then so is

the map t 7→ ϕ(t, x), and if the former converges as t → ∞, pointwise in x, then so

does the latter.

We note here that we study solutions of the VI equation that have the stochastic

representation

(1.15) ϕ(t, x) = inf
U

E
U
x

[∫ t

0

r(Xs, Us) ds+ ϕ0(Xt)

]
− ̺ t ,

where the infimum is over all admissible controls. These are called canonical solutions

(see Definition 3.10). The first term in (1.15) is the total cost over the finite horizon

[0, t] with terminal penalty ϕ0. Under the uniform geometric ergodicity hypothesis

used in [3] it is straightforward to show that t 7→ ϕ(t, x) is locally bounded in x ∈ R
d.

In contrast, under the near-monotone hypothesis alone, t 7→ ϕ(t, x) may diverge for

each x ∈ R
d. To show convergence, we first identify a suitable region of attraction of

the solutions of the HJB under the dynamics of (1.7) and then show that all ω-limit

points of the semiflow of (1.7) lie in this region.

While we prefer to think of (1.7) as a continuous time and space relative value

iteration, it can also be viewed as a ‘stabilization of a quasilinear parabolic PDE

problem’ in analogy to the celebrated result of Has′minskĭı (see [11]). Thus, the results

in this paper are also likely to be of independent interest to the PDE community.
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We summarize below the main result of the paper. We make one mild assump-

tion: let v∗ be some optimal stationary Markov control, i.e., a measurable function

that satisfies (1.6). It is well known that under the near-monotone hypothesis the dif-

fusion under the control v∗ is positive recurrent. Let µv∗ denote the unique invariant

probability measure of the diffusion under the control v∗. We assume that the value

function V in the HJB is integrable under µv∗ .

Theorem 1.1. Suppose that the running cost is near-monotone and that the value

function V of the HJB equation (1.5) for the ergodic control problem is integrable with

respect to some optimal invariant probability distribution. Then for any bounded initial

condition ϕ0 ∈ C2(Rd) it holds that

lim
t→∞

ϕ(t, x) = V (x) − V (0) + ̺ ,

uniformly on compact sets of Rd.

We also obtain a new stochastic representation for the value function of the HJB

under near-monotone costs which we state as a corollary. This result is known to hold

under uniform geometric ergodicity, but under the near-monotone cost hypothesis

alone it is completely new.

Corollary 1.2. Under the assumptions of Theorem 1.1 the value function V of

the HJB for the ergodic control problem has the stochastic representation:

V (x) − V (y) = lim
t→∞

(
inf
U

E
U
x

[∫ t

0

r(Xs, Us) ds

]
− inf

U
E
U
y

[∫ t

0

r(Xs, Us) ds

])

for all x, y ∈ R
d.

We would like to note here that in [7] the authors study the value iteration

algorithm for countable state controlled Markov chains, with ‘norm-like’ running costs,

i.e., minu r(x, u) → ∞ as |x| → ∞. The initial condition ϕ0 is chosen as some

Lyapunov function corresponding to some stable control v0. We leave it to the reader

to verify that under these hypotheses ‖V ‖ϕ0
< ∞. Moreover they assume that ϕ0 is

integrable with respect to the invariant probability distribution µv∗ (see the earlier

discussion concerning the PIA algorithm). Thus their hypotheses imply that the

optimal value function V from (1.5) is also integrable with respect to µv∗ .

The paper is organized as follows. The next section introduces the notation used

in the paper. Section 3 starts by describing in detail the model and the assumptions

imposed. In §3.2 we discuss some basic properties of the HJB equation for the ergodic

control problem under near-monotone costs and the implications of the integrability

of the value function under some optimal invariant distribution. In §3.3 we address

the issue of existence and uniqueness of solutions to (1.7) and (1.10) and describe

some basic properties of these solutions. In §3.4 we exhibit a region of attraction

for the solutions of the VI. In §4 we derive some essential growth estimates for the

solutions of the VI and show that these solutions have locally bounded oscillation in

R
d, uniformly in t ≥ 0. Section 5 is dedicated to the proof of convergence of the

solutions of the RVI, while §6 concludes with some pointers to future work.
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2. Notation. The standard Euclidean norm in R
d is denoted by | · |. The set of

nonnegative real numbers is denoted by R+, N stands for the set of natural numbers,

and I denotes the indicator function. We denote by τ(A) the first exit time of a

process {Xt , t ∈ R+} from a set A ⊂ R
d, defined by

τ(A) , inf {t > 0 : Xt 6∈ A} .

The closure and the boundary of a set A ⊂ R
d are denoted by A and ∂A, respectively.

The open ball of radius R in R
d, centered at the origin, is denoted by BR, and we let

τR , τ(BR), and τ̆R , τ(Bc
R).

The term domain in R
d refers to a nonempty, connected open subset of the

Euclidean space R
d. For a domain D ⊂ R

d, the space Ck(D) (C∞(D)) refers to the

class of all functions whose partial derivatives up to order k (of any order) exist and

are continuous.

We adopt the notation ∂t , ∂
∂t
, and for i, j ∈ N, ∂i , ∂

∂xi
and ∂ij , ∂2

∂xi∂xj
.

We often use the standard summation rule that repeated subscripts and superscripts

are summed from 1 through d. For example,

aij∂ijϕ+ bi∂iϕ ,

d∑

i,j=1

aij
∂2ϕ

∂xi∂xj
+

d∑

i=1

bi
∂ϕ

∂xi
.

For a nonnegative multi-index α = (α1, . . . , αd) we let Dα , ∂α1

1 · · ·∂αd

d . Let

Q be a domain in R+ × R
d. Recall that Cr,k+2r(Q) stands for the set of bounded

continuous functions ϕ(t, x) defined onQ such that the derivativesDα∂ℓtϕ are bounded

and continuous in Q for

|α|+ 2ℓ ≤ k + 2r , ℓ ≤ r .

In general if X is a space of real-valued functions onQ, Xloc consists of all functions

f such that fϕ ∈ X for every ϕ ∈ C∞
c (Q), the space of smooth functions on Q with

compact support. In this manner we obtain for example the spaces C1,2
loc (R

d) and

W
2,p
loc(Q).

We won’t introduce here the parabolic Sobolev space W
r,k+2r,p(Q), since the

solutions of (1.7) and (1.10) are in C1,2
loc (R

d). The only exception is the function ψ

in Theorem 4.7 and the function ψT used in the proof of Lemma 4.8. We refer the

reader to [13] for definitions and properties of the parabolic Sobolev space.

3. Problem Statement and Preliminary Results.

3.1. The model. The dynamics are modeled by a controlled diffusion process

X = {Xt, t ≥ 0} taking values in the d-dimensional Euclidean space Rd, and governed

by the Itô stochastic differential equation in (1.1). All random processes in (1.1)

live in a complete probability space (Ω,F,P). The process W is a d-dimensional

standard Wiener process independent of the initial condition X0. The control process

U takes values in a compact, metrizable set U, and Ut(ω) is jointly measurable in
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(t, ω) ∈ [0,∞)×Ω. Moreover, it is non-anticipative: for s < t,Wt−Ws is independent

of

Fs , the completion of σ{X0, Ur,Wr, r ≤ s} relative to (F,P) .

Such a process U is called an admissible control, and we let U denote the set of all

admissible controls.

We impose the following standard assumptions on the drift b and the diffusion

matrix σ to guarantee existence and uniqueness of solutions to (1.1).

(A1) Local Lipschitz continuity: The functions

b =
[
b1, . . . , bd

]T
: Rd × U 7→ R

d and σ =
[
σ
ij
]
: Rd 7→ R

d×d

are locally Lipschitz in x with a Lipschitz constant κR > 0 depending on

R > 0. In other words, for all x, y ∈ BR and u ∈ U,

|b(x, u)− b(y, u)|+ ‖σ(x) − σ(y)‖ ≤ κR|x− y| .

(A2) Affine growth condition: b and σ satisfy a global growth condition of the form

|b(x, u)|2 + ‖σ(x)‖2 ≤ κ1
(
1 + |x|2

)
∀(x, u) ∈ R

d × U ,

where ‖σ‖2 , trace
(
σσ

T
)
.

(A3) Local nondegeneracy: For each R > 0, we have

d∑

i,j=1

aij(x)ξiξj ≥ κ−1
R |ξ|2 ∀x ∈ BR ,

for all ξ = (ξ1, . . . , ξd) ∈ R
d.

We also assume that b is continuous in (x, u).

In integral form, (1.1) is written as

(3.1) Xt = X0 +

∫ t

0

b(Xs, Us) ds+

∫ t

0

σ(Xs) dWs .

The second term on the right hand side of (3.1) is an Itô stochastic integral. We say

that a process X = {Xt(ω)} is a solution of (1.1), if it is Ft-adapted, continuous in t,

defined for all ω ∈ Ω and t ∈ [0,∞), and satisfies (3.1) for all t ∈ [0,∞) at once a.s.

