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Abstract

We investigate nonlinear state-space models without a closed-form transition density, and propose
reformulating such models over their latent noise variables rather than their latent state variables.
In doing so the tractable noise density emerges in place of the intractable transition density. For
importance sampling methods such as the auxiliary particle filter, this enables importance weights
to be computed where they could not be otherwise. As case studies we take two multivariate marine
biogeochemical models and perform state and parameter estimation using the particle marginal
Metropolis-Hastings sampler. For the particle filter within this sampler, we compare several proposal
strategies over noise variables, all based on lookaheads with the unscented Kalman filter. These
strategies are compared using conventional means for assessing Metropolis-Hastings efficiency, as
well as with a novel metric called the conditional acceptance rate for assessing the consequences of
using an estimated, and not exact, likelihood. Results indicate the utility of reformulating the model
over noise variables, particularly for fast-mixing process models.

1 Introduction

For T time points, a sequence of observations y1, . . . ,yT of random variables Y1, . . . ,YT ∈ RNy is
assumed given, indicative of a latent initial condition X0 ∈ RNx and latent states X1, . . . ,XT ∈ RNx .
The model is parameterised by static Θ ∈ RNθ . The state transition is Markovian, and observations are
conditionally independent given the states. This is the conventional state-space model, which takes the
form

p(y1:T ,x0:T ,θ) =

[
T∏
t=1

p(yt|xt,θ)

][
T∏
t=1

p(xt|xt−1,θ)

]
p(x0|θ)p(θ), (1)

with the equivalent graphical model shown in Figure 1(a).
The transition density, p(xt|xt−1,θ), may not have a closed form, or if it does, it may be too expensive

to compute. This has been noted for diffusion processes [2, 9], and in fields such as biochemistry [11, 12],
Functional Magnetic Resonance Imaging (fMRI) [26], and marine biogeochemistry [28]. In such cases
it may be worth reformulating the model over its latent noise variables rather than its latent state
variables. This can be done by explicitly introducing noise variables, U1:T ∈ RNu , in place of X1:T .
These may reflect, for example, independent Gaussian noise, or, in the most reduced form, the emissions
of a pseudorandom number generator. The model can then be written:

p(y1:T ,u1:T ,x0,θ) =

[
T∏
t=1

p(yt|u1:t,x0,θ)

][
T∏
t=1

p(ut)

]
p(x0|θ)p(θ). (2)

The equivalent graphical model is shown in Figure 1(b). We call this the disturbance state-space
model. The conventional state-space model is recovered from it by introducing a deterministic func-
tion fθ(ut,xt−1) → xt, permitting the recursive recovery of a state trajectory x1:t from any sample
{u1:t,x0}.
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Figure 1: Graphical models of (a) the conventional state-space model, and (b) the disturbance state-
space model. The U1:T represent independent noise variables; conceptually, the disturbance state-space
model simply reformulates the conventional model over these noise variables, the initial state, and the
observations. Parameters, Θ, have been removed for clarity, but note that U1:T ⊥⊥ Θ, while all other
variables depend on them.

In the disturbance state-space model the target becomes the posterior distribution over the random
variables {U1:T ,X0,Θ}, rather than the typical set {X0:T ,Θ}, and the tractable noise density, p(ut),
emerges in place of the intractable transition density, p(xt|xt−1,θ). The noise density is typically pre-
scribed as having some simple parametric form, often Gaussian, with the U1:T independent of each other
and of other variables. This facilitates the design of proposal distributions when sampling, such as within
an auxiliary particle filter, in cases where this is not possible under the conventional state-space model
representation.

If fθ(·) is one-to-one, a change of variables for the transition density might be considered:

p(xt|xt−1,θ) = p
(
f−1θ (xt) |xt−1,θ

) ∣∣∣∣df−1θ (xt)

dxt

∣∣∣∣ (3)

= p(ut)

∣∣∣∣df−1θ (xt)

dxt

∣∣∣∣ . (4)

When sampling from, say, p(xt|xt−1,θ,y1:t), one could likewise introduce an importance proposal
q(xt|xt−1,θ) = q(ut)|df−1θ (xt)/dxt|. In computing the importance weight, the Jacobian terms would
cancel in the ratio, leaving p(ut)/q(ut). Because this must formally assume that fθ(·) is one-to-one in or-
der that the inverse f−1θ (·) exists, however, we prefer the more-general approach of using the disturbance
state-space model from the outset.

Reformulating to noise variables differs from the separation of tractable and intractable components in
the Rao-Blackwellisation of state-space models [6], where it is typical to admit dependence of the tractable
(linear) component on the intractable (nonlinear) component, but not vice-versa; in the disturbance
state-space model, the intractable (nonlinear) component depends on the tractable (noise) component.

Roberts and Stramer [34] consider a similar idea to reparameterise a partially observed diffusion
process for the purposes of Gibbs sampling. The advantage of doing so is that the conditional update of
Θ|u1:T ,x0,y1:T is less constrained than that of Θ|x0:T ,y1:T , improving the mixing of the sampler. In
this work, however, a Metropolis-Hastings rather than Gibbs update of Θ is used, and no such advantage
is conveyed. We pick up on this point in the discussion (§5).

There are alternative approaches to treat the absence of a closed-form transition density. One option
is linearisation, such as an Euler-Maruyama [11, 9, 12] or local linearisation [27] of diffusion processes.
This is not always workable, however, owing to some processes being unstable when discretised with low-
order schemes. Higher-order or implicit discretisations are required in such cases, yielding complicated
closed-form expressions, if they can be derived at all. A second option, supporting higher-order and
implicit discretisations, is to simply choose a proposal distribution that cancels appearances of the
transition density in weight evaluations [26]. The change-of-variables formulation above might be seen
as an extension of this, cancelling just the intractable Jacobian term rather than the whole transition
density. A third option is to unbiasedly estimate the transition density, if possible, as in the random-
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APF(x0,θ)

1 Initialise with xm0 = x0 and w̃m0 = 1/M for m = 1, . . . ,M .
2 for t = 1, . . . , T
3 for eachm ∈ {1, . . . ,M}
4 Compute stage-one weight ωmt

5 for eachm ∈ {1, . . . ,M}
6 amt ∼ C(ω1:M

t ) // resample
7 umt ∼ qmt (umt ) // propose

8 xmt ← fθ(u
m
t ,x

amt
t−1) // propagate

9 wmt ←
p(yt|xmt ,θ)p(u

m
t )

qmt (umt ) · w̃
amt
t−1

ω̃
amt
t

// weight, stage two

Code 1: Generic auxiliary particle filter over a disturbance state-space model.

weight particle filter [9].
The use of the disturbance state-space model in a particle filtering context is given in §2 along with a

suite of proposal configurations based on the unscented Kalman filter (UKF). We then turn to parameter
estimation with the particle marginal Metropolis-Hastings (PMMH) sampler in §3, and introduce the
criterion of conditional acceptance rate (CAR) to compare the performance of the various configurations.
Two case studies in marine biogeochemistry are given in §4 with extensive empirical results. Concluding
discussion appears in §5 and §6.

