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Abstract. The aim of this paper is to introduce and analyze a weak formulation of the transient
eddy current problem governing electromagnetic forming in the axisymmetric case. The resulting
problem is degenerate parabolic with the time derivative acting on a moving subdomain. Because
of this, we have to resort to regularization arguments in order to prove its well-posedness. We also
investigate additional regularity of the solution.
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1. Introduction. Electromagnetic forming (EMF) is a metal working process
that relies on the use of electromagnetic forces to deform metallic workpieces at high
speeds. A transient electric current is induced in a coil using a capacitor bank and
high-speed switches. This current creates a magnetic field that penetrates the nearby
conductive workpiece where an eddy current is generated. The magnetic field, together
with the eddy current, produces Lorentz forces that drive the deformation of the
workpiece [7, 13]. The workpiece can be reshaped without any contact from a tool,
although in some instances the piece is pressed against a die or former. The technique is
sometimes called high-velocity forming. The process works better with good electrical
conductors such as copper or aluminum but it can also be adapted to work with
poorer conductors such as steel.

In the thorough problem, the eddy current equations must be coupled with an
adequate mechanical model for the deformation of the workpiece. In practice, this
coupling can be achieved by means of a fixed-point iterative scheme. First, the tran-
sient electromagnetic field is determined with a fixed conducting workpiece at the
initial position. Second, the Lorentz force computed from the resulting current den-
sity and magnetic induction is used as the driving force of the mechanical model, to
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determine the position of the workpiece along the time. Then, the transient electro-
magnetic field with a moving conducting workpiece is recomputed. The last two steps
are subsequently repeated until convergence.

In this paper we restrict our attention to the underlying electromagnetic model
and take the motion of the workpiece as data. This motion introduces two difficulties
to the eddy current problem. First, the conducting domain changes along time, be-
cause the workpiece changes its position. Also the velocity in the workpiece produces
currents that in principle should be added in the Ohm’s law. The difficulties arising
from this additional term have been studied in [2] on a fixed domain. However, in
EMF, the current density induced from the velocity terms is not significant, so that
it is typically neglected.

The literature on mathematical analysis of electromagnetic problems on a moving
domain is not abundant. As an example, let us mention [5], where the authors propose
and analyze a sliding mesh-mortar method for a two-dimensional model of electric
engines which takes into account the motion of the rotor. However, in this problem,
the domain occupied by the moving part is always the same, which is not the case in
the problem we are dealing with.

In the present paper we focus on problems with cylindrical symmetry, which
allows stating the eddy current equations in terms of the azimuthal component of
a magnetic vector potential defined in a meridian section of the domain (see, for
instance, [1]). This leads to considering a transient problem where the term involving
the time derivative appears only in a part of the domain which changes with time.
Because of this, the classical theory for abstract nondegenerate parabolic problems
(see, for instance, [6]) as well as that for degenerate parabolic problems on fixed
domains (cf. [15]) do not seem to help for the mathematical analysis. This is why we
resort to a regularization argument to prove well-posedness.

Since the ultimate goal of this research is to develop numerical tools for solving
the transient problem, it is particularly interesting to study under which conditions
the solution satisfies certain additional regularity, which may be necessary to guar-
antee the convergence of the numerical methods. With this end, first we prove time
regularity without the need of any further assumptions on the data. Then, we deter-
mine conditions on the initial data which are necessary and sufficient for certain space
regularity to hold. A relevant point in practice is that these conditions are typically
satisfied in the EMF process.

The outline of this paper is as follows. In section 2, we describe the transient
eddy current model and introduce a magnetic vector potential formulation under
axisymmetric assumptions. In section 3, we introduce a weak formulation and prove
some preliminary results. Then, we prove that the resulting problem is well-posed in
section 4, and we prove some additional regularity results in section 5. Finally, in an
appendix, we give a sketch of the proof of a trace result on weighted Sobolev spaces.

2. Statement of the problem. We are interested in determining the electro-
magnetic field produced by a coil in a cylindrical workpiece; see Figure 2.1 (left) for an
example. To ensure the cylindrical symmetry, we model the coil by several concentric
rings with toroidal geometry, all carrying the same current intensity. On the other
hand, to reduce the electromagnetic model to a bounded domain, we introduce a
three-dimensional cylinder €2 containing the coil and the workpiece with its boundary
sufficiently far from them.

Because of the cylindrical symmetry, we are allowed to pose the problem in a
meridian section of €2, which we denote by Q. Notice that € is an open rectangle
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Fic. 2.1. Sketchs of the three-dimensional domain of an EMF system (left) and its meridian
section (right).

contained in the half-plane {(r,z): r >0, z € R} with an edge lying on the axis
r = 0, as shown in Figure 2.1 (right). We denote by 2; the meridian section of the
workpiece at time ¢ and Qg := Q1 U- - -UQ,,, where Qi (k = 1,...,m) are the meridian
sections of the turns of the coil. We assume that 2; and the sets i are open and
that Q; N Qg = () for all t. Finally, we denote I'y the intersection between 92 and the
axis r =0, and I'p := 9Q \ Ty (see Figure 2.1 (right), again).

We will use standard notation in electromagnetism:
FE is the electric field,
B is the magnetic induction,
H is the magnetic field,
J is the current density,
1 is the magnetic permeability,
o is the electric conductivity.
The magnetic permeability u is taken as a positive constant in the whole domain. The
conductivity o vanishes outside the workpiece. This piece can be made of different
materials, each with a different conductivity. We will make more precise assumptions
on o below (cf. (3.2)—(3.3)).

In this kind of problem, the electric displacement can be neglected in Ampere’s
law, leading to the so called eddy current model:

(2.1) curl H = J,
(2.2) 88—? +curl E =0,
(2.3) div B = 0.
This system must be completed with the relations
(2.4) B=uH

and

oF in the workpiece (unknown),
J =1<Js in the coil (data),
0 in the air.
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Notice that since the source current density Jg is taken as given data, the conductivity
o is taken as vanishing in the coil. The relation above can be written in a single
equation as follows:

J=0E+Js,

where Jg is extended by zero outside the coil.

We assume that all the physical quantities are independent of the azimuthal
coordinate 6 and that the source current density field has only azimuthal nonzero
component, i.e.,

Js(t,r,0,2) = Js(t,r, z)eq.
Then, proceeding as in [1] and [2], it can be shown that

,2) = Hp(t,r,2)e, + H,(t,r, z)es,

,2) = B.(t,r,2)e, + B,(t,r, z)e,,
t,r 0 z) = E(t,r, 2)es,

)

2.

for B so that
B = curl A.
According to [2], this vector potential can be chosen of the form
A(t,r,0,z) = A(t,r 2)eq
and such that (cf. (2.2))

0A

ot

Therefore, from (2.1) and (2.4), the eddy current equations can be written in terms
of this vector potential as follows:

curl <l curl A) =
I

where
0A
—UE in Qy,
J = Jey, with J = Js in Qg (data),
0 in O\ (Qs U Q).