We define the family of operators Lu : C2(Rd) 7→ C(Rd), where u ∈ U plays the

role of a parameter, by

(3.2) Luf(x) = aij(x) ∂ijf(x) + bi(x, u) ∂if(x) , u ∈ U .

We refer to Lu as the controlled extended generator of the diffusion.

Of fundamental importance in the study of functionals of X is Itô’s formula. For

f ∈ C2(Rd) and with Lu as defined in (3.2), it holds that

(3.3) f(Xt) = f(X0) +

∫ t

0

LUsf(Xs) ds+Mt , a.s.,
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where

Mt ,

∫ t

0

〈
∇f(Xs),σ(Xs) dWs

〉

is a local martingale. Krylov’s extension of the Itô formula [12, p. 122] extends (3.3)

to functions f in the local Sobolev space W
2,p
loc(R

d), p ≥ d.

Recall that a control is called Markov if Ut = v(t,Xt) for a measurable map

v : R+ × R
d 7→ U, and it is called stationary Markov if v does not depend on t, i.e.,

v : Rd 7→ U. Correspondingly, the equation

(3.4) Xt = x0 +

∫ t

0

b
(
Xs, v(s,Xs)

)
ds+

∫ t

0

σ(Xs) dWs

is said to have a strong solution if given a Wiener process (Wt,Ft) on a complete

probability space (Ω,F,P), there exists a process X on (Ω,F,P), with X0 = x0 ∈ R
d,

which is continuous, Ft-adapted, and satisfies (3.4) for all t at once, a.s. A strong

solution is called unique, if any two such solutions X and X ′ agree P-a.s., when viewed

as elements of C
(
[0,∞),Rd

)
. It is well known that under Assumptions (A1)–(A3), for

any Markov control v, (3.4) has a unique strong solution [10].

Let USM denote the set of stationary Markov controls. Under v ∈ USM, the process

X is strong Markov, and we denote its transition function by P t
v(x, · ). It also follows

from the work of [6, 19] that under v ∈ USM, the transition probabilities of X have

densities which are locally Hölder continuous. Thus Lv defined by

Lvf(x) = aij(x) ∂ijf(x) + bi
(
x, v(x)

)
∂if(x) , v ∈ USM ,

for f ∈ C2(Rd), is the generator of a strongly-continuous semigroup on Cb(R
d), which

is strong Feller. We let P
v
x denote the probability measure and E

v
x the expectation

operator on the canonical space of the process under the control v ∈ USM, conditioned

on the process X starting from x ∈ R
d at t = 0.

3.2. The ergodic control problem. We assume that the running cost function

r : Rd × U → R+ is continuous and locally Lipschitz in its first argument uniformly

in u ∈ U. Without loss of generality we let κR be a Lipschitz constant of r over BR.

More specifically, we assume that

∣∣r(x, u)− r(y, u)
∣∣ ≤ κR|x− y| ∀x, y ∈ BR , ∀u ∈ U ,

and all R > 0.

As mentioned in §1, an important class of running cost functions arising in practice

for which the ergodic control problem is well behaved are the near-monotone cost

functions.

The ergodic control problem for near-monotone cost functions is characterized by

the following theorem which we quote from [4]. Note that we choose to normalize the

value function V ∗ differently here, in order to facilitate the use of weighted norms.

Theorem 3.1. There exists a unique function V ∗ ∈ C2(Rd) which solves the

HJB equation (1.5), and satisfies minRd V ∗ = 1. Also, a control v ∈ USM is optimal
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with respect to the criteria (1.2) and (1.3) if and only if it satisfies (1.6) a.e. in R
d.

Moreover, recalling that τ̆R = τ(Bc
R), R > 0, we have

(3.5) V ∗(x) = inf
v∈USSM

E
v
x

[∫
τ̆R

0

(
r
(
Xt, v(Xt)

)
− ̺

)
dt+ V ∗(X

τ(Bc
R
))

]
∀x ∈ Bc

R ,

for all R > 0.

Recall that control v ∈ USM is called stable if the associated diffusion is positive

recurrent. We denote the set of such controls by USSM, and let µv denote the unique

invariant probability measure on R
d for the diffusion under the control v ∈ USSM.

Recall that v ∈ USSM if and only if there exists an inf-compact function V ∈ C2(Rd),

a bounded domain D ⊂ R
d, and a constant ε > 0 satisfying

LvV(x) ≤ −ε ∀x ∈ Dc .

It follows that the optimal control v∗ in Theorem 3.1 is stable.

We make the following mild technical assumption which is in effect throughout

the paper:

Assumption 3.2. The value function V ∗ is integrable with respect to some optimal

invariant probability distribution µv∗ .

Remark 3.3. Assumption 3.2 is equivalent to the following [4, Lemma 3.3.4]:

there exists an optimal stationary control v∗ and an inf-compact function V ∈ C2(Rd)

and an open ball B ⊂ R
d such that

(3.6) Lv∗

V(x) ≤ −V ∗(x) ∀x ∈ Bc .

For the rest of the paper v∗ ∈ USSM denotes some fixed control satisfying (1.6) and

(3.6).

Remark 3.4. Assumption 3.2 is pretty mild. In the case that r is bounded it is

equivalent to the statement that the mean hitting times to an open bounded set are

integrable with respect to some optimal invariant probability distribution. In the case

of one dimensional diffusions, provided σ(x) > σ0 for some constant σ0 > 0, and

lim sup|x|→∞
x b(x)
σ

2(x) < − 1
2 , then the mean hitting time of 0 ∈ R is bounded above by a

second-degree polynomial in x [15, Theorem 5.6]. Therefore, in this case, the existence

of second moments for µv∗ implies Assumption 3.2.

We need the following lemma.

Lemma 3.5. Under Assumption 3.2,

E
v∗

x

[
V ∗(Xt)

]
−−−→
t→∞

µv∗ [V ∗] ,

∫

Rd

V ∗(x)µv∗ (dx) ∀x ∈ R
d ,

where, as defined earlier, µv∗ is the invariant probability measure of the diffusion

under the control v∗. Also there exists a constant mr depending on r such that

(3.7) sup
t≥0

E
v∗

x

[
V ∗(Xt)

]
≤ mr(V

∗(x) + 1) ∀x ∈ R
d .
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Proof. Since r is nonnegative, by Dynkin’s formula we have

(3.8) E
v∗

x [V ∗(Xt)] ≤ V ∗(x) + ̺ t ∀t ≥ 0 , ∀x ∈ R
d .

Therefore, since V ∗ is integrable with respect to µv∗ by Assumption 3.2, the first result

follows by [18, Theorem 5.3 (i)]. The bound in (3.7) is the continuous time analogue

of (14.5) in [16]. Recall that a skeleton of a continuous-time Markov process is a

discrete-time Markov process with transition probability P̂ =
∫∞

0
α(dt)P t, where α

is a probability measure on (0,∞). Since the diffusion is nondegenerate, any skeleton

of the process is φ-irreducible, with an irreducibility measure absolutely continuous

with respect to the Lebesgue measure (for a definition of φ-irreducibility we refer the

reader to [16, Chapter 4]). It is also straightforward to show that compact subsets of

R
d are petite. Define the transition probability P̃ by

P̃ f(x) =

∫

Rd

P̃ (x, dy) f(y) , E
v∗

x [f(Xt)]
∣∣∣
t=1

, x ∈ R
d

for all bounded functions f ∈ C(Rd), and

gr(x) , E
v∗

x

[∫ 1

0

r
(
Xs, v

∗(Xs)
)
ds

]
, x ∈ R

d .

Then (1.5) translates into the discrete time Poisson equation:

(3.9) P̃ V ∗(x) − V ∗(x) = ̺− gr(x) , x ∈ R
d .

It easily follows from the near-monotone hypothesis (1.8) that there exists a constant

ε0 > 0 and a ball BR0
⊂ R

d, R0 > 0, such that gr(x) − ̺ > ε0 for all x ∈ Bc
R0

.

Since, in addition,
∫
Rd V

∗(x)µv∗(dx) < ∞, it follows by [16, Theorem 14.0.1] that

there exists a constant m̃ such that

(3.10)
∞∑

n=0

∣∣P̃ngr(x)− ̺
∣∣ ≤ m̃(V ∗(x) + 1) ∀x ∈ R

d .

By (3.9)–(3.10) we obtain

P̃nV ∗(x) = V ∗(x)−

n−1∑

k=0

(P̃ kgr(x) − ̺)(3.11)

≤ (m̃+ 1)(V ∗(x) + 1) .

By (3.8) and (3.11), writing the arbitrary t ∈ R+ as t = n+ δ where n is the integer
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part of t and using the Markov property, we obtain

E
v∗

x

[
V ∗(Xt)

]
= E

v∗

x

[
E
v∗

Xδ

[
V ∗(Xt−δ)

]]

= E
v∗

x

[
P̃nV ∗(Xδ)

]

≤ E
v∗

x

[
(m̃+ 1)(V ∗(Xδ) + 1)

]

≤ (m̃+ 1) (V ∗(x) + ̺ δ + 1)

≤ (m̃+ 1) (V ∗(x) + ̺+ 1) ∀t ≥ 0 , ∀x ∈ R
d ,

thus establishing (3.7).

