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Abstract

We deal with interval linear systems of equations. We present a new operator, which

generalizes the interval Gauss–Seidel method. Also, based on the new operator and prop-

erties of the well-known methods, we propose a new algorithm, called the magnitude

method. We illustrate by numerical examples that our approach overcomes some classical

methods with respect to both time and sharpness of enclosures.

1 Introduction

We consider a system of linear equation with coefficients varying inside given intervals, and
we want to find a guaranteed enclosure for all emerging solutions. Since determining the best
enclosure to the solution set is an NP-hard problem [2], the approaches to calculate it may be
computationally expensive [6, 14, 19] in the worst case. That is why the research was driven
to develop cheap methods for enclosing the solution set, not necessarily optimally. There are
meny methods known; see e.g. [1, 2, 3, 4, 8, 9, 10, 16, 18]. Extensions to parametric interval
systems were studied in [5, 13, 18], among others, and quantified solutions were investigated
e.g. in [12, 13, 20].

We will use the following interval notation. An interval matrix A is defined as

A := [A,A] = {A ∈ R
m×n; A ≤ A ≤ A},

where A,A ∈ R
m×n are given. The center and radius of A are respectively defined as

Ac :=
1

2
(A+A), A∆ :=

1

2
(A−A).

The set of all m-by-n interval matrices is denoted by IR
m×n. Interval vectors and intervals

can be regarded as special interval matrices of sizes m-by-1 and 1-by-1, respectively. For a
definition of interval arithmetic see e.g. [8, 9]. Extended interval arithmetic with improper
intervals of type [a, a], a > a, was discussed e.g. in [7, 20]. We will use improper intervals only
for the simplicity of exposition of interval expressions. For example, a + [b,−b], where b > 0,
is a shortage for the interval [a+ b, a− b].

The magnitude of an A ∈ IR
m×n is defined as mag(A) := max(|A|, |A|), where max(·) is

understood entrywise. The comparison matrix of A ∈ IR
n×n is the matrix 〈A〉 ∈ R

n×n with
entries

〈A〉ii := min{|a|; a ∈ aii}, i = 1, . . . , n,

〈A〉ij := −mag(aij), i 6= j.
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Consider a system of interval linear equations

Ax = b

where A ∈ IR
n×n and b ∈ IR

n. The corresponding solution set is defined as

Σ := {x ∈ R
n; ∃A ∈ A∃b ∈ b : Ax = b}.

The aim is to compute as tight as possible enclosure of Σ, that is, an interval vector x ∈ IR
n

containingΣ. ByΣ := �Σ we denote the interval hull of Σ, i.e., the smallest interval enclosure
of Σ. Thus, enclosing Σ or Σ is the same objective.

Throughout the paper, we assume that Ac = In, that is, the midpoint of A is the iden-
tity matrix. This assumption is not without loss of generality, but most of the solvers utilize
preconditioning

(RA)x = Rb,

where R is the numerically computed inverse of Ac. Thus, the midpoint of RA is nearly the
identity matrix. To be numerically save, we relax the system to

[In −mag(In −RA), In +mag(In −RA)]x = Rb.

Even though preconditioning causes an expansion of the solution set, it is more easy to handle.
Since we do not miss any old solution, any enclosure to the preconditioned system is a valid
enclosure for the original one as well.

The assumption Ac = In has many consequences. The solution set of such interval linear
system is bounded if and only if ρ(A∆) < 1, where ρ(A∆) stands for the spectral radius of A∆.
So in the rest of the paper we assume that this is satisfied.

Another nice property of the interval system in question is that the interval hull of the
solution set can be determined exactly (up to the numerical accuracy) by calling the Hansen–
Bliek–Rohn method [2, 15]. Ning and Kearfott [10, 11] proposed an alternative formula to
compute Σ. We state it below and use the following notation

u := 〈A〉−1 mag(b),

di := (〈A〉
−1

)ii, i = 1, . . . , n,

αi := 〈aii〉 − 1/di, i = 1, . . . , n.