Thus, we are led to the following parabolic-elliptic problem:

(2.5) O’%—?ee + curl [l curl (Aeg)} =Jsep in (0,T) x Q.
W

We complement this equation with homogeneous Dirichlet boundary conditions
for A on I'p, which makes sense provided the boundary of €2 is sufficiently far from the



TRANSIENT EDDY CURRENT PROBLEM ON A MOVING DOMAIN 3633

coil and the workpiece at all time ¢ € [0, T']. Moreover, as will be seen in the following

section, a homogeneous Dirichlet boundary condition will be automatically imposed
on Iy from the fact that A = Aeg € H(curl, Q) := {Z € L?(Q)% : curl Z € L*(Q)3}.

3. Weak formulation and some preliminary results. The aim of this sec-
tion is twofold: to introduce a weak formulation of problem (2.5) and to obtain some
preliminary results which will be used in the next section to prove that the problem
has a unique solution. With this end, first we introduce the functional framework we
will use.

Let L2(f2) be the weighted Lebesgue space of all measurable functions Z defined
in © such that

HZHQLg(Q) = /Q |Z)? rdrdz < co.

The weighted Sobolev space H*(Q) consists of all functions in L2(£2) whose derivatives
up to order k are also in L2(£2). We define the norms and seminorms of these spaces
in the standard way. Let L2 /r (©) be the space of all measurable functions Z defined
in Q such that

712
(Q)::/Q| | drdz < oo

2
121172 -

1/r

and let

H,(Q) = H, (Q) N L, (),

T

2
H(Q
a vector field of the form Z(r, z)ey reads

endowed with its natural norm || Z]|| )= ”ZH%P(Q) +11Z]2, () Since the curl of
™ 1/r

curl (Zey) = —g—fer + %8({;2) e,

it is well known that Zes € H(curl, Q) if and only if Z € H}(Q) (cf. [9]). Let
V:i={ZecHQ): Z=0onTp}.

Let us emphasize that the functions in H!(Q) have vanishing traces on I'g, so that
those in V actually vanish on the whole boundary of Q.

Finally, following [9], we denote
10(rZ) ?

2
2 . 0Z
121172 0 = ‘; or

+
mi) |97

2
I o P2 -4
HL()
and introduce the space H2(€2) := {Z € HY(Q) : HZHﬁQ(Q) < oo}

Notation like L2(-), HL(-), etc., will also be used with analogous meaning for
functions spaces on other subdomains.
Remark 3.1. The embedding

VN H(Q) c HX(Q)
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X,

goooooooo goooooooo

)

F1G. 3.1. Reference domain.

is an easy consequence of the results of [9]. In fact, let Z € V N H2(Q) and set
f = —%[l¥] - %Z € L%(Q). Using the density in V of the space D(Q) of

ks
infinitely differentiable functions with compact support contained in Q (which, in
turn, follows by adapting the arguments from the proofs of [11, Theorem 4.3] and [9,

Lemma 3.1]), we infer that Z satisfies

/ 19(rz) o(rV) n 0z v
Qlr Or Or 0z 0z

r} drdz:/erdrdz vV ev.
Q

Then, [9, Theorem 4.1] implies that Z € HZ(Q).
Since the domain €2; changes with time, we define a reference domain £ C (0, co) x

R and an application X : [0,T] x Q — Q such that, for all ¢t € [0, T,

(31) X Q—>§t,

z+— X(t,x)
is a one-to-one correspondence which satisfies X t(ﬁ) = (see Figure 3.1). For sim-
plicity, we assume that X is the identity, so that = Q.

We also assume that X is sufficiently smooth with respect to space and time. More
precisely, we make the following assumptions:

(i) forall ¢ € [0,T], X¢: Q — O is a one-to-one correspondence and X () =

Q4
(ii) forall t € [0,T], X(t,&) lies on the axis r = 0 if and only if Z lies on the
same axis; .

(iii) the mapping ¢ — X lies in C([0, T]; C1(€)2);

(iv) det(DeX)(t, @) >0 Y(t,Z) € [0,T] x €.

In assumption (iii) and thereafter, for any bounded open set G C R", we denote
by C'(G) the set of functions in C(G) N C'(G) such that all its first-order partial
derivatives have continuous extensions to all of G.

Assumptions (i) and (ii) are natural when X is the description in a meridian
plane of a three-dimensional axisymmetric motion keeping invariant the azimuthal
coordinate. Moreover, in such a case, assumptions (iii) and (iv) are satisfied provided
the three-dimensional motion is sufficiently smooth.
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On the other hand, we impose the following geometric constraints on Q:
(v) Q is a Lipschitz bounded domain;
(vi) either € does not intersect the axis 7 = 0 or there exists a > 0 such that the
set {(r,2) € Q: 0 <r < al}is a trapezoid with parallel sides aligned with
the axis r = 0;
(vii) QNTp = 0.
For further details and consequences of assumption (vi), see [11].
Finally, the conductivity o is taken such that

(3.2) o(t,x) =5(F) withz e Q: z=X,(@),

where 7 is the conductivity in the reference domain (AZ, which is a given measurable
function satisfying

(3.3) 0<o<d(@) <o, T

From a physical point of view, this means that the conductivity of each material point
remains constant along the process.
Next, we introduce the noncylindrical open subset of (0,7") x 2,

Q={t,x): xe, te(0,7)},

and, for 1 < p < oo, the Banach spaces of functions defined in @,

T
L2(Q) = {gp : @ — R measurable with / / lo|? rdrdzdt < oo} )

Wi = {o e 2@ 5. 5 5 e ).

respectively endowed with their natural norms:

T
o= [ [ Jol? rras

dp|”
p —
6l 00y = el + | 52

L2(Q) Ha’l" L2(Q H@z LP(Q)

As usual, we denote H}(Q) := W}12(Q).

Now, we are in a position to write a weak formulation of (2.5). For this purpose,
we multiply (2.5) by a test vector field Zey with Z € V, integrate in 2, and use a
Green’s formula to obtain

A
/aa—Zrdrdz—Fa(A,Z):/ JsZ rdrdz VZ eV,
o Ot s

where

a(A,Z) = /Q % curl (Aey) - curl (Zep) rdrdz.
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It is shown in [9, Propositions 2.1, 3.1] that a is a V-elliptic bilinear form; namely,
there exists a > 0 such that

(3.4) W(2,2) > al|lZ| by~ VZEV.