Definition 3.6. We let CV ∗(Rd) denote the Banach space of functions f ∈ C(Rd)

with norm

‖f‖V ∗ , sup
x∈Rd

|f(x)|

V ∗(x)
.

We also define

OV ∗ ,
{
f ∈ CV ∗(Rd) ∩ C2(Rd) : f ≥ 0

}
.

3.3. The relative value iteration. The RVI and VI equations in (1.7) and

(1.10) can also be written in the form

∂tϕ(t, x) = min
u∈U

[
Luϕ(t, x) + r(x, u)

]
− ϕ(t, 0) , ϕ(0, x) = ϕ0(x) ,(3.12)

∂tϕ(t, x) = min
u∈U

[
Luϕ(t, x) + r(x, u)

]
− ̺ , ϕ(0, x) = ϕ0(x) .(3.13)

Definition 3.7. Let v̂ = {v̂t , t ∈ R+} denote a measurable selector from

the minimizer in (3.13) corresponding to a solution ϕ ∈ C1,2
loc (R

d). This is also a

measurable selector from the minimizer in (3.12), provided ϕ and ϕ are related by

(1.11) and (1.14), and vice-versa. Note that the Markov control associated with v̂

is computed ‘backward’ in time (see (1.15)). Hence, for each t ≥ 0 we define the

(nonstationary) Markov control

v̂t ,
{
v̂ts = v̂t−s , s ∈ [0, t]

}
.

Also, we adopt the simplifying notation

r(x, u) , r(x, u) − ̺ .

In most of the statements of intermediary results the initial data ϕ0 is assumed

without loss of generality to be nonnegative. We start with a theorem that proves the
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existence of a solution to (3.13) that admits the stochastic representation in (1.15).

This does not require Assumption 3.2.

First we need the following definition.

Definition 3.8. We define R
d
T , (0, T ) × R

d, and let Rd
T denote its closure.

We also let CT
V ∗(Rd) denote the Banach space of functions in C(Rd

T ) with norm

‖f‖V ∗,T , sup
(t,x)∈Rd

T

|f(t, x)|

V ∗(x)
.

Theorem 3.9. Provided ϕ0 ∈ OV ∗ , then

ϕ(t, x) = inf
U∈U

E
U
x

[∫ t

0

r(Xs, Us) ds+ ϕ0(Xt)

]
,(3.14a)

is the minimal solution of (3.13) in C1,2
loc

(
(0,∞) × R

d
)
∩ C

(
[0,∞) × R

d
)
which is

bounded below on R
d
T , for any T > 0. With v̂t as defined in Definition 3.7, it admits

the representation

ϕ(t, x) = E
v̂t

x

[∫ t

0

r
(
Xs, v̂

t
s(Xs)

)
ds+ ϕ0(Xt)

]
,(3.14b)

and it holds that

(3.15) E
v̂t

x

[
ϕ(t− τR, XτR

) I{τR < t}
]
−−−−→
R→∞

0

for all (t, x) ∈ R+ × R
d. Moreover ϕ(t, · ) ≥ −̺ t and satisfies the estimate

(3.16) ‖ϕ‖V ∗,T ≤ (1 + ̺ T ) max
(
1, ‖ϕ0‖V ∗

)
∀T > 0 .

Proof. Let rn and ϕn
0 , for n ∈ N, be smooth truncations of r and ϕ0, respectively,

satisfying ‖rn‖∞ ≤ n and ‖ϕn
0‖∞ ≤ n and such that rn ↑ r and ϕn

0 ↑ ϕ0 as n → ∞.

Let ̺n denote the optimal ergodic cost corresponding to rn. The boundary value

problem

(3.17)

∂tϕ̂
R
n (t, x) = min

u∈U

[
Luϕ̂R

n (t, x) + r(x, u)
]

in (0, T )×BR

ϕ̂R
n (0, x) = ϕn

0 (x) ∀x ∈ BR , ϕ̂R
n (t, · )|∂BR

= ϕn
0 ∀t ∈ [0, T ] ,

has a unique nonnegative solution in C1,2
(
(0, T )×BR

)
∩ C

(
[0, T ]×BR

)
for all T > 0

and R > 0. This solution has the stochastic representation

(3.18) ϕ̂R
n (t, x) = inf

U∈U

E
U
x

[∫
τR∧t

0

rn(Xs, Us) ds+ ϕn
0 (t− τR ∧ t,XτR∧t)

]
.
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where, as defined in §2, τR denotes the first exit time from the ball BR. By (3.18) we

obtain

ϕ̂R
n (t, x) ≤ E

v∗

x

[∫
τR∧t

0

rn
(
Xs, v

∗(Xs)
)
ds+ ϕn

0 (t− τR ∧ t,XτR∧t)

]

≤ max
(
1, ‖ϕ0‖V ∗

)
E
v∗

x

[∫
τR∧t

0

r
(
Xs, v

∗(Xs)
)
ds+ V ∗(t− τR ∧ t,XτR∧t)

]

≤ max
(
1, ‖ϕ0‖V ∗

)(
V ∗(x) + ̺ t

)
.

Therefore by the interior estimates of solutions of (3.17) (see [14, Theorem 5.1]) the

derivatives
{
Dα∂ℓt ϕ̂

R
n : |α| + 2ℓ ≤ 2 , R > 0 , n ∈ N

}
are locally Hölder equicontin-

uous in R
d
T . Thus passing to the limit as R → ∞ along a subsequence we obtain a

nonnegative function ϕ̂n ∈ C1,2
loc

(
R

d
T

)
∩C

(
Rd

T

)
, for all T > 0, which satisfies

(3.19)

∂tϕ̂n(t, x) = min
u∈U

[Luϕ̂n(t, x) + rn(x, u)] in (0,∞)× R
d

ϕ̂n(0, x) = ϕn
0 (x) ∀x ∈ R

d .

By using Dynkin’s formula on the cylinder [0, t]×BR, we obtain from (3.19) that

(3.20) ϕ̂n(t, x) = inf
U∈U

E
U
x

[∫
τR∧t

0

rn(Xs, Us) ds+ ϕ̂n(t− τR ∧ t,XτR∧t)

]
,

It follows by (3.18) that ‖ϕ̂n(t, ·)‖∞ ≤ n(t+1) for all n ∈ N and t ≥ 0. By (3.20) we

have the inequality

ϕ̂n(t, x) ≤ E
U
x

[∫
τR∧t

0

rn(Xs, Us) ds+ ϕ̂n(t− τR ∧ t,XτR∧t)

]
(3.21)

≤ E
U
x

[∫
τR∧t

0

rn(Xs, Us) ds+ ϕn
0 (Xt) I{τR > t}

]
+ nPU

x (τR ≤ t)

for all U ∈ U. Taking limits as R → ∞ in (3.21), using dominated convergence, we

obtain

(3.22) ϕ̂n(t, x) ≤ E
U
x

[∫ t

0

rn(Xs, Us) ds+ ϕn
0 (Xt)

]
U ∈ U .

Note that

(3.23) 0 ≤ ϕ̂n(t, x) ≤ lim sup
R→∞

ϕ̂R
n (t, x) ≤ max

(
1, ‖ϕ0‖V ∗

)(
V ∗(x) + ̺ t

)
.

Hence, as mentioned earlier, the derivatives
{
Dα∂ℓt ϕ̂n : |α| + 2ℓ ≤ 2 , n ∈ N

}
are

locally Hölder equicontinuous in (0,∞) × R
d. Also as shown in [4, p. 119] we have

̺n → ̺ as n → ∞. Let {kn}n∈N ⊂ N be an arbitrary sequence. Then there exists

some subsequence {k′n} ⊂ {kn} such that ϕ̂k′

n
→ ϕ̂ ∈ C1,2

loc

(
R

d
T

)
∩C

(
Rd

T

)
, for all T > 0,

and ϕ̂ satisfies

(3.24)

∂tϕ̂(t, x) = min
u∈U

[Luϕ̂(t, x) + r(x, u)] in (0,∞)× R
d

ϕ̂(0, x) = ϕ0(x) ∀x ∈ R
d .



14 ARI ARAPOSTATHIS, VIVEK S. BORKAR AND K. SURESH KUMAR

Let v̂t denote a stationary Markov control associated with the minimizer in (3.24) as

in Definition 3.7. By using Dynkin’s formula on the cylinder [0, t] × BR, we obtain

from (3.24)

ϕ̂(t, x) = inf
U∈U

E
U
x

[∫
τR∧t

0

r(Xs, Us) ds+ ϕ̂(t− τR ∧ t,XτR∧t)

]
,(3.25a)

ϕ̂(t, x) = E
v̂t

x

[∫
τR∧t

0

r
(
Xs, v̂

t
s(Xs)

)
ds+ ϕ̂(t− τR ∧ t,XτR∧t)

]
.(3.25b)

Since ϕ̂(t, · ) is nonnegative, letting R → ∞ in (3.25b), by Fatou’s Lemma we obtain

ϕ̂(t, x) ≥ E
v̂t

x

[∫ t

0

r
(
Xs, v̂

t
s(Xs)

)
ds+ ϕ0(Xt)

]
(3.26)

≥ inf
U∈U

E
U
x

[∫ t

0

r(Xs, Us) ds+ ϕ0(Xt)

]
.

