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On the maximum induced density of directed stars

and related problems

Hao Huang∗

Abstract

Let k ≥ 3 be an integer, we prove that the maximum induced density of the k-vertex

directed star in a directed graph is attained by an iterated blow-up construction. This confirms

a conjecture by Falgas-Ravry and Vaughan, who proved this for k = 3, 4. This question provides

the first known instance of density problem for which one can prove extremality of an iterated

blow-up construction. We also study the inducibility of complete bipartite digraphs and discuss

other related problems.

1 Introduction

In modern extremal combinatorics, a substantial number of problems study the asymptotic relations

between densities of subgraphs, and can be formulated in the following language. Given a family

F of graphs and another graph H, define the Turán H-number of F to be the maximum number

of induced copies of H in a F-free graph on n vertices, and denote it by exH(n,F). We also denote

by πH(F) the limit of the maximum induced density of H in a F-free graph when the number

of vertices tends to infinity. Similar definitions can be as well made in the setting of r-uniform

hypergraph, directed graph, and so forth. When H is a single edge, πe(F) is just the classical

Turán density. It has been a long-standing open problem in extremal combinatorics to understand

these densities for families of hypergraphs and directed graphs. For results and techniques, we refer

the readers to the survey [10].

On the other hand, when F = ∅, πH(∅) studies the maximum induced density of H in arbitrary

graph, and is known as the inducibility of H. Although there are various works [1, 2, 3, 5, 9, 11] on

the inducibility of graphs, there are relatively fewer results for directed graphs. Sperfeld [13] studied

the inducibility of some digraphs on three vertices. Falgas-Ravry and Vaughan [6] determined π~S3
(∅)

and π~S4
(∅) by flag algebra. Here ~Sk is the directed star on k vertices, with one vertex being the

center, and k− 1 edges oriented away from it. They further made the following conjecture that the

extremal digraph having the maximum induced density of ~Sk is always an unbalanced blow-up of
~S2 iterated inside one part.
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Conjecture 1.1. For every integer k ≥ 3,

π~Sk
(∅) = αk = max

0≤x≤1

kx(1− x)k−1

1− xk
.

Assume the maximum is attained by x = xk, then the extremal configuration is constructed by

starting with two parts |A| = xkn and |B| = (1− xk)n, adding all the edges oriented from A to B,

and iterating this process inside A.

As we mentioned earlier, the proofs for cases k = 3 and k = 4 employ the method of flag

algebra developed by Razborov [12] and are partly computer assisted. However since the search

space and running time grow exponentially in k, a different approach may be needed for large k.

It is also worth mentioning that for most Turán-type problems studying densities of subgraphs, if

the conjectured extremal graph comes from such iterated construction instead of a simple blow-up

of small graph, usually we do not know how to obtain an exact bound. For example, the Turán

density of K−
4

(the unique 3-graph on 4 vertices with 3 edges) was conjectured to be achieved by

the iterated blow-up of certain 6-vertex 3-graph by Frankl and Furëdi [7] and is still open. Another

example is the special case of the well-known Caccetta-Häggkvist conjecture [4]: every n-vertex

digraph with minimum outdegree at least n/3 contains a directed triangle. Its difficulty probably

lies in the fact that the iterated blow-up of a directed 4-cycle is one of the conjectured extremal

examples. To the best of our knowledge, the case k = 3 and 4 of Conjecture 1.1 are probably the

only examples that the exact bound has been proved for an iterated construction, which leads us

to believe there exists a simpler and more human-readable proof. Actually we are able to apply

certain operations on digraphs, and reduce it to an optimization problem, and verify this conjecture

for every directed star ~Sk for k ≥ 3.

The rest of this short paper is organized as follows. In Section 2 we give a complete proof

of Conjecture 1.1. Section 3 discusses the inducibility for complete bipartite digraphs. In the

concluding remarks, we mention some related problems and possible future directions for research.