Thus we are led to the following weak problem. (For the sake of notational compact-
ness, here and hereafter 9; will often be used to denote the derivative with respect to
time.)

PROBLEM 1. Given Js € L?(0,T; L%(Qs)) and A° € L?(y), find A € L*(0,T; V)
with O A € L2(Q) such that

/ 0(0tA) Zrdrdz+a(A,Z) = JsZ rdrdz VZ eV ae tel0,T],
Q Qs

Remark 3.2. If A € L?(0,T;V) and 0;A € L%(Q), it follows that A € H(Q).
Hence, from the trace result proved in the appendix (cf. Lemma A.1), we have that
Alfoyxa, € L2({0} x Q) ~ L2(Q). Thus, the initial condition in Problem 1 makes
sense.

Notice that Problem 1 is degenerate parabolic, because the term including the
time derivative of A is only defined in the (moving) subdomain €;. Our first goal is
to show that this degenerate problem is well-posed.

With this aim, we will use the Reynolds transport formula given in the next

theorem, in which v = v,e, + V€ is the velocity of the moving domain £2;, which is
defined for all t € [0,T] and & € Q; by

(3.5) o(t,x) == %—f(t,a) withz € Q: = = X,(2).

Moreover, grad and div denote the differential operators applied to corresponding
three-dimensional axisymmetric fields written in cylindrical coordinates, namely,

.06, [0
grad ¢ := arer—l— 52

_ 10(rvy) n v,
Tor o or 0z

e, and divv

Let us remark that the Reynolds transport formula is an important analytical
tool in continuum mechanics, whose proof, in the case of smooth motions and fields,
can be found in many books (see, for instance, [10] or [8]). In what follows, we prove
such a formula under weak smoothness assumptions, which will allow us to apply it
to the analysis of Problem 1.

THEOREM 3.1. Let X : [0,T] x Q- 0 and X, be defined as in (3.1). Suppose
that assumptions (i)—(vi) hold true. Let v be given by (3.5) and o by (3.2). Then, the
following Reynolds transport formula holds for all o, € H}(Q):

d _ A(ey)
(3.6) %/Qtagm/)rdrdz—/ﬂta o rdrdz

—l—/ Ug0¢divvrdrdz+/ ograd(ev) -vrdrdz
Q Q4

in D'((0,T)) and a.e. in [0,T].
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Before proving this theorem, we establish the following result, which will be used
in its proof and also in what follows.

LEMMA 3.2. Assumptions (1)—(vi) imply that divwv is bounded in Q.

Proof. First note that %”TT and % are bounded in @ (cf. assumptions (iii)

and (iv)). If we denote by (7,%) a generic point in Q, and by (r,z) = X(t,7,2) the
corresponding point in 2;, we have

’Ur(t,”/’,Z) _ 8tX1(t7?7 2)
r X (t, 7, 2)

where X7 is just the first component of X. We focus on the case QN {7 = 0} # 0;
otherwise, this quotient is bounded because of assumption (ii). Thus, it is enough
to estimate the last quotient for 7 > 0 small. With this aim, we first note that

assumption (ii) implies that if (0,2) € €, then Xi1(t,0,2) = 0 for all ¢t € [0,77].
Consequently, 0;X;(t,0,%z) = 0 for (¢,0,2) € [0,T] x Q. Hence, using the mean value
theorem and assumptions (iii) and (vi), we readily obtain that |0; X1 (¢, 7, 2)| < CT for
7 > 0 small enough, C being a suitable constant. This, together with (A.1) (cf. the

proof of Lemma A.1, Step 3), yields the required boundedness of % O

Proof of Theorem 3.1. Let o, € H}(Q). Since C1(Q) is dense in this space (cf.
Step 5 from Lemma A.1), there exist ¢, 1, € C*(Q), n € N, such that ¢,, — ¢ and
tn — ¢ in HY(Q). The proof of the classical Reynolds transport theorem (see, for
instance, [8, Lemma 5.2]) can be readily adapted to cylindrical coordinates leading to
(3.6) with ¢ and 9 substituted by ¢, and v, respectively.

The next step is to pass to the limit in each of the four integrals of this expression
in the sense of L'((0,7)), taking advantage of the boundedness of o, v, and div v (cf.
Lemma 3.2 for the latter). For instance, for the last integral we have that

ograd(ppty,) - v — ograd(py) - v in LL(Q)

and, hence,

/ ograd(g,,) -vrdrdz — | ograd(py)-vrdrdz  in L'((0,7)).
Q Q4

Proceeding analogously with all the other integrals, we conclude that the function
t € [0,T) = [o, opyrdrdz lies in WH((0,T)) and that (3.6) holds true. Thus, we
conclude the proof. O

Remark 3.3. It would be tempting to write (3.6) with the product ¢ replaced
by ¢ € W,'1(Q). However, to prove such a result, we would need the density of C*(Q)
in this space and, to the best of the authors’ knowledge, this has not been proved.

4. Well-posedness. The aim of this section is to prove that Problem 1 has a
unique solution and to obtain a priori estimates.
In what follows, we will use the t-dependent bilinear form

c(t,Y,Z) = —/

aYZdivvrdrdz—/ ocgrad(YZ) -vrdrdz, Y,Zc HQ),
Q

Q4

which is related to the last two terms in the Reynolds transport formula from Theo-
rem 3.1. The following Garding-like inequality holds true.
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LEMMA 4.1. There exists A > 0 such that

1
a(2,2) % 5e(t.2.2)+ X | o|2P rdrdz> % 1215 (0 -
Q4 "

with o as in (3.4), for all Z € HX(Q) and all t € (0,T).
Proof. By using Young’s inequality, we can write for any § > 0

le(t, Z, Z2)| =

/O’ZQdiV’U’/‘d’/‘dZ—FQ/ ocZgradZ -vrdrdz
Q

Q
. 7 o]
< { Naivo], + 5

Thus, we conclude the proof from the ellipticity of a (cf. (3.4)) by taking § = a. d
The next result is the first step to show that Problem 1 is well-posed. Here and
hereafter, C' will denote a constant not necessarily the same at each occurrence but
always independent of the data .Jg and A° of Problem 1. B
THEOREM 4.2. If Js € H*(0,T;L%(Qs)) and A° € H}(Qo), then there exists a
solution to Problem 1 which satisfies A € L*°(0,T;V) and

/ o|Z)? rdrdz+6 ||Z||§{}(Qt) .

