
ar
X

iv
:1

10
3.

11
09

v4
 [

cs
.D

S
]

2
A

ug
 2

01
6

Fully dynamic maximal matching inO(log n) update time

Surender Baswana
Department of CSE,
I.I.T. Kanpur, India

sbaswana@cse.iitk.ac.in

Manoj Gupta
Department of CSE,

I.I.T. Delhi, India
gmanoj@cse.iitd.ernet.in

Sandeep Sen
Department of CSE,

I.I.T. Delhi, India
ssen@cse.iitd.ernet.in

October 24, 2018

Abstract

We present an algorithm for maintaining a maximal matching in a graph under addition and deletion
of edges. Our algorithm is randomized and it takes expected amortizedO(log n) time for each edge
update wheren is the number of vertices in the graph. Moreover, for any sequence oft edge updates,
the total time taken by the algorithm isO(t log n+ n log2 n) with high probability.

Note: The previous version of this result appeared in SIAM J. Comp., 44(1): 88-113, 2015. However, the
analysis presented there for the algorithm was erroneous. This version rectifies this deficiency without any
changes in the algorithm while preserving the performance bounds of the original algorithm.

1

http://arxiv.org/abs/1103.1109v4

1 Introduction

Let G = (V,E) be an undirected graph onn = |V | vertices andm = |E| edges. A matching inG is a
set of edgesM ⊆ E such that no two edges inM share any vertex. The study of matchings satisfying
various properties has remained the focus of graph theory for decades [21]. It is due to the elegant structure
of matching that it also appears in various combinatorial optimization problems [11, 20]. A few well studied
matching problems are maximum cardinality matching [10, 17, 22, 23], maximum weight matching [12,
18], minimum cost matching (chapter 7, [19]), stable matching [13], popular matching [2]. Among these
problems, the maximum cardinality matching problem has been studied most extensively. A matchingM
is of maximum cardinality if the number of edges inM is maximum. A maximum cardinality matching
(MCM) is also referred to as amaximum matching. A matching is said to be amaximalmatching if it
cannot be strictly contained in any other matching. It is well known that a maximal matching guarantees
a 2-approximation of the maximum matching. Though it is quite easy to compute a maximal matching in
O(m + n) time, designing an efficient algorithm for maximum matchinghas remained a very challenging
problem for researchers [10, 22]. The fastest algorithm, till date, for maximum matching runs inO(m

√
n)

time and is due to Micali and Vazirani [22]. In this paper, we address the problem of maintaining a maximal
matching in a dynamic graph.

Most of the graph applications in real life deal with graphs that are not static, viz., the graph changes
over time caused by deletion and insertion of edges. This hasmotivated researchers to design efficient
algorithms for various graph problems in dynamic environment. An algorithmic graph problem is modeled
in the dynamic environment as follows. There is an online sequence of insertion and deletion of edges and
the goal is to update the solution of the graph problem after each edge update. A trivial way to achieve this
is to run the best static algorithm for this problem after each edge update; clearly this approach is wasteful.
The aim of a dynamic graph algorithm is to maintain some clever data structure for the underlying problem
such that the time taken to update the solution is much smaller than that of the best static algorithm. There
exist many efficient dynamic algorithms for various fundamental problems in graphs [6, 16, 27, 28, 30].

Baswana, Gupta and Sen [5] had presented a fully dynamic algorithm for maximal matching which
achievedO(log n) expected amortized time per edge insertion or deletion. Moreover, for any sequence of
t edge updates, the total time taken by the algorithm isO(t log n + n log2 n) with high probability. Their
algorithm improved an earlier result of Onak and Rubinfeld [25] who presented a randomized algorithm
for maintaining ac-approximate (for some unspecified large constantc) matching in a dynamic graph with
O(log2 n) expected amortized time for each edge update.

This algorithm also implied a similar result for maintaining a two approximate vertex cover. It is also
used as a basis for maintaining approximate maximum weight matching in a dynamic graph [3].

Unfortunately, the analysis given in [5] has a crucial flaw, viz., the statement of Lemma 4.10 [5] is
not true in general. Although the bound on the update time wascritically dependent on Lemma 4.10, we
have presented an alternate proof of the claimed update timebased on an interesting property of the original
algorithm that was not reported earlier. For completeness,we have presented the full details of the algorithm
of [5] and the new corrected analysis in this paper. This property is interesting in its own right and may have
other useful applications of the algorithm.

2 An overview

LetM denote a matching of the given graph at any moment. Every edgeof M is called amatchededge and
an edge inE\M is called anunmatchededge. For an edge(u, v) ∈M , we defineu to be themateof v and
vice versa. For a vertexx, if there is an edge incident to it in the matchingM , thenx is amatchedvertex;
otherwise it isfreeor unmatched.

2

In order to maintain a maximal matching, it suffices to ensurethat there is no edge(u, v) in the graph
such that bothu andv are free with respect to the matchingM . From this observation, an obvious approach
will be to maintain the information for each vertex whether it is matched or free at any stage. When an edge
(u, v) is inserted, add(u, v) to the matching ifu andv are free. For a case when an unmatched edge(u, v) is
deleted, no action is required. Otherwise, for bothu andv we search their neighborhoods for any free vertex
and update the matching accordingly. It follows that each update takesO(1) computation time except when
it involves deletion of a matched edge; in this case the computation time is of the order of the sum of the
degrees of the two vertices. So this trivial algorithm is quite efficient forsmalldegree vertices, but could be
expensive forlarge degree vertices. An alternate approach to handling deletion of a matched edge is to use
a simple randomized technique - a vertexu is matched with a randomly chosen neighborv. Following the
standard adversarial model, it can be observed that an expecteddeg(u)/2 edges incident tou will be deleted
before deleting the matched edge(u, v). So the expected amortized cost per edge deletion foru is roughly

O
(

deg(u)+deg(v)
deg(u)/2

)

. If deg(v) < deg(u), this cost isO(1); but if deg(v) ≫ deg(u), then it can be as bad

as the trivial algorithm. We combine the idea of choosing a random mate and the trivial algorithm suitably
as follows. We first present a fully dynamic algorithm which achieves expected amortizedO(

√
n) time per

update. We introduce a notion ofownershipof edges in which we assign an edge to that endpoint which has
higher degree. We maintain a partition of the set of vertices into two levels : 0 and 1. Level 0 consists of
vertices which ownfeweredges than an appropriate threshold and we handle the updates in level 0 using the
trivial algorithm. Level 1 consists of vertices (and their mates) which ownlarger number of edges and we
use the idea of random mate to handle their updates. In particular, a vertex chooses a random mate from its
set of owned edges which ensures that it selects a neighbor having a lower degree.

A careful analysis of theO(
√
n) update time algorithm suggests that afiner partition of vertices may

help in achieving a better update time. This leads to our finalalgorithm which achieves expected amortized
O(log n) time per update. More specifically, our algorithm maintainsan invariant that can be informally
summarized as follows.

Each vertex tries to rise to a level higher than its current level, if, upon reaching that level, there are
sufficiently large number of edges incident on it from lower levels. Once a vertex reaches a new level, it
selects a random edge from this set and makes it matched.

Note that we say that”a vertex rises” to indicate that the vertex moves to a higher level and”a vertex
falls” to indicate that the vertex moves to a lower level. A vertex may also fall to a lower level if the number
of edges incident to it decreases. But a vertex only uses its neighborhood information to decide whether to
move to higher or lower level. Overall, the vertices use their local information to reach a global equilibrium
state in which after each update each vertex is at theright level having no incentive to either move above or
below its current level.

2.1 Organization of the paper

For a gentle exposition of the ideas and techniques, we first describe a simple but less efficient fully dynamic
algorithm for maximal matching in Section 4. We present our final fully dynamic algorithm which achieves
expected amortizedO(log n) time per update in Section 5. In Section 6, we illustrate an example of a
dynamic graph that establishes the tightness of the approximation factor guaranteed by our algorithm. In
the following section, we describe notations and elementary results from the probability theory that we shall
use.

3

3 Preliminaries

We shall useM to denote the matching maintained by our algorithm at any stage. Our algorithms maintain a
partition of the set of vertices among various levels. We shall useLEVEL(u) to denote the level of a vertexu.
We defineLEVEL(u, v) for an edge(u, v) asmax(LEVEL(u), LEVEL(v)). Our algorithms will ensure that
both the endpoints of each matched edge inM are present at the same level. So the matchingMmaintained
by our algorithms will be a set of tuples as follows.

M = {(u, v, ℓ) | u is matched withv at levelℓ}

The analysis of our algorithms will use a basic result about asymmetric random walk as follows.

Asymmetric random walk on a line

Consider a particle performing a discrete random walk on a line. In each step, it moves one unit to the right
with probabilityp or to the left with probabilityq = 1− p. Each move is independent of the moves made in
the past. The following lemma holds ifp > q.

Lemma 3.1 Suppose the random walk starts at locationℓ units to the right of the origin. Then the proba-

bility that it ever reaches origin withinL steps for any givenL is less than
(

q
p

)ℓ
.

The proof of Lemma 3.1 is sketched in Appendix. During the analysis of algorithms, we shall use the
terminologyvery high probabilityfor those events whose probability is1−nc for some positive constantc.

4 Fully dynamic algorithm with expected amortizedO(
√
n) time per update

The algorithm maintains a partition of the set of vertices into two levels - 0 and 1. We now introduce the
concept ofownershipof the edges. Each edge present in the graph will be owned by one or both of its
endpoints as follows. If both the endpoints of an edge are at level 0, then it is owned by both of them.
Otherwise it will be owned by exactly that endpoint which lies at higher level. If both the endpoints are
at level 1, the tie will be broken suitably by the algorithm. As the algorithm proceeds, the vertices will
make transition from one level to another and the ownership of edges will also change accordingly. LetOu

denote the set of edges owned byu at any moment of time. Each vertexu ∈ V will keep the setOu in
a dynamic hash table [26] so that each search or deletion operation onOu can be performed in worst case
O(1) time and each insertion operation can be performed in expectedO(1) time. This hash table is also
suitably augmented with a linked list storingOu so that we can retrieve all edges of setOu in O(|Ou|) time.

The algorithm maintains the following three invariants after each update.

1. Every vertex at level 1 is matched. Every free vertex at level 0 has all its neighbors matched.

2. Every vertex at level 0 owns less than
√
n edges at any moment of time.

3. Both the endpoints of every matched edge are at the same level.

The first invariant implies that the matchingM maintained is maximal at each stage. A vertexu is
said to be adirty vertex at a moment if at least one of its invariants does not hold. In order to restore
the invariants, each dirty vertex might make transition to some new level and do some processing. This
processing involves owning or disowning some edges depending upon whether the level of the vertex has
risen or fallen. Thereafter, the vertex will executeRANDOM-SETTLE or NAIVE -SETTLE to settle downat
its new level. The pseudocode of our algorithms for handlinginsertion and deletion of an edge is given in
Figure 1 and Figure 2.

4

Handling insertion of an edge

Let (u, v) be the edge being inserted. If eitheru or v are at level 1, there is no violation of any invariant. So
the only processing that needs to be done is to assign(u, v) toOu if LEVEL(u) = 1, and toOv otherwise.
This takesO(1) time. However, if bothu andv are at level 0, then we executeHANDLING -INSERTION

procedure which does the following (see Figure 1).