2 The auxiliary particle filter for the disturbance state-space
model

For given {x0,θ}, consider the joint filter density of the conventional state-space model:

p(xt−1:t|x0,θ,y1:t) ∝ p(yt|xt,θ)p(xt|xt−1,θ)p(xt−1|x0,θ,y1:t−1). (5)

The analogue in the disturbance state-space model is

p(ut,xt−1|x0,θ,y1:t) ∝ p(yt|ut,xt−1,θ)p(ut)p(xt−1|x0,θ,y1:t−1). (6)

Note that the complete noise history, u1:t, does not need to appear, as it is sufficient to recursively update
and store xt = fθ(ut,xt−1) as the filter progresses, with x0 establishing the base case of the recursion.

The auxiliary particle filter (APF) [29] is readily modified to sample from this. At time t−1, the APF
maintains a set of M particles x1:M

t−1 with associated weights w1:M
t−1 , normalised where required as w̃mt−1 =

wmt−1/
∑M
i=1 w

i
t−1. To advance to time t, an auxiliary lookahead propagation and weighting procedure [22]

is used to produce stage-one weights ω1:M
t , again normalised where required as ω̃mt = ωmt /

∑M
i=1 ω

i
t. For

each particle m, an ancestor index amt is drawn from the categorical distribution C(ω1:M
t ), commonly

called resampling (see e.g. Gordon et al. [13] or Kitagawa [20]). For the disturbance state-space model,

the ancestor x
amt
t−1 is then extended by sampling umt ∼ qmt (umt ), where qmt (·) is some importance proposal

for the mth particle, and setting xmt = fθ(u
m
t ,x

m
t−1). The particle’s weight is then updated with

wmt =
p(yt|xmt ,θ)p(umt )

qmt (umt )
·
w̃
amt
t−1

ω̃
amt
t

. (7)

This is called the stage-two weight. Code 1 gives this generic APF algorithm for the disturbance state-
space model.

For the conventional state-space model, the locally optimal, or fully adapted proposal, is qmt (xmt ) ≡
p(xmt |x

amt
t−1,θ,yt) [29]. For the disturbance state-space model, its analogue is qmt (umt ) ≡ p(umt |x

amt
t−1,θ,yt).

3



Method Stage-one weight, ωmt Proposal, qmt Number of propagations

PF0 wmt−1 p(ut) M
PF1 p(yt|xt = fθ(0,x

m
t−1),θ)w

m
t−1 p(ut) 2M

MUPF0 wmt−1 p̂(ut|x0,θ,y1:t) M + 2(Nu +Nx +Ny) + 1
MUPF1 p(yt|xt = fθ(µ̂t,x

m
t−1),θ)w

m
t−1 p̂(ut|x0,θ,y1:t) 2M + 2(Nu +Nx +Ny) + 1

CUPF0 wmt−1 p̂m(umt |xa
m
t
t−1,θ,y1:t) 2M(Nu +Ny + 1)

CUPF1 p̂m(yt|xmt−1,θ)w
m
t−1 p̂m(umt |xa

m
t
t−1,θ,y1:t) 2M(Nu +Ny + 1)

Table 1: Summary of the auxiliary particle filter proposal mechanisms explored. See §2 for details.

These cannot be derived analytically for the models of interest in this work, however, and so attention
is given to reasonable approximations instead. Three such approximations are considered. The first
scheme is the ordinary bootstrap particle filter [13]. The second and third use the UKF in different ways,
the third similar to the existing unscented particle filter [39] but adapted to the disturbance state-space
model. Each proposal scheme is tested both with and without a lookahead component for computing
non-trivial stage-one weights, giving six methods in total. All six methods are detailed in this section
and summarised in Table 1.

2.1 Bootstrap particle filter

The simplest approach, that of the bootstrap filter [13], sets

qmt (umt ) ≡ qt(ut) ≡ p(ut), (8)

and
ωmt = wmt−1. (9)

This is straightforward to apply, and indeed does not benefit from reformulating the model over noise
variables. Both the proposal and weights cancel in (7), so that particles are simply weighted by the
likelihood p(yt|xmt ,θ). We denote this method PF0.

Lacking p(yt|xt−1,θ), an analytical lookahead is not forthcoming. A deterministic single-point pilot
lookahead, simulating with ut = 0, can offer improvement in some cases [22]. By modifying the stage-one
weights to

ωmt = p(yt|xt = fθ(0,x
m
t−1),θ)wmt−1, (10)

we obtain a similar method with a lookahead, and denote it PF1.

2.2 Marginal unscented particle filter

We next attempt to draw on analytical approximations to inform the proposal distribution. The par-
ticular focus is on the UKF, which, for modest state sizes, tends to outperform [41] other approximate
nonlinear Kalman filtering approaches, such as the extended [36] and ensemble [7, 8] variants. The
UKF approximates the time marginals p(ut|x0,θ,y1:t) using a Gaussian distribution. We denote the
approximation p̂(ut|x0,θ,y1:t) ≡ N (µ̂t, Σ̂t). At each time, 2(Nu + Nx + Ny) + 1 number of σ-points
are crafted about the mean of the Gaussian distribution, propagated through the process model and
specifically weighted to compute a Gaussian approximation to p(ut,yt|x0,θ,y1:t−1). Conditioning this
on the actual observed value yt delivers the approximate time marginal p̂(ut|x0,θ,y1:t). See Julier and
Uhlmann [17] and Wan and van der Merwe [41] for details.

