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Abstract

We present an algorithm for maintaining a maximal matching graph under addition and deletion
of edges. Our algorithm is randomized and it takes expeateattzedO(logn) time for each edge
update where: is the number of vertices in the graph. Moreover, for any sega oft edge updates,
the total time taken by the algorithm@(t log n. + n log® n) with high probability.

Note: The previous version of this result appeared in SIAM J. Cordi(1): 88-113, 2015. However, the
analysis presented there for the algorithm was erroneduis. VErsion rectifies this deficiency without any
changes in the algorithm while preserving the performameents of the original algorithm.
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1 Introduction

Let G = (V, E) be an undirected graph on= |V| vertices andn = |E| edges. A matching i is a
set of edgesV/ C FE such that no two edges it/ share any vertex. The study of matchings satisfying
various properties has remained the focus of graph theoyefcades [21]. It is due to the elegant structure
of matching that it also appears in various combinatorighagation problems[11, 20]. A few well studied
matching problems are maximum cardinality matching [1Q,27,[23], maximum weight matching [12,
[18], minimum cost matching (chapter 7, [19]), stable matgHL3], popular matchind [2]. Among these
problems, the maximum cardinality matching problem hasitstedied most extensively. A matchidd

is of maximum cardinality if the number of edges i is maximum. A maximum cardinality matching
(MCM) is also referred to as maximum matching A matching is said to be maximalmatching if it
cannot be strictly contained in any other matching. It ishlkebwn that a maximal matching guarantees
a 2-approximation of the maximum matching. Though it is g@iasy to compute a maximal matching in
O(m + n) time, designing an efficient algorithm for maximum matchivas remained a very challenging
problem for researchers [10,]22]. The fastest algorithidate, for maximum matching runs i0(m+/n)
time and is due to Micali and Vazirani [22]. In this paper, vaeligss the problem of maintaining a maximal
matching in a dynamic graph.

Most of the graph applications in real life deal with graphattare not static, viz., the graph changes
over time caused by deletion and insertion of edges. Thisniats/ated researchers to design efficient
algorithms for various graph problems in dynamic environmén algorithmic graph problem is modeled
in the dynamic environment as follows. There is an onlinausage of insertion and deletion of edges and
the goal is to update the solution of the graph problem atieh@dge update. A trivial way to achieve this
is to run the best static algorithm for this problem afterreadge update; clearly this approach is wasteful.
The aim of a dynamic graph algorithm is to maintain some cleega structure for the underlying problem
such that the time taken to update the solution is much snthba that of the best static algorithm. There
exist many efficient dynamic algorithms for various fundaiaéproblems in graphs |6, 116,127,/ 28] 30].

Baswana, Gupta and Sen [5] had presented a fully dynamicithigofor maximal matching which
achievedO(log n) expected amortized time per edge insertion or deletion.ellar, for any sequence of
t edge updates, the total time taken by the algorithi® (iglog 7 4 n log® n) with high probability. Their
algorithm improved an earlier result of Onak and Rubinf&@8][who presented a randomized algorithm
for maintaining ac-approximate (for some unspecified large constamhatching in a dynamic graph with
O(log? n) expected amortized time for each edge update.

This algorithm also implied a similar result for maintaigia two approximate vertex cover. It is also
used as a basis for maintaining approximate maximum weigiitmmg in a dynamic graphl[3].

Unfortunately, the analysis given inl[5] has a crucial flavg.vthe statement of Lemma 4.10 [5] is
not true in general. Although the bound on the update timeanigisally dependent on Lemma 4.10, we
have presented an alternate proof of the claimed updatedtiged on an interesting property of the original
algorithm that was not reported earlier. For completengsd)ave presented the full details of the algorithm
of [5] and the new corrected analysis in this paper. This @ryds interesting in its own right and may have
other useful applications of the algorithm.

2 An overview

Let M denote a matching of the given graph at any moment. Every @dggis called anatchededge and
an edge inP\ M is called arunmatchededge. For an edge:, v) € M, we defineu to be themateof v and

vice versa. For a vertex, if there is an edge incident to it in the matching, thenx is amatchedvertex;

otherwise it isfree or unmatched



In order to maintain a maximal matching, it suffices to ensbes there is no edggé:, v) in the graph
such that both, andv are free with respect to the matching. From this observation, an obvious approach
will be to maintain the information for each vertex whethésimatched or free at any stage. When an edge
(u,v) isinserted, addu, v) to the matching ift: andv are free. For a case when an unmatched édge) is
deleted, no action is required. Otherwise, for beotindv we search their neighborhoods for any free vertex
and update the matching accordingly. It follows that eadtetgptake$) (1) computation time except when
it involves deletion of a matched edge; in this case the ceatiom time is of the order of the sum of the
degrees of the two vertices. So this trivial algorithm iste@fficient forsmalldegree vertices, but could be
expensive fotarge degree vertices. An alternate approach to handling deleti@ matched edge is to use
a simple randomized technique - a verieis matched with a randomly chosen neighborollowing the
standard adversarial model, it can be observed that antexpig(«)/2 edges incident to will be deleted
before deleting the matched ed@e v). So the expected amortized cost per edge deletion feroughly

O(%). If deg(v) < deg(u), this cost isO(1); but if deg(v) > deg(u), then it can be as bad
as the trivial algorithm. We combine the idea of choosingreloen mate and the trivial algorithm suitably
as follows. We first present a fully dynamic algorithm whiathizzves expected amortizé#\/n) time per
update. We introduce a notion oafvnershipof edges in which we assign an edge to that endpoint which has
higherdegree. We maintain a partition of the set of vertices into lewels : 0 and 1. Level O consists of
vertices which owrfeweredges than an appropriate threshold and we handle the spdéd¢eel O using the
trivial algorithm. Level 1 consists of vertices (and theiates) which owrarger number of edges and we
use the idea of random mate to handle their updates. In plarti@ vertex chooses a random mate from its
set of owned edges which ensures that it selects a neighbmghe lower degree.

A careful analysis of th&(/n) update time algorithm suggests thafirger partition of vertices may
help in achieving a better update time. This leads to our &lgarithm which achieves expected amortized
O(logn) time per update. More specifically, our algorithm maintansinvariant that can be informally
summarized as follows.

Each vertex tries to rise to a level higher than its currentele if, upon reaching that level, there are
sufficiently large number of edges incident on it from lowafels. Once a vertex reaches a new level, it
selects a random edge from this set and makes it matched.

Note that we say thdh vertex rises” to indicate that the vertex moves to a higher level &ngertex
falls” to indicate that the vertex moves to a lower level. A vertey go fall to a lower level if the number
of edges incident to it decreases. But a vertex only use®itghorhood information to decide whether to
move to higher or lower level. Overall, the vertices usertlmial information to reach a global equilibrium
state in which after each update each vertex is atithd level having no incentive to either move above or
below its current level.

2.1 Organization of the paper

For a gentle exposition of the ideas and techniques, we &stribe a simple but less efficient fully dynamic
algorithm for maximal matching in Section 4. We present aualffully dynamic algorithm which achieves
expected amortized (log n) time per update in Section 5. In Section 6, we illustrate sarmgle of a
dynamic graph that establishes the tightness of the appeddn factor guaranteed by our algorithm. In
the following section, we describe notations and elemgmtsults from the probability theory that we shall
use.



3 Preliminaries

We shall useM to denote the matching maintained by our algorithm at argest®ur algorithms maintain a
partition of the set of vertices among various levels. Wéi sise LEVEL (u) to denote the level of a vertex
We defineLEVEL (u,v) for an edgg(u, v) asmax(LEVEL (u), LEVEL (v)). Our algorithms will ensure that
both the endpoints of each matched edgé&/rare present at the same level. So the matchignaintained
by our algorithms will be a set of tuples as follows.

M = {(u,v,?) | uis matched with at level/}

The analysis of our algorithms will use a basic result absytranetric random walk as follows.

Asymmetric random walk on a line

Consider a particle performing a discrete random walk one lin each step, it moves one unit to the right
with probability p or to the left with probabilityy = 1 — p. Each move is independent of the moves made in
the past. The following lemma holdspf> q.

Lemma 3.1 Suppose the random walk starts at locatibanits to the right of the origin. Then the proba-
¢
bility that it ever reaches origin withid, steps for any givet is less than(%) .

The proof of Lemma 3]1 is sketched in Appendix. During thelysis of algorithms, we shall use the
terminologyvery high probabilityfor those events whose probabilitylis- n¢ for some positive constant

4 Fully dynamic algorithm with expected amortizedO(/n) time per update

The algorithm maintains a partition of the set of vertices itwo levels - 0 and 1. We now introduce the
concept ofownershipof the edges. Each edge present in the graph will be owned &yoboth of its
endpoints as follows. If both the endpoints of an edge are\al D, then it is owned by both of them.
Otherwise it will be owned by exactly that endpoint whichsligt higher level. If both the endpoints are
at level 1, the tie will be broken suitably by the algorithms fe algorithm proceeds, the vertices will
make transition from one level to another and the ownershgages will also change accordingly. L@,
denote the set of edges owned byt any moment of time. Each vertexc V will keep the setO, in
a dynamic hash tablé [26] so that each search or deletioratiperon(, can be performed in worst case
O(1) time and each insertion operation can be performed in eggéetl) time. This hash table is also
suitably augmented with a linked list storidg, so that we can retrieve all edges of égtin O(|O,|) time.
The algorithm maintains the following three invarianteaftach update.

1. Every vertex at level 1 is matched. Every free vertex all@whas all its neighbors matched.
2. Every vertex at level 0 owns less thafu edges at any moment of time.
3. Both the endpoints of every matched edge are at the samle lev

The first invariant implies that the matchingt maintained is maximal at each stage. A verteis
said to be alirty vertex at a moment if at least one of its invariants does néd. hin order to restore
the invariants, each dirty vertex might make transition dme new level and do some processing. This
processing involves owning or disowning some edges depgngion whether the level of the vertex has
risen or fallen. Thereafter, the vertex will exeCtR&@NDOM-SETTLE Or NAIVE-SETTLE to settle dowrat
its new level. The pseudocode of our algorithms for handimsgrtion and deletion of an edge is given in
Figure[d and Figurgl2.



Handling insertion of an edge

Let (u, v) be the edge being inserted. If eitheor v are at level 1, there is no violation of any invariant. So
the only processing that needs to be done is to agsign) to O, if LEVEL(u) = 1, and toO,, otherwise.
This takesO(1) time. However, if bothu andv are at level 0, then we exeCUHANDLING -INSERTION
procedure which does the following (see Figure 1).