2 Main proof

In this section we will give a proof of Conjecture 1.1. Our proof is inspired by that of [3]. Assume

Dn is the extremal directed graph on n vertices which has the maximum number of induced copies

of of ~Sk. We define an equivalence relation on its vertex set V (Dn) as follows: u ∼ v iff they

have the same in- and out-neighbordhoods, i.e. N+(u) = N+(v) and N−(u) = N−(v). This

equivalence relation naturally partitions the vertices of Dn into the following equivalence classes:

V (Dn) = V1 ∪ · · · ∪Vm, where each Vi induces an empty digraph. From the definition, between two

classes Vi and Vj there are three possible scenarios: (i) all the edges are oriented from Vi to Vj; (ii)

all the edges are oriented from Vj to Vi; (iii) there is no edge between Vi and Vj . We claim that

a sequence of operations can be applied on Dn such that the number of induced copies of ~Sk does

not decrease, and in the resulted digraph case (iii) never occurs.
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Lemma 2.1. Given a directed graph Dn with equivalence classes V1, · · · , Vm, and 1 ≤ i 6= j ≤ m.

If there is no edge between Vi and Vj, we can merge Vi and Vj into one equivalence class without

decreasing the number of induced copies of ~Sk.

Proof. Assume |Vi| = x and |Vj| = y. Denote by D′
n the digraph formed by moving vertices

between Vi and Vj and changing their neighborhoods accordingly, with |V ′
i | = z, |V ′

j | = x+ y − z.

Let N00 be the number of induced copies of ~Sk in D not involving vertices in Vi or Vj ; N10 be the

number of induced copies of ~Sk using vertices from Vi but not vertices from Vj; N01 be the number

of induced copies of ~Sk using vertices from Vj but not vertices from Vi; and finally N11 be the

number of induced copies of ~Sk using vertices from both Vi and Vj . Obviously the total number of

induced copies of ~Sk is equal to N00 + N10 + N11 + N11. Similarly we also define the parameters

N ′
00, N

′
10, N

′
01, N

′
11 for D′

n.

Note that N ′
00 = N00 since only the adjacencies involving vertices in Vi ∪ Vj might be changed.

We also have N11 = N ′
11. Consider an induced copy of ~Sk containing vi ∈ Vi, and vj ∈ Vj . Since

there is no edge between the two parts Vi and Vj, vi is not adjacent to vj. Therefore both of them

are the leaves of ~Sk. Because all the leaves are equivalent in ~Sk, moving vertices between Vi and

Vj does not change the value of N11.

Next we show that z can be chosen such that N ′
10+N ′

01 ≥ N10+N01. Denote by sl the number

of (k − l)-vertex sets S in [n]\(Vi ∪ Vj) such that S together with any l vertices in Vi induce a

copy of ~Sk. Similarly let tl be the number of (k − l)-vertex sets T such that T together with any l

vertices in Vj induce a copy of ~Sk. Then by the definition of equivalence class, we have

N10 =

k
∑

l=1

(

x

l

)

sl, N01 =

k
∑

l=1

(

y

l

)

tl,

N ′
01 =

k
∑

l=1

(

z

l

)

sl, N ′
01 =

k
∑

l=1

(

x+ y − z

l

)

tl.

It is not difficult to verify that
(

z
l

)

and
(

x+y−z
l

)

are both convex functions in the variable z.

Therefore one could merge these two equivalence classes Vi and Vj by taking either z = 0 or z = x+y

in the new digraph D′
n, such that N ′

01 +N ′
10 ≥ N01 +N10. �

Note that after merging vertices in Lemma 2.1, the number of equivalence classes decreases, so

this process stops after a finite number of steps. We may assume that in the extremal digraph Dn

with equivalent classes {V1, · · · , Vm}, and any i 6= j, either there is a complete bipartite digraph

with every edge oriented from Vi to Vj, or from Vj to Vi. We denote them by Vi → Vj and Vj → Vi

respectively. Assume |Vi| = win where
∑m

i=1
wi = 1. The induced density of ~Sk in Dn is equal to

1
(

n
k

)

∑

Vi→Vj

win

(

wjn

k − 1

)

=
∑

Vi→Vj

kwiw
k−1

j + o(1).