Notice also that the comparison matrix 〈A〉 can now be expressed as 〈A〉 = In −A∆.

Theorem 1 (Ning–Kearfott, 1997). We have

Σi =
bi + (ui/di −mag(bi))[−1, 1]

aii + αi[−1, 1]
, i = 1, . . . , n. (1)

The disadvantage of the Hansen–Bliek–Rohn method is that we have to compute the inverse
of 〈A〉. Besides this method, there are other procedures to compute a verified enclosure to Σ;
see [8, 9]. They are usually faster, on account of tightness of the resulting enclosures. We briefly
remind two of them, the well known interval Gauss–Seidel and Krawczyk iteration methods.
Let x ⊇ Σ be in initial enclosure of Σ. The Krawczyk method is based on the operator

x 7→ b+ (In −A)x,

Denote by D the interval diagonal matrix, whose diagonal is the same as that of A, and A
′ is

used for the interval matrix A with zero diagonal. The interval Gauss–Seidel operator reads

x 7→ D
−1(b−A

′
x).

In fact, this operator is often called the interval Jacobi operator, whereas the interval Gauss–
Seidel one raises by evaluating the above expression row by row and using the already tightened
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entries of x in the subsequent rows. Anyway, the limit enclosures are the same, so for the sake
of simplicity, we will employ this formulation.

By x
GS and x

K we denote the limit enclosures computed by the interval Gauss–Seidel
and Krawczyk methods, respectively. The theorem below adapted from [9] gives an explicit
formulae for the enclosures.

Theorem 2. We have

x
GS = D

−1(b+mag(A′)u[−1, 1]),

x
K = b+A∆u[−1, 1].

Moreover,

u = mag(Σ) = mag(xGS) = mag(xK). (2)

Property (2), not stressed enough in the literature, shows an interesting relation between
the mentioned methods. In each coordinate, all corresponding enclosures have one endpoint in
common (that one with the larger absolute value). Thus, the enclosures differ from one side
only (but the difference may be large)

2 New interval operator

Theorem 3. Let Σ ⊆ x ∈ IR
n. Then

Σi ⊆
bi −

∑

j 6=i aijxj + [γi,−γi]ui

aii + γi[−1, 1]
(3)

for every γi ∈ [0, αi] and i = 1, . . . , n.

Proof. Let i ∈ {1, . . . , n}. First, we prove the statement for γi = αi. By Theorem 1,

Σi =
bi + (ui/di −mag(bi))[−1, 1]

aii + αi[−1, 1]
.

The denominator is the same as in (3), and it is a positive interval. Thus, it is sufficient to
compare the numerators only. We have

bi + (ui/di −mag(bi))[−1, 1] = bi + (ui/di − (〈A〉u)i)[−1, 1]

= bi +





∑

j 6=i

a∆ijuj − (〈aii〉 − 1/di)ui



 [−1, 1]

⊆ bi +





∑

j 6=i

a∆ij mag(xj)− γiui



 [−1, 1]

= bi −
∑

j 6=i

aijxj + [γi,−γi]ui.

For γi = 0, (3) reduces to the interval Gauss-Seidel operator.

Now, we suppose that 0 < γi < αi. Denoting vi := bi −
∑

j 6=i a
∆
ijuj[−1, 1], we have to show

the inclusion

vi + αiui[1,−1]

aii + αi[−1, 1]
⊆

vi + γiui[1,−1]

aii + γi[−1, 1]
.

We show it by comparing the left endpoints only; the right endpoints are compared accordingly.
We distinguish three cases:
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1) Let vi + γiui ≥ 0. Then we want to show that

vi + γiui

aii + γi
≤

vi + αiui

aii + αi

.

This is simplified to
vi(αi − γi) ≤ aiiui(αi − γi),

or,
vi ≤ aiiui,

which is always true.

2) Let vi + γiui < 0 and vi + αiui ≥ 0. Then the statement is obvious.