Procedure HEANDLING—INSERTION (U, V)

Oy + Oy, U{(u,v)};

Oy + Oy U{(u,v)};

if wandv are FREEthen M + M U {(u,v)};
if |Oy| > |0, then swagu, v);

if |Ou] = /nthen

foreach (u,w) € O, do

| delete(u, w) from O,;

8 & < RANDOM-SETTLE(u);
9 if x 2 NULL then NAIVE-SETTLE(z);
10 if w was previous mate af then NAIVE-SETTLE(w);

~N o g A~ W N P

Procedure ranpom-seTTLE (u): Finds a random edgév,y) from the edges owned by and
returns the previous mate gf

1 Let (u,y) be a uniformly randomly selected edge frdwy;

2 foreach (y,w) € O, do

3 | delete(y, w) from Oy;

N

if ¢ is matchedhen

x < MATE(y);

M — M\{(z,y)}
else
7 L x < NULL;

M = MU{(u,y)};
LEVEL (u) < 1; LEVEL(y) < 1;
10 returnz;

o o

© o

Procedurenaive-seTTLE (u) : Finds a free vertex adjacent todeterministically

1 for each(u,z) € O, do

2 if z is freethen
3 M~ MU{(u,2)};
4 Break;

Figure 1: Procedure for handling insertion of an eflger) whereLEVEL (u) = LEVEL (v) = 0.

Both v andv become the owner of the ed@e, v). If v andv are free, then the insertion 0f, v) has
violated the first invariant for. as well asv. We restore it by addingu, v) to M. Note that the insertion
of (u,v) also leads to increase @, | and|O,| by one. We process that vertex from, v} which owns
larger number of edges; letbe that vertex. 1{O,| = /n, then Invariant 2 has got violated. We execute
RANDOM-SETTLE(u); as a resultu moves to level 1 and gets matched to some vertex,ysaelected



randomly uniformly from@®,,. Vertexy moves to level 1 to satisfy Invariant 3.«f andx were respectively
the earlier mates af andy at level 0, then the matching afwith y has rendered andz free. So to restore
Invariant 1, we executRAIVE -SETTLE(w) andNAIVE-SETTLE(x). This finishes the processing of insertion
of (u,v). Note that whenu rises to level 1O, | remains unchanged. Since all the invariantsfavere
satisfied before the current edge update, it follows thaséoend invariant fov still remains valid.

Handling deletion of an edge

Let (u,v) be an edge that is deleted. (i, v) ¢ M, all the invariants are still valid. So let us consider the
nontrivial case wherfu,v) € M. In this case, the deletion @¢f;,v) has made: andv free. Therefore,
potentially the first invariant might have got violated foeandwv, making them dirty. We do the following
processing in this case.

If edge(u, v) was at level 0, then following the deletion @f, v), vertexu executesNAIVE -SETTLE(u),
and then vertex executesNAIVE-SETTLE(v). This restores the first invariant and the verticesndv are
cleanagain. If edg€u, v) was at level 1, them is processed using the procedure shown in Figlre 2 which
does the following is processed similarly).

Procedure HEANDLING-DELETION (u,v)

foreach (u,w) € O, and LEVEL(w) =1 do
| move(u,w) from O, to O,;

if |Ou] > +/nthen

x < RANDOM-SETTLE(u);

if £ % NULL then NAIVE-SETTLE(z);

else

LEVEL (u) < 0;

foreach (u,w) € O, and LEVEL(w) = 0do
| add(u,w) to O,;

9 NAIVE -SETTLE(uw);
10 foreach (u, w) € O, do

N

A~ W

11 if |Ow| = /nthen
12 Z <— RANDOM-SETTLE(w);
13 if x # NULL then NAIVE-SETTLE(x);

Figure 2: Procedure for processingvhen(u, v) € M is deleted andEVEL (u)=LEVEL (v)=1.

First, u disowns all its edges whose other endpoint is at level 10/f is still greater than or equal to
v/n, thenu stays at level 1 and executR8NDOM-SETTLE(u). If |O,] is less than/n, u moves to level 0
and executesiAIVE-SETTLE(u). Note that the transition af from level 1 to 0 leads to an increase in the
number of edges owned by each of its neighbors at level 0. &twnsl invariant for each such neighbor, say
w, may get violated ifO,,| = v/n, makingw dirty. So we scan each neighborwéequentially and for each
dirty neighborw (that is,|O,| = 1/n), we executeRANDOM-SETTLE(w) to restore the second invariant.
This finishes the processing of deletion(of v).

It can be observed that, unlike insertion of an edge, thetidel®f an edge may lead to creation of a
large number of dirty vertices. This may happen if the deletgge is a matched edge at level 1 and at least
one of its endpoints move to level 0.



4.1 Analysis of the algorithm

While processing the sequence of insertions and deletibedges, an edge may become matched or un-
matched at different update steps. We analyze the algotsing the concept afpochswhich we explain
as follows.

Definition 4.1 At any timet, let (u,v) be any edge itM. Then theepochdefined by(u, v) at timet is the
maximal continuous time period containingluring which it remains inM. An epoch is said to belong to
level O or 1 depending upon the level of the matched edge #fimtas the epoch.

The entire life span of an edde, v) consists of a sequence of epochg®fv) separated by the con-
tinuous periods whefu, v) is unmatched. It follows from the algorithm that any edgeatpdhat does
not change the matching is processed)(l) time. An edge update that changes the matching results
in the start of new epoch(s) or the termination of some exdsdpoch(s). For the sake of analysis, we
will redistribute the computation performed at any updagp s among the epochs that are created or ter-
minated at step. More specifically, let epoch dfu;,v1), (u2,v2), ..., (u;,v;) be created and epochs of
(w1, 1), (w2, x2),. .., (wg, xx) be terminated at step We will redistribute total computation performed at
stept in such a way that:

Total computation performed at step = Zﬁzl computation associated with the start of epoehv;) +
Zle computation associated with the termination of epach z;)

Now, we shall analyze the computation involved in each ptace of our algorithm and distribute it

suitably among various epochs.

1. NAIVE-SETTLE(u)
Observe that whenever the procedureVE-SETTLE(u) is carried outu is present at level 0, and
hence|O,| < y/n. The procedur&lAIVE-SETTLE(u) searches for a free neighbor @by scanning
O,. Hence, the time complexity afAIVE-SETTLE(u) is O(|O,|) = O(y/n). Furthermore, this
procedure is called wheneverloses its mate, say. So we can associate the computation cost of
NAIVE-SETTLE(u) with the termination of the previous epoth, v).

2. RANDOM-SETTLE(u)
Observe that wheneverNDOM-SETTLE(u) is invoked,u owns at least/n edges incident from level
0, and hencéO,,| > /n. During RANDOM-SETTLE(u), u finds a random mate from level 0. This
is done by selecting a random numbee [1, |0, |], and then picking the” edge, sayu,y), from
the linked list storing®,,. This takesO(|O,|) time. Vertexu thenpulls y to level 1 to satisfy the
third invariant. In this procesg, becomes the sole owner of all those edges whose other emdpoin
at level O (line 2,3). Sincg was the owner of at mostn edges, the total computation time involved
in performing this step i©)(y/n). Other steps iMRANDOM-SETTLE can be executed i®(1) time.
Hence the total computation timed|O,,| + /n) which isO(]0,,|) since|0,| > \/n. We associate
this computation time with the start of the epdehy) that gets created at level 1.

3. HANDLING-INSERTION(u, v)
This procedure take®(1) time unless one of the endpoints (@f, v) starts owning,/n edges. In
that case, the procedure invokesNDOM-SETTLE (line 8) andNAIVE-SETTLE (line 9,10). We have
already distributed the time taken in these procedureseadbpective epochs that get created. Ex-
cluding these tasks, the only computation performed inglasedure is in theorloop. The purpose
of this loop is to make: the sole owner of all its edges incident from level 0. Sineaavns./n edges
from level O, the total computation time involved in perfangthis step iSD(y/n). We associate this
computation time with the start of the epoch created: lay level 1.



4. HANDLING -DELETION(u, v)
ProcedureHANDLING -DELETION(u, v) is carried out when the matched edgev) at level 1 gets
deleted. In addition to invOKINGRANDOM-SETTLE and NAIVE-SETTLE procedures whose compu-
tation cost is already assigned to respective epochs, tocegure scans the lig?, at most twice.
Notice that|O,,| can be©(n). We associate this computation time@fn) with the termination of

the epoch(u, v).

Excluding the updates that cause the start and terminatian epoch of u, v), every other edge update
on u andwv during the epoch is handled in juéx(1) time. Therefore, we shall focus only on the amount
of computation associated with the start and terminatioanoépoch. Let us now analyze the computation
time associated with the epoch at level 0 and level 1.

e Epoch at level 0
As discussed above, it is only the proceduraVve-SETTLE whose computation time is associated
with an epoch at level 0. This procedure tak&s,/n) time. Hence the computation time associated

with an epoch at level 0 i©(/n).

e Epoch at level 1
Consider an epoch at level 1. There are two ways in which fioste gets created at level 1.

— In HANDLING-INSERTION
An epoch of(u,v) can be created during the procedur@NDLING -INSERTION(u, v). In this
case, the computation time associated with the start of pbeteof (u, v) is the computation
time incurred in executing the proced@NDLING -INSERTION and the procedureRANDOM-
SETTLE which it invokes. It follows from the above discussion tha tomputation cost associ-
ated with the epockw, v) is O(v/n + |0,]) which isO(y/n) since|O,| = v/n when we invoke
HANDLING -INSERTION(u, v).

— In HANDLING -DELETION
ProcedureHANDLING -DELETION(u, v) invOkeSRANDOM-SETTLE at lines 4 and 12 to create
new epochs at level 1. The executionR¥NDOM-SETTLE at line 4 creates a new epoch for
and its computation timé&(|O,,|), which can bed(n), gets associated with the start of the new
epoch created by. The execution oORANDOM-SETTLE at line 12 creates a new epoch for some
vertexw which is some neighbor af. Note that/O,,| = \/n. Its computation time, which is
O(y/n), is associated with the start of the epoch at level 1 created.b

Now let us calculate the computation cost associated witkpach, say of an edge:, v), at level 1
when it terminates. It follows from the discussion above tha only computation time associated
with the termination of epocfu, v) is the computation time ofANDLING -DELETION (excluding the
time spent in proceduresANDOM-SETTLE andNAIVE-SETTLE that are already associated with the
start of their respective epochs). This cost is at nig(st).

From our analysis given above, it follows that the amountoshputation time associated with an epoch
at level 0 isO(/n) and the computation time associated with an epoch at lewsD1r).