Procedure HANDLING-INSERTION(u, v)

Ou ← Ou ∪ {(u, v)};1

Ov ← Ov ∪ {(u, v)};2

if u andv are FREE then M←M∪ {(u, v)};3

if |Ov | > |Ou| then swap(u, v);4

if |Ou| =
√
n then5

foreach (u,w) ∈ Ou do6

delete(u,w) fromOw;7

x← RANDOM-SETTLE(u);8

if x 6= NULL then NAIVE -SETTLE(x);9

if w was previous mate ofu then NAIVE -SETTLE(w);10

Procedure RANDOM-SETTLE(u): Finds a random edge(u, y) from the edges owned byu and
returns the previous mate ofy

Let (u, y) be a uniformly randomly selected edge fromOu;1

foreach (y,w) ∈ Oy do2

delete(y,w) fromOw;3

if y is matchedthen4

x← MATE(y);5

M←M\{(x, y)}6

else
x← NULL ;7

M←M∪ {(u, y)};8

LEVEL(u)← 1; LEVEL(y)← 1;9

returnx;10

Procedure NAIVE-SETTLE(u) : Finds a free vertex adjacent tou deterministically

for each(u, x) ∈ Ou do1

if x is freethen2

M←M∪ {(u, x)};3

Break;4

Figure 1: Procedure for handling insertion of an edge(u, v) whereLEVEL(u) = LEVEL(v) = 0.

Both u andv become the owner of the edge(u, v). If u andv are free, then the insertion of(u, v) has
violated the first invariant foru as well asv. We restore it by adding(u, v) toM. Note that the insertion
of (u, v) also leads to increase of|Ou| and |Ov| by one. We process that vertex from{u, v} which owns
larger number of edges; letu be that vertex. If|Ou| =

√
n, then Invariant 2 has got violated. We execute

RANDOM-SETTLE(u); as a result,u moves to level 1 and gets matched to some vertex, sayy, selected

5

randomly uniformly fromOu. Vertexy moves to level 1 to satisfy Invariant 3. Ifw andx were respectively
the earlier mates ofu andy at level 0, then the matching ofu with y has renderedw andx free. So to restore
Invariant 1, we executeNAIVE -SETTLE(w) andNAIVE -SETTLE(x). This finishes the processing of insertion
of (u, v). Note that whenu rises to level 1,|Ov| remains unchanged. Since all the invariants forv were
satisfied before the current edge update, it follows that thesecond invariant forv still remains valid.

Handling deletion of an edge

Let (u, v) be an edge that is deleted. If(u, v) /∈ M, all the invariants are still valid. So let us consider the
nontrivial case when(u, v) ∈ M. In this case, the deletion of(u, v) has madeu andv free. Therefore,
potentially the first invariant might have got violated foru andv, making them dirty. We do the following
processing in this case.

If edge(u, v) was at level 0, then following the deletion of(u, v), vertexu executesNAIVE -SETTLE(u),
and then vertexv executesNAIVE -SETTLE(v). This restores the first invariant and the verticesu andv are
cleanagain. If edge(u, v) was at level 1, thenu is processed using the procedure shown in Figure 2 which
does the following (v is processed similarly).

Procedure HANDLING-DELETION(u,v)

foreach (u,w) ∈ Ou and LEVEL(w) = 1 do1

move(u,w) fromOu toOw;2

if |Ou| ≥
√
n then3

x← RANDOM-SETTLE(u);4

if x 6= NULL then NAIVE -SETTLE(x);5

else
LEVEL(u)← 0;6

foreach (u,w) ∈ Ou and LEVEL(w) = 0 do7

add(u,w) toOw;8

NAIVE -SETTLE(u);9

foreach (u,w) ∈ Ou do10

if |Ow| =
√
n then11

x← RANDOM-SETTLE(w);12

if x 6= NULL then NAIVE -SETTLE(x);13

Figure 2: Procedure for processingu when(u, v) ∈ M is deleted andLEVEL(u)=LEVEL(v)=1.

First,u disowns all its edges whose other endpoint is at level 1. If|Ou| is still greater than or equal to√
n, thenu stays at level 1 and executesRANDOM-SETTLE(u). If |Ou| is less than

√
n, u moves to level 0

and executesNAIVE -SETTLE(u). Note that the transition ofu from level 1 to 0 leads to an increase in the
number of edges owned by each of its neighbors at level 0. The second invariant for each such neighbor, say
w, may get violated if|Ow| =

√
n, makingw dirty. So we scan each neighbor ofu sequentially and for each

dirty neighborw (that is, |Ow| =
√
n), we executeRANDOM-SETTLE(w) to restore the second invariant.

This finishes the processing of deletion of(u, v).
It can be observed that, unlike insertion of an edge, the deletion of an edge may lead to creation of a

large number of dirty vertices. This may happen if the deleted edge is a matched edge at level 1 and at least
one of its endpoints move to level 0.

6

4.1 Analysis of the algorithm

While processing the sequence of insertions and deletions of edges, an edge may become matched or un-
matched at different update steps. We analyze the algorithmusing the concept ofepochs, which we explain
as follows.

Definition 4.1 At any timet, let (u, v) be any edge inM. Then theepochdefined by(u, v) at timet is the
maximal continuous time period containingt during which it remains inM. An epoch is said to belong to
level 0 or 1 depending upon the level of the matched edge that defines the epoch.

The entire life span of an edge(u, v) consists of a sequence of epochs of(u, v) separated by the con-
tinuous periods when(u, v) is unmatched. It follows from the algorithm that any edge update that does
not change the matching is processed inO(1) time. An edge update that changes the matching results
in the start of new epoch(s) or the termination of some existing epoch(s). For the sake of analysis, we
will redistribute the computation performed at any update step t among the epochs that are created or ter-
minated at stept. More specifically, let epoch of(u1, v1), (u2, v2), . . . , (ul, vl) be created and epochs of
(w1, x1), (w2, x2), . . . , (wk, xk) be terminated at stept. We will redistribute total computation performed at
stept in such a way that:
Total computation performed at stept =

∑l
i=1 computation associated with the start of epoch(ui, vi) +

∑k
i=1 computation associated with the termination of epoch(wi, xi)

Now, we shall analyze the computation involved in each procedure of our algorithm and distribute it
suitably among various epochs.

1. NAIVE -SETTLE(u)
Observe that whenever the procedureNAIVE -SETTLE(u) is carried out,u is present at level 0, and
hence|Ou| <

√
n. The procedureNAIVE -SETTLE(u) searches for a free neighbor ofu by scanning

Ou. Hence, the time complexity ofNAIVE -SETTLE(u) is O(|Ou|) = O(
√
n). Furthermore, this

procedure is called wheneveru loses its mate, sayv. So we can associate the computation cost of
NAIVE -SETTLE(u) with the termination of the previous epoch(u, v).

2. RANDOM-SETTLE(u)
Observe that wheneverRANDOM-SETTLE(u) is invoked,u owns at least

√
n edges incident from level

0, and hence|Ou| ≥
√
n. During RANDOM-SETTLE(u), u finds a random mate from level 0. This

is done by selecting a random numberr ∈ [1, |Ou|], and then picking therth edge, say(u, y), from
the linked list storingOu. This takesO(|Ou|) time. Vertexu thenpulls y to level 1 to satisfy the
third invariant. In this process,y becomes the sole owner of all those edges whose other endpoint is
at level 0 (line 2,3). Sincey was the owner of at most

√
n edges, the total computation time involved

in performing this step isO(
√
n). Other steps inRANDOM-SETTLE can be executed inO(1) time.

Hence the total computation time isO(|Ou|+
√
n) which isO(|Ou|) since|Ou| ≥

√
n. We associate

this computation time with the start of the epoch(u, y) that gets created at level 1.

3. HANDLING -INSERTION(u, v)
This procedure takesO(1) time unless one of the endpoints of(u, v) starts owning

√
n edges. In

that case, the procedure invokesRANDOM-SETTLE (line 8) andNAIVE -SETTLE (line 9,10). We have
already distributed the time taken in these procedures to the respective epochs that get created. Ex-
cluding these tasks, the only computation performed in thisprocedure is in theFOR loop. The purpose
of this loop is to makeu the sole owner of all its edges incident from level 0. Sinceu owns

√
n edges

from level 0, the total computation time involved in performing this step isO(
√
n). We associate this

computation time with the start of the epoch created byu at level 1.

7

4. HANDLING -DELETION(u, v)
ProcedureHANDLING -DELETION(u, v) is carried out when the matched edge(u, v) at level 1 gets
deleted. In addition to invokingRANDOM-SETTLE and NAIVE -SETTLE procedures whose compu-
tation cost is already assigned to respective epochs, this procedure scans the listOu at most twice.
Notice that|Ou| can beΘ(n). We associate this computation time ofO(n) with the termination of
the epoch(u, v).

Excluding the updates that cause the start and termination of an epoch of(u, v), every other edge update
on u andv during the epoch is handled in justO(1) time. Therefore, we shall focus only on the amount
of computation associated with the start and termination ofan epoch. Let us now analyze the computation
time associated with the epoch at level 0 and level 1.

• Epoch at level 0
As discussed above, it is only the procedureNAIVE -SETTLE whose computation time is associated
with an epoch at level 0. This procedure takesO(

√
n) time. Hence the computation time associated

with an epoch at level 0 isO(
√
n).

• Epoch at level 1
Consider an epoch at level 1. There are two ways in which this epoch gets created at level 1:

– In HANDLING -INSERTION

An epoch of(u, v) can be created during the procedureHANDLING -INSERTION(u, v). In this
case, the computation time associated with the start of the epoch of(u, v) is the computation
time incurred in executing the procedureHANDLING -INSERTION and the procedureRANDOM-
SETTLE which it invokes. It follows from the above discussion that the computation cost associ-
ated with the epoch(u, v) isO(

√
n+ |Ou|) which isO(

√
n) since|Ou| =

√
n when we invoke

HANDLING -INSERTION(u, v).

– In HANDLING -DELETION

ProcedureHANDLING -DELETION(u, v) invokesRANDOM-SETTLE at lines 4 and 12 to create
new epochs at level 1. The execution ofRANDOM-SETTLE at line 4 creates a new epoch foru
and its computation timeO(|Ou|), which can beΘ(n), gets associated with the start of the new
epoch created byu. The execution ofRANDOM-SETTLE at line 12 creates a new epoch for some
vertexw which is some neighbor ofu. Note that|Ow| =

√
n. Its computation time, which is

O(
√
n), is associated with the start of the epoch at level 1 created by w.

Now let us calculate the computation cost associated with anepoch, say of an edge(u, v), at level 1
when it terminates. It follows from the discussion above that the only computation time associated
with the termination of epoch(u, v) is the computation time ofHANDLING -DELETION (excluding the
time spent in proceduresRANDOM-SETTLE andNAIVE -SETTLE that are already associated with the
start of their respective epochs). This cost is at mostO(n).

From our analysis given above, it follows that the amount of computation time associated with an epoch
at level 0 isO(

√
n) and the computation time associated with an epoch at level 1 isO(n).

An epoch of(u, v) may either terminate (if(u, v) is removed from the matching) or remainalive, i.e.,
(u, v) remain in the matching after the end of all the updates. An epoch of (u, v), ends because of exactly
one of the following causes.

(i) if (u, v) is deleted from the graph.

8

:

:

PSfrag replacements
LEVEL 1

LEVEL 0

natural epoch

induced epoch

Time
epoch of(u,w)

epoch of(u,w)

epoch of(u, v)
epoch of(u, v)

epoch of(v, x)

epoch of(v, x)

Figure 3: Epochs at level 0 and 1; the creation of an epoch at level 1 can terminate at most two epochs at
level 0.

(ii) u (or v) get matched to some other vertex leaving its current mate free.

An epoch will be called anatural epoch if it terminates due to cause (i); otherwise it will be called an
inducedepoch.Inducedepoch can terminate prematurely since, unlike natural epoch, the matched edge is
not actually deleted from the graph when aninducedepoch terminates.

It follows from the algorithm described above that every epoch at level 1 is a natural epoch whereas
an epoch at level 0 can be natural or induced depending on the cause of its termination. Furthermore,
each induced epoch at level 0 can be associated with a naturalepoch at level 1 whose creation led to the
termination of the former. In fact, there can be at most two induced epochs at level 0 which can be associated
with an epoch at level 1. It can be explained as follows (see Figure 3).