3) Let vi + αiui < 0. Then we want to show that

vi + γiui

aii − γi
≤

vi + αiui

aii − αi

.

Simplifying to
−vi(αi − γi) ≤ aiiui(αi − γi),

or,
−vi ≤ aiiui,

which holds true.

Obviously, for γ = 0 we get the interval Gauss–Seidel operator, so our operator can be
viewed as its generalization. The proof also shows that the best choice for γ is γ = α. In order
to make the operator (3) applicable, we have to compute u and d or their lower bounds. The
tighter bounds the better, however, if we spend to much time to calculate almost exact u and
d, then it makes no sense to use the operator when we can call the Ning–Kearfott formula
directly. So, it is preferable to derive cheap and possibly tight lower bounds on u and d. We
suggest the following ones:

Proposition 1. We have

u ≥ mag(b) +A∆(mag(b) +A∆ mag(b))),

di ≥ di := aii/(1− ((A∆)2)ii), i = 1, . . . , n.

Proof. The first part follows from

u = 〈A〉−1 mag(b) = (In −A∆)−1 mag(b) =

(

∞
∑

k=0

(A∆)k

)

mag(b)

≥ (In +A∆ + (A∆)2)mag(b) = mag(b) +A∆(mag(b) +A∆ mag(b))).

The second part follows from

d = diag (〈A〉−1) = diag

(

∞
∑

k=0

(A∆)k

)

,

whence

di =

∞
∑

k=0

((A∆)k)ii ≥ aii + ((A∆)2)ii(1 + a∆ii + ((A∆)2)ii + ((A∆)2)iia
∆

ii + ((A∆)2)2ii + . . . )

= aii + (1 + a∆ii )((A
∆)2)ii(1 + ((A∆)2)ii + ((A∆)2)2ii + . . . )

= aii + aii((A
∆)2)ii

1

1− ((A∆)2)ii
=

aii
1− ((A∆)2)ii

.
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Notice that both bounds require computational time O(n2). It particular, the diagonal of
(A∆)2 is computable in square time, but the exact diagonal of (A∆)3 would be too costly.
The following result shows that provided we have a tight approximation on u, then the above
estimation of d is tight enough to ensure that γ ≥ 0. Notice that this would not be satisfied in
general if we used the simpler estimation d ≥ diag(A+ (A∆)2).

Proposition 2. We have γi := 〈aii〉 − 1/di ≥ 0, i = 1, . . . , n.

Proof. We can write

γi = 〈aii〉 − 1/di = 〈aii〉 −
1− ((A∆)2)ii

aii

≥ 〈aii〉 −
1− (a∆ii )

2

1 + a∆ii
= 1− a∆ii − (1 − a∆ii ) = 0.

2.1 Comparison to the interval Gauss–Seidel method

Since our operator is a generalization of the interval Gauss–Seidel iteration, it is natural to
compare them. Let x be an enclosure to Σ, let i ∈ {1, . . . , n}, and denote by û a lower bound
estimation on u. We compare the results of ours and the interval Gauss–Seidel operators, that
is,

bi −
∑

j 6=i aijxj + [γi,−γi]ûi

aii + γi[−1, 1]
and

bi −
∑

j 6=i aijxj

aii

.

If γi = 0, then both intervals coincide, so let us assume that γi > 0. Denote vi := bi −
∑

j 6=i aijxj . We compare the left endpoints of the intervals

vi + [γi,−γi]ûi

aii + γi[−1, 1]
and

vi

aii

,

the right endpoints are compared accordingly. We distinguish three cases:

1) Let vi ≥ 0. Then we want to show that

vi
aii

≤
vi + γiûi

aii + γi
.

This is simplified to
viγi ≤ aiiûiγi,

or,
vi ≤ aiiûi.

If ûi = ui, or ûi is not far from ui, then the inequality holds true.

2) Let vi < 0 and vi + γiui ≥ 0. Then the inequality is obviously satisfied.

3) Let vi + γiui < 0. Then we want to show that

vi
aii

≤
vi + γiui

aii − γi
.