Taking limits as n→ ∞ in (3.22), using monotone convergence for the first term

on the right hand side, we obtain

(3.27) ϕ̂(t, x) ≤ E
U
x

[∫ t

0

r(Xs, Us) ds+ ϕ0(Xt)

]
∀U ∈ U .

By (3.26)–(3.27) we have

ϕ̂(t, x) = inf
U∈U

E
U
x

[∫ t

0

r(Xs, Us) ds+ ϕ0(Xt)

]
(3.28a)

ϕ̂(t, x) = E
v̂t

x

[∫ t

0

r
(
Xs, v̂

t
s(Xs)

)
ds+ ϕ0(Xt)

]
.(3.28b)

Let ϕ(t, x) , ϕ̂(t, x) − ̺ t. Then ϕ solves (3.13) and (3.14a)–(3.14b) follow by

(3.28a)–(3.28b). It is also clear that ϕ(t, x) ≥ −̺ t, which together with (3.23) implies

(3.16).

By (3.25a) we have

ϕ̂(t, x) = E
v̂t

x

[∫
τR∧t

0

r
(
Xs, v̂

t(Xs)
)
ds+ ϕ0(t,Xt) I{τR ≥ t}

]
(3.29)

+ E
v̂t

x

[
ϕ̂(t− τR, XτR

) I{τR < t}
]
.

The first term on the right hand side of (3.29) tends to the right hand side of (3.28b)

by monotone convergence as R ↑ ∞. Therefore (3.15) holds.

Suppose ϕ̃ is a solution of (3.24) in C1,2
loc

(
R

d
T

)
∩C

(
Rd

T

)
, for some T > 0, which is

bounded below, and ṽt is an associated stationary Markov control from the minimizer

of (3.24). Applying Dynkin’s formula on the cylinder [0, t]×BR and letting R → ∞



THE RELATIVE VALUE ITERATION UNDER NEAR-MONOTONE COST 15

using Fatou’s lemma, we obtain

ϕ̃(t, x) ≥ E
ṽt

x

[∫ t

0

r
(
Xs, v̂

t
s(Xs)

)
ds+ ϕ0(Xt)

]

≥ inf
U∈U

E
U
x

[∫ t

0

r(Xs, Us) ds+ ϕ0(Xt)

]

≥ ϕ̂(t, x) .

Therefore ϕ(t, x) is the minimal solution of (3.13) in C1,2
loc

(
(0,∞)×R

d
)
∩C

(
[0,∞)×R

d
)

which is bounded below on R
d
T , for each T > 0.

In the interest of economy of language we refer to the solution in (3.14a) as

canonical. This is detailed in the following definition.

Definition 3.10. Given an initial condition ϕ0 ∈ OV ∗ we define the canonical

solution to the VI in (3.13) as the solution which was constructed in the proof of

Theorem 3.9 and was shown to admit the stochastic representation in (3.14a). In other

words, this is the minimal solution of (3.13) in C1,2
loc

(
(0,∞) × R

d
)
∩ C

(
[0,∞) × R

d
)

which is bounded below on R
d
T , for any T > 0. The canonical solution to the VI well

defines the canonical solution to the RVI in (3.12) via (1.14).

For the rest of the paper a solution to the RVI or VI is always meant to be a

canonical solution. In summary, these are characterized by:

ϕ(t, x) +

∫ t

0

ϕ(s, 0) ds = inf
U∈U

E
U
x

[∫ t

0

r(Xs, Us) ds+ ϕ0(Xt)

]
(3.30)

=

∫ t

0

E
v̂t

x

[
r
(
Xs, v̂

t
s(Xs)

)]
ds+ E

v̂t

x

[
ϕ0(Xt)

]
.

Similarly

ϕ(t, x) = inf
U∈U

E
U
x

[∫ t

0

r(Xs, Us) ds+ ϕ0(Xt)

]

=

∫ t

0

E
v̂t

x

[
r
(
Xs, v̂

t
s(Xs)

)]
ds+ E

v̂t

x

[
ϕ0(Xt)

]
.

The next lemma provides an important estimate for the canonical solutions of the

the VI.

Lemma 3.11. Provided ϕ0 ∈ CV ∗(Rd) ∩ C2(Rd), then the canonical solution

ϕ ∈ C1,2
loc

(
(0,∞)× R

d
)
∩ C

(
[0,∞)× R

d
)
of (3.13) satisfies the bound

(3.31) E
v̂t

x

[
ϕ0(Xt)− V ∗(Xt)

]
≤ ϕ(t, x) − V ∗(x) ≤ E

v∗

x

[
ϕ0(Xt)− V ∗(Xt)

]

for all (t, x) ∈ R+ × R
d.

Proof. By (1.5) and (3.13) we obtain

−∂t(V
∗ − ϕ) + Lv∗

(V ∗ − ϕ) ≤ 0
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and

−∂t(V
∗ − ϕ) + Lv̂t

(V ∗ − ϕ) ≥ 0

from which, by an application of Itô’s formula to V ∗(Xs)− ϕ(t− s,Xs), s ∈ [0, t], it

follows that

E
v∗

x

[
V ∗(Xt)− ϕ0(Xt)

]
≤ V ∗(x)− ϕ(t, x)

and

E
v̂t

x

[
V ∗(Xt)− ϕ0(Xt)

]
≥ V ∗(x)− ϕ(t, x) ,

respectively, and the estimate follows.

Concerning the uniqueness of the canonical solution in a larger class of functions,

this depends on the growth of V ∗ and the coefficients of the SDE in (1.1). Various

such uniqueness results can be given based on different hypotheses on the growth of

the data. The following result assumes that V ∗ has polynomial growth, which is the

case in many applications.

Theorem 3.12. Let ϕ0 ∈ OV ∗ and suppose that for some constants c1, c2 and

m > 0, V ∗(x) ≤ c1 + c2|x|
m. Then any solution ϕ′ ∈ C1,2

loc

(
R

d
T

)
∩C

(
Rd

T

)
of (3.13), for

some T > 0, which is bounded below in Rd
T and satisfies ‖ϕ′‖V ∗,T < ∞ agrees with

the canonical solution ϕ on Rd
T .

Proof. Let ϕ′ be a solution satisfying the hypothesis in the theorem, and let

ϕ be the canonical solution of (3.13) and v̂t the associated Markov control as in

Definition 3.7. Let ϕε, for ε > 0, denote the canonical solution of (3.13) with initial

data ϕ0 + εV ∗ and v̂ε the associated minimizer. By Theorem 3.9 for each ε > 0 we

obtain

ϕε(t, x) = inf
U∈U

E
U
x

[∫ t

0

r
(
Xs, Us

)
ds+ ϕ0(Xt) + εV ∗(Xt)

]

≥ −̺ t+ ε inf
U∈U

E
U
x

[∫ t

0

r
(
Xs, Us

)
ds+ V ∗(Xt)

]

≥ εV ∗(x) − ̺ t .

Therefore by (3.15) for each ε > 0, we have

E
v̂t
ε

x

[
V ∗(t− τR, XτR

) I{τR < t}
]
−−−−→
R→∞

0 ∀(t, x) ∈ R
d
T ,

which in turn implies, since ‖ϕ′‖V ∗,T <∞, that

(3.34) E
v̂t
ε

x

[
ϕ′(t− τR, XτR

) I{τR < t}
]
−−−−→
R→∞

0 ∀(t, x) ∈ R
d
T .

Since −∂tϕ
′ + Lv̂t

εϕ′ + r(x, v̂ε,t(x)
)
≥ 0, we have that for all (t, x) ∈ R

d
T ,

(3.35) ϕ′(t, x) ≤ E
v̂t
ε

x

[∫
τR∧t

0

r
(
Xs, v̂

t
ε,s(Xs)

)
ds+ ϕ′(t− τR ∧ t,XτR∧t)

]
,
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and taking limits as R → ∞ in (3.35), using (3.34), it follows that ϕ′ ≤ ϕε on Rd
T .

The polynomial growth of V ∗ implies that there exists a constant m(x, T ) such

that EU
x [V

∗(Xt)] ≤ m(x, T ) for all (t, x) ∈ R
d
T and U ∈ U [4, Theorem 2.2.2]. There-

fore, since

ϕε(t, x) ≤ E
v̂t

x

[∫ t

0

r
(
Xs, v̂

t
s(Xs)

)
ds+ ϕ0(Xt) + εV ∗(Xt)

]
(3.36)

≤ ϕ(t, x) + εm(x, T ) ∀(t, x) ∈ R
d
T ,

and ϕε ≥ ϕ, it follows by (3.36) that ϕε → ϕ on Rd
T as ε ↓ 0. Thus ϕ′ ≤ ϕ on Rd

T ,

and by the minimality of ϕ we must have equality.