The first UKF-based approach adopted is to use the marginal UKF approximations p̂(ut|x0,θ,y1:t)
at each time as a common proposal for each particle:

qmt (umt ) ≡ qt(ut) ≡ p̂(ut|x0,θ,y1:t) ≡ N (µ̂t, Σ̂t). (11)

We call this the marginal unscented particle filter (MUPF), described in Code 2. By combining with
the stage-one weights (9) we have the MUPF0 method. With stage-one weights

ωmt = p(yt|xt = fθ(µ̂t,x
m
t−1),θ)wmt−1 (12)

4



MUPF(x0,θ)

1 Initialise with xm0 = x0 and w̃m0 = 1/M for m = 1, . . . ,M .

2 Run a UKF to produce filtering densities p̂(ut|x0,θ,y1:t) ≡ N (µ̂t, Σ̂t), for t = 1, . . . , T .

3 for t = 1, . . . , T
4 for eachm ∈ {1, . . . ,M}
5 if doing MUPF1
6 x̂mt ← fθ(µ̂t,x

m
t−1) // look-ahead

7 ωmt ← p(yt|x̂mt ,θ)wmt−1 // weight, stage one
8 else doing MUPF0
9 ωmt ← wmt−1 // weight, stage one

10 for eachm ∈ {1, . . . ,M}
11 amt ∼ C(ω1:M

t ) // resample

12 umt ∼ N (µ̂t, Σ̂t) // propose

13 xmt ← fθ(u
m
t ,x

amt
t−1) // propagate

14 wmt ←
p(yt|xmt ,θ)p(u

m
t )

qmt (umt ) · w̃
amt
t−1

ω̃
amt
t

// weight, stage two

Code 2: Marginal unscented particle filter (MUPF).

we have the MUPF1 method. Intuitively, using fθ(µ̂t,x
m
t−1) here seems more appealing than the

fθ(0,x
m
t−1) that appears in (10).

Note that the same time marginal p̂(ut|x0,θ,y1:t) is used for each particle, not the conditional for the

mth particle, p̂m(umt |x
amt
t−1,θ,y1:t), which is the basis for the next scheme. While the conditional proposal

is no doubt preferable conceptually, the marginal proposal may be justifiable for fast-mixing models, and
additionally enables the computational advantage of running the UKF offline from the particle filter. The
overhead of the method is slight, with only 2(Nu +Nx +Ny) + 1 additional propagations for the whole
filter. This linear scaling with the number of dimensions is likely small compared to M , the number of
particles, which would typically scale exponentially with the same.

2.3 Conditional unscented particle filter

Finally, by conditioning the lookahead for each particle on the state of that particle, we arrive at the
conditional unscented particle filter (CUPF), detailed in Code 3. It is similar to the unscented particle
filter [39] but modified for the disturbance state-space model. The proposal is:

qmt (umt ) ≡ p̂m(umt |x
amt
t−1,θ,y1:t) ≡ N (µ̂mt , Σ̂

m
t ). (13)

A UKF is run for each particle at each time step to construct this proposal distribution. Each UKF
requires 2(Nu + Ny) + 1 number of σ-point propagations∗, in addition to the subsequent propagation
of the particle itself. This means 2M(Nu + Ny + 1) propagations for the whole filter. Combined with
the stage-one weights (9) we have the CUPF0 method. The alternative: rather than a single-point pilot
lookahead, substantial improvement might be had by using the likelihood, marginalised over ut, that is
approximated by the UKF:

ωmt = p̂m(yt|xmt−1,θ)wmt−1. (14)

Use of these weights gives the CUPF1 method, which requires very little additional computation over
CUPF0.

∗Conditioning on xt−1 removes Nx from the dimensionality of the unscented transformation, so it does not appear here.
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CUPF(x0,θ)

1 Initialise with xm0 = x0 and w̃m0 = 1/M
2 for t = 1, . . . , T
3 for eachm ∈ {1, . . . ,M}
4 Run a UKF to produce p̂m(ut|xmt−1,θ,y1:t) ≡ N (µ̂mt , Σ̂

m
t ).

5 if doing CUPF1
6 ωmt ← p̂m(yt|xmt−1,θ)wmt−1 // weight, stage one
7 else doing CUPF0
8 ωmt ← wmt−1 // weight, stage one

9 for eachm ∈ {1, . . . ,M}
10 amt ∼ C(ω1:M

t ) // resample

11 umt ∼ N (µ̂mt , Σ̂
m
t ) // propose

12 xmt ← fθ(u
m
t ,x

amt
t−1) // propagate

13 wmt ←
p(yt|xmt ,θ)p(u

m
t )

qmt (umt ) · w̃
amt
t−1

ω̃
amt
t

// weight, stage two

Code 3: Conditional unscented particle filter (CUPF).

3 The particle marginal Metropolis-Hastings sampler for the
disturbance state-space model

For joint state and parameter estimation we target the posterior density p(u1:T ,x0,θ|y1:T ). This can be
factorised as either:

p1(u1:T ,x0|θ,y1:T )p2(θ|y1:T ) (15)

or
p1(u1:T |x0,θ,y1:T )p2(x0,θ|y1:T ). (16)

In either case, the first factor, p1(·), is targeted using an APF, described in §2. The second factor, p2(·),
is targeted in an outer loop around the particle filter using Metropolis-Hastings (MH) [24, 14]. The
particle filter nested within MH defines the particle marginal Metropolis-Hastings (PMMH) sampler,
from the family of particle Markov chain Monte Carlo (PMCMC) methods [1].

Factorisation (15) requires that a good importance proposal is available for the sampling of X0 in
the particle filter. If a good proposal is not available, the sample weights will be degenerate. In such
cases (16) is the more attractive set up. It replaces the importance sample of X0 with local MH moves,
which are typically easier to design. The factorisation (16) is used below.

In the outer loop, a proposed move from {x0,θ} to {x′0,θ
′} ∼ ρ(x′0,θ

′|x0,θ) is accepted with proba-
bility

min

[
1,
p(y1:T |x′0,θ

′)p(x′0,θ
′)ρ(x0,θ|x′0,θ

′)

p(y1:T |x0,θ)p(x0,θ)ρ(x′0,θ
′|x0,θ)

]
, (17)

where ρ(·) is a proposal distribution over parameters, and the marginal likelihoods p(y1:T |x′0,θ
′) are

estimated by an APF targeting p1(·) in (16). The estimator is [5, 1]:

p(y1:T |x0,θ) ≈
T∏
t=1

[
1

M

M∑
m=1

wmt

]
(18)

This assumes that normalised stage-one weights are used in computing stage-two weights, as in the
preceding introduction. A proof of unbiasedness is given in Del Moral [5].