t

(A1) 19 Al + 1l =) < € [[14% 50y + 15l 022005

Proof. We proceed by Galerkin approximation and passing to the limit. Let
{¢n}nen be a “basis” of V in the following sense: { ¢, }nen is a set of linear independent
elements of the space V whose linear span is dense in V. Consider the family of finite-
dimensional subspaces Vy = (¢1,...,¢n). The first step of the proof is to find a

function of the form An(t,r, z) = Zjvzl Ajn(t)¢;(r, z) satisfying

(42) / g (81514]\]) (bz rdrdz + a(AN, qf)l)
Q
= / Jspirdrdz, ae. te€l0,T], 1<i<N,
Qs

(43) AN(0)|QO = A?Vlﬂo'

The initial condition A% € Vy must be chosen so that

(4.4) Ao, 25 A% in L2(90)
and
(4.5) HAS)VHE;(Q) <C HAOH}?;(QO) :

To obtain A%, we may proceed as follows. Let A° € V be an extension of A° to
satisfying

(4.6) 4% 7y < €147

Hﬁ;( Hm(ﬂo)'

Such an A° can be obtained, for instance, by means of a Nikolskii extension operator
as in [11, Lemma 4.1] (here we use assumptions (v) and (vi)) and a smooth cut-off
function vanishing in a neighborhood of I'p and taking the value 1 in ¢ (which exists
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because of assumption (vii)). Then, we take A, € Vi such that || A%, — A° 710 0.

This clearly implies (4.4) and together with (4.6) lead to (4.5). We write A%, in terms
of the basis {¢1,...,¢n} as

N
(47) AO = ijqu)j.
j=1

Since problem (4.2)—(4.3) is degenerate, to prove the existence of a solution we
introduce a parabolic regularization as follows: For small € > 0, we replace (4.2)—(4.3)
by the “approximate” parabolic problem

(4.8) /QU(@tAﬁv)qSirdrdz—l—a/ﬂ(8tA‘}:V)¢irdrdz+a(A‘}:v,¢i)

= /Q Jspirdrdz ae. te[0,T], i=1,...,N,
(4.9) A5(0) i A% in Q.
To obtain the matrix form of this problem, we write A% (t) = Zj\]:l ASn(t)¢; and
define A% (1) = (A%y ()<<
Fyn(t) = (Fin®))i<i<n Fin(t) := /Q Js(t)p;rdrdz, 1<i<N,
5
IC = (’Cij)lgi,jgN7 Kij = aldi¢;), 1<i,j<N,

M) = (Mig()yaysan s Mis(t) = /Q coid; rdrdz, 1<i,j <N,
N = (Mj)1<i7j<Na M,j = / pipjrdrdz, 1<i,7<N.
- Q

Finally, let by := (bjn), <<y With bjx as in (4.7). Then, problem (4.8)(4.9) reads
as follows: Find A% : [0,7] — RY such that

(4.10) [M(t) + eNTOLAN (1) + KAL(t) = Fn(t),
(4.11) A5(0) = by.

Since M(t) is symmetric positive semidefinite and A is symmetric positive definite,
we have that M(t) + eN is invertible and this problem has a unique solution in
W10, T;RN). Furthermore, A5, € H'(0,T;RY), because

[0: ANl L2 0,7m ) < eOS<StS<UTP| (M) +eNT |[||FN||L2(O,T;]RN) + ||’CA§V||L2(07T;RN)]

1 -
< - |N 1| [||FN||L2(0,T;RN) + K| ”A?VHL?(QT;RN)] < 00,

where | - | denotes the matrix norm induced by the Euclidean norm in RY.
In order to pass to the limit as € goes to 0, we need a priori estimates. With this
end, we multiply (4.8) by 0; A5y and sum up from ¢ =1 to NV to obtain
e |2 e |2 1d € € €
o |0 AN|" rdrdz+e | |0.AY] rdrdz—l—gaa( Vi AY) = Js (0:AY) rdrdz.
Q4 Q Qg
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Integrating in time from 0 to 7 (0 < 7 < T') and using an integration by parts formula
on the right-hand side, we derive

(4.12)
/ / a|8tA§V(t)|2rdrdzdt+£/ /|(’9tA‘}:V(t)|2rdrdzdt—i—%a(A‘}:\,(T),A?V(T))
0 J 0 JQ

1
:§a(A?V,A9V)+ Js(T)AN (7)) rdrdz — i Js(0)AY rdr dz
S

Qs
_ / ’ / (0,5 ()] A% (£) 7 dr d= dt.
0 Qg

Hence, the ellipticity of a, (4.5), and Young’s inequality lead to

/ / o |0 A ()2 rdrdzdt—i—a/ /|8tA§V(t)|2 rdrdzdt+ 1A% ()
0 J 0 JQ 4 "
2 T
<C [HAOHf{;(QO) + ||JS||§{1(0,T;L3(QS)) +/o ”Ai\f(t)H%%(Q) dt} ;

whence, by applying Gronwall’s lemma (see, for instance, [12, Lemma 1.4.1]), it follows
that

(4.13) / / o |0, A% (8)[2 7 dr dz dt+g/ / 10,A% ()| r dr dz dt
0 Q 0 Q
« 2
+ 1 ||A?V(T)||§§;(Q) <C [HAOHJ?J;(QO) + ||JSH§11(0,T;L%(QS)) :

Thus, we have proved the following a priori estimates:

e 0. A5 is bounded in L2(Q),

e /20, A5 is bounded in L?(0,T; L2(12)),

o A5 is bounded in L*>(0,T;V).
Therefore, for fixed N, there exists Ay € L*(0,7T;V) with 9;Ay € L2(Q) and a
sequence {e, tnen converging to 0 such that

o O, AV — 0, An weakly in L2(Q),

o /e, 0, A — 0 weakly in L*(0,T; L%(12)),

o A5 — Ay weakly-star in L>(0,T; V).
In particular, because of Lemma A.1, this yields An(0)|o, = limy—oo [AY (0)]0,] =
A%]a,, where the limit is weak in LZ(€), so that Ay satisfies the initial condition
(4.3). Moreover, one can multiply (4.8) by an arbitrary function in D((0,T")), integrate
in time, and pass to the limit for ¢ = ¢, — 0 as n — oo. This allows us to show that
Ap satisfies (4.2), too.