Consider an epoch at level 1 associated with an edge, say(u, v). Suppose it was created by vertexu. If
u was already matched at level 0, letw 6= v be its mate. Similarly, ifv was also matched already, letx 6= u
be its current mate at level 0. So matchingu to v terminates the epoch of(u,w) as well as the epoch of edge
(v, x) at level 0. Wechargethe overall cost of these two epochs to the epoch of(u, v). We have seen that
the computational cost associated with an epoch at level 0 isO(

√
n). So the overall computationchargedto

an epoch of(u, v) at level 1 isO(n+ 2
√
n) which isO(n).

Lemma 4.1 The computation charged to a natural epoch at level 1 isO(n) and the computation charged
to a natural epoch at level 0 isO(

√
n).

In order to analyze our algorithm, we just need to get a bound on the computationchargedto all natural
epochs that get terminated during a sequence of updates or are alive at the end of the all the updates. Let
us first analyze the computation costchargedto all those epochs which are alive at the end oft updates.
Consider an epoch of edge(u, v) that is alive at the end oft updates. If this epoch is at level 0, the compu-
tation cost associated with the start of this epoch isO(1). If this epoch is at level 1, then the computation
time associated with the start of this epoch isO(|Ou|) and notice that|Ou| ≥

√
n. Note that there can be at

most two induced epochs at level 0 whose computation time, which isO(
√
n), is also charged to the epoch

of (u, v). Hence the computation charged to the live epoch of(u, v) is O(|Ou|). Observe that, at any given
moment of time,Ou ∩ Ow = ∅ for any two verticesu,w present at level 1. Hence the computation time
charged to all live epochs at the end oft updates is of the order of

∑

u |Ou| ≤ 2t = O(t). So all we need is
to analyse the computation charged to all natural epochs that get terminated during the sequence of updates.

Let t be the total number of updates. Each natural epoch at level 0 which gets terminated can be assigned
uniquely to the deletion of its matched edge. Hence it follows from Lemma 4.1 that the computationcharged
to all natural epochs terminated at level 0 duringt updates isO(t

√
n). We shall now analyze the number of

epochs terminated at level 1. Our analysis will crucially exploit the following lemma.

9

Lemma 4.2 Suppose vertexv creates an epoch at level1 during an update in the graph. and letOinit
v be

the set of edges thatv owned at the time of the creation of this epoch. Then, for any arbitrary sequenceD
of edge deletions ofOinit

v , and for any(v,w) ∈ Oinit
v

Pr[MATE(v) = w | D] =
1

|Oinit
v |

We first carry out the analysis for the high probability boundon the total update time taken by our algorithm.
Thereafter we carry out the analysis for the expected value of the total update time.

4.2 High probability bound on the total update time

The key idea of randomization is that once a vretexv creates an epoch at level 1, there should bemanyedge
deletions fromOinit

v before the matched edge ofv is deleted. In order to quanitfy this key idea, we introduce
the following definition that categorizes an epoch as good orbad.

Definition 4.2 An epoch is said to be bad if it gets terminated naturally within the deletion of the first1/3
edges that it owned at the time of its creation. An epoch is said to be good if it is not bad.

It follows from Definition 4.2 that a good epoch undergoes many edge deletions before getting terminated.
So only the bad epochs are problematic. Now using Lemma 4.2, we establish an upper bound on the
probability of an epoch to be bad.

Lemma 4.3 Suppose vertexv creates an epoch at level1 during thekth update for somek ≤ t. Then this
epoch is going to be bad with probability1/3 irrespective of the future updates in the graph and the random
bits picked during their processing.

Proof: Consider any sequence of updates in the graph following the creation of this epoch. This sequence
defines the sequenceD of edge deletions ofOinit

v . The termination of this epoch is fully determined by the
mate thatv picked and this sequenceD. This epoch will be bad if the mate ofv is among the endpoints of
the first1/3 edges in this sequence. Then, Lemma 4.2 implies that the mateof v is equally likely to be the
endpoint of any edge in this sequence. So the probability of the epoch to be bad is1/3 1. �

For the time complexity analysis, we will show that the number of bad epochs may exceed the number
of good epochs by at mostO(log n) with very high probability. Notice that the number of epochscreated
at level 1 is itself a random variable whose value may depend upon the updates in the graph as well as the
random bits picked during their processing. However, as shown by Lemma 4.3, each newly created epoch
at level 1 will be bad with probability1/3 irrespective of the past epochs. The number of epochs created at
level 1 during anyt updates is triviallyO(nt). Therefore, the sequence of epochs at level 1 can be seen as an
instance of the asymmetric random walk as follows. The walk starts at location2 log2 n to the right of the
origin. Each step of the walk is one unit to the right of the current location with probability2/3 or one unit
to the left with probability1/3 independent of the past moves. We need to find the probabilitythat the walk
ever reaches the origin during any time in the algorithm. It follows from Lemma 3.1 that the probability of
this event is less than1/n2. So the following lemma holds immediately.

Lemma 4.4 During any sequence oft updates, the number of bad epoch at level 1 can exceed the number
of good epochs by2 log2 n with probability at most1/n2.

1The analysis assumed that each edge fromO
init

v is going to be deleted sometime in future. If not, place all such edges
arbitrarily at the end of the sequenceD. In this case, the probability of the epoch to be bad will be even less than1/3.

10

As stated in Lemma 4.1, each epoch at level 1 has a computationcost ofO(n) charged to it. Lett be the
total number of updates in the graph. For each epoch at level 1, the number of owned edges at the time of
its creation is at least

√
n. As a result the number of good epochs duringt updates is bounded by4t/

√
n

deterministically. So the computation cost of good epochs at level 1 is bounded byO(t
√
n). Lemma 4.4

implies that the computation cost of all bad epochs at level 1can exceed the computation cost of all good
epochs at most bycn log n amount for some constantc with probability≥ 1− 1/n2. So overall the cost of
all epochs at level 1 is bounded byO((t

√
n + n log n) with high probability. The computation cost of all

epochs at level 0 is bounded deterministically byO(t
√
n). Hence the total computation time taken by our

algorithm for any sequence oft updates isO(t
√
n+ n log n) with high probability.

4.3 Expected value of the total update time

LetXv,i,k be a random variable which is 1 ifv creates an epoch at leveli at update stepk, otherwise it is 0.
We denote this epoch asEPOCH(v, i, k). LetZv,i,k denote the number of edges fromOinit

v that are deleted
during the epoch. (IfEPOCH(v, i, k) is not created,Zv,i,k is defined as 0). Since each edge deletion at level
1 is uniquely associated to the epoch that owned it. Therefore,

∑

v,k Zv,1,k ≤ t. Hence,

∑

v,k

E[Zv,1,k] ≤ t (1)

We shall now derive a bound on the expected value ofZv,1,k in an alternate way.

Lemma 4.5 E[Zv,1,k] ≥
√
n/2 ·Pr[Xv,1,k = 1].

Proof: We shall first find the expectation ofZv,1,k conditioned on the event thatv creates an epoch at
level 1 duringkth update. That is, we shall findE[Zv,1,k|Xv,1,k = 1]. Let Oinit

v be the set of edges
owned byv at the moment of creation ofEPOCH(v, 1, k), and letD be the deletion sequence associated
with Oinit

v . It follows from Lemma 4.2 that the matched egde ofv is distributed uniformly overOinit
v . So

E[Zv,1,k|Xv,1,k = 1] = |Oinit
v |/2 ≥ √n/2 since |Oinit

v | for an epoch at level1 is at least
√
n. Using

conditional expectation, we get

E[Zv,1,k] = E[Zv,1,k|Xv,1,k = 1] ·Pr[Xv,1,k = 1] ≥ √n/2 ·Pr[Xv,1,k = 1]

�

Notice that the computation cost of an epoch at level1 is at mostcn for some constantc. So the expected
value of the computation cost associated with all natural epochs that get terminated at level 1 duringt
updates is

∑

v,k

cn ·Pr[Xv,1,k = 1] = 2c
√
n
∑

v,k

√
n/2 ·Pr[Xv,1,k = 1]

≤ 2c
√
n
∑

v,k

E[Zv,1,k] using Lemma 4.5

≤ 2c
√
nt using Equation 1

We can thus conclude with the following theorem.

Theorem 4.1 Starting with a graph onn vertices and no edges, we can maintain maximal matching for any
sequence oft updates inO(t

√
n) time in expectation andO(t

√
n+ n log n) with high probability.

11

4.4 On improving the update time beyondO(
√
n)

In order to extend our 2-LEVEL algorithm for getting a better update time, it is worth exploring the reason
underlyingO(

√
n) update time guaranteed by our 2-LEVEL algorithm. For this purpose, let us examine the

second invariant more carefully. Letα(n) be the threshold for the maximum number of edges that a vertex
at level 0 can own. Consider an epoch at level 1 associated with some edge, say(u, v). The computation
associated with this epoch is of the order of the number of edgesu andv own which can beΘ(n) in the
worst case. However, the expected duration of the epoch is ofthe order of the minimum number of edgesu
can own at the time of its creation, i.e.,Θ(α(n)). Therefore, the expected amortized computation per edge
deletion for an epoch at level 1 isO(n/α(n)). Balancing this with theα(n) update time at level 0, yields
α(n) =

√
n.

In order to improve the running time of our algorithm, we needto decrease the ratio between the maxi-
mum and the minimum number of edges a vertex can own during an epoch at any level. It is this ratio that
determines the expected amortized time of an epoch. This insight motivates us for having a finer partition of
vertices – the number of levels should be increased toO(log n) instead of just 2. When a vertex creates an
epoch at leveli, it will own at least2i edges, and during the epoch it will be allowed to own at most2i+1−1
edges. As soon as it owns2i+1 edges, it should migrate to higher level. Notice that the ratio of maximum to
minimum edges owned by a vertex during an epoch gets reduced from

√
n to a constant.

We pursue the approach sketched above combined with some additional techniques in the following
section. This leads to a fully dynamic algorithm for maximalmatching which achieves expected amortized
O(log n) update time per edge insertion or deletion.

5 Fully dynamic algorithm with expected amortizedO(logn) time per up-
date

This algorithm maintain a partition of vertices among various levels. We describe the difference in this
partition vis-a-vis 2-LEVEL algorithm.

1. The fully dynamic algorithm maintains a partition of vertices among⌊log4 n⌋ + 2 levels. The levels
are numbered from−1 to L0 = ⌊log4 n⌋. During the algorithm, when a vertex moves to leveli, it
owns at least4i edges. So a vantage point is needed for a vertex that does not own any edge. As a
result, we introduce a level -1 that contains all the vertices that do not own any edge.

2. We use the notion of ownership of edges which is slightly different from the one used in the 2-LEVEL

algorithm. In the 2-LEVEL algorithm, at level 0, both the endpoints of the edge are the owner of the
edge. Here, at every level, each edge is owned by exactly one of its endpoints. If the endpoints of the
edge are at different levels, the edge is owned by the endpoint that lies at the higher level. If the two
endpoints are at the same level, then the tie is broken appropriately by the algorithm.

Like the 2-LEVEL algorithm, each vertexu will maintain a dynamic hash table storing the edgesOu

owned by it. In addition, the generalized fully dynamic algorithm will maintain the following data structure
for each vertexu. For eachi ≥ LEVEL(u), let E iu be the set of all those edges incident onu from vertices at
level i that are not owned byu. The setE iu will be maintained in a dynamic hash table. However, the onus
of maintainingE iu will not be onu. For any edge(u, v) ∈ E iu, v will be responsible for the maintenance of
(u, v) in E iu since(u, v) ∈ Ov. For example, suppose vertexv moves to levelj. If j > LEVEL(u), thenv
will remove(u, v) from E iu and insert it toEju. Otherwise ((j ≤ LEVEL(u)), v will remove(u, v) from E iu
and insert it toOu.

12

−

PSfrag replacements

L0

i

−1

0

1

1

2

3

v

x

matched edge

unmatched edge
...

Figure 4: A snapshot of the algorithm onK9: all vertices are matched(thick edges) except vertexx at level
−1. φv(2) = 4 < 42 andφv(3) = 6 < 43, sov cannot rise to a higher level.