More rigorously, p1(·) is a marginal of a distribution over the extended space in which the particle
filter operates, a space that includes variables associated with the resampling mechanism [c.f. Equation
22 of 1]:

ψ(u1:M
1:T , a

1:M
1:T |x0,θ) =

T∏
t=1

[
r(a1:Mt |w1:M

t−1 )

M∏
m=1

p(umt )

]
. (19)
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Recall that amt is the index of the particle at time t−1 which is the ancestor of particle m at time t. The
function r(·) gives the probability of these. For some time s ≤ T , let bms denote the index of the particle
at time s which is the ancestor of particle m at time T , obtained by recursively tracing the ancestor

indices backward through time, starting at bmT = m, then bmT−1 = amT , b
m
T−2 = a

bmT−1

T−1 , and so forth. For

some specific m ∼ C(w1:M
T ), a sample of p1(·) is then given by the marginal {ub

m
1

1 , . . . ,u
bmT
T } [1].

PMMH chains can be “sticky” if the likelihood estimates from (18) are highly variable. A chain
moving into a particular state on the basis of an unusually large likelihood estimate tends to remain
there for a prolonged period before accepting a new proposal. The source of variability is both sampling
and resampling error in the particle filter [30, 21]. The methods proposed in this work target a reduction
of the former for any fixed number of particles. Furthermore, the likelihood estimates are heteroskedastic
with respect to the parameters. For fixed M , the stickiness of a PMMH chain varies across the space
of parameters, and from some regions a chain may not move to the vicinity of the posterior distribution
in reasonable time. The problem is particularly acute when the process model informs the APF’s
importance proposals, as in all of the strategies presented in §2. The effectiveness of the importance
proposals is then a function of the likelihood of, and behaviours induced by, the current setting of the
process model parameters. For example, small process noise variance parameters will produce narrow
proposal distributions that may amplify weight variance, and so the variability of likelihood estimates.
The mixing properties of the model may also be affected by gradient- and decay-related parameters.

3.1 Assessing the mixing of PMMH

To empirically explore the stickiness of PMMH chains under different particle filtering strategies, consider
each point (x0,θ) of a grid or set of points, and run some particle filtering method to be assessed L
times on each of those points. Each run i can be interpreted as a sample from ψ(u1:M

1:T , a
1:M
1:T |x0,θ) in

(19), and a marginal log-likelihood estimate l̂i obtained (by using (18) and taking the logarithm). This

gives L log-likelihood estimates l̂1, . . . , l̂L.
At this point it is possible to compute a Monte Carlo estimate of the log-likelihood:

E(l) ≈ l̄ =
1

L

L∑
i=1

l̂i. (20)

and its standard deviation: √
E
(
(l − l̄)2

)
≈

√√√√ 1

L

L∑
i=1

(l̂i − l̄)2. (21)

This approach is taken in Pitt et al. [31] for a single central point of the posterior distribution. The idea
is readily extended across a grid or set of values. Figure 2(a & b) do so, using the PZ model considered
in §4.1. The model has two parameters, µ and σ. Estimates are made at each point of a 32 by 32 grid
across the support of the uniform prior distribution over parameters. The surface is then interpolated
using a Gaussian process fit by maximum likelihood, with a constant mean function, isotropic squared
exponential covariance function and Gaussian likelihood [33, 32]. Pitt et al. [31] provides guidance to set
the number of particles according to standard deviation estimates such as these.

We propose an alternative to standard deviation, which we call the conditional acceptance rate
(CAR). The intuition is to approximate, at all points (x0,θ) of a grid or set, the acceptance rate of
a PMMH chain that starts at that point and remains there indefinitely by using a Dirac δ-function
proposal centred at that point. This can be seen as the limit of the acceptance rate when shrinking the
proposal distribution. For conventional MH with an exact likelihood this will always be one, but for
methods using a likelihood estimator, such as PMMH, this will be less than that owing to variance in the
estimator. The CAR is always a number on (0, 1]. While related to the standard deviation, the CAR is
more directly interpretable as to the impact of variability in the likelihood estimator on the acceptance
rate of a chain, and accommodates asymmetry in that variability. We prefer it for these reasons.

Consider a MH chain targeting ψ(u1:M
1:T , a

1:M
1:T |x0,θ), with independent proposal also ψ(u1:M

1:T , a
1:M
1:T |x0,θ),

but restricted to the L discrete states already drawn from it. The transition probability matrix T ∈ML×L

7
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Figure 2: Surfaces of (a) the mean of log-likelihood estimates, (b) the standard deviation of log-likelihood
estimates, and (c) the CAR, for a bootstrap particle filter on the PZ case study of §4.1. The CAR surface
gives a good idea of how variability in the likelihood estimator impacts the acceptance rate of a PMMH
sampler according to its current state.

of the chain is:

Tij =


1
L min

[
exp(l̂j − l̂i), 1

]
if i 6= j

1−
∑L
k=1
k 6=i

Tik if i = j.
(22)

Tij gives the probability of moving to the jth state, of log-likelihood l̂j , from the ith state, of log-

likelihood l̂i. From state i, the probability of an acceptance occurring in the next step, marginalised over
all possible proposals, is

βi = 1− Tii + 1/L. (23)

The 1/L bias is incurred by using only a finite number of likelihood estimates.
From some arbitrary state, the Markov model defined by T may be run to equilibrium, where the

probability of being in state i is simply the normalised term

pi =
exp l̂i∑L
j=1 exp l̂j

. (24)

The long-term acceptance rate, which we refer to as the conditional acceptance rate at a given point, is
then

CAR(x0,θ) =

L∑
i=1

piβi. (25)

Note that if all log-likelihood estimates are the same at a point, then CAR(x0,θ) = 1. This is most easily
seen through (25), as in this case βi = 1 for all i = 1, . . . , L, and the remaining sum over pi is necessarily
1. Given that a finite number of log-likelihood estimates are used, in the worst case CAR(x0,θ) is still
greater than 1/L.

Figure 2(c) depicts the CAR surface computed across the same grid and same log-likelihood estimates
as preceding plots in the same figure. This gives a clear picture that mixing is best in the high-likelihood
region, declining with anisotropy away from that region.

In practice, the computation of CAR is simplified by following the procedure in Appendix A.