We can also obtain a uniqueness result on a larger class of functions that does

not require V ∗ to have polynomial growth, but assumes that the diffusion matrix is

bounded in R
d. This is given in Theorem 3.13 below, whose proof uses the technique

in [8].

We define the following class of functions:

G ,
{
f ∈ C2(Rd) : lim

|x|→∞
f(x) e−k|x|2 = 0 , for some k > 0

}
.

Theorem 3.13. Suppose V ∗ ∈ G and that ‖σ‖ is bounded in R
d. Then, provided

ϕ0 ∈ OV ∗ , there exists a unique solution ψ to (3.13) such that maxt∈[0,T ] ψ(t, · ) ∈ G

for each T > 0.

Proof. Let ϕ̂ ∈ C1,2
loc

(
(0,∞) × R

d
)
∩C

(
[0,∞) × R

d
)
be the minimal nonnegative

solution of

∂tϕ̂(t, x) = min
u∈U

[Luϕ̂(t, x) + r(x, u)] in (0,∞)× R
d ,(3.37)

ϕ̂(0, x) = ϕ0(x) ∀x ∈ R
d ,

and let {v̂t , t ∈ R+} denote a measurable selector from the minimizer in (3.37).

Suppose that ϕ̃ ∈ C1,2
loc

(
(0,∞)×R

d
)
∩C

(
[0,∞)×R

d
)
is any solution of (3.37) satisfying

the hypothesis of the theorem, and let {ṽt , t ∈ R+} denote a measurable selector from

the corresponding minimizer. Then f , ϕ̃− ϕ̂ satisfies, for any T > 0,

(3.38) ∂tf − Lv̂T

f ≤ 0 and ∂tf − LṽT

f ≥ 0 in (0, T ]× R
d ,

and f(0, x) = 0 for all x ∈ R
d. By (3.16), the hypothesis that V ∗ ∈ G, and the

hypothesis on the growth of f , it follows that for some k = k(T ) > 0 large enough

(3.39) lim
|x|→∞

max
t∈[0,T ]

|f(t, x)| e−k|x|2 = 0 .

It is straightforward to verify by direct computation using the bounds on the coef-

ficients of the SDE that there exists γ = γ(k) > 1 such that g(t, x) , e(1+γt)(1+k|x|2)

is a supersolution of

(3.40) ∂tg − Lv̂T0

g ≥ 0 in (0, T0]× R
d , with T0 ≡ γ−1 .
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By (3.39), for any ε > 0 we can select R > 0 large enough such that |f(t, x)| ≤ εg(t, x)

for all (t, x) ∈ [0, γ−1]× ∂BR. Using (3.38), (3.40) and Dynkin’s formula on the strip

[0, γ−1] × BR it follows that |f(t, x)| ≤ εg(t, x) for all (t, x) ∈ [0, γ−1] × BR. Since

ε > 0 was arbitrary this implies f ≡ 0, or equivalently that f = ϕ̂ on [0, γ−1]× R
d.

Since, by (3.16), ϕ̂(γ−1, · ) ∈ OV ∗ , we can repeat the argument to show that f = ϕ̂

on [γ−1, 2γ−1]×R
d, and that the same holds by induction on [nγ−1, (n+1)γ−1]×R

d,

n = 2, 3, . . . , until we cover the interval [0, T ]. This shows that f = ϕ̂ on Rd
T , and

since T > 0 was arbitrary the same holds on [0,∞)× R
d.

We do not enforce any of the assumptions of Theorem 3.13 in the rest of the

paper. Rather our analysis is based on the canonical solution to the VI and RVI

which is well defined (see Definition 3.10).

3.4. A region of attraction for the VI algorithm. In this section we describe

a region of attraction for the VI algorithm. This is an subset of C2(Rd) which is

invariant under the semiflow defined by (3.13) and all its points are convergent, i.e.,

converge to a solution of (1.5).

Definition 3.14. We let Φt[ϕ0] : C2(Rd) → C2(Rd), t ∈ [0,∞), denote the

canonical solution (semiflow) of the VI in (3.13) starting from ϕ0, and Φt[ϕ0] denote

the corresponding canonical solution (semiflow) of the RVI in (3.12). Let E denote

the set of solutions of the HJB in (1.5), i.e.,

E , {V ∗ + c : c ∈ R} .

Also for c ∈ R we define the set Gc ⊂ C2(Rd) by

Gc ,
{
h ∈ C2(Rd) : h− V ∗ ≥ c , ‖h‖V ∗ <∞

}
.

We claim that for each c ∈ R, Gc is invariant under the flow Φt. Indeed by (3.7)

and (3.31), if ϕ0 ∈ Gc, then we have that

c ≤ Φt[ϕ0](x) − V ∗(x) ≤ E
v∗

x

[
ϕ0(Xt)− V ∗(Xt)

]

≤ mr‖ϕ0 − V ∗‖V ∗(V ∗(x) + 1) ∀(t, x) ∈ R+ × R
d .

Since translating ϕ0 by a constant simply translates the orbit Φt[ϕ0], without loss of

generality we let c = 0, and we show that all the points of G0 are convergent.

Theorem 3.15. Under Assumption 3.2, for each ϕ0 ∈ G0 the orbit Φt[ϕ0], and

therefore also Φt[ϕ0], converges as t→ ∞ to a point in E ∩ G0.

Proof. Since, as we showed in the paragraph preceding the theorem, Φt[ϕ0] ∈ G0

for all t ≥ 0, by (3.14a) we have

(3.41) Φt[ϕ0](x) ≤ E
v∗

x

[∫ t−τ

0

r
(
Xs, v

∗(Xs)
)
ds+Φτ [ϕ0](Xt−τ )

]
∀τ ∈ [0, t] ,
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Since Φt[ϕ0](x) − V ∗(x) ≥ 0, and
∫
Rd Φt[ϕ0](x)µv∗(dx) is finite by Assumption 3.2,

it follows by integrating (3.41) with respect to µv∗ that the map

(3.42) t 7→

∫

Rd

Φt[ϕ0](x)µv∗(dx)

is nonincreasing and bounded below. Hence it must be constant on the ω-limit set of

ϕ0 denoted by ω(ϕ0). Let h ∈ ω(ϕ0) and define

(3.43) f(t, x) , −∂tΦt[h](x) + Lv∗(
Φt[h](x) − V ∗(x)

)
.

Then f(t, x) ≥ 0 for all (t, x), and by applying Itô’s formula to (3.43), we obtain

(3.44) Φt[h](x)− V ∗(x) − E
v∗

x [h(Xt)− V ∗(Xt)] = −E
v∗

x

[∫ t

0

f(t− s,Xs) ds

]
.

Integrating (3.44) with respect to the invariant distribution µv∗ we obtain

(3.45)

∫

Rd

(
Φt[h](x) − h(x)

)
µv∗(dx) = −

∫ t

0

∫

Rd

f(t− s, x)µv∗(dx) ds ∀t ≥ 0 .

Since the term on the left-hand-side of (3.45) equals 0, as we argued above, it follows

that f(t, x) = 0, (t, x) − a.e., which in turn implies that

lim
t→∞

Φt[h](x) = V ∗(x) −

∫

Rd

(
V ∗(x)− h(x)

)
µv∗(dx) .

It follows that ω(ϕ0) ⊂ E ∩ G0 and since the map in (3.42) is nonincreasing, it is

straightforward to verify that ω(ϕ0) must be a singleton.

We also have the following result which does not require Assumption 3.2.

Corollary 3.16. Suppose ϕ0 ∈ C2(Rd) is such that ϕ0 − V ∗ is bounded. Then

Φt[ϕ0] converges as t→ ∞ to a point in E.

Proof. By (3.31), under the hypothesis, x 7→ ϕ(t, x)−V ∗(x) is bounded uniformly

in t. Thus the result follows as in the proof of Theorem 3.15.

4. Growth Estimates for Solutions of the Value Iteration. Most of the

results of this section do not require Assumption 3.2. It is only need for Lemma 4.10

and Corollary 4.11. Throughout this section and also in §5 a solution ϕ (ϕ) always

refers to the canonical solution of the VI (RVI) without further mention (see Defini-

tion 3.10).

Lemma 4.1. Suppose ϕ0 ∈ OV ∗. Then

1

t
ϕ(t, x) −−−→

t→∞
0 .
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Proof. Since ‖ϕ0‖V ∗ < ∞ it follows that 1
t
E
v∗

x [ϕ0(Xt)] → 0 as t → ∞ (see [4,

Lemma 3.7.2 (ii)]), and so we have

0 ≤ lim inf
t→∞

1

t
inf
U∈U

E
U
x

[∫ t

0

r(Xs, Us) ds+ ϕ0(Xt)

]

= lim inf
t→∞

ϕ(t, x)

t
≤ lim sup

t→∞

ϕ(t, x)

t

≤ lim sup
t→∞

1

t
E
v∗

x

[∫ t

0

r
(
Xs, v

∗(Xs)
)
ds+ ϕ0(Xt)

]

= 0 .