Furthermore, it is also possible to pass to the limit in estimate (4.13) (see, for

instance, [4, Propositions II1.5, IT1.12]) to obtain

T «
aa [ o IAN O rdrdzdt 1A~ o

2 2
<cC [||A0||H%(QO) n ||Js||H1(O,T;L3(QS))} ae. 7 [0,T].
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The above estimate allows us to conclude that there exists A € L°>°(0,T;V) with
A € L2(Q) and a subsequence of { Ay}, still denoted in the same way, such that
e Ay — A weakly-star in L>°(0,T;V),
o 0, Ay — 0;A weakly in L2(Q).
In particular, because of Lemma A.1 again, this and (4.4) imply that A(0)|q, =
limpy 00 [AN(0)]o,] = A%, where the limit is weak in L2(Qp), so that A satisfies the
initial condition from Problem 1.
Next, we take any fixed 7 € N so that for N > i, ¢; € V. Then, we proceed as
above, pass to the limit in (4.2) as N — oo, and obtain

/ 0 (0tA) pirdrdz+ a(A, ¢;) = Jsp;rdrdz ae. te[0,T] Vi e N.
Q, Qg

Hence, since the linear combinations of functions ¢; are dense in V, we deduce the
first equation in Problem 1. Finally, passing to the limit as N — oo in estimate (4.14),
we obtain (4.1). O

In principle, estimate (4.1) holds only for a solution obtained by the regularization
procedure used in this theorem. Thus, we cannot derive uniqueness of solution from
this inequality. In what follows we prove a stability estimate valid for any solution to
Problem 1, which will allow us to conclude that this is a well-posed problem.

THEOREM 4.3. Problem 1 has at most one solution A and the following a priori
estimate holds:

1/2
(4.15) sup [/ U|A(t>|2mrd4 Ao,
o<t<t LJa,

<C [HAOHLg(Qo) + ||JSHL2<0,T;L%<QS>>} .

Proof. The uniqueness follows immediately from (4.15). Thus, we only have to
prove this estimate.

Let A be a solution to Problem 1. Taking Z = A(t) in the first equation of this
problem, we obtain

/ o [OLA)] A(t) rdrdz + a(A(t), A(t)) = Js(@)A(t)rdrdz a.e. te][0,T].
Q Qs

Hence, from Theorem 3.1,

1d 2 1 _
il /Qt o|lA@)|]" rdrdz+ §C(t,A(t),A(t)) + a(A(t), A(t)) = /Qs Js(t)A(t) rdrdz.

Next, we use Lemma 4.1 and a Young’s inequality to write

1d . a ,
(4.16) EE/thr|A(t)| rdrdz+ 7 [ A®|F o)
1
< = sl ag) + A / o AW rdrdz.

Therefore, by applying the Gronwall’s lemma we conclude that

t
/olA(t)FwdrdZ“[/ U|A°\2rdrdz+/ 195(5) 220 s
Q¢ Qo 0 "
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where we have also used the initial condition of Problem 1. Finally, we integrate (4.16)
in time from 0 to 7 (0 < 7 < T) and use the above estimate to derive

1 T
5/ o |A(T)]? rdrdz+%/ HA(t)H%;(Q) dt
Q. 0

T
<CV 0‘A0|2rdrdz+/ [FAGIr. dt},
Qo 0 "

which clearly leads to (4.15). Thus, we conclude the proof. O

The following result is a direct consequence of the two previous theorems.

COROLLARY 4.4. Under the assumptions of Theorem 4.2, Problem 1 has a unique
solution and it satisfies the a priori estimates (4.15) and (4.1).

Remark 4.1. The hypotheses on the source current data Jg of Problem 1, as well
as the additional smoothness assumed in Theorem 4.2, correspond to what is usually
expected in the EMF process leading to the transient eddy current problem we are
analyzing. However, these assumptions can be relaxed. In what follows we describe
briefly the differences arising with a less smooth data Js.

It is possible to consider a more general form of Problem 1, in which the source
term Js belongs not necessarily to L?(0,T; L?(Qs)) but to L2(0,7;V") (where V' de-
notes the topological dual space of V). In such a case, obviously the term fQS JsZrdrdz
has to be substituted by (Js, Z), where (-, -} denotes the duality pairing between V' and
V. Theorem 4.3 is still valid under this weaker assumption, as long as ||Jg ||L2(0,T;L$,(QS))
is substituted by [|Js|| ;2 7,y in estimate (4.15), and no significant change is needed
in its proof.

Theorem 4.2 remains valid under weaker assumptions on Js, too. In fact, it is
enough to assume that Jg € WH1(0,T; V') instead of Js € H(0,T; L?(Qs)). In such a
case, estimate (41) holds true with HJSHH%QT;L%,(Qg)) substit.uted by ”JS”[/VLl(O,'T:V/)'
The proof of this theorem only needs to change the integrals in (2g by duality pairings
and to apply Lemma A.5 from [3] to the inequality analogous to (4.12), instead of
Gronwall’s lemma, to obtain the estimate analogous to (4.13).

5. Smoothness of the solution. The ultimate goal of this research is to de-
velop numerical tools to solve approximately Problem 1. In order to obtain error
estimates, it is particularly relevant to determine whether this solution satisfies addi-
tional regularity. In this section, we study the smoothness of the solution to Problem 1
and determine a compatibility condition among the initial data which is necessary and
sufficient to have additional regularity.

First, we address time regularity. Notice that, in principle, the time derivative
of the solution to Problem 1 is only defined in Q). However, the following theorem
shows additional regularity of this derivative, which in particular implies that it is
well defined a.e. in the whole (0,7") x Q.

THEOREM 5.1. Under the assumptions of Theorem 4.2, the solution to Problem 1
satisfies \/t0; A € L*(0,T;V). Moreover, the following estimate holds:

C
1AW 20 < 5 [

Proof. We keep on using notation and partial results from the proof of
Theorem 4.2. Recalling the definition of M, ;(t) and using Theorem 3.1, we obtain

4
dt

\|A0||m(90) + ||Js||H1(O)T;L3(QS))} a.e. t € (0,T).

M ;(t) =/ odivv ¢jp; rdr dz+/ ov - grad(¢;¢;) rdrdz.
Q Q
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Since o, v, and divv are essentially bounded, we have that M;; € W1*°((0,T)).
This, together with (4.10) and the assumption that Js € H'(0,T; L?(fs)), implies
that Ay, € H%(0,T;RY). Thus, we are allowed to differentiate (4.10) with respect to
time, which leads to

(5.1)
N N d d
Z 1] +EMJ] a2 jN +Z |: M +IC1] % jN(t) = EFZN(t)

j=1 j=1

Next, we multiply the above equation by t9; Ay (t) and sum up from ¢ = 1 to N.
Thus, we obtain

/ to ((%tAfV) (atA‘}:v) rdrdz + E/ t ((%tAfV) (atA‘}:v) rdrdz +ta(6tA‘}:v,8tA‘}:v)
o Q
+ / to divo |0 A% |* rdrdz + / tov - grad ( 0, A% > )rdrdz
Qy Q

- / £ (O0J5) (1A% 1 dr d=.
Qs

From Theorem 3.1 we have

4 to |0, A% rdrdz = 2/ to (OnAY) (0:A%y) rdrdz
dt O Qs

+/ o |0, A% |7 7 dr dz — te(t, 0, A%, 0, A% ).
Qq

This, together with the previous equation, yields

1d d

§E‘/Qtt0'|at | ’f’d’f'dZ—f——E/tlat ‘}:v|2’r‘d’f'dz

t
§C(t, 8tA(}:\[7 8tA§V)

1
:2/ o |0, A% rdrdz+ = /|8tA§V| rdrdz—l—/ t (OrJs) (0:A%) rdrdz.
Qq Qs

+ta(8tA‘}:v, 8tA6 ) -

Now, we repeat some of the arguments used in the proof of Theorem 4.3 to obtain

1
5/ 70 |0, A% (7)) rdrdz—i—/ t10:AN (DN 71 () dt

<C{// o |0t A%y rdrdzdt—!—a//wt/ls 2 rdrdzdt
Q

+/O 110 Js (D132 0 dt} vr € [0, 7).