An epoch of(u, v) may either terminate (ifu, v) is removed from the matching) or remalive, i.e.,
(u,v) remain in the matching after the end of all the updates. Arled (u,v), ends because of exactly
one of the following causes.

(@) if (u,v) is deleted from the graph.
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Figure 3: Epochs at level 0 and 1; the creation of an epochval lecan terminate at most two epochs at
level 0.

(77) w (or v) get matched to some other vertex leaving its current mate fr

An epoch will be called aatural epoch if it terminates due to causg; (otherwise it will be called an
inducedepoch.Inducedepoch can terminate prematurely since, unlike naturallegbe matched edge is
not actually deleted from the graph wheniaducedepoch terminates.

It follows from the algorithm described above that every@pat level 1 is a natural epoch whereas
an epoch at level 0 can be natural or induced depending onatieecof its termination. Furthermore,
each induced epoch at level 0 can be associated with a napwmah at level 1 whose creation led to the
termination of the former. In fact, there can be at most tvamoed epochs at level 0 which can be associated
with an epoch at level 1. It can be explained as follows (sgarei3).

Consider an epoch at level 1 associated with an edggsay. Suppose it was created by vertexIf
u was already matched at level 0, let£ v be its mate. Similarly, iy was also matched already, let£ «
be its current mate at level 0. So matchintp v terminates the epoch 6f, w) as well as the epoch of edge
(v, x) at level 0. Wechargethe overall cost of these two epochs to the epoctuof). We have seen that
the computational cost associated with an epoch at leveD+&2). So the overall computatiothargedto
an epoch ofu, v) at level 1 isO(n + 2y/n) which isO(n).

Lemma 4.1 The computation charged to a natural epoch at level ©{&) and the computation charged
to a natural epoch at level 0 i©(\/n).

In order to analyze our algorithm, we just need to get a boumithe computatiorchargedto all natural
epochs that get terminated during a sequence of updates atiee at the end of the all the updates. Let
us first analyze the computation castargedto all those epochs which are alive at the end opdates.
Consider an epoch of edge, v) that is alive at the end afupdates. If this epoch is at level 0, the compu-
tation cost associated with the start of this epoc®({$). If this epoch is at level 1, then the computation
time associated with the start of this epoclVi§O,,|) and notice thatO,| > /n. Note that there can be at
most two induced epochs at level 0 whose computation timghwb O(y/n), is also charged to the epoch
of (u,v). Hence the computation charged to the live epoctuob) is O(|0,|). Observe that, at any given
moment of time, O, N O,, = 0 for any two verticesu, w present at level 1. Hence the computation time
charged to all live epochs at the endtafpdates is of the order of, |0, | < 2t = O(t). So all we need is
to analyse the computation charged to all natural epochgétderminated during the sequence of updates.

Lett be the total number of updates. Each natural epoch at leveléhwets terminated can be assigned
uniquely to the deletion of its matched edge. Hence it falénom Lemma& 41 that the computatioharged
to all natural epochs terminated at level O duringpdates i$)(¢1/n). We shall now analyze the number of
epochs terminated at level 1. Our analysis will cruciallplek the following lemma.



Lemma 4.2 Suppose vertex creates an epoch at levélduring an update in the graph. and I€f™ be
the set of edges thatowned at the time of the creation of this epoch. Then, for ahigrary sequenceD
of edge deletions @i**, and for any(v, w) € O

1

Pr[MATE(v) =w | D] = o

We first carry out the analysis for the high probability bowmdthe total update time taken by our algorithm.
Thereafter we carry out the analysis for the expected vditigedotal update time.

4.2 High probability bound on the total update time

The key idea of randomization is that once a vratexeates an epoch at level 1, there shouldia@yedge
deletions fromD* before the matched edgewofs deleted. In order to quanitfy this key idea, we introduce
the following definition that categorizes an epoch as godukok:

Definition 4.2 An epoch is said to be bad if it gets terminated naturally witthe deletion of the first /3
edges that it owned at the time of its creation. An epoch & ®abe good if it is not bad.

It follows from Definition[4.2 that a good epoch undergoes yneaige deletions before getting terminated.
So only the bad epochs are problematic. Now using Lermnma 4e2establish an upper bound on the
probability of an epoch to be bad.

Lemma 4.3 Suppose vertex creates an epoch at levélduring thekth update for somé < ¢. Then this
epoch is going to be bad with probability 3 irrespective of the future updates in the graph and the ramdo
bits picked during their processing.

Proof: Consider any sequence of updates in the graph followingréstion of this epoch. This sequence
defines the sequende of edge deletions aPi*. The termination of this epoch is fully determined by the
mate thaw picked and this sequende. This epoch will be bad if the mate ofis among the endpoints of
the first1/3 edges in this sequence. Then, Lenima 4.2 implies that theahates equally likely to be the
endpoint of any edge in this sequence. So the probabilitheepoch to be bad is/3 . g

For the time complexity analysis, we will show that the numiifebad epochs may exceed the number
of good epochs by at moé)(log n) with very high probability. Notice that the number of epocieated
at level 1 is itself a random variable whose value may depuah the updates in the graph as well as the
random bits picked during their processing. However, asvahny Lemmd 4.8, each newly created epoch
at level 1 will be bad with probability /3 irrespective of the past epochs. The number of epochs draate
level 1 during any updates is triviallyO(nt). Therefore, the sequence of epochs at level 1 can be seen as an
instance of the asymmetric random walk as follows. The walkis at locatior2 log, n to the right of the
origin. Each step of the walk is one unit to the right of therent location with probability2/3 or one unit
to the left with probabilityl /3 independent of the past moves. We need to find the probathititythe walk
ever reaches the origin during any time in the algorithmollbfvs from Lemma 3]1 that the probability of
this event is less thah/n?. So the following lemma holds immediately.

Lemma 4.4 During any sequence ofupdates, the number of bad epoch at level 1 can exceed theenumb
of good epochs b¥log, n with probability at most /n?.

1The analysis assumed that each edge f@ffi** is going to be deleted sometime in future. If not, place atlhsedges
arbitrarily at the end of the sequentk In this case, the probability of the epoch to be bad will bengless than /3.
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As stated in LemmBg_4.1, each epoch at level 1 has a computigirofO(n) charged to it. Let be the
total number of updates in the graph. For each epoch at lewkkInumber of owned edges at the time of
its creation is at leasy/n. As a result the number of good epochs duringpdates is bounded byt /\/n
deterministically. So the computation cost of good epodHewel 1 is bounded by (t\/n). Lemma4dh
implies that the computation cost of all bad epochs at leveri exceed the computation cost of all good
epochs at most byn log » amount for some constantwith probability > 1 — 1/n2. So overall the cost of
all epochs at level 1 is bounded B (¢/n + nlogn) with high probability. The computation cost of all
epochs at level 0 is bounded deterministically®ft./n). Hence the total computation time taken by our
algorithm for any sequence olipdates i€ (¢/n + nlog n) with high probability.

4.3 Expected value of the total update time

Let X, ; . be arandom variable which is luifcreates an epoch at levieht update steg, otherwise itis 0.
We denote this epoch &0CHv, i, k). Let Z, ; , denote the number of edges frafj"* that are deleted
during the epoch. (IEPOCH4v, 7, k) is not created7, ; . is defined as 0). Since each edge deletion at level
1is uniquely associated to the epoch that owned it. Thezefor, ;. Z,, 1, < t. Hence,

Y E[Z,4 <t 1)
v,k

We shall now derive a bound on the expected valugof ; in an alternate way.
Lemma4.5E[Z, 1] > V/n/2 - Pr[X, 5 =1].

Proof: We shall first find the expectation d&f, ; ;, conditioned on the event thatcreates an epoch at
level 1 duringkth update. That is, we shall finR[Z, ; | X, 1 = 1]. Let Oinit he the set of edges
owned bywv at the moment of creation &#PocHuw, 1, k), and letD be the deletion sequence associated
with Ot |t follows from Lemmd4.P that the matched egdevas distributed uniformly ove©i". So
E[Zy1k| Xv1k = 1] = |07 /2 > \/n/2 since|O*| for an epoch at level is at least,/n. Using
conditional expectation, we get

E[Zv,l,k] = E[Zv,l,k‘Xv,l,k = 1] : Pr[Xv,l,k = 1] > \/ﬁ/2 . Pr[Xv,l,k = 1]

O
Notice that the computation cost of an epoch at ldvisl at mosten for some constant. So the expected
value of the computation cost associated with all naturaickp that get terminated at level 1 during
updates is

ch ‘Pr(X,1,=1 = 20\/ﬁz Vn/2 - Pr[X, 1, =1]
v,k

v,k

< 2evn Z E[Z,1:  using Lemm&4l5

v,k
< 2c¢y/nt  using Equationll

We can thus conclude with the following theorem.

Theorem 4.1 Starting with a graph om vertices and no edges, we can maintain maximal matchingfpr a
sequence af updates inD(t+/n) time in expectation an@(¢/n + nlogn) with high probability.
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4.4 Onimproving the update time beyondO(,/n)

In order to extend our 2EVEL algorithm for getting a better update time, it is worth expig the reason
underlyingO(y/n) update time guaranteed by ourLRvEL algorithm. For this purpose, let us examine the
second invariant more carefully. Le{n) be the threshold for the maximum number of edges that a vertex
at level 0 can own. Consider an epoch at level 1 associatédseine edge, sayu, v). The computation
associated with this epoch is of the order of the number oégdgandv own which can be(n) in the
worst case. However, the expected duration of the epochtieadrder of the minimum number of edges
can own at the time of its creation, i.€(a(n)). Therefore, the expected amortized computation per edge
deletion for an epoch at level 1 @(n/a(n)). Balancing this with thex(n) update time at level 0, yields
a(n) = /n.

In order to improve the running time of our algorithm, we néedecrease the ratio between the maxi-
mum and the minimum number of edges a vertex can own duringacheat any level. It is this ratio that
determines the expected amortized time of an epoch. Thghinsotivates us for having a finer partition of
vertices — the number of levels should be increasead(log n) instead of just 2. When a vertex creates an
epoch at level, it will own at least2’ edges, and during the epoch it will be allowed to own at rabst — 1
edges. As soon as it owast! edges, it should migrate to higher level. Notice that th® r@ft maximum to
minimum edges owned by a vertex during an epoch gets reduoet,fn to a constant.

We pursue the approach sketched above combined with soni@addtechniques in the following
section. This leads to a fully dynamic algorithm for maximatching which achieves expected amortized
O(log n) update time per edge insertion or deletion.