The first inequality above uses the fact that ϕ0 is bounded below and that ̺ is the

optimal ergodic cost.

Lemma 4.2. Provided ‖ϕ0‖∞ <∞, it holds that for all t ≥ 0

ϕ(t− τ, x)− ϕ(t, x) ≤ ̺ τ + osc
Rd

ϕ0 ∀x ∈ R
d , ∀τ ∈ [0, t] .

Proof. We have

ϕ(t− τ, x)− ϕ(t, x) = inf
U∈U

E
U
x

[∫ t−τ

0

r(Xs, Us) ds+ ϕ0(Xt−τ )

]

− inf
U∈U

E
U
x

[∫ t

0

r(Xs, Us) ds+ ϕ0(Xt)

]

≤ − inf
U∈U

E
U
x

[
ϕ0(Xt)− ϕ0(Xt−τ ) +

∫ t

t−τ

r(Xs, Us) ds

]

≤ ̺ τ + osc
Rd

ϕ0 .

Definition 4.3. We define:

K ,
{
x ∈ R

d : min
u∈U

r(x, u) ≤ ̺
}
.

Let B0 be some open bounded ball containing K and define τ̆ , τ(Bc
0). Also let δ0 > 0

be such that r(x, u) ≥ ̺+ δ0 on Bc
0.

Lemma 4.4. Suppose ϕ0 ∈ OV ∗. Then it holds that

(4.1) ϕ(t, x) ≤ E
v∗

x

[∫
τ̆∧t

0

r
(
Xs, v

∗(Xs)
)
ds+ ϕ(t− τ̆ ∧ t,Xτ̆∧t)

]
,

and

(4.2) ϕ(t, x) ≥ E
v̂t

x

[∫
τ̆∧t

0

r
(
Xs, v̂

t
s(Xs)

)
ds+ ϕ(t− τ̆ ∧ t,Xτ̆∧t)

]
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for all x ∈ Bc
0.

Proof. Let BR be any ball that contains B0 and for n ∈ N, let τn denote the first

exit time from BnR. Using Dynkin’s formula on (3.13), we obtain

(4.3) ϕ(t, x) = inf
U∈U

E
U
x

[∫
τ̆∧τn∧t

0

r(Xs, Us) ds+ ϕ(t− τ̆ ∧ τn ∧ t,Xτ̆∧τn∧t)

]

for x ∈ Bc
0. By (4.3) we have

ϕ(t, x) ≤ E
v∗

x

[∫
τ̆∧τn∧t

0

r
(
Xs, v

∗(Xs)
)
ds

]
− ̺ E

v∗

x [τ̆ ∧ τn ∧ t](4.4)

+ E
v∗

x

[
ϕ(t− τ̆ ∧ τn ∧ t,Xτ̆∧τn∧t)

]
.

We use the expansion

E
v∗

x

[
ϕ(t− τ̆ ∧ τn ∧ t,Xτ̆∧τn∧t)

]
= E

v∗

x

[
ϕ(t− τ̆ ∧ t,Xτ̆∧t) I{τn > τ̆ ∧ t}

]

+ E
v∗

x

[
ϕ(t− τn, Xτn

) I{τn ≤ τ̆ ∧ t}
]
.

By (3.16) and the fact that, as shown in [4, Corollary 3.7.3],

E
v∗

x

[
V ∗(Xτn

) I{τn ≤ t}
]
−−−−→
n→∞

0 ,

we obtain

E
v∗

x

[
ϕ(t− τn, Xτn

) I{τn ≤ τ̆ ∧ t}
]
−−−−→
n→∞

0 .

Therefore by taking limits as n → ∞ in (4.4) and also using monotone convergence

for the first two terms on the r.h.s., we obtain (4.1).

To obtain a lower bound we start from

(4.5) ϕ(t, x) = E
v̂t

x

[∫
τ̆∧τn∧t

0

r
(
Xs, v̂

t
s(Xs)

)
ds+ ϕ(t− τ̆ ∧ τn ∧ t,Xτ̆∧τn∧t)

]
.

Since for any fixed t the functions
{
ϕ(t− s, x) : s ≤ t

}
are uniformly bounded below,

taking limits in (4.5) as n→ ∞, we obtain (4.2).

Lemma 4.5. Suppose ϕ0 ∈ OV ∗. Then for any t > 0 we have

ϕ(t, x) > min

(
min

[0,t]×B0

ϕ , min
Rd

ϕ0

)
∀x ∈ Bc

0 .

Proof. Let x be any point in the interior of Bc
0. By (4.2) we have

ϕ(t, x) ≥ E
v̂t

x

[∫
τ̆∧t

0

r
(
Xs, v̂

t
s(Xs)

)
ds+ ϕ(t− τ̆ ∧ t,Xτ̆∧t)

]

≥ δ0 E
v̂t

x [τ̆ ∧ t] + P
v̂t

x (τ̆ ≤ t) min
[0,t]×B0

ϕ+ P
v̂t

x (τ̆ > t) min
Rd

ϕ0 ,
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and the result follows.

Remark 4.6. By Lemma 4.5, if inf [0,∞)×B0
ϕ > −∞, then ϕ is bounded below

on [0,∞) × R
d. If this the case, the convergence of the VI and therefore also of the

RVI follows as in the proof of Theorem 3.15. Therefore without loss of generality we

assume for the remainder of the paper that inf [0,∞)×B0
ϕ = −∞. By Lemma 4.5,

this implies that there exists T0 > 0 such that

ϕ(t, x) > min
[0,t]×B0

ϕ ∀t ≥ T0 , ∀x ∈ Bc
0 .

We use the parabolic Harnack inequality which we quote in simplified form from

the more general result in [9, Theorem 4.1] as follows:

Theorem 4.7 (Parabolic Harnack). Let B2R ⊂ R
d be an open ball, and ψ be a

nonnegative caloric function, i.e., a nonnegative solution of

∂tψ(t, x) − aij(t, x) ∂ijψ(t, x) + bi(t, x) ∂iψ(t, x) = 0 on [0, T ]×B2R ,

with aij(t, x) continuous in x and uniformly nondegenerate on [0, T ]× B2R, and a
ij

and bi bounded on [0, T ]×B2R. Then for any τ ∈
(
0, T/4

]
, there exists a constant CH

depending only on R, τ , and the ellipticity constant (and modulus of continuity) of

aij and the bound of aij and bi on B2R, such that

max
[T−3τ,T−2τ ]×BR

ψ ≤ CH min
[T−τ,T ]×BR

ψ .

In the three lemmas that follow we apply Theorem 4.7 with τ ≡ 1 and B′
0 = 2B0.

Lemma 4.8. There exists a constant M0 such that

max
[T−3,T−2]×B0

ϕ− min
[0,T ]×B0

ϕ ≤M0+CH

(
min

[T−1,T ]×B0

ϕ− min
[0,T ]×B0

ϕ
)

∀ T ≥ T0+4 .

Proof. Let ψT (t, x) be the unique solution in W
1,2,p
loc

(
(0, T )×B′

0

)
∩C

(
[0, T ]×B

′

0

)

of

∂tψT (t, x)− aij(x) ∂ijψT (t, x) − bi
(
x, v̂Tt (x)

)
∂iψT (t, x) = 0 on [0, T ]×B′

0 ,

ψT (t, x) = ϕ(t, x) on
(
[0, T ]× ∂B′

0

)
∪
(
{0} ×B

′

0

)
.

Since ψT , ψT − ϕ satisfies

∂tψT (t, x)− aij(x) ∂ijψT (t, x)− bi
(
x, v̂Tt (x)

)
∂iψT (t, x) + r

(
x, v̂Tt (x)

)
= 0

on [0, T ]×B′
0, and

ψT (t, x) = 0 on
(
[0, T ]× ∂B′

0

)
∪
(
{0} ×B

′

0

)
,
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it follows that there exists a constantM0 which depends only on B′
0 (it is independent

of T ) such that

(4.6) sup
[0,T ]×B′

0

∣∣ψT

∣∣ ≤M0 ∀T > 0 .

Indeed this is so because with τ(B′
0) denoting the first exit time from B′

0 and with v̂T

as defined in Definition 3.7 we have

∣∣ψT (t, x)
∣∣ =

∣∣∣∣∣E
v̂T

x

[∫ (T−t)∧τ(B′

0
)

0

r
(
Xs, v̂

T
T−t−s(Xs)

)
ds

]∣∣∣∣∣

≤ sup
U∈U

E
U
x

[∫
τ(B′

0
)

0

∣∣r(Xs, Us)
∣∣ds

]

≤ ‖r‖∞,B′

0
sup
x∈B′

0

sup
U∈U

E
U
x [τ(B

′
0)] <∞ ,

since the mean exit time from B′
0 is upper bounded by a constant uniformly over all

initial x ∈ B′
0 and all controls U ∈ U by the weak maximum principle of Alexandroff.