This estimate for 7 = T together with (4.13) implies that v/t9; A%, is bounded in
L?(0,T;V). Thus, working along the same lines as in the proof of Theorem 4.2, we
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first deduce, for fixed N, that v/19; A% converges weakly in L2(0,T;V) as e — 0+ to a
function that turns out to be v/t9; Ax. Next, owing to [4, Proposition II1.5], NV
is also bounded in L?(0,7;V). From this we conclude analogously that vt A €
L%(0,T;V) (and also the weak convergence vt0; Ay — vt9; A in L?(0,T;V)).

On the other hand, we also have from the above inequality that xq(t)vt0; A%
is bounded in L>(0,T; L2(Q)), where xq stands for the characteristic function of Q.
Hence, repeating the same steps as above, we obtain that XQ(t)\/EatA is also bounded
in this space, which allows us to obtain the estimate of the theorem. Thus we conclude
the proof. O

According to this theorem, under the sole assumptions of Theorem 4.2, the so-
lution to Problem 1 satisfies A € C((0,T];V). However, none of the above theorems
yield some kind of continuity for the mapping ¢ € [0,T] — A(t) € HX(Q) at t = 0. In
what follows we address this issue. We begin with the following auxiliary result.

LEMMA 5.2. Let Z € C((0,T);V) N L>(0,T;V) be such that ;7 € L2(Q). Let
{tn} be a sequence such that t, — 0+. If Z(t,) — Z weakly in V, then 2|Q0 =YZ,
where 0 Z denotes the trace of Z on {0} x Q.

Proof. First notice that since Z € L>(0,T;V) and 0,Z € L%(Q), it follows that
Z € H}(Q). Thus, according to Lemma A.1, v¢Z is well defined.

Now, let w be an open set such that @ C €. Because of assumptions (i)—(iv)
on the motion of €, there exists 7 > 0 such that (0,7) x w C Q. Therefore, Z €
H((0,7) x w) C C([0,7]; L2(w)) so that Z(t,)|w — (70Z) |w in L2(w).

On the other hand, since Z(t,) — Z weakly in V, we have that Z(t,)|, — Z|.,
weakly in L2(w). Hence, Z|, = (70Z) . Since this holds for any open set w with
w C Qp, we conclude the proof. |

Our next step is to prove that without further assumptions, lim; o4 A(t) exists
weakly in IA-jTl (Q). In the following theorem we show that this weak limit is completely
determined by the initial data of Problem 1, namely, A° and the source current at
the initial time Jg(0). In particular, it coincides with A° in Qy and with the solution
of an auxiliary Dirichlet problem in Q¢ := Q \ Q.

More precisely, let V¢ := {Z|qe : Z € V} and V§ := {Z € V° : Z|, = 0}, where
T, := 09° N 0Qyq. Let A® be the solution of the following well-posed elliptic problem
with nonhomogeneous Dirichlet boundary data: Find A°® € V© such that A°|r, = A%|r,
and

(5.2) / 1 curl (A%ey) - curl (Zey) rdrdz = Js(0)Z rdrdz VZ e V.
e [ Qg

Finally, let A° € V be the following extension of A° to the whole Q:

/NIO o AO in QQ,
T 14° in Qe

We have the following result.

THEOREM 5.3. Under the assumptions of Theorem 4.2, if A is the solution to
Problem 1, then A(t) — A® weakly in V ast — 0+.

Proof. First, notice that A € C((0,T]; V)NL>(0,T;V) (cf. Theorems 5.1 and 4.2).
Thus, for any sequence {t,,} such that ¢, — 0+, there exists a subsequence {t,, } and
A €V such that Alty,,) — A weakly in V. Owing to Lemma 5.2, 121\|Q0 = A = A°.
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The next step is to prove that A|ge = A°. From assumptions (i)—(iv) on the motion
of Q;, we know that for all Z € D(02°), there exists 7 > 0 such that supp(Z)NQ = 0
for all ¢ € (0, 7). By taking any such Z as a test function in Problem 1, we obtain

/ 1 curl (A(t)eg) - curl (Zey) rdrdz = Js(t)Z rdrdz vt € (0,7).
e M Qg

Taking t = t,,, passing to the limit (recall that Js € H'(0,7T;L?(s))), and using
the density of D(2¢) in V§ (which, in turn, follows by adapting the arguments from
the proofs of [11, Theorem 4.3] and [9, Lemma 3.1]), we obtain that A satisfies (5.2).
On the other hand, since A € H() and we have already proved that g| a, = AY, we
obtain A|r, = A%, so that A = A°.

Therefore, A = A° in the whole Q. Since this limit is independent of the particular
sequence {t,} and of the subsequence {t,,}, standard arguments allow us to prove
that A(t) — A° weakly in V, as t — 04. Thus we conclude the proof. O

Next, we investigate the space regularity of the solution to Problem 1. We begin
with the following immediate result.

Remark 5.1. Under the assumptions of Theorem 4.2, the unique solution to Prob-
lem 1 satisfies additional space regularity. In fact, for almost all ¢ € [0, T], the solution
A(t) of this problem can be seen as the solution of an elliptic problem in the space V,
with bilinear form a(-,-) and right-hand side f(t) := XasJs(t) — xo(t)o(t)0:A(t). By
virtue of Theorem 4.2, f € L2(0,T; L2(€2)); hence, we can apply [9, Theorem 4.1] to
conclude that A € L2(0,T; H2(Q)).

A similar argument, now taking into account the estimate from Theorem 5.1,
allows us to show that A € L>®(e,T; H2(Q2)) for € > 0. Moreover, from the same the-
orem, we have that A € H'(e,T;V) for € > 0, too. However, for numerical purposes,
it is important to have A € H(0,T;V) N L>(0,T; H2(1)).