4 Case studies in marine biogeochemistry

The proposed methods are assessed empirically on two models in the domain of marine biogeochemistry.
All methods are assessed in each of two configurations, as in Table 2. The first is particle-matched, where
the number of particles, M , is the same for all methods. The second is compute-matched, where M is
adjusted for all methods so as to roughly equate execution times. The latter is achieved by matching
the total number of propagations, where these include lookahead pilots and UKF σ-points. We justify
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Particle-matched Compute-matched
Case Method M Acceptance ESS M Acceptance ESS

PZ PF0 64 .182 (.003) 1444 (129) 384 .245 (.002) 2021 (196)
PF1 64 .189 (.003) 1529 (141) 192 .233 (.002) 1926 (184)
MUPF0 64 .208 (.003) 1707 (156) 376 .251 (.002) 2080 (200)
MUPF1 64 .213 (.003) 1757 (162) 184 .243 (.002) 2008 (196)
CUPF0 64 .209 (.003) 1709 (155) 64 .209 (.003) 1709 (155)
CUPF1 64 .214 (.003) 1752 (159) 64 .214 (.003) 1752 (159)

NPZD PF0 64 .142 (.003) 115 (8) 1536 .276 (.002) 163 (16)
PF1 64 .139 (.006) 110 (9) 768 .254 (.003) 155 (14)
MUPF0 64 .165 (.003) 123 (8) 1504 .278 (.002) 162 (16)
MUPF1 64 .167 (.007) 121 (10) 736 .263 (.003) 157 (15)
CUPF0 64 .169 (.003) 125 (10) 64 .169 (.003) 125 (10)
CUPF1 64 .177 (.005) 125 (9) 64 .177 (.005) 125 (9)

Table 2: Configuration of methods for case studies, with mean (and standard deviation) of resulting
acceptance rates and effective sample sizes across 256 chains. Chains for the PZ case study are run for
50000 steps, and those for the NPZD case study for 75000 steps. In computing ESS, autocorrelations are
truncated at a lag of 100 with the first 10000 steps removed for the PZ case study, and truncated at a lag of
400 with the first 25000 steps removed for the NPZD case study. In the particle-matched configurations,
improvements in acceptance rates and ESS are clear for the UKF-based proposal strategies (MUPF and
CUPF). In compute-matched configurations there is no clear improvement on these metrics over the
bootstrap methods (PF).

this by noting that for ordinary differential equation models such as those considered here, propagation
typically dominates execution time (80-90% in these cases). By controlling the number of propagations,
we roughly equate execution times in a fashion that is independent of any particular implementation in
code.

Simulated data is used, generated from the case study models themselves. This has a number of
advantages over real observational data: execution time can be managed to facilitate the many runs
required for some diagnostics, the model is perfect in the generative sense, capturing all, and only, those
processes influencing observations, and a known ground truth for all latent variables is available for
validation of the methods. The second model is representative of real-world usage, however, and is fit to
observational data using simpler PMMH methods in Parslow et al. [28].

4.1 PZ model

The first model considered is a variant of the Lotka-Volterra differential system [23, 40], specifically over
the predator-prey relationship of zooplankton and phytoplankton in a marine environment. Previously
treated with a PMMH-style sampler [16], the intent here is to plumb deeper into the behaviour of the
algorithm, the presence of just two parameters providing an ideal opportunity to visualise dependence of
CAR on Θ. This PZ (phytoplankton and zooplankton) model modifies the classic Lotka-Volterra with the
addition of a quadratic mortality term for zooplankton and a stochastic growth term for phytoplankton.
The stochasticity admits varying growth rates in phytoplankton without explicitly modelling contributory
factors such as light and temperature, and thus exemplifies how such uncertainties can be treated by the
introduction of stochasticity into an otherwise deterministic model [16, 28].

The state of the model is given by X = {P,Z, α}, with P and Z denoting concentrations of phy-
toplankton and zooplankton, respectively, and α the stochastic growth rate of phytoplankton. These
interact via:

dP

dt
= αtP − cPZ (26)

dZ

dt
= ecPZ −mlZ −mqZ

2. (27)

Here, t is time in days, with prescribed constants c = .25, e = .3, ml = .1 and mq = .1. While P and Z
are modelled in continuous time, the stochastic growth term, αt, is modelled in discrete time, updated
daily using αt ∼ N (µ, σ). Parameters to be estimated are Θ = {µ, σ}. Uniform prior distributions
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are assigned to the parameters, µ ∼ U(0, 1) and σ ∼ U(0, .5). Log-normal distributions are placed over
the initial conditions, lnP ∼ N (ln 2, .2) and lnZ ∼ N (ln 2, .1). Phytoplankton (P ) is observed with
log-normal noise:

lnYP ∼ N (lnP, .2). (28)

The differential equations must be numerically integrated forward in time. While an Euler discreti-
sation would yield a closed-form transition density, the system is not numerically stable with such a low-
order scheme. A fourth-order scheme, precisely the low-storage Runge-Kutta method RK4(3)5[2R+]C [4,
19], with adaptive time step, is used [25]. This does not readily yield a closed-form transition density,
motivating the approach. Simulated data is used by integrating forward a single trajectory for 100 days,
taking P daily and adding observation noise.

The target is factorised as in (15), so that initial conditions are importance sampled within the
particle filter. A systematic resampler [20] is used to minimise the contribution of the resampler to the
variance of the likelihood estimator [30, 21]. To construct sensible starting and proposal distributions
for the MH chain through Θ, a joint UKF (i.e. the state is augmented to include Θ) is first applied.
The final filtering distribution, p̂(θT |y1:T ) ≡ N (µ̂T , Σ̂T ), is used as the starting distribution for the MH
chain, and its covariance, Σ̂T , scaled by .18, for a random-walk Gaussian proposal. The scaling factor is
chosen using pilot runs with the PF0 method. Starting at the rule-of-thumb 2.42/Nθ = 2.88 [10] (recall
Θ ∈ RNθ ), it is halved (four times) until a mixing rate close to the rule-of-thumb 23% [10] is achieved in
the first 500 steps of the chain. Using this proposal, 256 PMMH chains of 50000 steps are then run for
each method.

Performance is first assessed with established metrics. Trace plots for a single chain of the PF0
method with M = 64 particles are given in Figure 3. These indicate good mixing. The other methods,
not shown, produce traces that also indicate good mixing. Table 2 provides the mean and standard
deviation of acceptance rates and effective sample sizes (ESS) across all chains for each method. The
ESS is computed separately for each parameter of each chain [18]:

ESS = 1 + 2

∞∑
k=1

R(k, θ), (29)

where R(k, θ) is the lag-k autocorrelation of the single parameter θ. The first 10000 steps are removed as
burn-in and the infinite sum truncated at k = 100. The minimum ESS across all parameters of a chain
is then taken as that chain’s overall ESS for reporting in Table 2. Finally, the multivariate R̂p statistic
of Brooks and Gelman [3] is computed across all chains to empirically assess the rate of convergence
(Figure 4). All of these metrics establish that the chains are mixing well.