Since π~Sk
(∅) is the limit of the maximum induced density when n tends to infinity, we can neglect

the o(1) term here. Without loss of generality, we may assume that w1 ≥ w2 ≥ · · · ≥ wm by
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reordering {Vi}. If Vi → Vj in Dn for some i < j, then by changing the orientation of this complete

bipartite digraph, the induced density increases by wjw
k−1

i −wiw
k−1

j ≥ 0. Therefore we can assume

Vj → Vi for any i < j. Basically speaking we obtain Dn to be the unbalanced blow-up of a transitive

tournament, and the induced density of ~Sk in Dn is now equal to

fm(w1, · · · , wm) = k
∑

1≤i<j≤m

wk−1

i wj

= k ·
(

wk−1
1

(w2 + · · · + wm) + wk−1
2

(w3 + · · ·+ wm) + · · · + wk−1
m−1

wm

)

Let Fm(x) = max fm(w1, · · · , wm) subject to
∑

i wi = x and wi ≥ 0, then π~Sk
(∅) = lim supm→∞ Fm(1).

Because fm is a homogeneous polynomial of degree k, we have Fm(x) = Fm(1)xk and thus

Fm(1) = max
0≤w1≤1

kwk−1
1

(1− w1) + Fm−1(1− w1)

= max
0≤w1≤1

kwk−1

1
(1− w1) + (1− w1)

kFm−1(1). (1)

Taking w1 = 0 in (1) shows that Fm(1) ≥ Fm−1(1). Due to the fact that the induced density

can never be greater than 1, {Fm(1)} is a bounded monotone non-decreasing sequence and thus

converges to a limit, denoted by αk. Let m → ∞ in (1), we have

αk = max
0≤x≤1

kxk−1(1− x) + (1− x)kαk

Let βk = max0≤x≤1

kxk−1(1− x)

1− (1− x)k
, we now prove that αk = βk. Since

kxk−1(1− x)

1− (1− x)k
is continuous

and bounded on the compact set [0, 1], βk =
kyk−1(1− y)

1− (1− y)k
for some y ∈ [0, 1] and thus

αk ≥ kyk−1(1− y) + (1− y)kαk = (1− (1− y)k)βk + (1− y)kαk,

which implies that αk ≥ βk. On the other hand, suppose z ∈ [0, 1] maximizes kxk−1(1 − x) + (1−
x)kαk, then αk = kzk−1(1− z) + (1− z)kαk, and

βk ≥ kzk−1(1− z)

1− (1− z)k
= αk.

Therefore

π~Sk
(∅) = αk = βk = max

0≤x≤1

kxk−1(1− x)

1− (1− x)k
= max

0≤x≤1

kx(1− x)k−1

1− xk
.

Suppose xk ∈ [0, 1] maximizes kx(1 − x)k−1/(1 − xk), from the above proof, we can see that

the bound is obtained uniquely by the infinite sequence wi = xi−1(1 − xk), i = 1, 2, · · · , which
corresponds to the iterated blow-up of ~S2 and concludes the proof of Conjecture 1.1.
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3 Inducibility of complete bipartite digraph

Note that the proof of Lemma 2.1 also works for any digraph H in which every two vertices are in

the same equivalence class whenever they are not adjacent. In particular, it works for the problem

of maximizing the induced density of complete bipartite digraph ~Ks,t. Here V ( ~Ks,t) = [s + t],

and the edge set consists of edges from i to s + j for every 1 ≤ i ≤ s, 1 ≤ j ≤ t. When s = 1,

this corresponds to the directed star ~St+1. Since π ~Ks,t
(∅) = π ~Kt,s

(∅) by flipping the orientation of

every edge, we can assume s ≤ t. Similarly as before, if the equivalence classes V1, · · · , Vm in the

extremal digraph Dn has sizes |Vi| = win with w1 ≥ w2 ≥ · · · ≥ wm, then the maximum induced

density π ~Ks,t
(∅) is equal to limm→∞ Fm, where Fm is the maximum of fm(w1, · · · , wm) subject to

∑m
i=1

wi = 1 and wi ≥ 0, with

fm(w1, · · · , wm) =

(

s+ t

s

)

∑

1≤i<j≤m

wt
iw

s
j .