This is simplified to
−viγi ≤ aiiuiγi.

or,
−vi ≤ aiiûi.

This is true provided both ûi and vi are tight enough.

The above discussion indicates that our operator with γi > 0 is effective only if x is
sufficiently tight and the reduction of the enclosure is valid from the smaller side (in the
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absolute value sense) only. Since aij , i 6= j, are symmetric intervals, the reduction in the
smaller sides of xis makes no improvement in the next iterations. The only influence is by the
size of mag(x) since

∑

j 6=i

aijxj =
∑

j 6=i

aij mag(x)j .

Therefore, the following incorporation of our operator seems the most effective: Compute x ⊇ Σ
by the interval Gauss–Seidel method, and then call one iteration of our operator.

Example 1. Let

A =





−[8, 10] [3, 5] [8, 10]
− [5, 7] [0, 2] −[6, 8]
[4, 6] [7, 9] −[5, 7]



 , b =





[3, 5]
[6, 8]
[5, 7]



 ,

and consider the interval linear system Ax = b preconditioned by the numerically computed
inverse of Ac. The interval Gauss–Seidel method terminates in four iterations, yielding the
enclosure

x
1 = ([−1.2820, 0.0174], [0.1847, 1.5641], [−1.0822, 0.0889])T ;

it is not yet equal to the limit enclosure

x
GS = ([−1.2813, 0.0167], [0.1849, 1.5637], [−1.0821, 0.0887])T

due to the limit number of iterations. By Proposition 1, we obtain the following lower bounds

u ≥ (1.1633, 1.4367, 0.9788)T,

d ≥ (1.2343, 1.2536, 1.2030)T,

whence we calculate

γ := (0.0387, 0.0396, 0.0366)T .

These values are quite conservative since the optimal values would be for γ = α, where

α = (0.0632, 0.0643, 0.0604)T.

Nevertheless, the computed γ is sufficient to reduce the overestimation of x1. One iteration of
our operator results in the tighter enclosure

x
2 = ([−1.2820,−0.0258], [0.2261, 1.5641], [−1.0822, 0.0497])T .

For completeness, notice that the interval hull of the preconditioned system is

Σ = ([−1.2813,−0.0549], [0.2571, 1.5637], [−1.0821, 0.0144])T .

3 Magnitude method

Property (2) and the analysis at the end of Section 2.1 motivate us to compute enclosure to Σ
along the following lines. First, we compute the magnitude of Σ, that is, u = 〈A〉

−1
mag(b),

and then we apply one iteration of the presented operator on the initial box x = [−u, u],
producing

bi −
∑

j 6=i aijuj + [γi,−γi]ui

aii + γi[−1, 1]
, i = 1, . . . , n.

Herein, the lower bound on d is computed by Proposition 1. In view of the proof of Theorem 3,
we can express the result equivalently as (1), but in that formula, an upper bound on d is
required, so we do not consider it here. Instead, we reformulate it the slightly simpler form
omitting improper intervals:

bi + (
∑

j 6=i a
∆
ijuj − γiui)[−1, 1]

aii + γi[−1, 1]
, i = 1, . . . , n.

Algorithm 1 gives a detailed and numerically reliable description on the method.
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Algorithm 1.

1. Compute u, an enclosure to the solution of 〈A〉u = mag(b).

2. Calculate d, a lower bound on d by Proposition 1.

3. Evaluate

x
∗
i :=

bi + (
∑

j 6=i a
∆
ijuj − γiui)[−1, 1]

aii + γi[−1, 1]
, i = 1, . . . , n,

where γi := 〈aii〉 − 1/di.

3.1 Properties

First, not that the computations of u and d in steps 1 and 2 are independent, so may be
parallelized.

Now, let us compare the magnitude method with the Hansen–Bliek–Rohn and the interval
Gauss–Seidel method. The propositions below shows, that the magnitude method is superior
to the interval Gauss–Seidel method, and it gives the best possible enclosure as long as u and
d are determined exactly. Since u is computed tightly, the possible deficiency is caused only by
an underestimation of d.