The posterior distribution obtained over parameters is marked in Figures 6 and 7, using samples
drawn across all chains for each method. For one chain, the state posterior is visualised in Figure 5,
along with the ground truth trajectory and observations for comparison.

With results looking sensible so far, we proceed with a comparison using the CAR metric introduced
in §3.1. For each method, the CAR is computed at 1024 points on a 32 by 32 regular grid across the
uniform prior distribution, using 200 likelihood evaluations at each point. To produce contours of the
surface, a Gaussian process is fit to the points by maximum likelihood, with a constant mean function,
isotropic squared exponential covariance function and Gaussian likelihood [33, 32]. Results are presented
for particle-matched configurations in Figure 6, and for compute-matched in Figure 7.

4.2 NPZD model

The introduction of nutrients, N , and detritus, D, into the PZ model provides a more realistic system
with which real observational data can begin to be assimilated: an NPZD model. These additional terms
are accompanied by various environmental forcings and rate processes that produce a more challenging
model, with nonlinear responses ranging from convergence, to periodicity, to chaos. The full details and
motivation behind the model are given in Parslow et al. [28]. A brief description to elucidate some of
the complexity is given here.

The NPZD model represents the interaction of nutrients (N), phytoplankton (P ), zooplankton (Z)
and detritus (D), quantified in the common currency of nitrogen, within the surface mixed layer of a
body of water. The surface waters are modelled as a single box, subject to exogenous environmental
forcings such as available light, temperature and changes in mixed layer depth.
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Figure 3: Indicative trace plots of a single PMMH chain over parameters of the PZ model, using the
PF0 method with 64 particles. These indicate good mixing of the chain. Other methods use the same
proposal and achieve higher acceptance rates (Table 2); their trace plots, while not shown, appear at
least as good on inspection.
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Figure 6: CAR surfaces for the PZ case study across the support of the uniform prior distribution over
parameters. Each plot shows the results for a particular method in its particle-matched configuration.
Darker shading denotes higher CAR (see key bottom right). The dots at approximately (0.3, 0.1) in each
plot mark the ground truth parameters from which the data set is simulated. The bold contours nearby
mark the posterior distribution obtained. A clear decline in CAR is evident as distance increases from
the ground truth and posterior region. The CUPF methods appear more robust than others at high σ.
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Figure 7: CAR surfaces for the PZ case study for compute-matched configurations. See Figure 6 caption
for details.

4.2.1 Noise model

The model features nine noise terms, ξi for i = 1, . . . , 9, each coupled to a univariate autoregressive
process Bi. Four of these are phytoplankton-related, given by

Bi(t+ ∆t) = Bi(t) · (1−∆t/τP ) + (µi + PDF · σiξi) ·∆t/τP , (30)

where ∆t is a discrete time step (one day), µi a parameter to be estimated, PDF a common diversity
factor parameter to be estimated, σi a prescribed scaling factor, and τP a common characteristic time
scale, also prescribed. The remaining five autoregressive processes are zooplankton-related, modelled
using the same form, with ZDF and τZ replacing PDF and τP , respectively.

Each process represents a property of the phytoplankton (zooplankton) community, the species com-
position of which will change with time. Rather than model individual species, the phytoplankton (zoo-
plankton) community is modelled collectively, with diversity factors PDF and ZDF scaling stochastic
drivers used to model the changing influence of community composition.

The four phytoplankton processes are {gmax, λmax, RN , aN}, and the five zooplankton processes
{IZ , ClZ , EZ , rD,mQ}. Each is accompanied by its matching noise term amongst {ξgmax , ξλmax , ξRN ,
ξaN , ξIZ , ξClZ , ξEZ , ξrD , ξmQ}, and mean parameter amongst {µgmax , µλmax , µRN , µaN , µIZ , µClZ , µEZ ,
µrD , µmQ}.
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4.2.2 Process model

The remaining state variables are {N,P,Z,D} and parameters {KW , aCh, SD, fD}. The equations
governing interactions between the remaining state variables are:

dN

dt
= −g · P + (1− EZ) · (1− fD) · gr · Z + r ·D +

κ

MLD
· (BCN −N) (31)

dP

dt
= g · P − gr · Z +

κ

MLD
· (BCP − P ) (32)

dZ

dt
= EZ · gr · Z −m · Z (33)

dD

dt
= (1− EZ) · fD · gr · Z +m · Z − r ·D − SD ·

D

MLD
+

κ

MLD
· (BCD −D). (34)

Here, g is the phytoplankton specific growth rate (per day, or d−1), gr is the zooplankton specific grazing
rate (mg P grazed per mg Z d−1), m is the zooplankton specific mortality rate (d−1), and r is the specific
breakdown rate of detritus (d−1). A fraction, EZ , of zooplankton ingestion is converted to zooplankton
growth and, of the remainder, a fraction, fD, allocated to detritus and the rest released as dissolved
inorganic nutrient, N .

The rate processes gr, m and g are not only functions of the state, but also prescribed exogenous
forcings and physiological constants. A multiplicative temperature correction Tc is applied to all of
these, for which a Q10 formulation for dependence on temperature, T , is used:

Tc = Q
(T−Tref)/10
10 , (35)

where Tref is a reference temperature, and Q10 a prescribed constant.
The zooplankton grazing rate, gr, is dependent on the relative availability of phytoplankton, A:

gr =
Tc · IZ ·Aυ

(1 +Aυ)
, (36)

where υ is a given power, and

A =
ClZ · P
IZ

. (37)

IZ is the maximum zooplankton ingestion rate (mg P per mg Z per day); ClZ is the maximum clearance
rate (volume in m3 swept clear per mg Z per day). For υ = 1, (36) takes the form of a Type-2 functional
response (standard rectangular hyperbola) [15], and for υ > 1 a Type-3 sigmoid functional response.