In what follows we derive conditions on the data of the problem yielding such
result. First, we establish that a necessary condition is that A° be smoother, namely,
A% € H2(Q). Notice that this is equivalent to a compatibility constraint among the
initial data A° and Js(0), plus additional regularity of A% in Q.

THEOREM 5.4. Under the assumptions of Theorem 4.2, if the solution to Prob-
lem 1 satisfies A € H'(0,T;V) N L>®(0,T; HX(Q)), then A° € H2(Q).

Proof. If A € H'(0,T;V)NL>®(0,T; H2(2)), then A € C([0,T]; V). Hence, thanks
to [14, Lemma I11.1.4], A is weakly continuous from [0, 7] into H2(Q2) NV and, then,
A(0) € H2(Q) NV. Since A(0) = A° (cf. Theorem 5.3), we conclude the proof. O

It is natural to wonder whether the above condition is sufficient for the solution
to enjoy the regularity A € H(0,T;V) N L>(0,T; H2()). The next theorem gives
an affirmative answer to this question.

THEOREM 5.5. Under the _assumptions of Theorem 4.2, if the initial data A0
and Js(0) are such that A° € H?(Q), then the solution to Problem 1 satisfies A €
HY(0,T;V) N L>®(0,T; HX(Q)).

Proof. We proceed as in the proofs of Theorems 4.2 and 5.1 and use notation and
partial results from them. However, we apply now the Galerkin method with a “basis”
{bn}nen of V such that ¢; = A°. This allows us to take A} = A° for all N € N,
since A° € H2(Q) NV is an extension of A°. Note that the initial condition (4.9) of
the “approximate” parabolic problem reduces to A% (0) = AO; hence, it is exact and
independent of both IV and e.
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Once we arrive at (5.1) in the proof of Theorem 5.1, we multiply this equation
by 0 A%y (t) (instead of t0, A5y (t)). Following essentially the same lines of that proof
and using Lemma 4.1, it is easy to obtain

1d - .
§E/ﬂta|8t <|? rdrdz+§a/|3t S rdrdz + = HatA ()H%%(Q)

gA/‘UH%A%@MZN#d%+EH@JﬂﬂH;«gy
Q4

Integrating the latter on [0, 7] yields

1
5 oA rardz+ § [ o5 0l )

<)\// o |0, A5% (1) 7 dr d= dt + ~ /Hath D220 dt
Qy
+ = / 0|0, A% (0)) rdrdz+ = /0|(‘9tA§V(O)| rdrdz Vr € (0,71,
2 Ja, 2 Ja

which, taking into account (4.13), leads to

1 a [7
(5.3) 5/ a|8tA‘§V(T)|2rdrdz+Z/O 10: A% ()72 oy

-

<C [HAOH%}(QO) + HJSH%I(QTM(QS»}

1
—|——/ o 9,45 (0)] rdr dz + E/ o 8,45 (0)]* rdr dz Vr € 10,T].
2 Qo 2 Q

The key point of the proof is to obtain a priori estimates for the last two integrals.
With this purpose, we recall something that was shown at the beginning of the proof
of Theorem 5.1: M, ; € WH>((0,T)), which together with the assumption Js €
H'(0,T; L%(Qg)) implies that A%, € H2(0,T; RY). Hence, (4.10) holds for all t € [0, T]
and then the same is true for (4.8). Taking ¢ = 0 in this equation, multiplying by
0¢ A5 (0), and summing up from ¢ =1 to N, we obtain

(5.4) / o |3tA§V(O)|2 rdrdz + E/ o |5tA§V(0)|2 rdrdz+ a(A%(0), 0: A% (0))
Q0 Q

= Js(0)0 A% (0) rdr dz.
Qs

Now, taking into account that A5,(0) = A° € H2(1), 0:A%(0) € V, and that
D(9) is dense in V, we have that

(5.5) a(A%(0),0:A5(0)) = /Q 1 curl (121069) -curl (0, A% (0)eg) rdrdz

o
L £(49)0,45 0) r dr d,
QM
where
. d |19(rA% | 824° .
L(A) = o lr o | o (= curl [curl (A%y)] - ey).
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Notice that £(A%) € L2(Q), because of the assumption A° € H2(). Moreover, the
definition of A° implies that

1 .
;E(AO):XQSJS(O) in Q°.
Hence,

/ %L(Ao)ﬁtAﬁv(O)rdrdz: L 249,42, (0) r dr d= + / Js(0)0,A% (0) r dr d=.
Q

Qo M Qs

This, together with (5.4) and (5.5), yield

1
/ |0, A%(0))? rdrdz+g/ 0 |8, A5 (0)) rdrdz = —/ ;E(Ao)ﬁtA‘}:V(O)rdrdz,
Qo Q Qo

which easily leads to

. 1
[0:AN (0)[ 12 () < o H‘C(AO)HLﬁ(QO)

and then to the a priori estimate
e 2 e 2 1 NIE
o |0 AN (0)|" rdrdz+¢ | 0|0 AN(0)]" rdrdz < THE(A )||L2(Q )
Qo Q nea 240

This, together with (5.3) and the assumption that A° € H2(f), implies that ;A% is
bounded in L2(0,T; V) and x¢(t)0: A% is bounded in L>°(0,T; L2(£2)). Hence, we infer
as in the final step of the proof of Theorem 5.1 that A € H(0,T;V) and x0:A €
L>°(0,T; L2(R)). Finally, the arguments in Remark 5.1 yield A € L>(0,T; H2(Q))
and we conclude the proof. O

Remark 5.2. The compatibility condition among the initial data, A° and Js(0),
which ensures the assumption A° € H2(Q) is not restrictive at all in practice. In fact,
in the EMF process leading to the transient eddy current problem we have analyzed,
the initial conditions are typically null: A° = 0 and Js(0) = 0.

The additional regularity proved in Theorem 5.5 is typically enough to obtain
error estimates for a space discretization of Problem 1 by lowest-order continuous
finite elements. However, for the analysis of a full discretization, it would be useful
to also have additional time regularity, for instance, A € H?(0,T; L2()). This is a
subject that needs further research.

Appendix A. A trace result in WTl’p(Q). As stated in Remark 3.2, the initial
condition in Problem 1 makes sense because we are searching for a solution of this
problem in H!(Q) and a trace result holds in this space. Moreover, this result was
also used in the proof of Theorem 4.2.

The aim of this appendix is to prove such a trace result in W,''?(Q) for p € (1, 00).
We keep the notation for functional spaces in ) introduced in section 3. Analogous
notation will be used for functional spaces on the cylinder (0,7") x Q (with €, replaced
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with ﬁ) Moreover, we denote by & = (7,2) a generic point in O and by € = (r,2) a
generic point in 2.