Let (t̂, x̂) be a point at which ϕ attains its minimum on [T − 1, T ] × B0. By

Lemma 4.5 and Remark 4.6 the function (t, x) 7→ ψT (t, x)−min[0,T ]×B0
ϕ is nonneg-

ative on [T − 4, T ]×B′
0, and by Theorem 4.7 we have

ψT (t, x)− min
[0,T ]×B0

ϕ ≤ CH

(
ψT (t̂, x̂)− min

[0,T ]×B0

ϕ
)

(4.7)

≤ CH

(
ψT (t̂, x̂) + min

[T−1,T ]×B0

ϕ− min
[0,T ]×B0

ϕ
)

for all t ∈ [T − 3, T − 2] and x ∈ B0 . Expressing the left hand side of (4.7) as

ϕ(t, x)− min
[0,T ]×B0

ϕ+ ψT (t, x) ,

and using (4.6), Lemma 4.8 follows with

M0 , (CH + 1)M0 .

Lemma 4.9. Provided ϕ0 ∈ C2(Rd) is nonnegative and bounded, we have

ϕ(t, x)−max
∂B0

ϕ(t, · ) ≤ 2 ‖ϕ0‖∞ +
(
1 + ̺ δ−1

0

)
V ∗(x) ∀x ∈ Bc

0 .

Proof. By Lemma 4.2

(4.8) ϕ(t− τ, x) ≤ ϕ(t, x) + ̺ τ + osc
Rd

ϕ0 ∀x ∈ B0 , 0 ≤ τ ≤ t .
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Therefore by (4.1) and (4.8), using the fact that r ≥ 0 on Bc
0, we obtain

ϕ(t, x) ≤ E
v∗

x

[∫
τ̆∧t

0

r
(
Xs, v

∗(Xs)
)
ds+ ϕ(t− τ̆ ∧ t,Xτ̆∧t)

]
(4.9)

≤ E
v∗

x

[∫
τ̆

0

r
(
Xs, v

∗(Xs)
)
ds

]
+ E

v∗

x

[
ϕ(t− τ̆, Xτ̆) I{τ̆ ≤ t}

]

+ E
v∗

x

[
ϕ0(Xt) I{τ̆ > t}

]

≤ V ∗(x) + E
v∗

x

[
ϕ(t,Xτ̆) I{τ̆ ≤ t}

]

+ ̺Ev∗

x

[
τ̆ I{τ̆ ≤ t}

]
+ osc

Rd
ϕ0 + ‖ϕ0‖∞

≤ V ∗(x) + P
v∗

x

(
{τ̆ ≤ t}

) (
max
∂B0

ϕ(t, · )
)

+ ̺Ev∗

x

[
τ̆ I{τ̆ ≤ t}

]
+ 2 ‖ϕ0‖∞ ,

for x ∈ Bc
0. Since −ϕ(t, x) ≤ ̺ t, we have

−P
v∗

x

(
{τ̆ > t}

) (
max
∂B0

ϕ(t, · )
)
≤ ̺Pv∗

x

(
{τ̆ > t}

)
t(4.10)

≤ ̺Ev∗

x

[
τ̆ I{τ̆ > t}

]
.

Hence subtracting max∂B0
ϕ(t, · ) from both sides of (4.9) and using (4.10) together

with the estimate E
v∗

x [τ̆] ≤ δ−1
0 V ∗(x), we obtain

ϕ(t, x)−max
∂B0

ϕ(t, · ) ≤ V ∗(x) + ̺ δ−1
0 V ∗(x) + 2 ‖ϕ0‖∞ .

We define the set T ⊂ R+ by

T ,

{
t ≥ T0 + 4 : min

[t−1,t]×B0

ϕ = min
[0,t]×B0

ϕ
}
,

where T0 is as in Remark 4.6. By Remark 4.6, T 6= ∅.

Lemma 4.10. Let Assumption 3.2 hold and suppose that the initial condition

ϕ0 ∈ C2(Rd) is nonnegative and bounded. Then there exists a constant C0 such that

osc
B0

ϕ(t, · ) ≤ C0 ∀t ≥ 0 .

Proof. Suppose t ∈ T . Then, by Lemma 4.8,

max
∂B0

ϕ(t− 2, · )− min
[0,t]×B0

ϕ ≤M0 .

Therefore, by Lemma 4.9 we have

(4.11) ϕ(t−2, x)− min
[0,t]×B0

ϕ ≤M0+2 ‖ϕ0‖∞+
(
1+̺ δ−1

0

)
V ∗(x) ∀(t, x) ∈ T ×Bc

0 .
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Next, fix any t0 ∈ T . It suffices to prove the result for t ≥ t0 since it trivially holds

for t in the compact interval [0, t0]. Given t ≥ t0 let τ , sup T ∩ [t0, t]. Note then

that

(4.12) min
[0,τ ]×B0

ϕ = min
[0,t]×B0

ϕ .

By (4.11)–(4.12), and since V ∗ is nonnegative, we obtain

sup
x∈B0

ϕ(t, x) ≤ sup
x∈B0

E
v∗

x

[∫ t−τ+2

0

r
(
Xs, v

∗(Xs)
)
ds+ ϕ(τ − 2, Xt−τ+2)

]
(4.13)

≤ sup
x∈B0

E
v∗

x

[∫ t−τ+2

0

r
(
Xs, v

∗(Xs)
)
ds+ V ∗(Xt−τ+2)

]

+ sup
x∈B0

E
v∗

x

[
ϕ(τ − 2, Xt−τ+2)

]

≤ ‖V ∗‖∞,B0
+ min

[0,t]×B0

ϕ+M0 + 2 ‖ϕ0‖∞ + ̺ δ−1
0 K0 ,

with

K0 , sup
t≥0

sup
x∈B0

E
v∗

x

[
V ∗(Xt)

]
.

By Lemma 3.5, K0 is finite. Since

osc
B0

ϕ(t, · ) ≤ sup
x∈B0

ϕ(t, x)− min
[0,t]×B0

ϕ ,

and t ≥ t0 was arbitrary, the result follows for all t ≥ t0 by (4.13).

The following corollary now follows by Theorem 4.7 and Lemma 4.10.

Corollary 4.11. Under the hypotheses of Lemma 4.10, for any τ > 0 there

exists a constant Ĉ(τ) such that

osc
[nτ,(n+1)τ ]×B0

ϕ ≤ Ĉ(τ) ∀n ∈ N .

5. Convergence of the Relative Value Iteration. We define the set T0 ⊂ R+

by

T0 ,
{
t ∈ R+ : ϕ(t, 0) ≤ ϕ(t′, 0) ∀t′ ≤ t

}
.

In the next lemma we use the variable

Ψ(t, x) , ϕ(t, x)− ϕ(t, 0) .

Lemma 5.1. Let Assumption 3.2 hold and also suppose that the initial condition

ϕ0 ∈ C2(Rd) is nonnegative and bounded. Then

Ψ(t, x) ≤ C0 + 2 ‖ϕ0‖∞ +
(
1 + ̺ δ−1

0

)
V ∗(x) ∀(t, x) ∈ R+ × R

d ,(5.1a)
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and there exists a constant M̂0 such that

ϕ(t, 0)− ϕ(t′, 0) ≤ M̂0 ∀t ≥ t′ .(5.1b)

Proof. The estimate in (5.1a) follows by Lemmas 4.9 and 4.10. To show (5.1b)

note that

(5.2) ϕ(t, 0)− ϕ(t′, 0) ≤ ϕ(t, 0)− min
s∈[0,t]

ϕ(s, 0) ∀t ∈ [0, t] .

Let t∗ ∈ Argmins∈[0,t] ϕ(s, 0) and define T , t − t∗. Clearly, t∗ = t − T ∈ T0. We

have

ϕ(t, 0)− ϕ(t− T, 0) ≤ E
v∗

0

[∫ T

0

r
(
Xs, v

∗(Xs)
)
ds+ ϕ(t− T,XT )

]
(5.3)

− ϕ(t− T, 0)

= E
v∗

0

[∫ T

0

r
(
Xs, v

∗(Xs)
)
ds+ Ψ(t− T,XT )

]

= V ∗(0)− E
v∗

0 [V ∗(XT )] + E
v∗

0

[
Ψ(t− T,XT )

]

≤ V ∗(0) + C0 + 2 ‖ϕ0‖∞ + ̺ δ−1
0 E

v∗

0

[
V ∗(XT )

]
,

where the last inequality follows by (5.1a). However, by Lemma 3.5 there exists a

constant M̃0 such that

sup
T≥0

E
v∗

0 [V ∗(XT )] ≤ M̃0 .

It then follows by (5.3) that ϕ(t, 0) − ϕ(t − T, 0) is bounded above by a constant

independent of t and T . The result then follows by (5.2).

Lemma 5.2. Under the hypotheses of Lemma 5.1 there exists a constant k0 > 0

such that

E
v̂t

x [τ̆ ∧ t] ≤ k0 + 2 δ−1
0

(
1 + ̺ δ−1

0

)
V ∗(x) ∀x ∈ Bc

0 .