5.1 Invariants and a basic subroutine used by the algorithm

As can be seen from the 2-level algorithm, it is advantageousfor a vertex to get settled at a higher level once
it owns alarge number of edges. Pushing this idea still further, our fully dynamic algorithm will allow a
vertex to rise to a higher level if it can ownsufficiently largenumber of edges after moving there. In order
to formally define this approach, we introduce an important notation here.

For a vertexv with LEVEL(v) = i,

φv(j) =

{ |Ov |+
∑

i≤k<j |Ekv | if j > i

0 otherwise

In other words, for any vertexv at leveli and anyj > i, φv(j) denote the number of edges whichv can
own if v rises to levelj. Our algorithm will be based on the following key idea. If a vertexv hasφv(j) ≥ 4j ,
thenv would rise to the levelj. In case, there are multiple levels to whichv can rise,v will rise to the highest
such level. With this key idea, we now describe the three invariants which our algorithm will maintain.

1. Every vertex at level≥ 0 is matched and every vertex at level−1 is free.

2. For each vertexv and for allj > LEVEL(v), φv(j) < 4j holds true.

3. Both the endpoints of a matched edge are at the same level.

It follows that the free vertices, if any, will be present at level−1 only. Any vertexv present at level−1 can
not have any neighbor at level−1. Otherwise, it would imply thatφv(0) ≥ 1 = 40, violating the second
invariant. Hence, every neighbor of a free vertex must be matched. This implies that the algorithm will
always maintain a maximal matching. Furthermore, the key idea of our algorithm is captured by the second
invariant – after processing every update there is no vertexwhich fulfills the criteria of rising. Figure 4
depicts a snapshot of the algorithm.

An edge update may lead to the violation of the invariants mentioned above and the algorithm basically
restores these invariants. This may involve rise or fall of vertices between levels. Notice that the second
invariant of a vertex is influenced by the rise and fall of its neighbors. We now state and prove two lemmas
which quantify this influence more precisely.

Lemma 5.1 The rise of a vertexv does not violate the second invariant for any of its neighbors.

13

Proof: Consider any neighboru of v. Let LEVEL(u) = k. Since the second invariant holds true foru before
the rise ofv, soφu(i) < 4i for all i > k. It suffices if we can show thatφu(i) does not increase for anyi
due to the rise ofv. We show this as follows.

Let vertexv rise from levelj to ℓ. If ℓ ≤ k, the edge(u, v) continues to be an element ofOu, and so
there is no change inφu(i) for anyi. Let us consider the case whenℓ > k. The rise ofv from j to ℓ causes
removal of(u, v) fromOu (or Eju if j ≥ k) and insertion toEℓu. As a resultφu(i) decreases by one for each
i in [max(j, k) + 1, ℓ], and remains unchanged for all other values ofi. �

Lemma 5.2 Suppose a vertexv falls from levelj to j − 1. As a result, for any neighboru of v, φu(i)
increases by at most 1 fori = j and remains unchanged for all other values ofi.

Proof: Let LEVEL(u) = k. In casek ≥ j, there is no change inφu(i) for any i due to fall ofv. So let us
consider the casej > k. In this case, the fall ofv from level j to j − 1 leads to the insertion of(u, v) in
Ej−1
u and deletion fromEju. Consequently,φu(i) increases by one only fori = j and remains unchanged for

all other values ofi. �

In order to detect any violation of the second invariant for avertexv due to rise or fall of its neighbors,
we shall maintain{φv(i)|i ≤ L0} in an arrayφv [] of sizeL0 + 2. The updates on this data structure during
the algorithm will involve the following two types of operations.

• DECREMENT-φ(v, I): This operation decrementsφv(i) by one for alli in interval I. This operation
will be executed when some neighbor ofv rises. For example, suppose some neighbor ofv rises from
level j to ℓ, thenφv(i) decreases by one for alli in intervalI = [max(j, LEVEL(v)) + 1, ℓ].

• INCREMENT-φ(v, i): this operation increasesφv(i) by one. This operation will be executed when
some neighbor ofv falls from i to i− 1.

It can be seen that a singleDECREMENT-φ(v, I) operation takesO(|I|) time which isO(log n) in the worst
case. On the other hand any singleINCREMENT-φ(v, i) operation takesO(1) time. However, sinceφv(i) is
0 initially and is non-negative always, we can conclude the following.

Lemma 5.3 The computation cost of allDECREMENT-φ() operations over all vertices is upper-bounded by
the computation cost of allINCREMENT-φ() operations over all vertices during the algorithm.

Observation 5.1 It follows from Lemma 5.3 that we just need to analyze the computation involving all
INCREMENT-φ() operations since the computation involved inDECREMENT-φ() operations is subsumed by
the former.

If any invariant of a vertex, sayu, gets violated, it might rise or fall, though in some cases, it may still
remain at the same level. However, in all these cases, eventually the vertexu will execute the procedure,
GENERIC-RANDOM-SETTLE, shown in Figure 5. This procedure is essentially a generalized version of
RANDOM-SETTLE(u) which we used in the 2-level algorithm.GENERIC-RANDOM-SETTLE(u, i) starts with
movingu from its current level (LEVEL(u)) to level i. If level i is higher than the previous level ofu, then
u performs the following tasks. For each edge(u,w) already owned by it,u informsw about its rise to
level i by updatingE iw. In additionu acquires the ownership of all the edges whose other endpointlies at a
level∈ [LEVEL(u), i − 1]. For each such edge(u,w) that is now owned byu, we performDECREMENT-
φ(w, [LEVEL(w) + 1, i]) to reflect that the edge is now owned by vertexu which has moved to leveli.
Henceforth, the procedure then resemblesRANDOM-SETTLE. It finds a random edge(u, v) from Ou and
movesv to level i. The procedure returns the previous mate ofv, if v was matched. We can thus state the
following lemma.

14

Lemma 5.4 Consider a vertexu that executesGENERIC-RANDOM-SETTLE(u, i) and selects a matev.
Excluding the time spent inDECREMENT-φ operations, the computation time of this procedure is of the
order of|Ou|+ |Ov| whereOu andOv is the set of edges owned byu andv just at the end of the procedure.

Procedure GENERIC-RANDOM-SETTLE(u, i)

if LEVEL(u) < i then //u rises to level i1

for each(u,w) ∈ Ou do //u informs w about its rise2

transfer(u,w) from E LEVEL(u)
w to E iw;3

DECREMENT-φ(w, [LEVEL (u) + 1, i]);4

for eachj = LEVEL(u) to i− 1 do //u gains ownership of some more edges5

for each(u,w) ∈ Eju do6

transfer(u,w) from Eju to E iw;7

transfer(u,w) fromOw toOu;8

DECREMENT-φ(w, [j + 1, i]);9

foreach j = LEVEL(u) + 1 to i do φu(j)← 0;10

LEVEL(u)← i;11

Let (u, v) be a uniformly randomly selected edge fromOu;12

if v is matchedthen13

x← MATE(v);14

M←M\{(v, x)};15

else
x← NULL ;16

for each(v,w) ∈ Ov do //v informs w about its rise17

transfer(v,w) from E LEVEL(v)
w to E iw;18

DECREMENT-φ(w, [LEVEL (v) + 1, i]);19

for eachj = LEVEL(v) to i− 1 do //v gains ownership of some more edges20

for each(v,w) ∈ Ejv do21

transfer(v,w) from Ejv to E iw;22

transfer(v,w) fromOw toOv;23

DECREMENT-φ(w, [j + 1, i]);24

M←M∪ {(u, v)};25

foreach j = LEVEL(v) + 1 to i do φv(j)← 0;26

LEVEL(v)← i ; /*v rises to level i*/27

returnx;28

Figure 5: Procedure used by a free vertexu to settleat LEVEL i.

5.2 Handling edge updates by the fully dynamic algorithm

Our fully dynamic algorithm will employ a generic procedurecalled PROCESS-FREE-VERTICES(). The
input to this procedure is a sequenceS consisting of ordered pairs of the form(x, k) wherex is a free
vertex at levelk ≥ 0. Observe that the presence of free vertices at level≥ 0 implies that matchingM

15

is not necessarily maximal. In order to preserve maximalityof matching, the procedurePROCESS-FREE-
VERTICES restores the invariants of each such free vertex tillS becomes empty. We now describe our fully
dynamic algorithm.

Handling deletion of an edge

Consider deletion of an edge, say(u, v). For eachj > max(LEVEL(u), LEVEL(v)), we decrementφu(j)
andφv(j) by one. If (u, v) is an unmatched edge, no invariant gets violated. So we only delete the edge
(u, v) from the data structures ofu andv. Otherwise, letk = LEVEL(u) = LEVEL(v). We execute the
ProcedurePROCESS-FREE-VERTICES(〈(u, k), (v, k)〉).

Handling insertion of an edge

Consider insertion of an edge, say(u, v). Without loss of generality, assume that initiallyu was at the same

level asv or a higher level thanv. So we add(u, v) toOu andE LEVEL(u)
v . For eachj > max(LEVEL(u), LEVEL(v)),

we incrementφu(j) andφv(j) by one. We check if the second invariant has got violated for either u or v.
This invariant may get violated foru (likewise forv) if there is any integeri > max(LEVEL(u), LEVEL(v)),
such thatφu(i) has become4i just after the insertion of edge(u, v). In case there are multiple such integers,
let imax be the largest such integer. To restore the invariant,u leaves its current mate, sayw, and rises to level
imax. We executeGENERIC-RANDOM-SETTLE(u, imax), and letx be the vertex returned by this procedure.
Let j andk be respectively the levels ofw andx. Note thatx andw are two free vertices now. We execute
PROCESS-FREE-VERTICES(〈(x, k), (w, j)〉).

If the insertion of edge(u, v) violates the second invariant for bothu andv, we proceed as follows. Let
j be the highest level to whichu can rise after the insertion of(u, v), that is,φu(j) = 4j . Similarly, let ℓ
be the highest level to whichv may rise, that is,φv(ℓ) = 4ℓ. If j ≥ ℓ, we allow onlyu to rise to levelj;
otherwise we allow onlyv to rise toℓ. Note that afteru moves to levelj, edge(u, v) becomes an element of
Ejv . So

∑

LEVEL(v)≤k<ℓ |Ekv | decreases by 1. As a result,φv(ℓ) = |Ov| +
∑

LEVEL(v)≤k<ℓ |Ekv | also decreases

by 1 and is now strictly less than4ℓ; thus the second invariant forv is also restored.

5.2.1 Description of ProcedurePROCESS-FREE-VERTICES

The procedure receives a sequenceS of ordered pairs(x, i) such thatx is a free vertex at leveli. It processes
the free vertices in a decreasing order of their levels starting from L0. We give an overview of this processing
at leveli. For a free vertex at leveli, if it owns sufficientlylarge number of edges, then it settles at leveli
and gets matched by selecting a random edge from the edges owned by it. Otherwise the vertex falls down
by one level. Notice that the fall of a vertex from leveli to i − 1 may lead to rise of some of its neighbors
lying at level< i. However, as follows from Lemma 5.2, for each such vertexv, only φv(i) increases by
one andφv() value for all other levels remains unchanged. So the second invariant may get violated only for
φv(i). This implies thatv will rise only to leveli. After these rising vertices move to leveli (by executing
GENERIC-RANDOM-SETTLE), we move onto leveli − 1 and proceed similarly. Overall, the entire process
can be seen as a wave of free vertices falling level by level. Eventually this wave of free vertices reaches
level−1 and fades away ensuring maximal matching. With this overview, we now describe the procedure
in more details and its complete pseudocode is given in Figure 6.