5 Fully dynamic algorithm with expected amortized O(logn) time per up-
date

This algorithm maintain a partition of vertices among vasidevels. We describe the difference in this
partition vis-a-vis 2-EVEL algorithm.

1. The fully dynamic algorithm maintains a partition of vees amonglog, n| + 2 levels. The levels
are numbered from-1to Ly = |log, n]. During the algorithm, when a vertex moves to leveit
owns at leastl’ edges. So a vantage point is needed for a vertex that doesvnoary edge. As a
result, we introduce a level -1 that contains all the vestiteat do not own any edge.

2. We use the notion of ownership of edges which is slighttiedint from the one used in thelZVEL
algorithm. In the 2-EVEL algorithm, at level 0, both the endpoints of the edge are wneeo of the
edge. Here, at every level, each edge is owned by exactlyfateemdpoints. If the endpoints of the
edge are at different levels, the edge is owned by the entdf@tlies at the higher level. If the two
endpoints are at the same level, then the tie is broken apately by the algorithm.

Like the 2+ EVEL algorithm, each vertex. will maintain a dynamic hash table storing the edd&s
owned by it. In addition, the generalized fully dynamic altfon will maintain the following data structure
for each vertexu. For eachi > LEVEL (u), let £! be the set of all those edges incident:offom vertices at
level i that are not owned by. The set€! will be maintained in a dynamic hash table. However, the onus
of maintaining&’, will not be onu. For any edgdu, v) € £, v will be responsible for the maintenance of
(u,v) in &L since(u,v) € O,. For example, suppose vertexnoves to levelj. If j > LEVEL (u), thenv
will remove (u, v) from &% and insert it to€y,. Otherwise ({ < LEVEL (u)), v will remove (u,v) from &¢
and insert it ta®,,.
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Figure 4: A snapshot of the algorithm @ty all vertices are matched( thick edges) except vertexlevel
—1. ¢,(2) = 4 < 4% and¢,(3) = 6 < 43, sov cannot rise to a higher level.

5.1 Invariants and a basic subroutine used by the algorithm

As can be seen from the 2-level algorithm, it is advantagémus vertex to get settled at a higher level once
it owns alarge number of edges. Pushing this idea still further, our fufypamic algorithm will allow a
vertex to rise to a higher level if it can owaufficiently largenumber of edges after moving there. In order
to formally define this approach, we introduce an importastation here.
For a vertexv with LEVEL (v) = 4,

¢v(]) = { ’Ov‘ + Zi§k<j ‘gu‘ if ] >

0 otherwise

In other words, for any vertex at leveli and any; > i, ¢,,(j) denote the number of edges whiclcan
own if v rises to levelj. Our algorithm will be based on the following key idea. If atestv hase,(j) > 47,
thenv would rise to the levej. In case, there are multiple levels to whichan risep will rise to the highest
such level. With this key idea, we now describe the threeriamés which our algorithm will maintain.

1. Every vertex at lever 0 is matched and every vertex at level is free.
2. For each vertex and for allj > LEVEL (v), ¢,,(j) < 47 holds true.

3. Both the endpoints of a matched edge are at the same level.

It follows that the free vertices, if any, will be presentatél —1 only. Any vertexv present at level-1 can
not have any neighbor at levell. Otherwise, it would imply thab, (0) > 1 = 4°, violating the second
invariant. Hence, every neighbor of a free vertex must becheat. This implies that the algorithm will
always maintain a maximal matching. Furthermore, the keg iof our algorithm is captured by the second
invariant — after processing every update there is no vewtgich fulfills the criteria of rising. Figurél4
depicts a snapshot of the algorithm.

An edge update may lead to the violation of the invariantstinead above and the algorithm basically
restores these invariants. This may involve rise or fall eftices between levels. Notice that the second
invariant of a vertex is influenced by the rise and fall of iesghbors. We now state and prove two lemmas
which quantify this influence more precisely.

Lemma 5.1 The rise of a vertex does not violate the second invariant for any of its neigsbor
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Proof: Consider any neighbar of v. LetLEVEL (u) = k. Since the second invariant holds true fidoefore
the rise ofv, so¢, (i) < 4° for all i > k. It suffices if we can show that, (i) does not increase for any
due to the rise of. We show this as follows.

Let vertexw rise from levelj to ¢. If ¢ < k, the edggu, v) continues to be an element 6%, and so
there is no change g, (¢) for anyi. Let us consider the case whén- k. The rise ofv from j to ¢ causes
removal of(u, v) from O, (or &l if j > k) and insertion tE€:. As a resulip, (i) decreases by one for each
iin [max(j, k) + 1, ], and remains unchanged for all other values. of O

Lemma 5.2 Suppose a vertex falls from levelj to j — 1. As a result, for any neighbot of v, ¢, ()
increases by at most 1 for= j and remains unchanged for all other values .of

Proof: Let LEVEL(u) = k. In casek > j, there is no change in,(7) for anyi due to fall ofv. So let us
consider the casg > k. In this case, the fall of from level j to j — 1 leads to the insertion dfu, v) in
&57! and deletion frongy. Consequentlyp,, (i) increases by one only far= j and remains unchanged for
all other values of. O

In order to detect any violation of the second invariant feegexv due to rise or fall of its neighbors,
we shall maintain{¢,(i)| < Lo} in an arraygp,[] of sizeLy + 2. The updates on this data structure during
the algorithm will involve the following two types of opeiais.

e DECREMENT¢(v, I): This operation decrements, (i) by one for alli in interval I. This operation
will be executed when some neighborwofises. For example, suppose some neighbarriges from
level j to ¢, theng, (i) decreases by one for alln interval I = [max(j, LEVEL (v)) + 1, £].

e INCREMENT-¢(v,%): this operation increases, (i) by one. This operation will be executed when
some neighbor of falls fromi toi — 1.

It can be seen that a singleECREMENT¢(v, I) operation take®(|I|) time which isO(logn) in the worst
case. On the other hand any singi€REMENT-¢(v, i) operation take® (1) time. However, since, (i) is
0 initially and is non-negative always, we can conclude tieding.

Lemma 5.3 The computation cost of alECREMENT¢() operations over all vertices is upper-bounded by
the computation cost of alNCREMENT-¢() operations over all vertices during the algorithm.

Observation 5.1 It follows from Lemma& 513 that we just need to analyze the ataipn involving all
INCREMENT-¢() operations since the computation involvediECREMENT-¢() operations is subsumed by
the former.

If any invariant of a vertex, say, gets violated, it might rise or fall, though in some casésnay still
remain at the same level. However, in all these cases, algntbe vertexu will execute the procedure,
GENERIG-RANDOM-SETTLE, shown in Figurd15. This procedure is essentially a germahliversion of
RANDOM-SETTLE(u) which we used in the 2-level algorithr3ENERICG-RANDOM-SETTLE(u, 4) starts with
movingw from its current level (EVEL (u)) to leveli. If level i is higher than the previous level af then
u performs the following tasks. For each edgew) already owned by ity informs w about its rise to
level i by updating€? . In additionu acquires the ownership of all the edges whose other endjiesrit a
level € [LEVEL (u),7 — 1]. For each such edge:, w) that is now owned by:, we performDECREMENT
o(w, [LEVEL (w) + 1,1]) to reflect that the edge is now owned by vertexvhich has moved to level
Henceforth, the procedure then resemistesipomM-sSETTLE. It finds a random edgéu, v) from O, and
movesw to leveli. The procedure returns the previous mate af v was matched. We can thus state the
following lemma.
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Lemma 5.4 Consider a vertex: that executeSsENERIG-RANDOM-SETTLE(u, i) and selects a mate.
Excluding the time spent IDECREMENT-¢ operations, the computation time of this procedure is of the
order of |0, | + |O,| whereO,, and O, is the set of edges owned byandv just at the end of the procedure.

Procedure GENERIC-RANDOM—SETTLE (U, %)

1 if LEVEL(u) < i then //u rises to level i
2 for each(u,w) € O, do //u informs w about its rise
3 transfer(u, w) from £55V=- to £ ;

4 | DECREMENT@(w, [LEVEL (u) + 1,1]);

5 for eachj = LEVEL (u) toi — 1 do //u gains ownership of some more edges
6 for each(u,w) € & do

7 transfer(u, w) from & to &L ;

8 transfer(u, w) from O, to O,;

9 DECREMENTFo(w, [j + 1,1]);

10 foreach j = LEVEL (u) + 1to i do ¢, (j) < 0;
11 | LEVEL(u) < i

12 Let (u,v) be a uniformly randomly selected edge frdy;
13 if v is matchedhen
14 T < MATE (v);
15 | M+ M\{(v,2)};
else
16 L x < NULL;

17 for each(v,w) €O, do //v informs w about its rise
18 | transfer(v, w) from E55V5 ) to €1 ;

19 DECREMENT¢(w, [LEVEL (v) + 1,1]);

20 for eachj = LEVEL(U) to7 —1do //v gains ownership of some more edges
21 | for each(v,w) € & do

22 transfer(v, w) from &) to £ ;

23 transfer(v, w) from O,, to O,;

24 DECREMENT@(w, [j + 1,1]);

25 M <~ MU{(u,v)};

26 foreachj = LEVEL(v) + 1t0o7 do ¢,(j) < 0;

27 LEVEL(U) — 1 /*v rises to level i+/
28 returnz;

Figure 5: Procedure used by a free verteho settleat LEVEL 1.

5.2 Handling edge updates by the fully dynamic algorithm

Our fully dynamic algorithm will employ a generic procedwalled PROCESSFREE-VERTICEY). The
input to this procedure is a sequengeconsisting of ordered pairs of the for(m, k) wherez is a free
vertex at levelk > 0. Observe that the presence of free vertices at levél implies that matching\
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is not necessarily maximal. In order to preserve maximalftynatching, the procedureROCESSFREE
VERTICESrestores the invariants of each such free vertexstllecomes empty. We now describe our fully
dynamic algorithm.

Handling deletion of an edge

Consider deletion of an edge, séy, v). For eachj > max(LEVEL (u), LEVEL (v)), we decremend,,(j)
and¢,(j) by one. If (u,v) is an unmatched edge, no invariant gets violated. So we aigtelthe edge
(u,v) from the data structures aef andv. Otherwise, letc = LEVEL(u) = LEVEL(v). We execute the
ProcedurePROCESSFREE-VERTICES(((u, k), (v, k))).