LEMMA A.1. Let Q C {(r,z):r >0, z € R} be an open rectangle with an edge
lying on v = 0. Let (AZ, Q, t € [0,T], and Q be defined as in section 3. Let X :
[0,T] x Q — O and X, be defined as in (3.1). Suppose that assumptions (i)—(vi) hold
true. Let p € (1,00) be fized. Then, for all t € [0,T], there exists a unique linear
continuous operator y; : WHP(Q) — LE(Q) such that for all ¢ € CH(Q),

(vep)(x) = p(t,x) Vo € Q.

Moreover, the norm of this operator is bounded independently of t.

Proof. We will give a sketch of the proof, which we decompose into six steps.

Step 1. For all p € (1,00), C1([0,T] x ©) is dense in W,'((0,T) x ).

Let u € WhP((0,T) x ﬁ) Using standard arguments, v can be approximated by
finite sums of the form 3 4;(t)v; (Z), where 1; € C1([0,T]) and v; € W P(Q). Then,
thanks to Theorem 4.3 from [11], each v; can be approximated, in the sense of er’p(ﬁ),
by functions in C*(€). (Here is where we use that p € (1,00); cf. Remark 3.3.) This
yields the result.

Step 2. Let W : [0,T] x Q — [0,7] x ©Q be the mapping defined by ¥(t, &) :=
(t, X (t,z)). Then, ¥ :[0,T] x Q — Q is a homeomorphism, ¥ € C([0,T) x (AZ) and
v lecl(Q).

The fact that ¥ is a homeomorphism onto @ follows from assumption (i) and
the continuity of X by noticing that Q = ¥ ((0,7T) x ﬁ) The regularity of ¥ is clear

from assumption (iii), whereas that of ¥~ follows from assumptions (iii) and (iv) by
using the inverse function theorem.

Step 3. Let X1 and X5 be the components of X . There exist c¢1,co > 0 such that

(A.1) af < Xi(t7,2) S Y(t,7,3) € [0,T] x Q.

First, we consider the case where 6 does not intersect the axis 7 = 0. Then,
because of assumption (ii), X ([0, 7] x 6) C (0,00) x R. This, together with the fact
that X is continuous, implies that for all points (¢,7,Z) in the compact set [0, T] x 6,
X1(t,7,2) is bounded above and below by strictly positive constants. Since the same
happens to 7 for all points (7, 2) in the compact set 6, the property holds in this case.

Next, we consider the case where Q intersects the axis 7 = 0. Then, according to
assumption (vi), there exists a > 0 such that for all § € (0,a), G5 := {(7,2) € Q: 7 <
0} is a trapezoid with parallel sides aligned with the axis 7 = 0. We write 6 =GsUF;s

with Fy := {(7,2) € Q: 7> 6}. Since Fs does not intersect the axis 7 = 0, we have
just proved that (A.1) holds in [0,7] x Fs. Thus, we only need to find § € (0,a) such
that (A.1) holds in [0,T] x G, too.

The proof of the latter follows by means of standard arguments based on the

mean value theorem and the facts that X;(¢,0,2) vanishes (cf. assumption (ii)), that

8(;(?1 and ‘9(;;1 are bounded (cf. assumption (iii)), and that, for sufficiently small 6 > 0,

aa); ‘ is bounded in G by a suitable small constant and 8(;;1 is bounded below away
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from zero. In turn, the latter can be proved by using the uniform continuity of ‘98);1
and the following facts:

(a) Ja>0: det(DzX)(t,0,2) > « (because of assumptions (iii) and (iv));
(b) det(DzX)(t,0,2) = Z&(¢,0,2) 222(£,0,2) (because Z(2,0,2) = 0);
(c) 8(;;1 (t,0,%2) > 0 (because X1(t,7,%) > 0 and X;(¢,0,%) = 0);

(d) 88)22 is bounded from above (because of assumption (iii)).

Step 4. For any measurable function u : Q — R, let @ := uo ¥ : (0, T)x(AZ — R. Let
L be the linear operator defined by Lu := u. For all p € (1,00), L is an isomorphism
between LP(Q) and LP((0,T) x Q) and also an isomorphism between W!(Q) and
WLr((0,T) x Q).

Actually, this step holds for p € [1,00). Using (A.1), the change of variables
(r,z) = X(t,7,%), and Step 2, it is easy to prove that u € L2(Q) if and only if
U € LP((0,T) x Q) and also that there exist c3,cs > 0 such that

(A2) esllullzioy < Nl ooy ey < allull oo

Hence L : L2(Q) — LP((0,T) x Q) is an isomorphism.

Next we prove that L maps W P(Q) into W P((0,T) x Q). For ¢ > 0, let
Q. :={(72) € Q: 7> c}and Q. := ¥((0,T)xQ.). Since u € WP(Q.) ~ WP(Q.),
by applying the chain rule (see [4, Proposition IX.6], for instance), we have that
ue WhP((0,T)x QE) Since € > 0 can be taken arbitrarily small, u € V[/I})f((o, T) x {AZ)
and the chain rule is valid a.c. in (0,7) x €. Using this, assumption (iii), and (A.2),
we obtain that @ € W1 ((0, T) x Q) and [[@lly2.0 (o yxa) < Cllullyrr g Therefore,
L:WhHP(Q) — WLEP((0,T) x Q) is a bounded operator. A similar argument, using
now that ¥~ € C1(Q) (cf. Step 2), allows us to prove that L= : W?((0,T) x Q) —
WLEP(Q) is also bounded.

Step 5. For all p € (1,00), the space C!(Q) is dense in W}P(Q).
It follows from Steps 4 and 1 and the fact that @ € C*([0,T] x Q) if and only if
u € CY(Q), which in turn is a consequence of Step 2.

Step 6. Conclusion of the proof.

Let u € C(Q). Tt is easy to show that for all ¢t € [0, 7],

[ Gt 7. 2)|” Fdrdz
Q

2p—1 T T
/ / f@(r, 7. 2)P FdFdzdr + TP / /
o Ja o Ja

T
Straightforward calculations using again the change of variables (r,z2) = X (¢,7, 2),
(A.1), the boundedness of det(DgzX)(t, ), the inequality above, and Step 4 lead to

<

-~ p
%(T, 72) ?d?d?dr] .

o lu(t,r, 2)|P rdrdz < C(T) ||u|\%£,p(Q) .
This estimate together with Step 5 allows us to conclude the proof by means of a
density argument. 0

Remark A.1. The above lemma still holds true under the weaker regularity
assumption X € C([0,T] x , Q) instead of assumption (iii).
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