Theorem 3.1. For integers 2 ≤ s ≤ t,

π ~Ks,t
(∅) =

(

s+ t

s

)(

s

s+ t

)s( t

s+ t

)t

,

which is achieved by the balanced blow-up ~K s
s+t

n, t
s+t

n of ~Ks,t, when n → ∞.

Proof. First by taking m = 2 and w1 =
t

s+t
and w2 =

s
s+t

, we have

π ~Ks,t
(∅) = lim

m→∞
Fm ≥ F2 ≥

(

s+ t

s

)(

s

s+ t

)s( t

s+ t

)t

.

On the other hand,

fm(w1, · · · , wm) =

(

s+ t

s

)

∑

1≤i<j≤m

wt
iw

s
j

=

(

s+ t

s

)



wt
1

(

m
∑

i=2

ws
i

)

+
∑

2≤i<j≤m

wt
iw

s
j





≤
(

s+ t

s

)



wt
1

(

m
∑

i=2

ws
i

)

+
∑

2≤i<j≤m

wt
1wiw

s−1

j



 (2)

≤
(

s+ t

s

)

wt
1(w2 + · · ·+ wm)s.

The first inequality is because wi ≤ w1 and wj ≤ w1. The second inequality follows from the fact

that the coefficient of wiw
s−1

j in the expansion of (w2+· · ·+wm)s is equal to s, which is greater than

the coefficient 1 of the corresponding term in the left hand side, whenever s ≥ 2. It follows from

inequality (2) that Fm ≤ F2. By elementary calculus, one can easily show that wt
1w

s
2 is maximized

when w1 =
t

s+t
and w2 =

s
s+t

, which finishes the proof of Theorem 3.1. �
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4 Concluding remarks

• In [6], the authors mention that for any given digraph D, an auxiliary 3-uniform hypergraph

G(D) can be defined by setting xyz to be a 3-edge whenever {x, y, z} induces a copy of ~S3 in D.

It is not hard to check that G(D) is always a C5-free 3-graph. Here C5 refers to the tight cycle on

5 vertices, whose edges are (123), (234), (345), (451), and (512). Mubayi and Rödl conjectured

that the Turán number π(C5) is equal to 2
√
3−3, with exactly the same iterated construction in

the ~S3 problem. The result π~S3
(∅) = max0≤x≤1 3x(1− x)2/(1− x3) = 2

√
3− 3 settles the special

case when the 3-graph has the form G(D) from a digraph D.

• Sperfeld [13] studies the maximum induced density of some small digraphs, and in particular he

proved that π ~C3
(∅) = 1/4 with the extremal example including the random tournament and the

iterated blow-up of ~C3, and conjecture that π ~C4
(∅) is achieved by the iterated blow-up of ~C4. It

would be of great interest to develop new techniques to attack this problem, since the solution

of this problem might as well provide insights into solving the Caccetta-Häggkvist conjecture.

• Although obtaining a general solution to the graph or digraph inducibility problem seems to be

difficult, Hatami, Hirst and Norine [8] showed that for a given graph H, the n-vertex graph G

containing the most number of induced copies of sufficiently large balanced blow-up of H, is

itself essentially a blow-up of H. It would be interesting if similar results can be proved for the

inducibility of directed graphs, which may also involve some iterated blow-ups.

Acknowledgement. The author would like to thank Benny Sudakov for his valuable comments

and discussions.
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