Proposition 3. If u and d are calculated exactly, then x
∗ = Σ.

Proof. It follows from the proof of Theorem 3.

Proposition 4. We have x
∗ ⊆ x

GS. If γ = 0, then there is equality.

Proof. Let i ∈ {1, . . . , n} and without loss of generality assume that Σ
c

i ≥ 0. Then

x
∗
i =

bi −
∑

j 6=i aijuj + [γi,−γi]ui

aii + γi[−1, 1]
,

x
GS

i =
bi − (A′[−u, u])i

aii

=
bi −

∑

j 6=i aijuj

aii

.

Denoting vi := bi −
∑

j 6=i aijuj , we can rewrite it as

x
∗
i =

vi + [γi,−γi]ui

aii + γi[−1, 1]
,

x
GS

i =
vi

aii

.

By the assumption, x∗
i = xGS

i = ui, so we have to compare the left endpoints of x∗
i and

x
GS only. We distinguish three cases:

1) Let vi ≥ 0. Then we want to show that

vi
aii

≤
vi + γiui

aii + γi
.

This is simplified to
viγi ≤ aiiuiγi.

If γi = 0, then it holds as equation, otherwise for any γi > 0 it is true as well.

2) Let vi < 0 and vi + γiui ≥ 0. Then the statement is obvious.

3) Let vi + γiui < 0. Then we want to show that

vi
aii

≤
vi + γiui

aii − γi
.
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Figure 1: (Example 2) The solution set in gray, the preconditioned one in light gray, and
three enclosures for verifylss, the interval Gauss–Seidel and the magnitude method (from
the largest).

This is simplified to
−viγi ≤ aiiuiγi.

This is true for any γi ≥ 0, too.

3.2 Numerical examples

Example 2. Consider the interval linear system Ax = b, with

A =

(

−[2, 4] [8, 10]
[2, 4] [4, 6]

)

, b =

(

−[4, 6]
− [8, 10]

)

.

Figure 2 depicts the solution set to Ax = b in gray color, and the preconditioned system by
(Ac)−1 in light gray. We compare three methods for enclosing the solution set. The function
verifylss from the package INTLAB [17] yields the enclosure

x
1 = ([−3.4985, 0.8318], [−1.9279,−0.0721])T .

The interval Gauss–Seidel method gives tighter enclosure

x
2 = ([−3.4555,−0.2722], [−1.9093,−0.3180])T ,

but it requires almost double computational time. In contrast, our magnitude method produces
yet a bit tighter enclosure

x
∗ = ([−3.4546,−0.3557], [−1.9091,−0.3741])T ,

but with less computational effort than the other methods. The enclosure is also very close to
the optimal one (for the preconditioned system)

Σ = ([−3.4546,−0.3999], [−1.9091,−0.4117])T .

Enclosures x1, x2, x∗ are illustrated in Figure 2 respectively in a nested way.

In the example below, we present a limited computational study.
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Table 1: (Example 3) Computational time for randomly generated data.

n δ verifylss Gauss-Seidel magnitude magnitude (γ = 0)

5 1 3.2903 0.10987 0.004466 0.003429
5 0.1 0.004234 0.02937 0.004513 0.003502
5 0.01 0.002342 0.02500 0.004473 0.003456

10 0.1 0.018845 0.08370 0.004877 0.003777
10 0.01 0.003161 0.05305 0.004821 0.003799
15 0.1 0.246779 0.21868 0.005212 0.004162
15 0.01 0.005403 0.09163 0.005260 0.004172
20 0.1 16.9678 0.95238 0.005554 0.004251
20 0.01 0.008950 0.15602 0.005736 0.004622
30 0.01 0.019111 0.32294 0.006457 0.005289
30 0.001 0.004488 0.19544 0.006460 0.005260
50 0.01 0.210430 1.01155 0.008483 0.007062
50 0.001 0.010190 0.54813 0.008343 0.006879
100 0.001 0.044463 2.42025 0.016706 0.014645
100 0.0001 0.013940 1.48693 0.017089 0.014847

Example 3. We considered randomly generated examples for various dimensions and interval
radii. The entries of Ac and bc were generated randomly in [−10, 10] with uniform distribution.
All radii of A were equal to the parameter δ > 0.