The procedure uses an arrayQ of size L0 + 2, whereQ[i] is a pointer to a queue (initially empty)
corresponding to leveli. For each ordered pair(x, k) ∈ S, it insertsx into queueQ[k]. The procedure
executes aFOR loop from L0 down to 0 where theith iteration extracts and processes the vertices of queue
Q[i] one by one as follows. Letv be a vertex extracted fromQ[i]. First we execute the functionFALLING (v)
which does the following.v disowns all its edges whose other endpoint lies at leveli. If v owns less than4i

16

Procedure PROCESS-FREE-VERTICES(S)

for each(x, i) ∈ S do ENQUEUE(Q[i], x);1

for i = L0 to 0 do2

while (Q[i] is not EMPTY) do3

v ← DEQUEUE(Q[i]);4

if FALLING (v) then //v falls to i− 15

LEVEL(v)← i− 1;6

ENQUEUE(Q[i − 1], v);7

for each(u, v) ∈ Ov do89

transfer(u, v) from E iu to E i−1
u ;10

INCREMENT-φ(u, i);11

INCREMENT-φ(v, i);12

if φu(i) ≥ 4i then //u rises to i13

x← GENERIC-RANDOM-SETTLE(u, i);14

if x 6= NULL then15

j ← LEVEL(x);16

ENQUEUE(Q[j], x);17

18

else //v settles at level i

x← GENERIC-RANDOM-SETTLE(v, i);19

if x 6= NULL then20

j ← LEVEL(x);21

ENQUEUE(Q[j], x);22

Function FALLING(v)

i← LEVEL(v);1

for each(u, v) ∈ Ov such thatLEVEL(u) = i do //v disowns all edges at level i2

transfer(u, v) from Ov to Ou;3

transfer(u, v) from E iu to E iv;4

if |Ov | < 4i then returnTRUE else returnFALSE;5

Figure 6: Procedure for processing free vertices given as a sequenceS of ordered pairs(x, i) wherex is a
free vertex atLEVEL i.

17

edges thenv falls to leveli−1, otherwisev will continue to stay at leveli. The processing of the free vertex
v for each of these two cases is done as follows.

1. v has to stay at leveli.
v executesGENERIC-RANDOM-SETTLE and selects a random mate, sayw, from levelj < i (if w is
present inQ[j] then it is removed from it and is raised to leveli). If x was the previous mate ofw,
thenx is a falling vertex. Vertexx gets added toQ[j]. This finishes the processing ofv.

2. v has to fall.
In this case,v falls to leveli − 1 and is inserted toQ[i − 1]. At this stage,Ov consists of neighbors
of v from level i − 1 or below. It follows from Lemma 5.2 that the fall ofv from i to i − 1 leads to
increase inφu(i) by one for each neighboru of v which is present at a level lower thani. Moreover,
φv(i), that was 0 initially, has to be set to|Ov |. So all the vertices ofOv are scanned, and for each
(u, v) ∈ Ov, we incrementφu(i) andφv(i) by 1. In caseφu(i) has become4i, u has to rise to leveli
and is processed as follows.u executesGENERIC-RANDOM-SETTLE(u, i) to selects a random mate,
sayw, from levelj < i. If w was inQ[j] then it is removed from it. Ifx was the previous mate ofw,
thenx is a falling vertex, and so it gets added to queueQ[j].

Remark 5.1 Notice a stark similarity between the above procedure for handling a free vertex and the pro-
cedure for handling a free vertex at level 1 in the 2-level algorithm.

In case 1,v remains at leveli andw moves to the leveli from some levelj < i. This renders vertexx
(earlier mate ofw) free and the first invariant ofx is violated. Sox is added to the queue at levelj. The
processing ofv does not changeφu() for any neighboru of v. Furthermore, the rise ofw to leveli does not
lead to violation of any invariant due to Lemma 5.1. In case 2,v falls to leveli − 1 and as a result some
vertices may rise to leveli. Each such rising vertex executesGENERIC-RANDOM-SETTLE. As in case 1,
the processing of these rising vertices may create some freevertices only at level< i. We can thus state the
following lemma.

Lemma 5.5 After ith iteration of the for loop ofPROCESS-FREE-VERTICES, the free vertices are present
only in the queues at level< i, and for all vertices not belonging to these queues the threeinvariants holds.

Lemma 5.5 establishes that after termination of procedurePROCESS-FREE-VERTICES, there are no free
vertices at level≥ 0 and all the invariants get restored globally.

5.3 Analysis of the algorithm

Processing the deletion or insertion of an edge(u, v) begins with decrementing or incrementingφu(i) and
φv(i) for each levelj > max(LEVEL(u), LEVEL(v)). Since there areO(log n) levels, the computation
associated with this task over any sequence oft updates will beO(t log n). This task may be followed by
executing the procedurePROCESS-FREE-VERTICES that restores the invariants and updates the matching
accordingly. The updates in the matching can be seen as creation of new epochs and termination of some of
the existing epochs. Like 2-level algorithm, for the purpose of analysis, we visualize the entire algorithm as
a sequence of creation and termination of various epochs. Excluding theO(t log n) time for maintainingφ,
the total computation performed by the algorithm can be associated with all the epochs that get terminated
and those that remain alive at the end of the sequence of updates. Along exactly similar lines as in 2-level
algorithm, the computation associated with all the epochs that are alive at the end oft updates isO(t) only.
So we just need to focus on the epochs that get terminated and the computation associated with each of
them.

18

Let us first analyse the computation associated with an epochof a matched edge(u, v). Suppose this
epoch got created by vertexv at levelj. Sov would have executedGENERIC-RANDOM-SETTLE and selected
u as a random mate from level< j. Note thatv must be owning less than4j+1 edges andu would be owning
at most4j edges at that moment. This observation and Lemma 5.4 imply that the computation involved in the
creation of the epoch isO(4j). Once the epoch is created, any update pertaining tou or v will be performed
in just O(1) time until the epoch gets terminated. Let us analyze the computation performed when the
epoch gets terminated. At this moment either one or bothu andv become free vertices. Ifv becomes free,v
executes the following task (see procedurePROCESS-FREE-VERTICES in Figure 6):v scans all edges owned
by it, which is less than4j+1, and disowns those edges incident from vertices of levelj. Thereafter, ifv still
owns at least4j edges, it settles at levelj and creates a new epoch at levelj. Otherwise,v keeps falling one
level at a time. For a single fall ofv from leveli to i− 1, the computation performed involves the following
tasks: scanning the edges owned byv, disowning those incident from vertices at leveli, incrementingφw

values for each neighborw of v lying at level less thani, and updatingφv(i) to |Ov|. All this computation
is of the order of the number of edgesv owns at leveli which is less than4i+1. Eventually eitherv settles at
some levelk ≥ 0 and becomes part of a new epoch or it reaches level−1. The total computation performed
by v is, therefore, of the order of

∑j
i=k 4

i+1 = O(4j). This entire computation involvingv (andu) in this
process is associated with the the epoch of(u, v). Hence we can state the following Lemma.

Lemma 5.6 For anyi ≥ 0, the computation associated with an epoch at leveli is O(4i).

An epoch corresponding to edge(u, v) at level i could be terminated if the matched edge(u, v) gets
deleted. Such an epoch is called a natural epoch. However, this epoch could be terminated due to one of the
following reasons also.

• u (or v) get selected as a random mate by one of their neighbors present atLEVEL > i.

• u (or v) starts owning4i+1 or more edges.

Each of the above factors render the epoch to be an induced epoch. For any leveli > 0, the creation of an
epoch causes termination of at most two epochs at levels< i. It can be explained as follows: Consider an
epoch at leveli associated with an edge, say(u, v). Suppose it was created by vertexu. If u was already
matched at some levelj < i, letw 6= v be its mate. Similarly, ifv was also matched already at some level
k < i, let x 6= u be its mate. So matchingu to v terminates the epoch of(u,w) and(v, x) at levelj andk
respectively. We can thus state the following lemma.

Lemma 5.7 Creation of an epoch at a leveli may cause termination of at most 2 epochs at level< i.

5.3.1 Analysing an epoch

Consider an epoch created by a vertexv at level i. At the time of the creation of the epoch, letOinit
v be

the set of edges owned byv, and letw = MATE(v). This epoch may terminate much before the deletion
of (v,w). This happens whenv or w moves to some level> i before the deletion of(v,w). In order to
analyse termination of an epoch, therefore, we associate anupdate sequence with it as follows. For each
edge(v, x) ∈ Oinit

v , we consider the first time in future thatx moves to some higher level2. Theupdate
label associated with edge(v, x) is defined as

if x moves to a level> i before its deletion then it is classified asupwardelse it isdeletion.

2vertexx may move to level> i (and down) multiple times while the algorithm processes a sequence of updates. However, it
is only the first time (after the creation of the epoch) whenx moves to a level> i that is relevant as far as the possibility of the
termination of the epoch by the upward movement ofx is concerned.

19

Likewise, we also consider the first time in future thatv moves to a level> i. If v never moves to any level
> i in future, we just appendv at the end of all the updates associated withOinit

v . The update sequenceU for
the epoch is the sequence of these updates on the edges ofOinit

v and vertexv arranged in the chronological
order. Consider the following example. SupposeOinit

v has 10 edges and let the corresponding neighbors
of v be {w1, . . . , w10}. Let the updates in the chronological order be : the deletionof (v,w4), upward
movement ofw1, upward movement ofw9, the deletion of(v,w5), and so on. The corresponding update
sequence will be

U : 〈 •
w4,

↑
w1,

↑
w9,

•
w5,

•
w8,

•
w3,

↑
w2,

↑
v,

•
w7,

↑
w10,

•
w8 〉

Observation 5.2 If the update associated with (the owner)v appears atℓth location inU , then the epoch
will terminate on or before theℓth update inU . Therefore, the updates at location> ℓ in U will have no
influence on the termination of the epoch.

Unlike the 2-level algorithm, the update sequence associated with an epoch is not uniquely defined by the
sequence of updates in the graph after the creation of the epoch. Rather, it also depends upon the current
matching as well as the random bits chosen by the algorithm while processing the updates. So there is
a probability distribution defined over all possible updatesequences that depends upon these two factors.
Consequently, the analysis of an epoch in our final algorithmis more complex compared to the 2-level
algorithm. In particular, it is not obvious whether there isany dependence between the random mate picked
by a vertex while creating an epoch and the sequence of updates associated with the epoch. However, using
an interesting non-trivial property of our algorithm, we will establish that there is no dependence between
the two.

Lemma 5.8 Suppose a vertexv creates an epoch and letOinit
v be the set of its owned edges at the time of

the creation of this epoch. Then, for any update sequenceU and for each(v,w) ∈ Oinit
v ,

Pr[MATE(v) = w | U] = Pr[MATE(v) = w] =
1

|Oinit
v |

Lemma 5.8 can be seen as a generalization of Lemma 4.2 that we stated for our 2-level algorithm. Its proof
is given in Section 5.4. The analysis of our algorithm will becritically dependent on this lemma. Using this
lemma, we shall first establish a high probability bound on the total update time of the algorithm to process
a sequence of updates in the graph.

5.3.2 High probability bound on the total update time

Recall Definition 4.2 of a bad epoch. It can be observed from this definition that an induced epoch is always
a good epoch. Using Lemma 5.8, the lemma for the probability of a bad epoch extends seamlessly from
2-level algorithm to our final algorithm as follows.

Lemma 5.9 Suppose vertexv creates an epoch at leveli while the algorithm processeskth update in the
graph. This epoch will be bad with probability at most1/3 irrespective of the updates in the graph and the
random bits picked during their processing.

Proof: The termination of the epoch is completely determined by themate thatv picks and the update
sequence associated with this epoch. Consider any update sequenceU associated with this epoch. It follows
from Lemma 5.8 that conditioned onU , the mate ofv is equally likely to be the endpoint of any edge in

20

Oinit
v . Now recall from Observation 5.2 that for the epoch to be terminated naturally, the mate ofv must be

among the endpoints of the deleted edges that precedev in U . We distinguish between the following two
cases.

Case1. There are less than|Oinit
v |/3 edge deletions precedingv in U .

The epoch will be bad only if the matched edge ofv is one of these edge deletions precedingv in U .
Since the number of these edge deletions is less than|Oinit

v |/3, so using Lemma 5.9 the probability
of the epoch to be bad is less than1/3.

Case2. There are at least|Oinit
v |/3 edge deletions precedingv in U .