A quadratic formulation for zooplankton mortality is adopted after Steele [37] and Steele and Hen-
derson [38]:

m = Tc ·mQ · Z, (38)

where the quadratic mortality rate, mQ, has units of d−1(mgZm−3)−1. The detrital remineralisation
rate is dependent only on temperature:

r = Tc · rD, (39)

where rD prescribes the remineralisation rate at a reference temperature.
The phytoplankton specific growth rate, g, depends on temperature, T , available light or irradiance,

E, and dissolved inorganic nutrient, N . It is expressed in terms of a maximum specific growth rate at
the reference temperature, gmax (d−1), a light-limitation factor, hE , and a nutrient-limitation factor, hN :

g = Tc · gmax · hE · hN/(hE + hN ). (40)

The light-limitation factor is given by

hE = 1− exp(−α · λmax · E/gmax), (41)

where α is the initial slope of the photosynthesis versus irradiance curve (mg C mg Chla−1 mol photon−1

m2), and λmax is the maximum Chla : C (chlorophyll-a to carbon) ratio (mg Chla mg C−1). Here, α is
calculated as the product of the chlorophyll-specific absorption coefficient for phytoplankton, aCh (m2
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mg Chla−1), and the maximum quantum yield for photosynthesis, Q (mg C mol photons−1). E is the
mean photosynthetic available radiation (PAR) in the mixed layer and is given by

E = E0 · (1− exp(−Kz))/Kz, (42)

where E0 is the mean daily photosynthetically available radiation (PAR) just below the air-sea interface,
Kz is given by

Kz = (KW + aCh · Chla) ·MLD. (43)

and KW is attenuation due to the seawater and aCh.
The nutrient-limitation factor is given by

hN =
N

(gmax · Tc/aN ) +N
, (44)

where aN is the maximum specific affinity for nitrogen uptake (d−1 mg N−1 m3).
The phytoplankton N : C (nitrogen to carbon) ratio, χ, predicted by the model is given by

χ =
χmin · hE + χmax · hN

hE + hN
, (45)

where χmin and χmax are the prescribed minimum and maximum N : C ratios (mg N mg C−1).

4.2.3 Boundary conditions

The simple single-box mixed layer model adopted here needs to allow for the effects of physical exchanges
between the mixed layer and the underlying water mass. With the exception of BCN , all boundary
conditions (BCP,BCD,BCZ) are set to zero for the experiments in this work. The variable κ sets
the strength of the mixing; in this study, we assume that the lower two metres of the mixed layer are
replenished daily with water from below. MLD and BCN are in this case time-invariant, and set to 40
m and 200 mg N m3, respectively.

4.2.4 Observation model

The model predicts the phytoplankton Chla : C ratio λ, and this can be combined with the N : C ratio
χ to convert phytoplankton biomass P (mg N m−3) to a predicted Chla concentration:

Chla = P · (λmax/χmax) · hN · Tc/(RN · hE + hN ). (46)

Both N and Chla are observed, each with log-normal noise of 40%, i.e. lnYN ∼ N (lnN, .4), and
lnYChla ∼ N (lnChla, .4). Observations are thus written Y = {YN , YChla}.

4.2.5 Experiments

The fourth order Runge-Kutta scheme RK4(3)5[2R+]C [19] is again used to numerically integrate the
differential equations forward. Use of such a higher-order scheme is essential for this model, which is
unstable under low-order schemes like Euler. A data set is generated by simulating the model with arti-
ficial forcing for 100 days, from which nutrient (N) and chlorophyll-a (Chla) observations are produced
daily. A systematic resampler [20] is again used.

The target is factorised according to (16), so that both parameters and initial conditions are sampled
by the MH chain. To construct sensible starting and proposal distributions, a joint UKF is first applied,
in the same way as for the PZ model. Because starting and proposal distributions over both parameters
and initial conditions are now required, we then apply a joint unscented Rauch-Tung-Striebel smoother
(URTSS) [35] to the output of the UKF, giving a Gaussian approximation to the smoothing distribution
p(x0,θ0|y1:T ). This is taken as the starting distribution for the MH chain, and its covariance, scaled
by .012, for a random-walk Gaussian proposal. Figure 8 shows a comparison of the covariance matrix
obtained by URTSS to that eventually obtained by PMMH; the similarity makes clear the utility of the
approach in constructing a sensible proposal distribution. Using this proposal, 256 PMMH chains of
75000 steps are then run for each method.
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Figure 8: Covariance matrices over parameters of the NPZD model, as returned by (a) PMMH using
CUPF1, and (b) URTSS. The area of each square is proportional to magnitude, with filled squares
denoting positive, and empty squares negative, covariance. The covariance matrices for initial conditions
and cross-covariance (neither shown) also show similarity, although there is little interesting off-diagonal
structure. While approximate, the URTSS method is inexpensive, and still captures some significant
off-diagonal elements that can be used to construct a good proposal distribution for PMMH.

Trace plots for a single chain of the PF0 method are given in Figure 9. Table 2 provides the mean
and standard deviation of acceptance rates and ESS across all chains for each method. In computing
ESS, the first 25000 samples from each chain are removed as burn-in, and the infinite sum truncated at
a lag of k = 400. The R̂p statistic [3] is computed across multiple chains and shown in Figure 10. All
of these metrics indicate reasonable mixing, albeit with effective sample size significantly lower than in
the PZ case study. The univariate posterior marginal distributions of parameters and state are given in
Figures 11 and 12.

CARs are computed at a set of 4096 points drawn randomly from the prior distribution. Because of
the higher dimensionality of the NPZD model, plots such as Figures 6 and 7 produced for the PZ model
are not feasible. Instead, pairwise copulas between parameters and the CAR, computed empirically, are
shown in Figure 14, with the empirical cumulative distribution function of the same CARs shown in
Figure 13.

5 Discussion

When the number of particles is matched across methods, the MUPF and CUPF methods outperform the
basic PF methods for both the PZ and NPZD cases: in acceptance rate and ESS (Table 2), convergence
rates (Figures 4(a) and 10(a)) and CAR (Figures 6 and 13(a)). For the PZ model, the lookahead degrades
performance for PF1 and MUPF1, but not for CUPF1. This is presumably because the single-point pilots
used in the first two methods are not representative of the whole predictive distribution. For the NPZD
model, the lookahead is beneficial. This is attributed to the NPZD model having longer memory than
the faster-mixing PZ model, a scenario where lookaheads tend to be more useful.

In compute-matched configurations, the MUPF methods appear to retain some advantage in the PZ
case study: in acceptance rate and ESS (Table 2), convergence rates (Figure 4(b)) and CAR (Figure 7).
In the NPZD case study, overall acceptance rates and ESS are very similar to the simpler PF methods
(Table 2), although there is some suggestion that at least the MUPF0 method retains an advantage
in CAR across the space of parameters (Figure 13(b)). The CUPF methods appear to offer no overall
advantage in compute-matched configurations, but an interesting subplot arises from the CUPF methods
in the PZ case study: no other methods match the CARs achieved by them in low-likelihood regions,
even after correction for compute time (Figures 6 and 7). This suggests that these methods may make a
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Figure 9: Indicative trace plots of a single PMMH chain over parameters of the NPZD model, using the
PF0 method with 64 particles. These indicate reasonable mixing of the chain. Some autocorrelation is
apparent, reducing ESS in Table 2.
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Figure 12: Prior and posterior distributions over parameters for the NPZD case study. Results are
obtained by PMMH using the CUPF1 method.
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Figure 13: Empirical cumulative distribution functions of the CAR for each method on the NPZD case
study, (a) particle-matched, and (b) compute-matched. For each method, the CAR is computed at the
same sample points used to construct Figure 14. The empirical cumulative distribution function over all
of these CARs is then evaluated. As higher CARs are preferred, a lower cumulative density on the y-axis
is preferred for any given point on the x-axis. An advantage for the UKF-based methods is apparent in
the particle-matched case, but this is only maintained for the MUPF0 method in the compute-matched
case.

more robust choice for early steps in a PMMH chain if a good initialisation is unavailable, later displaced
by one of the cheaper methods once in a region of higher likelihood.