Handling insertion of an edge

Consider insertion of an edge, s@y, v). Without loss of generality, assume that initiallyvas at the same

level asy or a higher level than. Sowe addu, v) to O, and&5="=-"). For eacly > max(LEVEL (u), LEVEL (v)),
we incrementp,, (j) andg¢,(j) by one. We check if the second invariant has got violated itbheev or v.
This invariant may get violated far (likewise forv) if there is any integef > max(LEVEL (u), LEVEL (v)),
such thatp, (i) has becomé? just after the insertion of edge, v). In case there are multiple such integers,
letimax b€ the largest such integer. To restore the invarial@aves its current mate, say and rises to level
imax- We eXeCUteSENERIG-RANDOM-SETTLE(u, imax ), @nd letz be the vertex returned by this procedure.
Let j andk be respectively the levels af andz. Note thatz andw are two free vertices now. We execute
PROCESSFREE-VERTICEY{(z, k), (w, 7))).

If the insertion of edg€u, v) violates the second invariant for botrendv, we proceed as follows. Let
j be the highest level to which can rise after the insertion ¢fi, v), that is,¢,(j) = 4. Similarly, let?
be the highest level to which may rise, that isg, (¢) = 4°. If j > ¢, we allow only« to rise to levelj;
otherwise we allow only to rise to/. Note that aftex: moves to levelj, edge(u, v) becomes an element of
Eh. SO ever )<k [€s] decreases by 1. As aresult,(£) = O, + 32, eye (v <k |€1] also decreases

by 1 and is now strictly less thatf; thus the second invariant foris also restored.

5.2.1 Description of ProcedurePROCESSFREE-VERTICES

The procedure receives a sequefiae ordered pairgz, i) such thate is a free vertex at level It processes
the free vertices in a decreasing order of their levelsiataftom Ly. We give an overview of this processing
at leveli. For a free vertex at levé| if it owns sufficientlylarge number of edges, then it settles at level
and gets matched by selecting a random edge from the edgesidwrit. Otherwise the vertex falls down
by one level. Notice that the fall of a vertex from leveb i — 1 may lead to rise of some of its neighbors
lying at level< i. However, as follows from Lemnia 5.2, for each such vertegnly ¢, (i) increases by
one andp, () value for all other levels remains unchanged. So the secmadiant may get violated only for
o, (7). This implies thaty will rise only to leveli. After these rising vertices move to levie{by executing
GENERIC-RANDOM-SETTLE), we move onto level — 1 and proceed similarly. Overall, the entire process
can be seen as a wave of free vertices falling level by leveéntially this wave of free vertices reaches
level —1 and fades away ensuring maximal matching. With this overwee now describe the procedure
in more details and its complete pseudocode is given in E[§ur

The procedure uses an arrgyof sizeLy + 2, whereQ/[i] is a pointer to a queue (initially empty)
corresponding to level. For each ordered pair, k) € S, it insertsz into queueQ[k]. The procedure
executes &OR loop fromL, down to O where théth iteration extracts and processes the vertices of queue
Q7] one by one as follows. Letbe a vertex extracted fro[:]. First we execute the functictALLING (v)
which does the followingw disowns all its edges whose other endpoint lies at leviélv owns less thag’
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ProcedurePROCESS—FREE—-VERTICES (5)
for each(z,i) € S do ENQUEUHQ[], x);
for i =Lgto0do

while (Q[i] is notEMPTY) do

1
2
3
4 v+ DEQUEUHQ)[i]);

5 if FALLING (v) then //v falls to i—1
6

7

9

LEVEL(v) <— i — 1,
ENQUEUHQ[i — 1], v);
for each(u,v) € O, do

10 transfer(u, v) from £ to £71;
11 INCREMENT-¢)(u, 7);
12 INCREMENT-¢(v, 7);
13 if ¢y, (i) > 4" then //u rises to i
14 T < GENERIG-RANDOM-SETTLE(u, 1);
15 if z # NULL then
16 J + LEVEL(z);
17 L ENQUEUHQ(j], x);
18
else //v settles at level i
19 T < GENERIG-RANDOM-SETTLE(v, 7);
20 if x % NULL then
21 J < LEVEL(x);
22 L ENQUEUHEQ/j], z);

Function rFarz NG (v)

i < LEVEL(v);

for each(u,v) € O, such thatLEVEL (u) = i do //v disowns all edges at level i
L transfer(u, v) from O, to O,;

w N e

transfer(u, v) from & to &¢;

N

if |O,] < 4% thenreturnTRUE else returnFALSE;

(]

Figure 6: Procedure for processing free vertices given &sjaenceS of ordered pairgx, i) wherezx is a
free vertex aLEVEL i.
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edges them falls to leveli — 1, otherwisev will continue to stay at level. The processing of the free vertex
v for each of these two cases is done as follows.

1. v has to stay at level.
v EXeCUteSGENERIG-RANDOM-SETTLE and selects a random mate, sayfrom levelj < i (if w is
present inQ[j] then it is removed from it and is raised to levgl If 2 was the previous mate af,
thenz is a falling vertex. Vertex: gets added t6)[j]. This finishes the processing of

2. v has to fall.
In this casey falls to leveli — 1 and is inserted t@)[i — 1]. At this stage©,, consists of neighbors
of v from leveli — 1 or below. It follows from Lemm@&35]2 that the fall effrom i toi — 1 leads to
increase iny, (i) by one for each neighbar of v which is present at a level lower thanMoreover,
¢u (i), that was 0 initially, has to be set {®,|. So all the vertices 0®, are scanned, and for each
(u,v) € O,, we incrementp, (i) ande, (i) by 1. In casep, (i) has become’, u has to rise to level
and is processed as follows.executeSSENERIC-RANDOM-SETTLE(u, 7) to selects a random mate,
sayw, from levelj < i. If w was inQ[j] then it is removed from it. If: was the previous mate af,
thenz is a falling vertex, and so it gets added to quéljg].

Remark 5.1 Notice a stark similarity between the above procedure fardiiag a free vertex and the pro-
cedure for handling a free vertex at level 1 in the 2-levebailipm.

In case 1p remains at level andw moves to the level from some levelj < i. This renders vertex
(earlier mate ofw) free and the first invariant of is violated. Sar is added to the queue at levgl The
processing ob does not change, () for any neighbor of v. Furthermore, the rise af to level: does not
lead to violation of any invariant due to Lemial5.1. In case flls to level: — 1 and as a result some
vertices may rise to level Each such rising vertex exeCuteENERICG-RANDOM-SETTLE. As in case 1,
the processing of these rising vertices may create somedréiees only at levek i. We can thus state the
following lemma.

Lemma 5.5 After ith iteration of the for loop ofPROCESSFREEVERTICES, the free vertices are present
only in the queues at level 7, and for all vertices not belonging to these queues the timegriants holds.

Lemmd5.b establishes that after termination of proceda@CESSFREEVERTICES, there are no free
vertices at level> 0 and all the invariants get restored globally.

5.3 Analysis of the algorithm

Processing the deletion or insertion of an edgev) begins with decrementing or incrementing(i) and

¢y (1) for each levelj > max(LEVEL(u),LEVEL(v)). Since there aré®(logn) levels, the computation
associated with this task over any sequencewgddates will beO(tlogn). This task may be followed by
executing the procedureROCESSFREE-VERTICES that restores the invariants and updates the matching
accordingly. The updates in the matching can be seen asocredinew epochs and termination of some of
the existing epochs. Like 2-level algorithm, for the pumos$ analysis, we visualize the entire algorithm as
a sequence of creation and termination of various epochduéirg theO(tlog n) time for maintainingp,

the total computation performed by the algorithm can be@ats with all the epochs that get terminated
and those that remain alive at the end of the sequence ofagpdatong exactly similar lines as in 2-level
algorithm, the computation associated with all the epobbtare alive at the end ofupdates ig)(¢) only.

So we just need to focus on the epochs that get terminatedhancbinputation associated with each of
them.

18



Let us first analyse the computation associated with an epbalmatched edgéu, v). Suppose this
epoch got created by vertexat levelj. Sov would have executedENERIG-RANDOM-SETTLE and selected
v as a random mate from level j. Note thaty must be owning less thati ™! edges and would be owning
at mostd’ edges at that moment. This observation and Lefma 5.4 imalyth computation involved in the
creation of the epoch i9(47). Once the epoch is created, any update pertainingoiov will be performed
in just O(1) time until the epoch gets terminated. Let us analyze the atetipn performed when the
epoch gets terminated. At this moment either one or ba@hdv become free vertices. ifbecomes freey
executes the following task (see proceder®OCESSFREEVERTICES in Figure[6):v scans all edges owned
by it, which is less thar/ ™!, and disowns those edges incident from vertices of Igv&hereafter, ifv still
owns at least’ edges, it settles at levgland creates a new epoch at leyeDtherwisep keeps falling one
level at a time. For a single fall affrom leveli to i — 1, the computation performed involves the following
tasks: scanning the edges owneduhylisowning those incident from vertices at leveincrementingy,,
values for each neighbas of v lying at level less tham, and updatingp, (i) to |O,|. All this computation
is of the order of the number of edgeswns at level which is less thad’*!. Eventually eithew settles at
some levek > 0 and becomes part of a new epoch or it reaches levelThe total computation performed
by v is, therefore, of the order of/_, 4+ = O(47%). This entire computation involving (andw) in this
process is associated with the the epoctuob). Hence we can state the following Lemma.

Lemma 5.6 For anyi > 0, the computation associated with an epoch at lévelO (4°).

An epoch corresponding to edge, v) at leveli could be terminated if the matched edgev) gets
deleted. Such an epoch is called a natural epoch. Howelggpbch could be terminated due to one of the
following reasons also.

e 1 (Orv) get selected as a random mate by one of their neighborsnpraseveL > 1.
e u (orv) starts owningt*t! or more edges.

Each of the above factors render the epoch to be an induceth.epor any level > 0, the creation of an
epoch causes termination of at most two epochs at levelsit can be explained as follows: Consider an
epoch at level associated with an edge, say,v). Suppose it was created by vertex If u was already
matched at some levgl< i, letw # v be its mate. Similarly, i was also matched already at some level
k < i, letx # u be its mate. So matchingto v terminates the epoch ¢f;, w) and (v, x) at levelj andk
respectively. We can thus state the following lemma.