The epoch will be bad if the matched edge ofv is one of the first|Oinit
v |/3 edge deletions inU . From

Lemma 5.8, the termination of the epoch is equiprobable for any of theOinit
v ’s, so the probability that

the epoch is bad in this case is exactly1/3.

It follows that the epoch is going to be bad with probability1/3 for each possible update sequenceU asso-
ciated with the epoch. �

We will show that the number of bad epochs at a leveli could exceed the number of good epochs at
level i by at mostO(log n) with very high probability. Notice that the number of epochscreated at leveli
is itself a random variable. During any update, the number ofepochs that will be created at leveli depends
upon the past updates in the graph and the random bits picked during their processing. However, Lemma
5.9 implies that each newly created epoch at leveli will be bad with probability at most1/3 independent of
these events. Hence, the sequence of epochs at leveli can be seen as an instance of the asymmetric random
walk as established in the analysis of the 2-level algorithm. So the bad epochs at any leveli may exceed the
good epochs by2 log2 n with probability at most1/n2. There areO(log n) levels in the hierarchy. Hence
we get the following lemma usingunion bound.

Lemma 5.10 For every leveli ≤ L0, the number of bad epochs will not exceed the number of good epochs
by more than2 log2 n with probability at least1− (log n)/n2 > 1− 1/n.

Let us temporarily exclude the maximum surplus ofO(log n) bad epochs at each level from our analysis.
Consequently, it follows from Lemma 5.10 that each bad epochat a level can be mapped to a good epoch
at the same level in a unique manner - see Figure 7(i). Also thecreation of each epoch at a leveli + 1
can terminate at most two (induced) epochs at lower levels asstated in Lemma 5.7. Using this fact and
the mapping between the good and bad epochs at a level, we can construct a forest whose nodes will be
the epochs terminated across all levels during the algorithm. The intuition for defining this forest is that
eventually the computation cost of a bad epoch or an induced epoch will be charged to a good natural epoch.
Since a good natural epoch has sufficientlylarge number of edge deletions associated with it, these edge
deletions can be charged to pay for all the computation carried out by our algorithm.

With this intuition, we now provide the construction of the forest by defining parent of each epoch using
the following rules.

1. Parent of each induced epoch is the epoch at the higher level whose creation led to its termination.

2. Parent of a good epoch is itself (hence it is the root of its tree).

3. If a bad epoch is mapped to an induced epoch, then its parentis the same as the parent of the induced
epoch. Otherwise, it is the parent of itself (hence it is the root of its tree).

21

.

.

PSfrag replacements

a ab bc cd d

g g A natural good epoch

A bad epoch
An induced epoch

(i) (ii)

i+ 1

i

Figure 7: (i) Mapping between bad and good epochs at leveli (ii) Assigning at most 4 epochs from lower
levels to an epoch.

It follows from rule 1 and 3 (the if part) that with an epoch at alevel, at most 4 epochs from lower levels
can be associated. Hence each node in the forest will have at most four children. See Figure 7(ii). Moreover,
the root of each tree in the forest of epochs is either a bad epoch or a good natural epoch. Using Lemma
5.6, the computation costC(i) associated with a tree of epochs whose root is at leveli obeys the following
recurrence for some constanta.

C(i) = a4i + 4C(i− 1)

The solution of this recurrence isC(i) = O(i4i). It follows from Lemma 5.10 and rule 3(Otherwise part)
that the trees rooted at good natural epochs at a leveli are at least the number of trees rooted at bad epochs at
level i. Hence, it suffices to analyze the computation cost associated with all the tree rooted at good natural
epochs. Now for each good natural epoch at a leveli, there are at least4i/3 edge deletions associated
uniquely to it. This natural epoch will be charged for the computation costC(i) = O(i4i) associated with
the tree rooted at it. So ift is the total number of updates in the graph, then the computation cost associated
with all epochs in the forest isO(t log n). The computation cost associated with surplus bad epochs atall
levels isO(

∑

i i4
i log n) = O(n log2 n). Hence with high probability the computation cost for processing

t edge updates by the algorithm isO(t log n + n log2 n). This also implies that the total expected update
time isO(t log n) for t = Ω(n log n). In the following subsection, we will establishO(t log n) bound on
the expected update time for all values oft.

5.3.3 Expected value of the total update time

During a sequence oft updates in the graph, various epochs get created by various vertices at various levels.
Let Xv,i,k be a random variable which is 1 ifv creates an epoch at leveli at update stepk, otherwise it
is 0. We denote this epoch asEPOCH(v, i, k). LetOinit

v denote the edges thatv owned at the time of the
creation of the epoch. LetZv,i,k denote the number of edges fromOinit

v that are deleted during the epoch.
(If EPOCH(v, i, k) is not created,Zv,i,k is defined as 0). The key role in bounding the expected runningtime
is played by a random variableBv,i,k defined as follows:

Bv,i,k =

{

(8Zv,i,k − 2 · 4i)Xv,i,k if EPOCH(v, i, k) is natural

(4i+1 − 2 · 4i)Xv,i,k if EPOCH(v, i, k) is induced
(2)

First observe thatBv,i,k = 0 if Xv,i,k = 0. Else (ifXv,i,k = 1), the random variableBv,i,k can be seen
as credits associated withEPOCH(v, i, k) to be used for paying its computation cost. For a natural epoch, the
credits is defined in terms of the edges deleted during the epoch. So we defineBv,i,k to be8Zv,i,k. However,
we need to discount for the two epochs at lower levels that mayget terminated due toEPOCH(v, i, k). To
this end, from the term, we deduct2 · 4i. Similarly, if EPOCH(v, i, k) is an induced epoch, then it gets4i+1

credits from the epoch that destroyed it. But here again we need to discount for the two epochs at lower

22

levels that might be terminated by it. To this end, we again deduct2 · 4i from 4i+1. The following lemma
gives a bound on

∑

Bv,i,k.

Lemma 5.11
∑

v,i,k Bv,i,k ≤ 8
∑

v,i,k Zv,i,k ≤ 8t, wheret is the total number of updates in the graph.

Proof: We need to analyze the sum ofBv,i,k ’s for all those(i, v, k) values for which theEPOCH(i, v, k)
got created. If this epoch is an induced epoch, it can be associated with an epoch, sayEPOCH(v′, i′, k′), at
a higher leveli′ > i whose creation destroyed it. Notice that the negative4i

′

term inBv′,i′,k′ cancels out
the positive4i+1 term inBv,i,t. Hence, the contribution of induced epochs in

∑

v,i,k Bv,i,k is nullified and
all that remains is the sum of terms8Zv,i,k for each natural epoch. Hence

∑

v,i,k Bv,i,k ≤ 8
∑

v,i,k Zv,i,k.
An edge deletion is associated with an epoch in a unique manner, so will contribute to exactly oneZv,i,k.
Therefore,

∑

v,i,k Zv,i,k is upper bounded by the total number of edges deleted. �

Corollary 5.0.1
∑

v,i,k E[Bv,i,k] ≤ 8t

Lemma 5.12 For all i, v, k, E[Bv,i,k] ≥ Pr[Xv,i,k = 1] · 4i.

Proof: SinceXv,i,k is an indicator random variable,E[Bv,i,k] = Pr[Xv,i,k = 1] E[Bv,i,k| Xv,i,k = 1]. We
will first estimateE[Bv,i,k| Xv,i,k = 1], that is, the expected value ofBv,i,k given thatEPOCH(v, i, k) got
created.

Let (U , P) be the probability space of all the update sequences associated with this epoch and letU ∈ U
be any update sequence. Suppose among the updates inU that precede the update associated withv, only
d are edge deletions. It follows from Lemma 5.8 that the matched edge ofv is distributed uniformly over
Oinit

v . So EPOCH(v, i, k) will be an induced epoch with probability(|Oinit
v | − d)/|Oinit

v | and in that case
B(v, i, k) will be 4i+1 − 2 · 4i. If the epoch is natural, it could be due to any one of thed edge deletions
present inU . In that case the expected value ofBv,i,k will be 1/d

∑d
j=1(8j−2·4i) ≥ 4d−2·4i. Considering

the cases of induced and natural epoch together,

E[Bv,i,k | U] =
|Oinit

v | − d

|Oinit
v | (4i+1 − 2 · 4i) +

d

|Oinit
v |(4d− 2 · 4i) = 2 · 4i − 4i+1d− 4d2

|Oinit
v |

≥ 2 · 4i − 4i · 4i
|Oinit

v | (for all values ofd)

Therefore

E[Bv,i,k] =
∑

U∈U

E[Bv,i,k | U] · Pr[U] ≥
(

2 · 4i − 4i · 4i
|Oinit

v |

)

·
∑

U∈U

Pr[U] = 2 · 4i − 4i · 4i
|Oinit

v |

Since|Oinit
v | ≥ 4i, for level i, the result follows. �

LetWv,i,k be a random variable that corresponds to the value of the computation cost ofEPOCH(v, i, k)
if the epoch is created and is 0 otherwise. Notice that the computation cost of an epoch at leveli is c4i+1 for
some constantc. So,E[Wv,i,k] = Pr[Xv,i,k = 1]c4i+1. Therefore, using Lemma 5.12,

E[Wv,i,k] ≤ 4cE[Bv,i,k] (3)

Using the above equation and Corollary 5.0.1, the total expected computation cost associated with all epochs
that get destroyed during the algorithm can be bounded byO(t) as follows.

∑

v,i,k

E[Wv,i,k] ≤
∑

v,i,k

4cE[Bv,i,k] ≤ 32ct = O(t)

23

Since for each update in the graph, we incurO(log n) time to updateφ at various levels, there is anO(t log n)
overhead fort updates. We can thus conclude with the following theorem.

Theorem 5.1 Starting with a graph onn vertices and no edges, we can maintain a maximal matching for
any sequence oft updates inO(t log n) time in expectation andO(t log n+ n log2 n) with high probability.

5.4 Proof of Lemma 5.8

Our algorithm use randomization to maintain maximal matching. After any given sequence of updates,
there is a set of possible maximal matchings that the algorithm may be maintaining and there is probability
distribution associated with these maximal matchings. So it is useful to think about the probability space of
these matchings as the algorithm proceeds while processinga sequence of updates.

We introduce some notations first. For any matchingM maintained at any stage by our algorithm, let
Mi denote the matching at leveli. LetM>i = ∪j>iMj denote the matchings at all levels> i. Let Vi

denote the set of all the vertices belonging to levels in the range∈ [−1, i]. We now extend the notations to
incorporate the updates in the graph. For anyk ≥ 1, let G(k) denote the graph after a given sequence ofk
updates and letM(k) denote the maximal matching ofG(k) as maintained by our algorithm. LetM>i(k)
denote the matching at all levels> i after a given sequence ofk updates.

After processing certain number of updates by the algorithm, supposeM andM ′ are any two matchings
possible such thatM>i = M ′

>i. Consider any single update in the graph at this stage. In order to process it,
suppose we carry out two executionsI andI ′ of our algorithm with the initial matching beingM andM ′

respectively. That is,M(0) = M in the executionI andM(0) = M ′ in the executionI ′. Our claim is
that the probability distribution of matching at levels> i will be identical at the end of both the executions.
More precisely, for any maximal matchingµ(1) on a subset of vertices in graphG(1),

Pr[M>i(1) = µ(1)|M(0) = M] = Pr[M>i(1) = µ(1)|M(0) = M ′]

In order to establish our claim, we shall crucially exploit the following lemma.

Lemma 5.13 For both the matchingsM andM ′, φv(j) is the same for eachv ∈ V andj > i.

Proof: It is given thatM>i = M ′
>i. This implies that for each levelj > i the sets of vertices present are

identical inM andM ′. Hence the setVi of all the vertices present at levels∈ [−1, i] is identical inM and
M ′. Hence for any vertexv, and any levelj > i, the set of all the neighbours ofv at levels< j is identical;
notice thatφv(j) is just the cardinality of this set. So it follows thatφv(j) is the same for each vertexv and
eachj > i. �

We shall now establish our claim for the deletion of an edgee = (u, v). Establishing the claim for the
insertion of an edge is similar. Notice that our algorithm does not alter the matching ife is not a matched
edge. Ife is a matched edge, a wave of free vertices originates fromLEVEL(e) and propagates downward.
The following fact follows from our analysis in Section 5.2.1.