The computations were carried out in MATLAB 7.11.0.584 (R2010b) on a six-processor
machine AMD Phenom(tm) II X6 1090T Processor, CPU 800 MHz, with 15579MB RAM.
Interval arithmetics and some basic interval functions were provided by the interval toolbox
INTLAB v6 [17].

We compared four methods with respect to computational time and tightness of resulting
enclosures. Namely, verifylss function from the INTLAB, the interval Gauss–Seidel method,
the proposed magnitude method (Algorithm 1), and eventually the magnitude method with
γ = 0. The last one yields the limit Gauss–Seidel enclosure, and it is faster than the magnitude
method since we need not compute a lower bound on d.

Table 1 shows the running times in seconds, and Table 2 shows the tightness for the same
data. The tightness was measured by the sum of the resulting interval radii with respect to the
optimal interval hull Σ computed by the Ning–Kearfott formula (1). Precisely, we display

∑n

i=1
x∆
i

∑n

i=1
Σ

∆

i

,

where x is the calculated enclosure. Thus, the closer to 1, the sharper enclosure.

The results of our experiments show that the magnitude method with γ = 0 saves some
time (about 10% to 20%), but the loss in tightness may be larger. Compared to the interval
Gauss–Seidel method, the magnitude method wins significantly both in time and tightness.
Compared to verifylss, our approach produces tighter enclosures. Provided interval entries
of the equation system are wide, the magnitude method is also cheaper; for narrow enough
intervals, the situation is changed and verifylss needs less computational effort.

For both variants of the magnitude method, we used verifylss for computing a verified
enclosure of u = 〈A〉−1 mag(b) (step 1 of Algorithm 1). So it might seem curious that (for wide
input intervals) verifylss beats itself.
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Table 2: (Example 3) Tightness of enclosures for randomly generated data.

n δ verifylss Gauss-Seidel magnitude magnitude (γ = 0)

5 1 1.1520 1.1510 1.09548 1.1196
5 0.1 1.08302 1.01645 1.00591 1.0164
5 0.01 1.01755 1.00148 1.00037 1.00148

10 0.1 1.07756 1.02495 1.01107 1.02474
10 0.01 1.02362 1.00378 1.00132 1.00378
15 0.1 1.06994 1.03121 1.01755 1.03074
15 0.01 1.02125 1.00217 1.00047 1.00216
20 0.1 1.05524 1.03076 1.02007 1.02989
20 0.01 1.02643 1.00348 1.00097 1.00348
30 0.01 1.02539 1.00402 1.00129 1.00401
30 0.001 1.00574 1.00026 1.000039 1.000256
50 0.01 1.02688 1.00533 1.00226 1.00531
50 0.001 1.00902 1.00051 1.00011 1.00051
100 0.001 1.01303 1.00057 1.00013 1.00057
100 0.0001 1.0024988 1.0000274 1.0000022 1.0000274

4 Conclusion

We proposed a new operator for tightening solution set enclosures of interval linear equations.
Based on this operator and a property of limit enclosures of classical methods, we came up
with a new algorithm, called the magnitude method. It always outperforms the interval Gauss–
Seidel method. Numerical experiments indicate that it is efficient in both computational time
and tightness of enclosures, in particular for wide interval entries.

In the future research, we would like to extend our approach to parametric interval systems.
Also, overcoming the assumption Ac = In and considering non-preconditioned systems is a
challenging problem. Very recently, a new version of INTLAB was released (unfortunately, no
longer free of charge), so numerical studies utilizing enhanced INTLAB functions would be of
interest, too.
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