Lemma 5.7 Creation of an epoch at a levémay cause termination of at most 2 epochs at level

5.3.1 Analysing an epoch

Consider an epoch created by a verteat leveli. At the time of the creation of the epoch, [6{" be
the set of edges owned hy and letw = MATE(v). This epoch may terminate much before the deletion
of (v,w). This happens when or w moves to some leveb i before the deletion ofv, w). In order to
analyse termination of an epoch, therefore, we associatgdate sequence with it as follows. For each
edge(v,r) € O we consider the first time in future thatmoves to some higher lev@l Theupdate
label associated with edge, x) is defined as

if x moves to a level- i before its deletion then it is classified @swardelse it isdeletion

2vertexaz may move to leveb i (and down) multiple times while the algorithm processescusgace of updates. However, it
is only the first time (after the creation of the epoch) whemoves to a level> i that is relevant as far as the possibility of the
termination of the epoch by the upward movement & concerned.
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Likewise, we also consider the first time in future thahoves to a level . If v never moves to any level

> i in future, we just appendat the end of all the updates associated \@f"’. The update sequenéefor

the epoch is the sequence of these updates on the ed@¥&ofind vertexy arranged in the chronological
order. Consider the following example. Suppd@d@“ has 10 edges and let the corresponding neighbors
of v be {wy,...,w1p}. Let the updates in the chronological order be : the deletibfw, w,), upward
movement ofw;, upward movement ofvg, the deletion of(v, ws), and so on. The corresponding update
sequence will be

° T 0 ° ° ° 0 T ° T °
U : ( wy, wi, Wy, w5, wWsg, wsz, w2, UV, wWr, wWig, W >

Observation 5.2 If the update associated with (the ownerappears at'th location inU, then the epoch
will terminate on or before théth update inU. Therefore, the updates at location ¢ in U will have no
influence on the termination of the epoch.

Unlike the 2-level algorithm, the update sequence assmtiaith an epoch is not uniquely defined by the
sequence of updates in the graph after the creation of thehepgRather, it also depends upon the current
matching as well as the random bits chosen by the algorithifevpinocessing the updates. So there is
a probability distribution defined over all possible updsgéguences that depends upon these two factors.
Consequently, the analysis of an epoch in our final algorithmmore complex compared to the 2-level
algorithm. In particular, it is not obvious whether theras dependence between the random mate picked
by a vertex while creating an epoch and the sequence of updsseciated with the epoch. However, using
an interesting non-trivial property of our algorithm, wellveistablish that there is no dependence between
the two.

Lemma 5.8 Suppose a vertex creates an epoch and 16" be the set of its owned edges at the time of
the creation of this epoch. Then, for any update sequéhaad for each(v, w) € O,

Pr|MATE(v) = w | U] = Pr[MATE(v) = w] = ’Oz—lmt’

Lemma5.8 can be seen as a generalization of Leimnha 4.2 thaated $or our 2-level algorithm. Its proof
is given in Sectiof 5]4. The analysis of our algorithm willdsigtically dependent on this lemma. Using this
lemma, we shall first establish a high probability bound anttital update time of the algorithm to process
a sequence of updates in the graph.

5.3.2 High probability bound on the total update time

Recall Definitiorf 4.2 of a bad epoch. It can be observed frasndéfinition that an induced epoch is always
a good epoch. Using Lemna b.8, the lemma for the probabifig lbad epoch extends seamlessly from
2-level algorithm to our final algorithm as follows.

Lemma 5.9 Suppose vertex creates an epoch at levélwhile the algorithm procességh update in the
graph. This epoch will be bad with probability at mdgt3 irrespective of the updates in the graph and the
random bits picked during their processing.

Proof: The termination of the epoch is completely determined bynitage thatv picks and the update
sequence associated with this epoch. Consider any updpterssl/ associated with this epoch. It follows
from Lemmd5.B that conditioned di, the mate ofv is equally likely to be the endpoint of any edge in
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Ot Now recall from Observation 5.2 that for the epoch to be teated naturally, the mate efmust be
among the endpoints of the deleted edges that precédé/. We distinguish between the following two
cases.

Casel. There are less th@X"'|/3 edge deletions precedingn U.
The epoch will be bad only if the matched edgesa$ one of these edge deletions precedirig U.
Since the number of these edge deletions is less [tBii|/3, so using Lemm&Tl9 the probability
of the epoch to be bad is less thbf8.

Case2. There are at ledé€t'™"| /3 edge deletions precedingin U.
The epoch will be bad if the matched edgea$ one of the firstO:"¥| /3 edge deletions ify. From
LemmdX5.8, the termination of the epoch is equiprobablergrad the O"'s, so the probability that
the epoch is bad in this case is exadt.

It follows that the epoch is going to be bad with probabilit3 for each possible update sequefit@sso-
ciated with the epoch. O

We will show that the number of bad epochs at a levebuld exceed the number of good epochs at
level i by at mostO(log n) with very high probability. Notice that the number of epodheated at level
is itself a random variable. During any update, the numbepaichs that will be created at levedepends
upon the past updates in the graph and the random bits pick@uydheir processing. However, Lemma
5.9 implies that each newly created epoch at léwell be bad with probability at most/3 independent of
these events. Hence, the sequence of epochs atilesrlbe seen as an instance of the asymmetric random
walk as established in the analysis of the 2-level algoritBmthe bad epochs at any levehay exceed the
good epochs by log, n with probability at mostl /n?. There areD(log n) levels in the hierarchy. Hence
we get the following lemma usingnion bound

Lemma 5.10 For every level < Lq, the number of bad epochs will not exceed the number of goachep
by more thar® log,, n with probability at leastl — (logn)/n? > 1 —1/n.

Let us temporarily exclude the maximum surplugxtog n) bad epochs at each level from our analysis.
Consequently, it follows from Lemnia 5]10 that each bad emtchlevel can be mapped to a good epoch
at the same level in a unique manner - see Figlre 7(i). Als@ibation of each epoch at a leviek 1
can terminate at most two (induced) epochs at lower leveltaisd in Lemm&Z5bl7. Using this fact and
the mapping between the good and bad epochs at a level, weonafruct a forest whose nodes will be
the epochs terminated across all levels during the algoritithe intuition for defining this forest is that
eventually the computation cost of a bad epoch or an indugedhewill be charged to a good natural epoch.
Since a good natural epoch has sufficieéisgge number of edge deletions associated with it, these edge
deletions can be charged to pay for all the computationezuut by our algorithm.

With this intuition, we now provide the construction of ttwrdst by defining parent of each epoch using
the following rules.

1. Parent of each induced epoch is the epoch at the higheémibese creation led to its termination.
2. Parent of a good epoch is itself (hence it is the root ofés)t

3. If abad epoch is mapped to an induced epoch, then its parérg same as the parent of the induced
epoch. Otherwise, it is the parent of itself (hence it is tiat of its tree).
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= A natural good epoch
o Aninduced epoc
o A bad epoch

141

i (ii)

Figure 7: (i) Mapping between bad and good epochs at le@) Assigning at most 4 epochs from lower
levels to an epoch.

It follows from rule 1 and 3 (the if part) that with an epoch d¢eel, at most 4 epochs from lower levels
can be associated. Hence each node in the forest will havesatfaur children. See Figuké 7(ii). Moreover,
the root of each tree in the forest of epochs is either a badrepoa good natural epoch. Using Lemma
[5.8, the computation cost (i) associated with a tree of epochs whose root is at legbkys the following
recurrence for some constant

C(i) = ad' +4C(i — 1)

The solution of this recurrence (i) = O(i4). It follows from Lemmd5.I0 and rule 3(Otherwise part)
that the trees rooted at good natural epochs at alevel at least the number of trees rooted at bad epochs at
leveli. Hence, it suffices to analyze the computation cost assatigith all the tree rooted at good natural
epochs. Now for each good natural epoch at a lévéhere are at least’/3 edge deletions associated
uniquely to it. This natural epoch will be charged for the gonation costC (i) = O(i4") associated with
the tree rooted at it. Soifis the total number of updates in the graph, then the conipotabst associated
with all epochs in the forest i©(tlogn). The computation cost associated with surplus bad epodis at
levels isO(>", i4"logn) = O(n log?n). Hence with high probability the computation cost for prsgiag

t edge updates by the algorithmd¥tlogn + nlog?n). This also implies that the total expected update
time isO(tlogn) for t = Q(nlogn). In the following subsection, we will establigh(¢ log n) bound on
the expected update time for all valuest of

5.3.3 Expected value of the total update time

During a sequence ofupdates in the graph, various epochs get created by varestises at various levels.
Let X, be a random variable which is 1 if creates an epoch at leveht update steg, otherwise it
is 0. We denote this epoch @@ocHuv, i, k). Let O™ denote the edges thatowned at the time of the
creation of the epoch. Léf, ; , denote the number of edges fraftj"** that are deleted during the epoch.
(If EPOCHw, %, k) is not createdZ, ; ;. is defined as 0). The key role in bounding the expected rurtiimg

is played by a random variablg, ; ;. defined as follows:

(2)

- (8Zyik—2-4)X, i,  if EPOCH4, 1, k) is natural
ST (@ — 241X, if EPOCH(, i, k) is induced

First observe thab, ; , = 0if X, ;, = 0. Else (if X, ; , = 1), the random variablé, ; ;, can be seen
as credits associated wiHPOCHuw, i, k) to be used for paying its computation cost. For a naturatiepihe
credits is defined in terms of the edges deleted during thehe(®o we definé3, ; ;, to be8Z, ; ;.. However,
we need to discount for the two epochs at lower levels that getyerminated due tBPOCHv, 4, k). To
this end, from the term, we deduzt 4°. Similarly, if EPOCHv, i, k) is an induced epoch, then it gets™!
credits from the epoch that destroyed it. But here again veel ne discount for the two epochs at lower
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levels that might be terminated by it. To this end, we agaitude2 - 4 from 4+, The following lemma
gives abound o} B, ; .

Lemmab5.11 )" .. Buikr <8 ..k Zuik < 8t, wheret is the total number of updates in the graph.

Proof: We need to analyze the sum 8 ; ;’s for all those(i, v, k) values for which theePOCH(%, v, k)
got created. If this epoch is an induced epoch, it can be mgsdawvith an epoch, saPocHv', ', k'), at
a higher level’ > i whose creation destroyed it. Notice that the negativéerm in B, i 1y cancels out
the positive4'*! term in B, ; ;. Hence, the contribution of induced epochsSiy , ;. By« is nullified and
all that remains is the sum of terr8g, ; . for each natural epoch. Hen@mkﬁmk <8 ik Zovjik-
An edge deletion is associated with an epoch in a unique masoevill contribute to exactly’c’)név,i,k.
Therefore,) Zy,i 1 Is upper bounded by the total number of edges deleted. O

0,4,k

Corollary 5.0.1 >_ ;  E[B, ;x| < 8t
Lemma 5.12 For all i,v,k, E[B, ;] > Pr[X, ;= 1] - 4%

Proof: SinceX, ;  is an indicator random variabl&[B,, ; | = Pr[X,;; = 1] E[B, ;1| Xy,ir = 1]. We
will first estimateE[B, ; | X, = 1], that is, the expected value &, ; ;, given thatePOCHu, i, k) got
created.