The MUPF method performs significantly better on the PZ model than the NPZD model, and the
PZ model is known to mix faster than the NPZD model. This is consistent with the expectation that the
MUPF methods should work better for faster mixing models. An outstanding challenge is to design more
generally applicable proposal schemes for the disturbance state-space model that are computationally
competitive, and deliver more convincing outcomes for harder cases such as the NPZD model. This is left
to future work. There is, however, evidence here that there exist proposals, enabled by the disturbance
state-space model formulation, that can improve PMMH performance in some circumstances.

The CAR, introduced in this work, is one means of assessing the impact of variance in a particle
filter’s likelihood estimator on the acceptance rate of a PMMH chain. Computing the CAR at multiple
points in parameter space for both the PZ (Figures 6 and 7) and NPZD (Figure 13) cases is revealing.
For the PZ model, a clear decline in CAR away from the region of high likelihood is apparent (Figures
2, 6 and 7), although larger values of the diffusion parameter σ lend improvement. The NPZD case is
more complex, with many parameters having no apparent correlation with CAR over the support of their
prior distribution (Figure 14). Again, however, there is some indication that larger values of diffusion
parameters (especially ZDF ) improve CAR. There is a strong relationship with one parameter, µClZ ,
to which the model is known to be particularly sensitive†.

The dependence of CAR on diffusion parameters is not surprising when the process model informs
the APF proposal distribution: the broader distributions induced by larger values of diffusion parameters
tend to make better importance proposals, up to a point. For the PZ model, given the uniform prior
over parameters, the maximum a posteriori (MAP) estimate of the parameters is also the maximum
likelihood estimate (MLE) of the parameters, assuming that the latter falls within the support of the
prior. For the NPZD model, we might assume that the MLE is close to the ground truth. CAR appears

†This parameter dictates the mean of the stationary distribution of the zooplankton clearance rate autoregressive. At
low clearance rates, phytoplankton will periodically escape zooplankton grazing control and begin a rapid bloom, triggering
spikes in chlorophyll-a that cannot be reconciled with observations. At high clearance rates, phytoplankton is relentlessly
suppressed by zooplankton predation, keeping chlorophyll-a at much lower values than those observed.
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Figure 14: Estimated copula functions between parameters (x-axes) and CAR (y-axes) for the NPZD case
study, using the CUPF1 method. Other methods give similar results. For parameters, the prior univariate
cumulative density functions are used for transformation to uniform marginals. For the CAR, the
empirical cumulative density function is used. The copula function is approximated using a kernel density
estimate of bandwidth .075 over the 4096 points sampled from the prior distribution over parameters,
with the CAR computed at each point using 200 likelihood evaluations. Edge effects are an artifact of
the kernel density estimate. Most striking is the significant sensitivity of the CAR to the µClZ parameter,
explained in the text.
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highest at these MLEs, and declines with distance from them. We conjecture that this may be a general
property, and stress the MLE, not the MAP: the prior distribution over parameters does not factor
into the likelihood estimator of the particle filter, so the MAP should be relevant only insofar as it is
influenced by the likelihood.

Given the variability of the CAR, there are two potential pitfalls to avoid when using a PMMH
sampler: (i) initialisation in a region where CAR is low, and (ii) having a particularly informative prior
distribution that biases the posterior into a region where CAR is low. Either case may result in too
much stickiness for the PMMH chain to converge in reasonable time. These should be considered failure
modes of the PMMH sampler in much the same way as strongly correlated variables can cause slow
mixing in the Gibbs sampler, or multiple modes can cause quasiergodicity in any Markov chain Monte
Carlo algorithm. The CAR is a useful diagnostic for such behaviour.

An alternative approach to PMMH is that of particle Gibbs [1]. In place of the Metropolis-Hastings
update of Θ, this involves a Gibbs (or Metropolis-Hastings-within-Gibbs) update of Θ|u1:T ,x0,y1:T .
While not considered in this work, it is worth noting that the disturbance state-space model represen-
tation may produce better mixing than the conventional state-space model when sampled with particle
Gibbs, because Θ|u1:T ,x0,y1:T is less constrained than Θ|x0:T ,y1:T . The justification is the same as
that considered in Roberts and Stramer [34].

6 Conclusion

In the absence of a closed-form transition density, the disturbance state-space model seems a generally
good approach to enabling cleverer proposal strategies in the APF. This work establishes some util-
ity in doing so, particularly for fast-mixing models, by drawing on two specific case studies in marine
biogeochemistry. In these cases the performance of PMMH chains is shown to improve in some situa-
tions by using UKF-based proposals, as judged by acceptance rate, ESS, convergence rate and CAR.
These empirical results also elucidate some of the behaviours peculiar to the PMMH sampler, such as
the heteroskedasticity of the likelihood estimator, and the implied need for a good initialisation. The
development of robust, generally applicable and computationally competitive proposal strategies for the
APF in this context remains outstanding work.
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A Computing the conditional acceptance rate

A simple way to compute the CAR is to first compute the equilibrium probabilities using (24) and sort
them into ascending order. Let c be the vector of inclusive prefix-sums over the sorted vector p:

ci =

i∑
j=1

pj . (47)

Now proceed as follows:

βi =
1

L

[
ci

pi
+ L− i

]
. (48)

Substituting into (25):

CAR(x0,θ) =
1

L

L∑
i=1

pi
[
ci

pi
+ L− i

]
(49)

=
1

L

[
L∑
i=1

ci +

L∑
i=1

pi(L− i)

]
(50)

=
1

L

[
L∑
i=1

ci +

L∑
i=1

(ci − pi)

]
(51)

=
1

L

[
2

L∑
i=1

ci − 1

]
. (52)
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