F1. The algorithm won’t alter the matching at level> LEVEL(e) while processing the deletion ofe.

F2. The matching is updated in the decreasing order of levels, and once the updating of the matching at a
level is complete, the matching at that level will remain unchanged during the updates of the matching
at lower levels.

24

It follows from the description ofM andM ′ that eitherLEVEL(e) is less than or equal toi in both the
matchings orLEVEL(e) is the same inM andM ′. Let us first consider the (easier) case whenLEVEL(e) ≤ i
in M as well asM ′. It follows from FactF1 stated above that the only changes in matchingM andM ′

will be at levels≤ i. Hence the matchingM>i(1) will be identical at the end of both the executionsI
and I ′. Let us now consider the more interesting case ofLEVEL(e) > i. Both the executionsI and I ′

invoke the procedurePROCESS-FREE-VERTICES(〈(u, LEVEL (e)), (v, LEVEL (e))〉) in this case. The reader
is recommended to revisit this procedure from Section 5.2.1before proceeding further.

In order to establish our claim aboutI andI ′, we shall establish the following. While the matching at
levels> i is being updated, for each step executed inI, the identical step can be executed inI ′. Moreover,
if the step inI is executed with some probability, the step will be executedwith the same probability inI ′

as well. In order to show this, let us analyse the first iteration of the procedurePROCESS-FREE-VERTICES.
Both I andI ′ will processu first. After disowning its edges from its present level,u owns the same set of
edges in both the executions. Thereafter,u will either stay at the same level or fall by one level. Ifu stays
at the same level, it chooses a random edge to get matched. Theprobability that any specific random edge
is picked byu is the same in both the executions. Let us consider the case that u falls by one level. For
each neighbourz of u, it follows from Lemma 5.13 thatφℓ(z) is the same in the case ofM andM ′. Hence
the set of vertices rising to levelℓ are the same in both the executions. In addition, the set of edges that
each such vertex owns on rising to levelj is also the same, hence, the probability that any specific random
mate is picked is the same in both the executions. So each update inM andM ′ is equally likely during the
processing ofu. The reader may note that after each such identical update inM andM ′, the matchings are
identical at each level> i. Hence, Lemma 5.13 holds again for the updated matchings.

Unlike the first iteration, a generic iteration of the procedure PROCESS-FREE-VERTICES may have free
vertices at levels≤ LEVEL(e) that are kept in respective queues at these levels. Suppose in the beginning
of any such iteration of the procedurePROCESS-FREE-VERTICES there are two possible configurations such
that the matching as well as the queue storing the free vertices are identical at each level> i but differ at
levels≤ i. Lemma 5.13 will hold for these configurations as well. Therefore, along exactlythe same lines
as the first iteration analysed above, it can be shown that every update in the matching at level> i will be
carried out with the same probability during any generic iteration for any two configurations that match at
all levels> i.

Therefore, each sequence of updates in the matching is equally likely in both the executionsI andI ′ till
the last free vertex at leveli + 1 is processed. Henceforth, the two executions may differ. But as follows
from FactF2, it will affect only the matching at levels≤ i and there won’t be any change in the matching
at higher levels.

This concludes our claim for a single update. This claim can be invoked appropriately for a sequence of
updates giving us the following theorem.

Theorem 5.2 LetM andM ′ be any two matchings possible by our algorithm at any time such thatM>i =
M ′

>i. For any sequence oft update in the graph, suppose we carry out two executionsI and I ′ of our
algorithm with the initial matching beingM andM ′ respectively. The probability distribution of matching
at every level> i will be identical at the end of both the executions. That is,

Pr[M>i(t) = µ(t), . . . ,M>i(1) = µ(1)|M(0) = M] = Pr[M>i(t) = µ(t), . . . ,M>i(1) = µ(1)|M(0) = M ′]

whereµ(j), for 1 ≤ j ≤ t, is any maximal matching on a subset of vertices in the graphG(j).

For the proof of Theorem 5.2, we shall apply the argument for single update inductively and use the follow-
ing lemma from elementary probability theory.

Lemma 5.14 SupposeA,B,C are three events defined over a probability space(Ω, P). Then,

Pr[A ∩B | C] = Pr[A | B ∩ C] ·Pr[B | C]

25

Let us define eventsC asM(0) = M andC ′ asM(0) = M ′. We have shown thatPr[M>i(1) =
µ(1) | C] = Pr[M>i(1) = µ(1) | C ′]. If we define eventB asM>i(1) = µ(1) then by another application
of the arguments that we used for a single update,

Pr[M>i(2) = µ(2) | B,C] = Pr[M>i(2) = µ(2) | B,C ′]

Applying Lemma 5.14, we get

Pr[M>i(2) = µ(2), B | C] = Pr[M>i(2) = µ(2) | B,C] ·Pr[B | C]

SincePr[B | C] = Pr[B|C ′], it follows that

Pr[M>i(2) = µ(2), B | C] = Pr[M>i(2) = µ(2), B | C ′]

The above argument can be inductively applied for every subsequent update. This completes the proof of
Theorem 5.2

5.4.1 Connection to the analysis

We first state two lemmas from elementary probability theorythat deal with the independence of events. For
the sake of completeness, the proof of these lemmas is given in Appendix.

The first lemma deals with conditional probability.

Lemma 5.15 LetA be an event andB1, . . . , Bk bek mutually exclusive events defined over a probability
space(Ω, P). If Pr[A | Bj] = ρ for each1 ≤ j ≤ k, thenPr[A | C] = ρ where eventC = ∪jBj .

The second lemma deals with independence of events. LetA andB be two events defined over a probability
space(Ω, P). A is said to be independent ofB if Pr[A | B] = Pr[A | B̄] = Pr[A]. Alternatively,
Pr[A∩B] = Pr[A] ·Pr[B]. The notion of independence gets carried over from events torandom variables
in a natural manner as follows.

Definition 5.1 An eventA is said to be independent of a random variableX if for eachx ∈ X, Pr[A |X =
x] = Pr[A].

Lemma 5.16 SupposeA is an event andX be a random variable defined over probability space(Ω, P). If
A is independent ofX, then for eachx ∈ X,

Pr[X = x | A] = Pr[X = x]

Now we shall establish the connection of Theorem 5.2 to the anlysis of our algorithm. In particular, we shall
use this theorem to prove Lemma 5.8. Suppose a vertexv creates an epoch at leveli while the algorithm
processeskth update in the graph for anyk < t. We shall analyse the probability space of the future
matchings starting from the time just before the creation ofthis epoch.

While creating its epoch,v chooses its mate randomly uniformly out ofOinit
v . Clearly, the change in the

matching at levels≤ i will depend on the mate thatv picks. LetM be the set of all possible matchings once
the algorithm completes the processing of thekth update. Now notice that all matchings from the setM are
identical at each level> i. So it follows from Theorem 5.2 that for any two matchingsM,M ′ ∈M,

26

Pr[M>i(t) = µ(t), . . . ,M>i(k + 1) = µ(k + 1) | M(k) = M]
= Pr[M>i(t) = µ(t), . . . ,M>i(k + 1) = µ(k + 1) | M(k) = M ′]

Let this conditional probability beρ. For each(v,w) ∈ Oinit
v , there may be several matchings inM in

which v is matched tow. By applying Lemma 5.15, the following equation holds for every (v,w) ∈ Oinit
v ,

Pr[M>i(t) = µ(t), . . . ,M>i(k + 1) = µ(k + 1) | MATE(v) = w] = ρ

Since this probability is the same for each(v,w) ∈ Oinit
v , so using Definition 5.1, it follows that the

matchings at levels> i during any sequence of updates is independent of the mate that v picked during the
creation of its epoch. Now applying Lemma 5.16 we get the following lemma.

Lemma 5.17 Suppose a vertexv creates an epoch at leveli while the algorithm processeskth update in the
graph. Consider any sequence of updates in the graph. The mate picked byv while creating the epoch is
independent of the sequence of matchings at levels> i computed by the algorithm while processing these
updates. That is, for anyt > k, and any(v,w) ∈ Oinit

v ,

Pr[MATE(v) = w|M>i(t) = µ(t), . . . ,M>i(k + 1) = µ(k + 1)] = Pr[MATE(v) = w] =
1

|Oinit
v |

Consider any given sequence oft updates in the graph. Subsequent to the timev creates an epoch at level
i duringkth update, letµ = 〈µ(k+1), . . . , µ(t)〉 be the sequence of matching at levels> i as computed by
the algorithm. Notice that the upward movement ofv and each(v,w) ∈ Oinit

v after the creation of epoch
is captured precisely by the corresponding update in the matching at level> i. Therefore, usingµ we can
define the update sequence associated with the epoch as follows. Consider an edge(v,w) ∈ Oinit

v and letℓth
update in the graph be the deletion of(v,w). Let j < ℓ be the smallest integer such thatw ∈ µj, that is,w
appears in the matching at level> i while processing ofjth update in the graph, then the update associated
with (v,w) is the upward movement. If no suchj exists, the update associated with(v,w) is its deletion.
Likewise, we define the update associated withv. The update sequenceU for the epoch is the sequence of
these updates onv and the edges ofOinit

v arranged in the chronological order.
For an update sequenceU associated with an epoch, there may exist many sequences{µ1, . . . , µq} such

that for each of them, the update sequence associated with the epoch isU . It follows from Lemma 5.17 that
the mate picked byv during its epoch is independent of each such sequenceµr, 1 ≤ r ≤ q. Therefore, using
Lemma 5.15, the mate picked byv during its epoch is independent ofU as well. Thus we have established
the validity of Lemma 5.8.

6 A tight example

We tested our algorithm on random graphs of various densities and found that the matching maintained is
very close to the maximum matching. This suggests that our algorithm might be able to maintainnearly
maximum matching for dynamic graphs appearing in various practical applications. However, it is not hard
to come up with an update sequence such that at the end of the sequence, the matching obtained by our
algorithm is strictly half the size of maximum matching. In other words, the approximation factor 2 for the
matching maintained by our algorithm is indeed tight. We present one such example as follows (see Figure
8).

Let G(V ∪ W,E) be a graph such thatV = {v1, v2, . . . , vn} andW = {w1, w2, . . . , wn} for some
even numbern. Consider the following update sequence. In the first phase,add edges between every pair
of vertices present inV . This results in a complete subgraph on vertices ofV . The size of any maximal

27

PSfrag replacements

n/2

Figure 8: An example where our algorithm gives a 2-approximation. The vertices on top are inV and form
a complete graph. The vertices at the bottom of the figure are inW .

matching on a complete graph of sizen is n/2. After the first phase of updates ends, the size of matching
obtained by our algorithm isn/2. In the second phase, add edge(vi, wi) for all i. Note that the degree of
eachwi is one at the end of the updates. Let us now find the matching which our algorithm maintains. Let
(vi, vj) be an edge in the matching after phase 1. Note that both these endpoints are at a level greater than
−1. A vertex inW is at level−1 as it does not have any adjacent edges after phase 1. When an edge(wi, vi)
is added, sincevi is at a higher level thanwi, vi becomes the owner of this edge. The second invariant ofvi is
not violated after this edge insertion and nothing happens at this update step andwi still remains at level−1.
Using same reasoning, we can show thatwj also remains at level−1 after the addition of edge(vj , wj). So
matching maintained by the algorithm remains unchanged. Itis easy to observe that the maximum matching
of the graphG now has sizen which is twice the size of the matching maintained by our algorithm.

7 Postscript

We presented a fully dynamic randomized algorithm for maximal matching which achieves expected amor-
tizedO(log n) time per edge insertion or deletion. An interesting question is to explore how crucial ran-
domization is for dynamic maximal matching.