Let (U, P) be the probability space of all the update sequences as=swei@h this epoch and Iéf € U/
be any update sequence. Suppose among the upddtethat precede the update associated wijtbnly
d are edge deletions. It follows from Lemmal5.8 that the matadge ofv is distributed uniformly over
Ot SoEPOCHU, i, k) will be an induced epoch with probabilityf 0| — d)/|0| and in that case
B(v,i,k) will be 4+1 — 2. 4%, If the epoch is natural, it could be due to any one ofdrexige deletions
presentirl. In that case the expected value®f; ;, willbe 1/d Z?ZI(Sj—2-4") > 4d—2-4'. Considering
the cases of induced and natural epoch together,

|Oim't| —d . L ) d Y R P P
EB,r|U]=—2—4" —2-4) + (4d—2-4") = 24" - ———
U, |Ozz)n2t| |Om2t| |Ozz)n2t|
R N (
> 2-4"— \O 7 (for all values ofd)
Therefore
. ) 4. 4
KA _ 3
v,z,k ZE vzk|U [ ] > <2'4 Oznzt|> ZPI’ =2-4" - |Omzt|
veld veld v
Since|Oint| > 4, for leveli, the result follows. O

Let W, ; . be arandom variable that corresponds to the value of the g@iign cost oEPOCH, 7, k)
if the epoch is created and is 0 otherwise. Notice that thepeation cost of an epoch at levigk c4'+! for
some constant. S0,E[W, ; x| = Pr[X,; ; = 1]c4*"!. Therefore, using Lemnial12,

E[Wv,i,k] < 4cE [Bv,i,k] (3)

Using the above equation and Corollary 5.0.1, the total egoecomputation cost associated with all epochs
that get destroyed during the algorithm can be bounde@ by as follows.

> E[Wyikl <> AcE[B, ;5] < 32ct = O(2)

0,0,k 0,1,k
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Since for each update in the graph, we in@tog n) time to update at various levels, there is &t log n)
overhead for updates. We can thus conclude with the following theorem.

Theorem 5.1 Starting with a graph om vertices and no edges, we can maintain a maximal matching for
any sequence ofupdates irO(t log n) time in expectation an@(t log n + n log? n) with high probability.

5.4 Proof of Lemmal5.8

Our algorithm use randomization to maintain maximal matghi After any given sequence of updates,
there is a set of possible maximal matchings that the algarinay be maintaining and there is probability
distribution associated with these maximal matchings.t &ouseful to think about the probability space of
these matchings as the algorithm proceeds while proceasieqguence of updates.

We introduce some notations first. For any matchivigmaintained at any stage by our algorithm, let
M; denote the matching at level Let M~; = U;-;M; denote the matchings at all levelsi. LetV;
denote the set of all the vertices belonging to levels in #mgec [—1,4]. We now extend the notations to
incorporate the updates in the graph. For &ny 1, let G(k) denote the graph after a given sequencé of
updates and leM (k) denote the maximal matching 6f(k) as maintained by our algorithm. Lt~ ;(k)
denote the matching at all levelsi after a given sequence bfupdates.

After processing certain number of updates by the algorigupposel/ andM/’ are any two matchings
possible such thal/.; = M’ . Consider any single update in the graph at this stage. krdodorocess it,
suppose we carry out two executiohand I’ of our algorithm with the initial matching beingy/ and M’
respectively. That isM(0) = M in the execution/ and M (0) = M’ in the execution/’. Our claim is
that the probability distribution of matching at levels: will be identical at the end of both the executions.
More precisely, for any maximal matching1) on a subset of vertices in gragh(1),

Pr[Ms;(1) = p(1)|M(0) = M] = Pr[Ms;(1) = u(1)|M(0) = M']
In order to establish our claim, we shall crucially exploi tfollowing lemma.
Lemma 5.13 For both the matchingd/ and M, ¢,(j) is the same for each € V andj > i.

Proof: Itis given thatM~; = M. This implies that for each levgl > i the sets of vertices present are
identical in}M and M’. Hence the sek; of all the vertices present at levets[—1, i] is identical inA/ and
M’. Hence for any vertex, and any levelj > i, the set of all the neighbours ofat levels< j is identical;
notice thatp, (j) is just the cardinality of this set. So it follows thaj(j) is the same for each vertexand
eachj > i. O

We shall now establish our claim for the deletion of an edge (u, v). Establishing the claim for the
insertion of an edge is similar. Notice that our algorithneslmot alter the matching éf is not a matched
edge. Ife is a matched edge, a wave of free vertices originates frevEL (e) and propagates downward.
The following fact follows from our analysis in Sectibn 5lI2.

F1. The algorithm won't alter the matching at levelLEVEL (e¢) while processing the deletion ef

F2. The matching is updated in the decreasing order of levetspace the updating of the matching at a
level is complete, the matching at that level will remainhamged during the updates of the matching
at lower levels.
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It follows from the description ofi/ and M’ that eitherLEVEL (e) is less than or equal toin both the
matchings oLEVEL (e) is the same il\/ andM’. Let us first consider the (easier) case wWhewEL (¢) < i
in M as well as)M’. It follows from FactF'1 stated above that the only changes in matchifigand M’
will be at levels< i. Hence the matching1~;(1) will be identical at the end of both the executiohs
andI’. Let us now consider the more interesting case®fEL (¢) > . Both the executiong and I’
invoke the procedureROCESSFREE-VERTICES(((u, LEVEL (e)), (v, LEVEL (e)))) in this case. The reader
is recommended to revisit this procedure from Sediion Bb2ftire proceeding further.

In order to establish our claim abolitand I’, we shall establish the following. While the matching at
levels> i is being updated, for each step executed,ithe identical step can be executed’inMoreover,
if the step inI is executed with some probability, the step will be executitt the same probability id’
as well. In order to show this, let us analyse the first iteratf the procedureROCESSFREE-VERTICES
Both I and I’ will processu first. After disowning its edges from its present lewelpwns the same set of
edges in both the executions. Thereaftewill either stay at the same level or fall by one levelulstays
at the same level, it chooses a random edge to get matchedgrdtbability that any specific random edge
is picked byu is the same in both the executions. Let us consider the case falls by one level. For
each neighbout of v, it follows from Lemmd5.1B thap, (=) is the same in the case 6f andM’. Hence
the set of vertices rising to levélare the same in both the executions. In addition, the set gdsthat
each such vertex owns on rising to leyek also the same, hence, the probability that any specifaoran
mate is picked is the same in both the executions. So eacheupd® and )/’ is equally likely during the
processing of.. The reader may note that after each such identical update amd M/’, the matchings are
identical at each levet . Hence, LemmBa5.13 holds again for the updated matchings.

Unlike the first iteration, a generic iteration of the progePROCESSFREEVERTICES may have free
vertices at levels< LEVEL (e) that are kept in respective queues at these levels. Suppadse beginning
of any such iteration of the procedur@OCESSFREEVERTICES there are two possible configurations such
that the matching as well as the queue storing the free esrtice identical at each level i but differ at
levels< i. Lemmd5.1IB will hold for these configurations as well. Theme, along exactlgfhe same lines
as the first iteration analysed above, it can be shown thay exelate in the matching at level ¢ will be
carried out with the same probability during any genericaiten for any two configurations that match at
all levels> i.

Therefore, each sequence of updates in the matching islgtikaly in both the executiong and’ till
the last free vertex at level+ 1 is processed. Henceforth, the two executions may diffet aBuollows
from FactF'2, it will affect only the matching at levels i and there won't be any change in the matching
at higher levels.

This concludes our claim for a single update. This claim aaimtzoked appropriately for a sequence of
updates giving us the following theorem.

Theorem 5.2 Let M and M’ be any two matchings possible by our algorithm at any timé soat M/~ ; =
M.,. For any sequence afupdate in the graph, suppose we carry out two executioasd I’ of our
algorithm with the initial matching being/ and M’ respectively. The probability distribution of matching
at every leveb> i will be identical at the end of both the executions. That is,

PrMsi(t) = u(t), ... Msi(1) = u(1)IM(0) = M] = Pr[Ms;(t) = u(t),. .., M=i(1) = p(1)|M(0) = M']
wherep(j), for 1 < j < ¢, is any maximal matching on a subset of vertices in the gi@ih.

For the proof of Theorein 5.2, we shall apply the argumentifagls update inductively and use the follow-
ing lemma from elementary probability theory.

Lemma 5.14 Supposed, B, C are three events defined over a probability spé@eP). Then,
Pr[AnB|C]|=Pr[A|BNC]-Pr[B|C]

25



Let us define event§’ asM(0) = M andC’ asM(0) = M’. We have shown thd@Pr[M-,(1) =
w(1) | Cl = Pr[M~;(1) = u(1) | C']. If we define evenB asM;(1) = (1) then by another application
of the arguments that we used for a single update,

Pr(M-i(2) = u(2) | B,C] = Pr[M(2) = u(2) | B,C']

Applying Lemmd5.14, we get
PriM(2) = u(2), B | C] = Pr[M=i(2) = u(2) | B,C] - Pr[B | C]

SincePr[B | C] = Pr[B|C"], it follows that

Pr(M-i(2) = u(2), B | C] = Pr[M(2) = u(2), B | C']
The above argument can be inductively applied for everyemqient update. This completes the proof of
Theoreni 5.2
5.4.1 Connection to the analysis

We first state two lemmas from elementary probability thebat deal with the independence of events. For
the sake of completeness, the proof of these lemmas is giveppendix.

The first lemma deals with conditional probability.

Lemma 5.15 Let A be an event and®y, ..., By be k mutually exclusive events defined over a probahility
space((2, P). If Pr[A | B;] = p for eachl < j < k, thenPr[A | C| = p where evenC' = U, B;.

The second lemma deals with independence of eventsd bed B be two events defined over a probability
space(f2, P). A is said to be independent @& if Pr[A | B] = Pr[A | B] = Pr[A]. Alternatively,
Pr[An B] = Pr[A]-Pr[B]. The notion of independence gets carried over from eventnidom variables
in a natural manner as follows.

Definition 5.1 An eventA is said to be independent of a random varialldf for eachz € X, Pr[A| X =
x] = Pr[A].