Proof. Subtracting ϕ(t, 0) from both sides of (4.2), we obtain

Ψ(t, x) ≥ E
v̂t

x

[∫
τ̆∧t

0

r
(
Xs, v̂

t
s(Xs)

)
ds+ Ψ(t− τ̆ ∧ t,Xτ̆∧t) I{τ̆ ≤ t}+ ϕ0(Xt) I{τ̆ > t}

− ϕ(t, 0) I{τ̆ > t}+
(
ϕ(t− τ̆ ∧ t, 0)− ϕ(t, 0)

)
I{τ̆ ≤ t}

]
.
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We discard the nonnegative term ϕ0(Xt) I{τ̆ > t}, and we use Lemma 4.10 and (5.1b)

to write the above inequality as

Ψ(t, x) ≥ E
v̂t

x

[∫
τ̆∧t

0

r
(
Xs, v̂

t
s(Xs)

)
ds

]
− sup

0≤s≤t

‖Ψ(s, · )‖∞,B0
(5.4)

− E
v̂t

x

[
ϕ(t, 0) I{τ̆ > t}

]
+ E

v̂t

x

[(
ϕ(t− τ̆ ∧ t, 0)− ϕ(t, 0)

)
I{τ̆ ≤ t}

]

≥ E
v̂t

x

[∫
τ̆∧t

0

r
(
Xs, v̂

t
s(Xs)

)
ds

]
− C0 − ϕ(t, 0)Pv̂t

x

(
{τ̆ > t}

)
− M̂0 .

By (5.1a) and (5.4) we obtain

C0 + 2 ‖ϕ0‖∞ +
(
1 + ̺ δ−1

0

)
V ∗(x) ≥ δ0 E

v̂t

x [τ̆ ∧ t]− ϕ(t, 0)Pv̂t

x

(
{τ̆ > t}

)

− C0 − M̂0

≥
(
δ0 −

ϕ(t,0)
t

)
E
v̂t

x [τ̆ ∧ t]− C0 − M̂0 .

The result then follows by Lemma 4.1.

Lemma 5.3. Under the hypotheses of Lemma 5.1,

ϕ(t, 0)Pv̂t

x

(
{τ̆ > t}

)
−−−→
t→∞

0 ,

uniformly on x in compact sets of Rd .

Proof. By Lemma 4.1 and Lemma 5.2 we have

ϕ(t, 0)Pv̂t

x

(
{τ̆ > t}

)
≤
ϕ(t, 0)

t

(
k0+2 δ−1

0

(
1+̺ δ−1

0

)
V ∗(x)

)
−−−→
t→∞

0 ∀x ∈ Bc
0 .

Lemma 5.4. Let Assumption 3.2 hold and also suppose the initial condition

ϕ0 ∈ C2(Rd) is nonnegative and bounded. Then the map t 7→ ϕ(t, 0) is bounded on

[0,∞), and it holds that

− osc
Rd

ϕ0 ≤ lim inf
t→∞

ϕ(t, 0) ≤ lim sup
t→∞

ϕ(t, 0) ≤ M̂0 + ̺ .

Proof. Define

g(t) , inf
U∈U

E
U
0

[∫ t

0

r(Xs, Us) ds+ ϕ0(Xt)

]
.

By (3.30) we have

ϕ(t, 0) = g(t)−

∫ t

0

es−tg(s) ds(5.5)

=
(
1− e−t

)−1
∫ t

0

es−t
(
g(t)− g(s)

)
ds

+
(
1− e−t

)−1
e−t

∫ t

0

es−tg(s) ds ,
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for t > 0. By Lemma 5.1, g(t) ≤ M̂0 + ϕ0(0) + ̺ t. Therefore the second term on the

right hand side of (5.5) vanishes as t→ ∞. By Lemma 4.2, g(t)− g(s) ≥ − oscRd ϕ0

for all s ≤ t. Also, by Lemma 5.1, g(t)−g(s) ≤ M̂0+̺(t−s) for all s ≤ t. Evaluating

the first integral on the right hand side of(5.5) we obtain the bound

(5.6) − osc
Rd

ϕ0 ≤

∫ t

0

es−t
(
g(t)− g(s)

)
ds ≤ M̂0 + ̺ ∀t > 0 .

The result follows by (5.5)–(5.6).

Combining Corollary 4.11, the boundedness of t 7→ ϕ(t, 0) asserted in Lemma 5.4,

and (1.12), it follows that x 7→ ϕ(t, x) is locally bounded in R
d, uniformly in t ≥ 0.

Recall Definition 3.14. The standard interior estimates of the solutions of (3.12)

provide us with the following regularity result:

Theorem 5.5. Under the hypotheses of Lemma 5.4 the closure of the orbit

{Φt[ϕ0] , t ∈ R+} is locally compact in C2(Rd).

Proof. By Corollary 4.11 and Lemma 4.10, the oscillation of ϕ is bounded on any

cylinder [n, n+ 1]×BR, uniformly over n ∈ N. This together with Lemma 5.4 imply

that Φt[ϕ0](x) is bounded on (t, x) ∈ [n, n + 1] × BR, for any R > 0, uniformly in

n ∈ N. It follows that the derivatives ∂ijΦt[ϕ0] are Hölder equicontinuous on every

ball BR uniformly in t [14, Theorem 5.1]. The result follows.

We now turn to the proof of our main result.

Proof of Theorem 1.1. Let {tn} be any diverging sequence and let f be any

limit in in the topology of Markov controls (see [4, Section 2.4]) of {v̂tn} along some

subsequence of {tn} also denoted as {tn}. By Fatou’s lemma and the stochastic

representation of V ∗ in Theorem 3.1, we have,

lim inf
n→∞

E
v̂tn

x

[∫
τ̆∧tn

0

r
(
Xs, v̂

tn
s (Xs)

)
ds

]
≥ E

f
x

[∫
τ̆

0

r
(
Xs, fs(Xs)

)
ds

]
(5.7)

≥ inf
v∈USSM

E
v
x

[∫
τ̆

0

r
(
Xs, v(Xs)

)
ds

]

≥ V ∗(x) − ‖V ∗‖∞,B0
∀x ∈ Bc

0 .

The second inequality in (5.7) is due to the fact that the infimum of

E
U
x

[∫
τ̆

0

r
(
Xs, Us)

)
ds

]

over all U ∈ U is realized at some v ∈ USSM, while the third inequality follows by

(3.5). Therefore, by (1.12), (5.4), (5.7) and Lemmas 5.3 and 5.4 we have that

lim inf
t→∞

ϕ(t, x) = lim inf
t→∞

(
Ψ(t, x) + ϕ(t, 0)

)
(5.8)

≥ V ∗(x) − ‖V ∗‖∞,B0
− C0 − M̂0 − osc

Rd
ϕ0 ∀x ∈ Bc

0 .
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Also, by (5.1a) and Lemma 5.3 we obtain

lim sup
t→∞

ϕ(t, x) = lim sup
t→∞

(
Ψ(t, x) + ϕ(t, 0)

)
Ψ(t, x)(5.9)

≤ C0 + 2 ‖ϕ0‖∞ +
(
1 + ̺ δ−1

0

)
V ∗(x) + M̂0 + ̺

for all (t, x) ∈ R+ × R
d.

Hence, by (5.8)–(5.9) if we select

c = −
(
‖V ∗‖∞,B0

+ C0 + M̂0 + osc
Rd

ϕ0) ,

then any ω-limit point of ϕ(t, x) as t → ∞ lies in Gc (see Definition 3.14). By

Theorem 3.15 if ϕ0 ∈ Gc, then ϕ(t, x) → V ∗(x) + ̺ as t → ∞. Since the ω-limit set

of ϕ0 is invariant and the only invariant set in Gc is the singleton {V ∗ − V ∗(0) + ̺}

the result follows.

6. Concluding Remarks. We have studied the relative value iteration algo-

rithm for an important class of ergodic control problems wherein instability is pos-

sible, but is heavily penalized by the near-monotone structure of the running cost.

The near-monotone cost structure plays a crucial role in the analysis and the proof

of stabilization of the quasilinear parabolic Cauchy initial value problem that models

the algorithm.

We would like to conjecture that the RVI converges starting from any initial

condition ϕ0 ∈ OV ∗ . It is only the estimate in Lemma 4.2 that restricts us to consider

bounded initial conditions only. We want to mention here that a related such estimate

can be obtained as follows:

ϕ(t, x) = inf
U∈U

E
U
x

[∫ t

0

r(Xs, Us) ds+ ϕ0(Xt)

]

= inf
U∈U

E
U
x

[∫ τ

0

r(Xs, Us) ds+ ϕ(t− τ,Xt−τ )

]

≥ −̺ τ + min
y∈Rd

ϕ(t− τ, y) ∀τ ∈ [0, t] , ∀x ∈ R
d .

In particular

min
Rd

ϕ(t− τ, · )−min
Rd

ϕ(t, · ) ≤ ̺ τ ∀τ ∈ [0, t] ,

and this estimate does not depend on the initial data ϕ0. This suggests that it

is probably worthwhile studying the variation of the RVI algorithm that results by

replacing ϕ(t, 0) by minRd ϕ(t, · ) in (1.7).

Rate of convergence results and computational aspects of the algorithm are open

issues.
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