Subsequent to an earlier version of this paper [5], Bhattacharya et al. [9] almost answered this question
in affirmative by designing a determinstic algorithm that maintains(2 + ǫ)-approximate matching in amor-
tizedO(poly(log n, 1/ǫ) update time. Another interesting question is to explore whether we can achieve
O(1) amortized update time. Very recently Solomon [29] answeredthis question in affirmative as well by
designing a randomized algorithm that takesO(t + n log n) update time with high probability to process
any sequence oft edge deletions. Though the basic building blocks of his algorithm are the same as ours,
the two algorithms are inherently different and so are theiranalysis.

In our algorithm, a vertex may rise to a higher level and create a new epoch even when its matched edge
is intact. But the algorithm of Solomon [29] of takes a lazy approach to maintain the hierarchy of vertices
wherein a vertex is processed only when it becomes absolutely necessary. Another crucial difference is the
following. Our algorithm maintains a functionφv(j) for each vertexv and each levelj. This function is used
to ensure an invariant that each vertexv is at the highest possible levelℓ such that the edges incident from
lower levels is at least4ℓ. An important property guaranteed by this invariant is thatthe mate of a vertex
while creating an epoch is independent of the update sequence associated with the epoch. The analysis
of our algorithm crucially exploits this property. However, the explicit maintenance ofφv(j) imposes an
overhead ofΘ(log n) in the update time. In order to achieveO(1) update time, Solomon [29] gets rid of the

28

maintenance ofφv(j) by taking a lazy approach and a couple of new ideas. As a result, unfortunately, the
property of our algorithm no longer holds for the algorithm of Solomon [29] - indeed there is dependence
between the update sequence associated with an epoch created by a vertex and the random mate picked by
it. Solomon [29] makes use of a new concept calleduninterrupted durationof an epoch that bypasses the
need of our property for the analysis. His analysis can be adapted to our algorithm as well and can be viewed
as the correct counterpart of Lemma 4.10 in [5]. However, ournew analysis has its own merits since it is
based on an insightful property of our algorithm which we believe is of its own independent interest and
importance.

Subsequent to the publication of the [5] there has been interesting progress in the area of dynamic
matching with approximation less than 2 [7, 8, 24, 14], and dynamic weighted matching [3, 4, 14].

One of the technical challenges in theoretical computer science is to prove lower bounds for algorithmic
problems. Recently there has been some progress on proving conditional lower bounds for dynamic graph
algorithms [1, 15]. In the light of the lower bound presentedby Abboud and Williams [1] based onΩ(n2)
hardness of the 3SUM problem, it would be an interesting and challenging problem to see ifc-approximate
maximum matching forc < 2 can be maintained ino(n) update time.

8 Acknowledgment

The possibility of an error in Lemma 4.10 of [5] was pointed out by Sayan Bhattacharya and Divyarthi
Mohan. The second author would like to thank both of them for discussions on the proof of the expectation
bound and the definition ofB(v, i, k). In [5], we used2i as the threshold for raising a vertex to leveli.
The possibility of increasing this threshold from2i to bi for any constantb without any impact on the time
complexity was observed by Shay Solomon [29]. We are thankful to him for this observation.

References

[1] Amir Abboud and Virginia Vassilevska Williams. Popularconjectures imply strong lower bounds for
dynamic problems.CoRR, abs/1402.0054, 2014.

[2] David J. Abraham, Robert W. Irving, Telikepalli Kavitha, and Kurt Mehlhorn. Popular matchings.
SIAM J. Comput., 37(4):1030–1045, 2007.

[3] Abhash Anand, Surender Baswana, Manoj Gupta, and Sandeep Sen. Maintaining approximate maxi-
mum weighted matching in fully dynamic graphs. InFSTTCS, pages 257–266, 2012.

[4] Abhash Anand, Surender Baswana, Manoj Gupta, and Sandeep Sen. Maintaining approximate maxi-
mum weighted matching in fully dynamic graphs.CoRR, abs/1207.3976, 2012.

[5] Surender Baswana, Manoj Gupta, and Sandeep Sen. Fully dynamic maximal matching in O(log n)
update time.SIAM J. Comput. (preliminary version appeared in FOCS 2011), 44(1):88–113, 2015.

[6] Surender Baswana, Sumeet Khurana, and Soumojit Sarkar.Fully dynamic randomized algorithms for
graph spanners.ACM Transactions on Algorithms, 8(4):35, 2012.

[7] Aaron Bernstein and Cliff Stein. Fully dynamic matchingin bipartite graphs. InAutomata, Languages,
and Programming - 42nd International Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015,
Proceedings, Part I, pages 167–179, 2015.

29

[8] Aaron Bernstein and Cliff Stein. Faster fully dynamic matchings with small approximation ratios.
In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2016, Arlington, VA, USA, January 10-12, 2016, pages 692–711, 2016.

[9] Sayan Bhattacharya, Monika Henzinger, and Danupon Nanongkai. New deterministic approximation
algorithms for fully dynamic matching. InProceedings of the 48th Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages 398–411, 2016.

[10] J. Edmonds. Paths, trees, and flowers.Canadian Journal of Mathematics, 17:449467, 1965.

[11] J. Edmonds and E. L. Johnson. Matching, euler tours, andthe chinese postman.Mathematical Pro-
gramming, 5:88–124, 1973.

[12] Harold N. Gabow and Robert Endre Tarjan. Faster scalingalgorithms for general graph-matching
problems.J. ACM, 38(4):815–853, 1991.

[13] D. Gale and L. S. Shapley. College admissions and the stability of marriage.American Mathematical
Monthly, 69:9–14, 1962.

[14] Manoj Gupta and Richard Peng. Fully dynamic $(1+)$-approximate matchings. In54th Annual IEEE
Symposium on Foundations of Computer Science, 2013.

[15] Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Saranurak. Unifying
and strengthening hardness for dynamic problems via the online matrix-vector multiplication conjec-
ture. InProceedings of the Forty-Seventh Annual ACM on Symposium onTheory of Computing, STOC
2015, Portland, OR, USA, June 14-17, 2015, pages 21–30, 2015.

[16] Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Poly-logarithmic deterministic fully-
dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity.J. ACM,
48(4):723–760, 2001.

[17] John E. Hopcroft and Richard M. Karp. Ann5/2 algorithm for maximum matchings in bipartite graphs.
SIAM J. Comput., 2(4):225–231, 1973.

[18] Chien-Chung Huang and Telikepalli Kavitha. Efficient algorithms for maximum weight matchings in
general graphs with small edge weights. InSODA, pages 1400–1412, 2012.

[19] Jon Kleinberg and Eva Tardos.Algorithm Design. Addison Wesley, 2005.

[20] E. Lawler.Combinatorial Optimization: Networks and Matroids. Holt, Rinehart & Winston, Newyork,
1976.

[21] L. Lovasz and M.D. Plummer.Matching Theory. AMS Chelsea Publishing, North-Holland, Amster-
damNew York, 1986.

[22] Silvio Micali and Vijay V. Vazirani. AnO(
√

(|V |)|E|) algorithm for finding maximum matching in
general graphs. InFOCS, pages 17–27, 1980.

[23] Marcin Mucha and Piotr Sankowski. Maximum matchings via gaussian elimination. InFOCS, pages
248–255, 2004.

[24] Ofer Neiman and Shay Solomon. Deterministic algorithms for fully dynamic maximal matching.
CoRR, abs/1207.1277, 2012.

30

[25] Krzysztof Onak and Ronitt Rubinfeld. Maintaining a large matching and a small vertex cover. In
STOC, pages 457–464, 2010.

[26] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. J. Algorithms, 51(2):122–144, 2004.

[27] Liam Roditty and Uri Zwick. Improved dynamic reachability algorithms for directed graphs.SIAM J.
Comput., 37(5):1455–1471, 2008.

[28] Liam Roditty and Uri Zwick. Dynamic approximate all-pairs shortest paths in undirected graphs.SIAM
J. Comput., 41(3):670–683, 2012.

[29] Shay Solomon. Fully dynamic maximal matching in constant update time.CoRR, abs/1604.08491,
2016.

[30] Mikkel Thorup. Fully-dynamic min-cut.Combinatorica, 27(1):91–127, 2007.

9 Appendix

Proof of Lemma 5.15

Proof:

Pr[A ∩ C] = Pr[A ∩ (∪iBi)]

=
∑

i

Pr[A ∩Bi] sinceBi’s are mutually exclusive

=
∑

i

Pr[A | Bi] ·Pr[Bi] using the definition of conditional probability

= ρ ·
∑

i

Pr[Bi]

= ρ ·Pr[∪iBi] = ρ ·Pr[C] sinceBi’s are mutually exclusive

HencePr[A | C] = Pr[A ∩ C]/Pr[C] = ρ. �

Proof of Lemma 5.16

Proof: SinceA is independent ofX, so for eachx ∈ X,

Pr[A ∩X = x] = Pr[A] ·Pr[X = x] (4)

Hence

Pr[X = x|A] =
Pr[A ∩X = x]

Pr[A]

=
Pr[A] ·Pr[X = x]

Pr[A]
using Equation 4

= Pr[X = x]

�

31

Proof of Lemma 3.1

The asymmetric random walk problem can be seen as a special case of the famous Gambler’s ruin
problem described as follows.
Gambler’s ruin problem.
There are two players who play a game that goes in rounds. Initially Player 1 has a capital ofc units
and Player2 has a capital ofc′ units. Player1 wins a round with probabilityp and loses with probability
q = 1 − p independent of the previous rounds. The winner of a round takes away one unit of the capital
from the opponent. The game ends when the capital of one of theplayers becomes 0.

The following lemma is well-known in many text books on probability theory. A concise and self
contained proof is available at the link :examplehttp://faculty.washington.edu/fm1/394/Materials/Gambler.pdf.

Lemma 9.1 In the Gambler’s ruin problem withp > q, the probability that Player1 gets ruined is

1− (p/q)c
′

1− (p/q)c+c′

Let us now put an additional restriction in the problem: the total number of rounds allowed in the game
is L for a given numberL < c′. Notice that with this restriction Player 2 will never be ruined. As a result
the game will be over when Player 1 gets ruined or whenL rounds are over. The probability of Player 1
getting ruined in this restricted Gambler’s problem is strictly less than the probability of Player 1 getting
ruined in the original Gambler’s problem described above. This is because there is a non-zero probability
that Player 1 may be ruined after performing more thanL steps, and the restricted Gambler’s problem rules
out this possibility. Hence, using Lemma 9.1, it follows that for the restricted version of the Gambler’s ruin
problem withp > q, the probability that Player1 gets ruined is less than

1− (p/q)c
′

1− (p/q)c+c′
<

(

q

p

)c

The restricted version of the Gambler’s ruin problem can be formulated as an asymmetric random walk
problem: The walk starts at locationc units to the right of the origin. In each step, the particle moves one
unit to the right with probabilityp or one unit to the left with probabilityq = 1 − p indepependent of the
past moves. The walk terminates upon reaching either the origin or when it has performedL step. This
completes the proof of Lemma 3.1.

32

	1 Introduction
	2 An overview
	2.1 Organization of the paper

	3 Preliminaries
	4 Fully dynamic algorithm with expected amortized O(n) time per update
	4.1 Analysis of the algorithm
	4.2 High probability bound on the total update time
	4.3 Expected value of the total update time
	4.4 On improving the update time beyond O(n)

	5 Fully dynamic algorithm with expected amortized O(logn) time per update
	5.1 Invariants and a basic subroutine used by the algorithm
	5.2 Handling edge updates by the fully dynamic algorithm
	5.2.1 Description of Procedure process-free-vertices

	5.3 Analysis of the algorithm
	5.3.1 Analysing an epoch
	5.3.2 High probability bound on the total update time
	5.3.3 Expected value of the total update time

	5.4 Proof of Lemma ??
	5.4.1 Connection to the analysis

	6 A tight example
	7 Postscript
	8 Acknowledgment
	9 Appendix