Lemma 5.16 Supposed is an event and{ be a random variable defined over probability spate P). If
A'is independent ok, then for eachr € X,
Pr[X =z | A] = Pr[X = z]

Now we shall establish the connection of Theofenh 5.2 to thesanof our algorithm. In particular, we shall
use this theorem to prove Lemmal5.8. Suppose a vertaeates an epoch at levieWhile the algorithm
processeg:th update in the graph for any < ¢. We shall analyse the probability space of the future
matchings starting from the time just before the creatiothisfepoch.

While creating its epoch; chooses its mate randomly uniformly out@f™. Clearly, the change in the
matching at levels< i will depend on the mate thatpicks. LetM be the set of all possible matchings once
the algorithm completes the processing of Mie update. Now notice that all matchings from thelskare
identical at each levet . So it follows from Theorerh 512 that for any two matchings M’ € M,
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Pr(Moi(t) = pt), ... Mok +1) = uk +1) | M(k) = M]
= Pr{Ms(t) = u(t), ..., Msa(k+ 1) = u(k + 1) | M(k) = M

Let this conditional probability b@. For each(v,w) € O, there may be several matchingsM in
which v is matched tav. By applying Lemm&5.15, the following equation holds foesu(v, w) € O,

Pr{Mai(t) = u(t), .., Msi(k + 1) = u(k + 1) | MATE(0) = w] = p

Since this probability is the same for eathw) € O, so using Definitiori 5]1, it follows that the
matchings at levels- i during any sequence of updates is independent of the mate pieked during the
creation of its epoch. Now applying Lemia3.16 we get thefathg lemma.

Lemma 5.17 Suppose a vertexcreates an epoch at leveivhile the algorithm procességh update in the
graph. Consider any sequence of updates in the graph. The pigked by while creating the epoch is
independent of the sequence of matchings at levelsomputed by the algorithm while processing these
updates. That is, for any> &, and any(v, w) € O™,

1

Pr[MATE (v) = w|Ms;(t) = p(t),...,. Msi(k+1) = ulk+1)] = Pr[MATE(v) =w| = o]

Consider any given sequencetafpdates in the graph. Subsequent to the timmeeates an epoch at level
i during kth update, lejx = (u(k + 1), ..., u(t)) be the sequence of matching at levelg as computed by
the algorithm. Notice that the upward movementaind each(v, w) € O after the creation of epoch
is captured precisely by the corresponding update in thehirag at level> i. Therefore, using: we can
define the update sequence associated with the epoch asfollmnsider an edge, w) € O and let/th
update in the graph be the deletion(ofw). Letj < ¢ be the smallest integer such thate 1 , that is,w
appears in the matching at leveli while processing ofth update in the graph, then the update associated
with (v, w) is the upward movement. If no sugtexists, the update associated withw) is its deletion.
Likewise, we define the update associated witi he update sequencéfor the epoch is the sequence of
these updates amand the edges aP** arranged in the chronological order.

For an update sequenteassociated with an epoch, there may exist many sequépges. ., 11, } such
that for each of them, the update sequence associated witptich id/. It follows from Lemmd5.1J7 that
the mate picked by during its epoch is independent of each such sequende< r < ¢. Therefore, using
Lemma5.]b, the mate picked byduring its epoch is independent Bfas well. Thus we have established
the validity of Lemma#&5J8.

6 Atight example

We tested our algorithm on random graphs of various desstnel found that the matching maintained is
very close to the maximum matching. This suggests that gari#ghm might be able to maintainearly
maximum matching for dynamic graphs appearing in varioastial applications. However, it is not hard
to come up with an update sequence such that at the end ofdherse, the matching obtained by our
algorithm is strictly half the size of maximum matching. limer words, the approximation factor 2 for the
matching maintained by our algorithm is indeed tight. Wespre one such example as follows (see Figure
8.
Let G(V U W, E) be a graph such that = {vy,vs,...,v,} andW = {wy,wy,...,w,} for some

even number. Consider the following update sequence. In the first prade,edges between every pair
of vertices present if¥’. This results in a complete subgraph on vertice¥ ofThe size of any maximal
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Figure 8: An example where our algorithm gives a 2-approxiona The vertices on top are i and form
a complete graph. The vertices at the bottom of the figurenglié.i

matching on a complete graph of sizds n/2. After the first phase of updates ends, the size of matching
obtained by our algorithm is /2. In the second phase, add edgeg w;) for all i. Note that the degree of
eachw; is one at the end of the updates. Let us now find the matchinghadur algorithm maintains. Let
(vi,v;) be an edge in the matching after phase 1. Note that both thetpoiats are at a level greater than
—1. AvertexinW is at level—1 as it does not have any adjacent edges after phase 1. Whegafued;)

is added, since; is at a higher level thaw;, v; becomes the owner of this edge. The second invariamtisf

not violated after this edge insertion and nothing happetigsaupdate step and; still remains at level-1.
Using same reasoning, we can show thatlso remains at levet1 after the addition of edgev;, w;). So
matching maintained by the algorithm remains unchanges ekisy to observe that the maximum matching
of the graphGG now has size: which is twice the size of the matching maintained by our algm.

7 Postscript

We presented a fully dynamic randomized algorithm for matimatching which achieves expected amor-
tized O(log n) time per edge insertion or deletion. An interesting quesisoto explore how crucial ran-
domization is for dynamic maximal matching.

Subsequent to an earlier version of this papér [5], Bhastigehet al. [[9] almost answered this question
in affirmative by designing a determinstic algorithm thatimteins (2 + ¢)-approximate matching in amor-
tized O(poly(logn, 1/¢) update time. Another interesting question is to exploretivrewe can achieve
O(1) amortized update time. Very recently Solombn! [29] answéhéziquestion in affirmative as well by
designing a randomized algorithm that take& + nlog n) update time with high probability to process
any sequence dafedge deletions. Though the basic building blocks of hisritlym are the same as ours,
the two algorithms are inherently different and so are thpalysis.

In our algorithm, a vertex may rise to a higher level and e@atew epoch even when its matched edge
is intact. But the algorithm of Solomoh [29] of takes a lazp@agach to maintain the hierarchy of vertices
wherein a vertex is processed only when it becomes absplugelessary. Another crucial difference is the
following. Our algorithm maintains a functiaf, (j) for each vertex and each level. This function is used
to ensure an invariant that each verteis at the highest possible levékuch that the edges incident from
lower levels is at least’. An important property guaranteed by this invariant is that mate of a vertex
while creating an epoch is independent of the update sequassociated with the epoch. The analysis
of our algorithm crucially exploits this property. Howeyéine explicit maintenance af,(j) imposes an
overhead 0P (log n) in the update time. In order to achie¢¥1) update time, Solomon [29] gets rid of the
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maintenance o, (j) by taking a lazy approach and a couple of new ideas. As a resijtirtunately, the
property of our algorithm no longer holds for the algorithfrSmlomon [29] - indeed there is dependence
between the update sequence associated with an epochddogadesertex and the random mate picked by
it. Solomon [29] makes use of a new concept calieéhterrupted duratiorof an epoch that bypasses the
need of our property for the analysis. His analysis can bptaddo our algorithm as well and can be viewed
as the correct counterpart of Lemma 4.10(ih [5]. However,ramw analysis has its own merits since it is
based on an insightful property of our algorithm which weidaa is of its own independent interest and
importance.

Subsequent to the publication of the [5] there has beenestieg progress in the area of dynamic
matching with approximation less than2[[7| 8] 24, 14], andasgic weighted matchin@[3] 4, 114].

One of the technical challenges in theoretical computensd is to prove lower bounds for algorithmic
problems. Recently there has been some progress on prasiifional lower bounds for dynamic graph
algorithms [1["15]. In the light of the lower bound presenbgdAbboud and Williams[[1] based dn(n?)
hardness of the 3SUM problem, it would be an interesting dwadlenging problem to see ifapproximate
maximum matching foe < 2 can be maintained in(n) update time.
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9 Appendix
Proof of Lemma[5.15
Proof:
Pr[AnC] = Pr[An(Y;B;)]
= Z Pr[AN Bj] sinceB;'s are mutually exclusive
= Z Pr[A | B;] - Pr[B;] using the definition of conditional probability
= p Z Pr(B;]
= p-Pr[U;B;] = p-Pr[C] sinceB;’'s are mutually exclusive
HencePr[A | C] = Pr[ANC]/Pr[C] = p. O
Proof of LemmalG.16

Proof: SinceA is independent ok, so for eachr € X,

Pr[ANX = z] = Pr[A] - Pr[X = 1] (4)
Hence
Pr[X =x|A] = Pr[i:—[j]:x]
_ Pri4] PE[I;E‘]X =] using Equatiof4

= Pr[X =z
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Proof of Lemmal[3.1

The asymmetric random walk problem can be seen as a spesmlofgdhe famous Gambler’s ruin
problem described as follows.
Gambler’s ruin problem.
There are two players who play a game that goes in roundsiallyiPlayer 1 has a capital of: units
and Player2 has a capital of’ units. Playerl wins a round with probabilityy and loses with probability
g = 1 — p independent of the previous rounds. The winner of a roundstalkvay one unit of the capital
from the opponent. The game ends when the capital of one @idlyers becomes 0.

The following lemma is well-known in many text books on prbiligy theory. A concise and self
contained proof is available at the linkxamplehttp://faculty.washington.edu/fm1/394/MatkfiGambler.pdf

Lemma 9.1 In the Gambler’s ruin problem witph > ¢, the probability that Playei gets ruined is

1—(p/q)’
1—(p/q)+e

Let us now put an additional restriction in the problem: tialtnumber of rounds allowed in the game
is L for a given numbel, < ¢/. Notice that with this restriction Player 2 will never bened. As a result
the game will be over when Player 1 gets ruined or whemunds are over. The probability of Player 1
getting ruined in this restricted Gambler’'s problem isclyiless than the probability of Player 1 getting
ruined in the original Gambler’s problem described abovkis Ts because there is a non-zero probability
that Player 1 may be ruined after performing more thesteps, and the restricted Gambler’s problem rules
out this possibility. Hence, using Lemiina9.1, it followsttfa the restricted version of the Gambler’s ruin
problem withp > ¢, the probability that Player gets ruined is less than

L- (/97 _ (g)c
L—(p/q)*t ~\p
The restricted version of the Gambler’s ruin problem candrentilated as an asymmetric random walk
problem: The walk starts at locatianunits to the right of the origin. In each step, the particlevesone
unit to the right with probabilityp or one unit to the left with probability = 1 — p indepependent of the

past moves. The walk terminates upon reaching either tlggnoor when it has performed step. This
completes the proof of Lemnia B.1.
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